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Abstract

Neural ordinary differential equation (Neural ODE) is an elegant yet powerful
framework to learn the temporal dynamics for time series modeling. However, we
observe that existing Neural ODE forecasting models suffer from two disadvan-
tages: i) controlling the latent states only through the linear transformation over
the local change of the observed signals may be inadequate; ii) lacking the ability
to capture the inherent periodical property in time series forecasting tasks; To over-
come the two issues, we introduce a new neural ODE framework called Neural
Lad, a Neural Latent dynamics model, in which the latent representations evolve
with an ODE enhanced by the change of observed signal and seasonality-trend
characterization. We incorporate the local change of input signal into the latent
dynamics in an attention-based manner and design a residual architecture over basis
expansion to depict the periodicity in the underlying dynamics. To accommodate
the multivariate time series forecasting, we extend the Neural Lad by learning
an adaptive relationship between multiple time series. Experiments demonstrate
that our model can achieve better or comparable performance against existing
neural ODE families and transformer variants in various datasets. Remarkably, the
empirical superiority of Neural Lad is consistent across short and long-horizon
forecasting for both univariate and multivariate irregularly sampled time series.

1 Introduction

Achieving accurate time series forecasting has been a long-standing challenge for decades in various
applications, such as traffic flow prediction [36]], weather forecasts [8], management of energy
consumption [1]], economic analysis [10], etc. With their remarkable representation power, deep
learning-based approaches are capable of modeling the complex dynamics in time series, and thus
dominate in forecasting tasks recently. These methods range from recurrent neural network (RNN
[24}128])), family of neural ordinary differential equations [3} 27} [13]], Transformer variants [29} 40, 5|
19,117,134} 141]] to basis-expansion-based models (e.g. N-Beats [23]).

Our design particularly follows the family of neural ODE:s, since it is an elegant as well as powerful
framework to learn the temporal dynamics for time series modeling. Unfortunately, existing variants
of neural ODEs, e.g. vanilla neural ODE [3]], ODE-RNN [27]], neural CDEs [13}22]] do not sufficiently
characterize the local change of observed signal and ignore inherent seasonality-trend attributes in
time series forecasting tasks. To this end, we introduce a new member to the Neural ODE family,
Neural Lad, where the latent states’ dynamics evolve with a sophisticatedly designed neural ODE. It
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Figure 1: The sketch of Neural ODE, Neural CDE and our proposed Neural Lad for constructing
hidden states from observations. Latent ODE: simply modifying hidden states at each observed
data point; Neural CDE: taking the signal path into consideration which makes the hidden state
continues; Neural Lad: enhancing the Neural CDE with transformation over input change of signal
and time-dependent dynamics.

has the following characteristics tailored for forecasting challenging univariate and multivariate time
series.

* We incorporate the change of interpolated observations into the latent ODE in an attention-
based design to learn more flexible and expressive hidden states.

* The latent dynamics function is time-dependent, and formulated as a decomposable form
w.r.t. the hidden state, the input signal and time.

* To accommodate the multivariate time series forecasting, we extend the Neural Lad through
learning an adaptive relationship between multiple time series.

The comparison between our proposed Neural Lad and other related members of Neural ODE:s is
described in Figure. [T} The main difference is regarding how to construct the dynamics for the hidden
states. Compared with Neural CDE, we employ a memory-based neural network to model how the
local change of the interpolated signal path influences the latent dynamics. Further, the latent dynamic
function is weighted with time-dependent seasonality-trend transformation particularly tailored for
complex time series. After obtained the enhanced latent dynamics, the same as other variants of
Neural ODEs, an ODESolver is used to obtain the integral hidden states. For multivariate time-series
forecasting, we additionally embed an adaptive graph convolution function to encode the hidden
states by incorporating the correlation with other time series (see Section [3). We then demonstrate
the empirical superiority of Neural Lad across short and long-horizon forecasting for both univariate
and multivariate time series data.

