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Abstract

We address the problem of distribution shift in financial time series prediction,1

where the behavior of the time series changes over time. Satisfactory performance2

of forecasting algorithms requires constant model recalibration or fine-tuning to3

adapt to the new data distribution. Specifically, the ability to quickly fine-tune4

a model with only a few training samples available from the new distribution is5

crucial for many business applications. In this paper, we develop a novel method6

for learnable data augmentation that effectively adjusts to the new time series7

distribution with only a few samples. We demonstrate the effectiveness of our8

method compared to the state-of-the-art augmentation methods on both univariate9

time series (e.g., stock data) and multivariate time series (e.g., yield rate curves) in10

the presence of distribution shift due to the COVID market shock in 2020.11

1 Introduction12

Time series prediction is the task of classifying or categorizing sequential inputs to gain further insight13

into their behavior, with important applications in multiple domains such as weather forecasting,14

medical diagnosis as well as financial prediction. As our society evolves continuously, financial15

data is prone to distribution shifts over time, where the time series dynamics deviate from previous16

patterns. Time series models trained with past data are no longer effective on current data. Similarly,17

it is common in practice to have wider access to the time series data for higher liquidity assets – and18

it is sometimes necessary to adapt models trained for highly liquid assets to low liquidity ones with a19

small number of data samples. To address the above distribution shift challenges, we focus on a setup20

of few-shot fine-tuning where a model can be quickly re-calibrated using only a few data points.21

Related Work. There are three common types of distribution shifts in supervised learning correspond-22

ing to whether the changes in distributions happen to the input samples, referred to as covariate shifts23

[1, 2, 3], or to the outputs, label/concept shifts [4, 5, 6, 7]. Recently, [8] proposes a new categorization24

framework to enable more fine-grain analysis on distribution shifts. To address learning with distribu-25

tion shifts, domain generalization works [9, 10] construct a model that is robust to a wide range of26

distributions. [11] leverages adversarial learning on a few samples in target distribution for domain27

adaptation. However, these methods cannot synthesize additional samples in target distribution for28

fast model fine-tuning with limited data, especially in time series domain. Although [12, 13, 14]29

introduces various time series augmentation methods, they are not designed for distribution shifts,30

thus they are unable to transfer knowledge from source to target distribution.31

Contributions. We develop an augmentation framework to synthesize multiple variants of time series32

samples in order to facilitate few-shot model fine-tuning. Our contributions are as follows:33
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•We propose a learnable augmentation technique based on an autoencoder for time series.34

•We design our method for few-shot model fine-tuning where a model is pretrained on many samples35

from a source distribution and updated with limited samples from a target distribution.36

•We demonstrate the effectiveness of our method on both univariate and multivariate time series37

data for stock and yield rate curve predictions, respectively.38

2 Few-shot Learnable Augmentation for Distribution Shifts39

2.1 Problem Setting40

Let Ds = {(Xs, ys)|Xs ∼ Ps} be the training set from a source distribution, with Xs ∈ Rf×n41

the input time series having t time steps, each with dimension f , and ys its ground-truth label. In42

addition, Dt = {(Xt, yt)|Xt ∼ Pt} is data from a target distribution, which is different from the43

source distribution in terms of time series X (covariate shift [1, 2, 3]) or labels y (label shift [4, 5]).44

In this work, we mainly focus on covariate shifts in time series, i.e., temporal shifts with different time45

series distributions Pt 6= Ps. Specifically, we are interested in the problem of few-shot learning with46

distribution shifts where only limited training samples are available in target distribution, |Dt| � |Ds|.47

The goal is to transfer knowledge from the source distribution, Ds, to the target distribution, Dt, to48

learn a classifier that generalizes well to the target distribution Pt.49

Due to the small number of samples in the target distribution, Dt, simply training a classifier on these50

few samples would be prone to overfitting, as shown in the experimental section. Thus, we propose a51

novel time series augmentation technique to diversify training data in the target distribution.52