Related Work

Transformer variants for time series. Inspired by the success of transformer-based networks in CV
and NLP domains, a series of transformer variants [40, 34,4 1] were proposed to capture the long term
temporal dependency in time-series forecasting. Specifically, Informer [40] is an efficient network
with ProbSparse attention and generative decoder. Autoformer [34] implemented an decomposition
transformer network with an auto-correlation mechanism. FEDformer [41]] proposed to capture the
global profile of time series with seasonality-trend decomposition. However, transformer-based
models consider the temporal correlation with self-attention mechanisms, where the computational
complexity is high particularly when the horizon is long. Although some works like PyraFormer
[21] took effort to accelerate the attention operations, the performance was degraded due to the
computation-accuracy trade-off.

Linear networks for time series. Different from variants of transformer, works [20, 23} 137]]
used various types of linear blocks to extract features. N-beats [23] proposed to stack multi-layer
linear blocks and employed seasonal-trend basis expansion in each layer to enhance forecasting
performance, which is more time and memory efficient than transformers. SCINet [20] designed a
downsample-convolve-interact architecture including multiple sample convolutions and interaction
network to capture temporal correlation. Besides, [37]] rethought the problem of long-horizon
time-series forecasting and found that a simple one-layer fully-connected network could achieve



comparable even better prediction performance than transformer variants. However, the linear block-
based networks are sensitive to data distribution and hyper-parameters according to our experiments,
preventing them from generalizing to more scenarios.

Neural ODE family. To address the non-uniformly sampled time-series forecasting problem, neural
ODE families [26l 16} [13]] were introduced to model time series with continuous latent dynamics.
ODE-RNN and latent ODE [26] generated interpretable hidden states through the neural ordinary
differential equation. Neural CDE [13] interpolated the irregularly sampled observations into a
continuous path that were then considered in latent dynamics. STG-NCDE [6] extended the Neural
CDE from univariate to multivariate time-series with graph convolution to capture spatial correlation.
Although Neural ODE families are more interpretable and stable than transformers and linear
networks, existing Neural ODE models suffer from the ability to characterize the local change of the
observed signal and the inherent periodicity-trend attributes in time series forecasting tasks.

2 Methodology

Let {x;}]_, denote the time series, we consider time series prediction problem as
Term = Go(Ti—r1) + €, ey

where H is the length of horizon for prediction, L is the length of lookback window of historical
time series, e is the residual of the prediction, and Gg(+) is parameterized neural network that will be
elaborated later. Thus the loss function to learn the parameters © could be the mean square error or
other types,

rrgn {£(©) = |2ta+n — Golzi—r:4)]3} 2

To fully capture the intrinsic characteristics of time series data, we propose to adopt a continuous
dynamical system with hidden states z, to model the entire times series, described with following
neural ordinary differential equation,

dZt
dt
where () and £(-) are parameterized neural network that model the relationship zp — ¢ and
2t — x4, respectively; F'(-) specifies the dynamics of the hidden state and is also a neural network to

be learned. We call it as Neural Latent Dynamics and its design is critical for modeling the time
series which will be presented later.

= F(Zt—17x0:t—17t)a 20 = C(I(J)? Tt = f(zt)7 (3)

According to the formulation provided in Eq.(3), the solution to this ODE is determined by the initial
condition at 2 and the latent dynamics along the integration path, i.e.

t
2t = 20 +/ F(zs, 0.5, 5)ds, s € [0,1] )
0

This neural ODE aims to learn the hidden states at all times for time series forecasting, which can be
estimated using a numerical ODE solver; and the next step prediction can be obtained by z; = £(z;).

21, ..., 2t = ODESolver(F, zo, (to, ..., t)) 5)

Generally, the latent dynamics F'(-) can be any complex form with sufficient capacity to model the
sequential data. In this work, we propose a crucial design over the choice of latent dynamics function
F(+) particularly tailored for time series, i.e. F'(2¢,xo.t,t) is decomposable w.r.t. the hidden state z;,
the input signal z(.; and time ¢, named as neural decomposable latent dynamics. The decomposed
F(+) in our paper is as:

F(2t, 0.4, ) = o (t) fo(2t) 9o (T0:1), (6)
where the vector field function fy(z;) expands the hidden state z;, h,,(t) explicitly models the
time-dependency with periodical and trend property, and g, is an attention-based network to describe
how the change of observed signal influences the latent dynamics. The specification of these designs
will be elaborated in Sec.2.Tland 2.2

We emphasize that our model choice over the latent dynamics F'(-) is drastically different from other
neural ODE family members in which only fy(z;) was considered, as shown in Figure The entire
model can be thought as a continuous analogue of recurrent neural networks with layerwise adaptivity.
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Figure 2: Visualization of attention weights. Left: attention weight; Middle: observed time series;
Right: the weights of the 83rd components along time in log scale.

Here the decomposability assumption allows us to maintain a simple yet effective design over the
latent dynamics without loss of expressivity, and its effectiveness will be verified empirically.

We highlight that the explicit dependence on time ¢ could both increase the expressivity and inter-
pretability of time series modeling within the neural ODE framework, particularly for the complex
time series with strong periodicity, as we experimentally illustrated in Section [4]

To achieve a more compact model, the fy(2,t) is designed as a simple multiple-layer residual neural
network. In the following, we will specify two designs that aim to explicitly describe the how g, (xo.¢)
and h., (t) depends on the input signal z.; and time ¢, respectively.

2.1 Attention-based network for modeling the change of input signal

The change of input signal x can directly influence the local dynamics of the hidden states. To
incorporate the input signal into the latent dynamics f in a differentiable manner, we have to rely on
a continuous input signal. However, the observed times series is either regular or irregular sampled
sequential data {z; }7_,, thus, we first need to conduct a continuous approximation over the discrete
time series. Inspired by the idea of neural controlled differential equation, cubic spline could be a
natural alternative due to its minimum regularity for handling certain edge cases. Concretely, let X
denote the cubic spline with knots t = 0, ..., T such that X; = (z4,t) € R%=+1,

With the continuous approximation X, typically called “signal path”, the dynamic change of input
signal could be depicted by the derivative dX/dt, and the component g, (z¢.;) in the decomposed
latent dynamics Eq (6) is specified as

dX
g'u(x():t) = Gv (dt) S Rdm+17 (7)

where g, : R%*1 — R *1 in our paper is a trainable attention-based network to describe how the
change of input signal influences the latent dynamics, inspired by the idea of memory networks [30]
and matching networks [31]].

Concretely, let M € R%m*(d=+1) be the memory matrix to be learned for the path gradient, d.X/dt,
shared for the entire time series. This matrix aims to memorize representative patterns of the local
change along the signal path, stored as d,,, rows of M that can be used further pattern matching.
Then, for each time ¢, an attention-based transformation is employed for weighting the patterns stored
in the memory matrix M to obtain the final expressive control signal,
dX T dX

9u ( 7 ) M ' softmazx(M o ) ®
Our memory-based modeling over the local change of the signal path is different from that of Neural
CDE [13]], where only the path gradient dX/dt for a single time point was used. The introduction of
the memory matrix allows the model to combine different patterns of local changes, which could also
help to provide more discriminative features particularly for the segments with abrupt changes.

We visualize the attention weights so ftmax(M %) along one time series in Weather dataset in
Figure |2| where memory size d,,, = 128 and the length of time series is 250. We can observe
that around ¢ = 150 with obvious changes, the learned attention weights are extremely sparse and
distinguishing from other segments.

2.2 Seasonality-trend transformation-based latent dynamics

In most of existing neural ODEs, the dynamics function only depends on z;, not explicitly on the
time . However, in the scenario of time series, particularly for those with complex periodic and



trending characteristics, only relying on z; and z.;, F(-) might not be sufficient for capturing the
hidden seasonal and trendy attributes. To this end, we propose to force the latent dynamic function to
explicitly depend on the time ¢, as described by the decomposed formulation Eq (6)), which forms a
non-autonomous ODE in the theory of dynamical system.

With the decomposable latent dynamics, we propose to design the time-dependency function /., (t)
to characterize the intrinsic seasonality and trend property based on basis expansion. It is the

combination of a periodic function hq(j ) parameterized by w(®) to model the seasonal characteristics

and a polynomial function hq(f ) parameterized by w(?) to model the trend features:
mS . .
hi(t) = Z wgs) (cos(2"t'7t) + sin(2°1 ' 7t)) ©)
i=0
WP (1) = wPe (10)
§j=0

where h&f ) (t) takes the form of trigonometric basis expansion with pre-specified frequencies

{1,1/2,1/4,...1/2™T1} m, and m, are the number of seasonal and polynomial basis, respec-
tively. Then, the time-dependency factor h,,(t) for the latent dynamics accounts to the sum of the
two terms,

ho(t) = Wi (1) + hP(¢) (11)
Then, we multiply the vector field output fy(z:) with the time-dependency function h,, (t), and define
it as the [-th basic block,

B(z" ) = hu(t) fo (") (12)

We stack multiple layers of the basic block in a residual manner that is easy to train,

z,EO) = 2z, z,gl) = z,go) — B(Zéo)ﬂf), ...,zEL) = zt(L_l) — B(z,gL_l),t). (13)

Therefore, by taking the time seasonality and trend into consideration, the decomposed formulation
of F(-) becomes,

Fo (21,20, 8) = Bz, )40 (Cff) — hu(®)fo(20)g0 (Cljf) . (14)

where {0, w, v} are parameters to be learned for the decomposed functions h(t), f(zt,t) and g(zo.+),
respectively. Finally, the solution of hidden state z; can be derived as follows, which is amenable to
typical neural ODE solver,

K dx
Zt = 20 +/ hw<5>f9(zs)gv (d) dS, (15)
0 S

where f5(z;) € R%*(d=+1) to accommodate the dimensionality of g, (dX/dt), specified as a simple
residual network.

3 Multivariate Neural Lad

The multivariate time series forecasting typically aim to model the temporal and spatial relationship
between multiple time seriese simultaneously to enhance the prediction performance. Representative
models include STGCN [36]], AGCRN [2] and NRI [14], among which AGCRN is the most effective
and efficient approach. Inspired by AGCRN, we adaptively optimize the graph structure and learn the
spatial correlation with a generalized graph convolution operation jointly.

We start with the graph convolution [15]] for capturing the spatial dependency between multivariate
time series for each time slice ¢,

&, = (I+D 2AD 3)ZA +b, (16)

where Z, € RV *d= represents the ¢-th slice of hidden states for the N time series, and ®; € RV *de
collects the projected states into a matrix, D € RY*¥ is the degree matrix, A € R%*%¢ and b are



the trainable weight and offset, A € RY*¥ is the adjacency matrix, and I + D~ 2AD™ 7 is the
low-order Chebyshev matrix. Therefore, Eq.(T6) is the graph convolution on the hidden states to
capture the correlation between multiple time series (i.e. nodes).

To make the adjacency matrix A more flexible, a learnable embedding matrix £ € RV*de is
designed where each row represents the embedding for each time series and d. is the dimension of
node embedding. Thus, EET could measure the similarity between these nodes. Then the normalized

adjacency matrix D=3 AD" % is approximated by the following nonlinear transformation,
D™2AD™: = ¢(c(EE")), (17

where o is the ReLU activation function and ¢ is the softmax operation. We now specify a generalized
version of the graph convolution in Eq. to improve adaptivity and expressivity. The spatial
embedding s for all the N times series are defined as follows,

&, = (I+¢(c(BEET)) Z,A € RV*: (18)

where I + ¢(oc(EET)) is the adaptive Chebyshev matrix inspired by AGCRN [2], and we let the
dimension of the embedding of ®; is the same as that of the latent state z; for simplicity, i.e. d,. Thus,
for i-th time series, the spatial component corresponds to the ¢-th row of the embedding matrix ®,

& (Zy) = ®y[i, ), (19)

where v = {A, E'} denotes the collection of parameters to be learned. Then, for each time series, the
hidden state z; incorporating both temporal dynamics and spatial correlation is modeled as:

t
2t = 20 +/0 hw(s)ﬁb'y(zs)fe(zs)gv <Lf£§> ds. (20)

The Eq.(20) is the multi-variate extension of Eq.(13) with the additional spatial component ¢, (Z;).

In the encoder stage, we evaluate the time-dependent dynamics h.,(t), fo(z:), transformation of the
signal path g, (dX/dt), then obtain the z; for all the time steps by ODESolver. In the decoder stage,
we generate the hidden states and predicted outputs in a step-by-step or one-shot manner through

&(zr).

Discussions We now summarize several benefits of Neural Lad for times series modeling as follows.

1. It is the first neural ODE framework for time series in which the dynamic function explicitly
depends on the hidden state z;, input xo.; and the time ¢. It can seamlessly fit into the
training procedure of neural ODE family and the model may be trained with memory-
efficient adjoint-based backpropagation even across observations.

2. The explicit dependence on the time ¢ through the decomposable latent dynamics B(z¢,t) =
ha(t) fo(z:) allows our neural ODE to adaptively reveal the periodicity of complex time
series. Besides, the gv(%) learns the weight of the control signal. To extend to multi-
variate time series, we design the function 1, (z;) to learn the latent dynamics from spatial
correlation. This can also be verified from experimental part in Section ]

3. When considering the relationship between input and hidden states, we employ the contin-
uous approximation of observed discrete time series to facilitate the integration over the
continuous. Thus, for the original time series either regularly or irregularly sampled, they
can be fit into our model for training and inference.

4 Experiments

We conduct experiments on both synthetic and real-world datasets on univariate, multivariate and
irregularly sampled time series forecasting tasks to demonstrate the empirical performance of our
proposed approach.



Table 1: Comparison between Neural Lad and STG-NCDE on synthetic dataset.

HORIZON STG-NCDE ONLY Ay ONLY gy NEURAL LAD
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE
12 2.31 3.85 1.69 3.21 1.44 2.62 1.27 2.38
438 2.55 4.52 1.61 2.79 1.48 2.59 1.47 2.54
96 3.37 5.29 2.28 3.82 2.07 3.57 1.77 3.12
10 10 10 20
-10 -10 _10 2
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Figure 3: Left two panels: two examples of generated time series. Right two panels: prediction
results. Blue: the input signal and ground truth. Green: STG-NCDE [6]. Red: Neural Lad.

4.1 Regularly sampled time series prediction: synthetic data

We first implement the multivariate Neural Lad on a synthetic dataset consisting of 30 periodic time
series with various frequencies and linearly increasing amplitudes. The code for generating synthetic
time series follows that of Neural ODE [27]. Concretely, 30 time series each with 2304 time steps are
generated according to the functions x; ; = a; 4 sin(27wb; 4t + @) + n, ¢, where i is the index of each
time series, ¢ is the phase, n; ; denotes the standard Gaussian noise. The amplitude and frequency

ascends linearly with time ¢, i.e. a;+ = a;,0 + Wt and b; ; = b; o + Mt where for

each time series the initial parameters are sampled from uniform dlstrlbutlon aZ 0~ U [2,10] and
bi o ~ UJ0,10] to increase the diversity.

Two examples of generated time series are shown in the left two panels in Figure[3] We can easily
observe that these time series exhibit changing frequencies and amplitudes along time.

Performance. We compare a strong baseline STG-NCDE [6] with our proposed model on this
synthetic dataset with prediction horizon {12, 48,96}. The dimension of hidden states, is searched
from {8,16,32,64} and we find the best setting is 16. The results are shown in Table. |1 It can
be observed that Neural Lad outperforms STG-NCDE on both short and long-term forecasting.
Moreover, our method improves it by 45% on the short-term horizon and by 47% on long-term
horizon, both of which are large margins. We plot the predicted time series with horizon 90 by
STG-NCDE and Neural Lad in the right two panels of Figure. 3] It can be observed that Neural Lad
can fit well the overall shape of the time series.

Ablation study. We also conduct an ablation study by experimenting Neural Lad only with one
component, periodicity h.,(¢) or attention-based transformation of control signal g,(dX/dt), as
shown in Table |I} We find that both of the two components play important roles for enhancing
performance. Moreover, the attention-based transformation g,, contributes slightly more for this task.

4.2 TIrregularly sampled time series classification: PhysioNet sepsis

One advantage of the neural ODE family, including Neural Lad, is that it naturally adapts to the case
of irregularly sampled partially observed data. In this part, we apply our approach to the PhysioNet
2019 challenge on sepsis prediction [23]], including 40,335 time series of variable length from the
patients in ICU. Measurements are around 39-dimensional features with an hourly resolution, most of
which are missing and only 10.3% of values are observed. The task is a binary classification problem
to predict whether sepsis is developed during the patents’ stay. We follow the experimental settings
of [[13]], where the cases with or without observational intensity are both considered.

Since the datasets is highly imbalanced (5% positive rate), AUC is evaluated for different approaches,
as reported in Table We can observe that Neural Lad outperforms other alternatives when
considering the observational intensity with low memory usage. Moreover, Neural Lad increases the
memory less than 6% on both two classification tasks.



Table 2: Comparison between Neural Lad and other neural ODE variants on irregularly sampled
dataset, PhysioNet sepsis classification.

M TEST AUC MEMORY USAGE(MB)
ODEL
INTENSITY | NO INTENSITY | INTENSITY | NO INTENSITY
GRU-ODE 0.852 0.771 454 273
GRU-A; 0.878 0.840 837 826
GRU-D 0.871 0.850 889 878
ODE-RNN 0.874 0.833 696 686
NEURAL CDE 0.880 0.776 244 122
NEURAL LAD 0.897 0.812 257 129

Table 3: Univariate datasets: the long horizon forecasting performance. Bold font represents the best
accuracy while the underlined means the second best.

ETTml ETTm2 ETTh2 Weather
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE
96 1.214 | 0.665 | 0.266 | 0.328 | 0.432 | 0.422 | 0.259 | 0.254
192 1.261 | 0.609 | 0.340 | 0.371 | 0.534 | 0.473 | 0.309 | 0.292

Dataset Horizon

Repeat 336 1.283 | 0.707 | 0.412 | 0.410 | 0.591 | 0.508 | 0.377 | 0.338

720 | 1319 | 0729 | 0.521 | 0.465 | 0.588 | 0.517 | 0.465 | 0.394

96 0.672 | 0.571 | 0.365 | 0453 | 3.755 | 1.525 | 0.300 | 0.384

I 192 | 0795 | 0.669 | 0.533 | 0.563 | 5.602 | 1.931 | 0.598 | 0.544
nformer [40)]

336 1.212 | 0.871 | 0.887 | 1.201 | 4.721 | 1.835 | 0.578 | 0.523
720 1.166 | 0.823 | 3.379 | 1.338 | 3.647 | 1.625 | 1.059 | 0.741
avg 0.961 | 0.734 | 1.410 | 0.810 | 4431 | 1.729 | 0.634 | 0.548
96 0.505 | 0.475 | 0.255 | 0.339 | 0.358 | 0.397 | 0.266 | 0.336
192 0.553 | 0.496 | 0.281 | 0.340 | 0.456 | 0.452 | 0.307 | 0.367
Autoformer [34] 336 0.621 | 0.537 | 0.339 | 0.372 | 0.482 | 0.486 | 0.359 | 0.395
720 0.671 | 0.561 | 0.433 | 0.432 | 0.515 | 0.511 | 0.419 | 0.428
avg 0.558 | 0.517 | 0.327 | 0.371 | 0.450 | 0.459 | 0.338 | 0.382
96 0.379 | 0.419 | 0.203 | 0.287 | 0.346 | 0.388 | 0.217 | 0.296
192 0.426 | 0.441 | 0.269 | 0.328 | 0.429 | 0.439 | 0.276 | 0.336
FEDformer [41] 336 0.445 | 0459 | 0325 | 0.366 | 0.496 | 0.487 | 0.339 | 0.380
720 0.543 | 0.490 | 0.421 | 0.415 | 0463 | 0.474 | 0.403 | 0.428
avg 0.448 | 0.452 | 0.305 | 0.349 | 0.437 | 0.449 | 0.309 | 0.360
96 0.320 | 0.373 - - - -

288 0.404 | 0.427 - - - - - -
Crossformer [39] 336 - - - - - - 0.495 | 0.515

720 - - - - - - 0.526 | 0.542
96 - - 0.179 | 0.275 - - 0.161 | 0.229
192 - - 0.307 | 0.376 - - 0.220 | 0.281
MICN [32] 336 - - 0.325 | 0.388 - - 0.278 | 0.331
720 - - 0.502 | 0.490 - - 0.311 | 0.356
avg 0.328 | 0.382 0.243 | 0.299

96 0.479 | 0419 | 0.190 | 0.270 | 0.328 | 0.375 | 0.204 | 0.238
192 0.384 | 0.387 | 0.259 | 0.314 | 0.430 | 0.445 | 0.263 | 0.311
STG-NCDE 336 0.420 | 0413 | 0.303 | 0.339 | 0.451 | 0458 | 0.273 | 0.312
720 0.492 | 0461 | 2.115 | 1.029 | 0.994 | 0.689 | 0.356 | 0.347
avg 0.444 | 0420 | 0.717 | 0.488 | 0.551 | 0.492 | 0.274 | 0.302

DLinear [37] avg 0.403 | 0.407 | 0.350 | 0.401 | 0.559 | 0.515 | 0.265 | 0.317
LightTS [38] avg 0.435 | 0.437 | 0.409 | 0.436 | 0.602 | 0.543 | 0.261 | 0.312
TimesNet [33] avg 0.400 | 0.406 | 0.291 | 0.333 | 0.414 | 0.427 | 0.259 | 0.287

96 0.337 | 0.359 | 0.172 | 0.258 | 0.275 | 0.326 | 0.162 | 0.221
192 0.356 | 0.373 | 0.242 | 0.305 | 0.367 | 0.391 | 0.214 | 0.268
Neural Lad 336 0.396 | 0.406 | 0.282 | 0.333 | 0.410 | 0.422 | 0.265 | 0.303
720 0.462 | 0.448 | 0.404 | 0.400 | 0.418 | 0.446 | 0.323 | 0.345
avg 0.388 | 0.396 | 0.275 | 0.324 | 0.368 | 0.396 | 0.241 | 0.284

4.3 Real-world univaraite and mutlivariate time series prediction

Baseline methods. For long-horizon univariate time series forecasting, we compare Neural Lad with
SCINet, Neural CDE, DLinear [37], LightTS [38], TimesNet [33], MICN [32], Transformer variants



Table 4: The multivariate forecasting performance of Neural Lad on PEMS datasets.

Model PEMSD3 PEMSD4 PEMSD7 PEMSD8

MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE

GraphWaveNet 19.12 | 3277 | 24.89 | 38.66 | 2639 | 41.50 | 18.28 | 30.05
MSTGCN 19.54 | 3193 | 2396 | 37.21 | 29.00 | 43.73 | 19.00 | 29.15
DCRNN 17.99 | 30.31 | 21.22 | 33.44 | 2522 | 38.61 | 16.82 | 26.36
STGCN 17.55 | 3042 | 21.16 | 34.89 | 2533 | 39.34 | 17.50 | 27.09
ASTGCN 17.34 | 29.56 | 2293 | 3522 | 24.01 | 37.87 | 18.25 | 28.06
AGCRN 1598 | 2825 | 19.83 | 3226 | 22.37 | 36.55 | 1595 | 2522
ST-GODE 16.50 | 27.84 | 20.84 | 32.82 | 22.59 | 37.54 | 16.81 | 25.97
Z-GCNETs 16.64 | 28.15 | 19.50 | 31.61 | 21.77 | 35.17 | 15.76 | 25.11
ST-WA 15.17 | 26.63 | 19.06 | 31.02 | 20.74 | 34.05 | 1541 | 24.62
DSTAGNN 15.57 | 2721 | 1930 | 31.46 | 21.42 | 3451 | 15.67 | 24.77
SCI-Net 1498 | 24.08 | 19.27 | 31.27 | 21.19 | 34.03 | 15.72 | 24.76
STG-NCDE 15.57 | 27.09 | 19.21 | 31.09 | 20.53 | 33.84 | 1545 | 24.81
Neural Lad (Ours) | 14.67 | 24.59 | 18.98 | 30.94 | 20.21 | 33.78 | 15.28 | 24.66

including Informer [40], Autoformer [34], Fedformer [41], Crossformer [39]]. For multivariate time
series considering spatial correlation, we compare our method against other graph-based deep
learning approaches, including STGCN [36], ASTGCN [11], MSTGCN [12], DCRNN [18]], Graph
Wavenet [35], AGCRN [2]], ST-WA [7], DSTAGNN [16]], Z-GCNETs [4]], SCI-Net [20], ST-GODE [9]
and STG-NCDE [6]].

Univariate time series. Table [3| shows the performance comparison on long-term time-series
forecasting. For fair competition, we only consider the temporal latent dynamics ignoring the spatial
correlation in this experiment. Specifically, we generate the hidden state with Eq.(I3) instead of
Eq.(20). We can observe that our proposed method outperforms all the transformer baselines by a large
margin. For the model FEDformer that performs better than all other transformer variants (Autoformer,
Informer, and Pyraformer), Neural Lad outperforms it on all datasets. For two linear baselines, we
improved the TimesNet [33]] and DLinear [37]on all dataset with the average of different horizons.
The paper Crossformer [39] conduct experiments on different horizons [24, 48, 168], therefore we
take it as "-" if there are no results published in the origin paper. In the same way, for dataset (ETTm2
and ETTh2) without performance published in paper MICN [32], we fill it with "-". From the table[3]
we can find that although Crossformer performs better at the short horizon, it fails on long horizon
prediction. For TimesNet [33]], Neural Lad outperform it on average of four horizons on all dataset.

Multivariate time series. Table 4| shows that the proposed Neural Lad achieves state-of-the-art
performance on the four PEMS datasets on MAE metric, and also outperforms most baselines on
MAPE and MSE metrics. For the baseline SCINet, although the proposed Neural Lad slightly reduces
prediction error than which on PEMSD3 and PEMSD4 dataset, our method reduces MAE by 4.6%
on PEMSD?7 dataset and by 2.8% on PEMSDS8 dataset. For neural ODE family baselines, even
though STG-NCDE performs better than ST-GODE by a large margin, the proposed method improves
STG-NCDE by 5.8%, 1.2%, 1.6%, 1.1% on the four PEMS datasets, respectively. Besides, our
method performs slightly better than ST-WA. Overall, Neural Lad achieves the best performance for
multivariate time-series forecasting in Neural ODE family.

5 Conclusion

In this work, we have introduced a new variant to Neural ODE family, Neural Lad, particularly
tailored for accurate time series modeling and forecasting. We conduct extensive experiments on
both univariate, multivariate and irregularly sampled time series datasets, Neural Lad has achieved
remarkable forecasting performance in all these scenarios. Extending materials about experiment
settings, computation cost, and visualizations are presented in Appendix.

In the future, we plan to improve the training efficiency of Neural Lad when considering long look-
back window. This might tie with how to conduct a faster autonomous ODE solver. Another direction
is to propose more architecture designs for the involved neural networks in latent dynamics model.
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