2.2 Proposed Method53

To address the distribution shifts between source and target data, we introduce a learnable augmenta-54

tion method based on ∆-encoder [15]. We review this method and then improve upon the original55

design by proposing latent code perturbation and augmentation re-labeling for temporal shifts.56

Background: ∆-encoder. Instead of using heuristic augmentation to synthesize new samples, [15]57

proposes a learnable data augmentation by capturing the inner-class variances of samples. They58

leverage an autoencoder architecture to encode the transformation from one sample to another into59

a latent code and reuse these codes to augment new samples. Specifically, let (Xs,Xs′) be a pair60

of source distribution samples from the same class, ys = ys′ . An encoder, E, aims to capture the61

transformation from Xs to Xs′ into a latent code as:62

E(Xs,Xs′) = zs→s′ , (1)

where zs→s′ ∈ Rd is a low-dimensional latent vector encoding the transformation from sample s to63

s′. Given the latent code, a decoder, D, is trained to reconstruct sample s′ given s:64

D(Xs, zs→s′) = X̂s′ . (2)

Both the encoder, E, and decoder, D, are trained end-to-end by minimizing the l1 reconstruction loss65

between decoder’s output and original sample as |Xs′ − X̂s′ |1. Thus, the encoder learns to capture66

class-invariance transformation in the source distribution.67

∆-encoder extracts latent code from source distribution pairs and applies these codes on few samples68

from target distribution to synthesize new data as: D(Xt, zs→s′) = X̂
s→s′

t . Although this improves69

performances on few-shot learning where both train and test data are from the same distribution but70

different classes, it is ineffective when dealing with covariate shifts. Specifically, when Ps 6= Pt,71

augmenting Xt with latent code zs→s′ will construct a new sample X̂
s→s′

t that follow Ps but not72

the target distribution Pt. To address this, we introduce a novel latent code perturbation scheme that73

conditions the latent codes on the target distribution, Dt, to capture the target distribution, Pt.74

Latent Code Perturbation. Instead of relying on the latent codes from the source distribution,75

zs→s′ , we extract latent codes from the target distribution samples from the same class, yt = yt′ :76

E(Xt,Xt′) = zt→t′ , (3)
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Figure 1: Given a pair of sequences (Xt,Xt′) in the target distribution, our framework extracts a latent
vector zt→t′ which captures the transformation from Xt to Xt′ . By slightly perturbing this latent vector, we
can synthesize multiple variants of Xt′ . Finally, we use a classifier C pretrained on source data to re-label
augmented samples to capture any chances in label semantics.

where zt→t′ is a latent code in target distribution. Naively using this code on Xt would simply77

reconstruct the original data Xt′ without diversifying the training set. Thus, we propose to slightly78

perturb the latent code based on random noise, ε, as:79

D(Xt, zt→t′ + ε) = X̂
ε

t′ , (4)

where X̂
ε

t′ is the augmented variant of Xt′ based on random noise ε. By using perturbed latent code80

instead of transferring latent code from the source distribution as in [15], our method effectively81

captures the target distribution and avoids overfitting to latent code from the source distribution.82

Augmentation Re-labeling for Temporal Shifts. As we randomly perturb the latent code, the label83

of the augmented sample Xε
t′ might be changed compared to its original label of X̂t′ , e.g., form84

downward to upward trends, due to the non-interpretability of the augmentation operation, D(·) as85

shown in Figure 1. Thus, we propose re-labeling the augmented sample to account for any semantic86

changes during the augmentation progress. We train a classifier, C, on source distribution Ds and87

assign its most confident prediction on an augmented sample as its new label:88

argmaxy C(y|X̂
ε

t′) = ŷεt′ , (5)

where ŷεt′ is the new label for augmented sample X̂
ε

t′ . Here, we assume that temporal shift only89

effects the series distribution X while the conditional label distribution P (y|X) remains unchanged90

similar to [1, 2, 3].91

Learning with Mixture of Real and Augmented Samples. Finally, we fine-tune the classifier, C,92

on the mixture of both real and augmented samples to adapt it to the target distribution as follows:93

min
C

∑
(Xt,Xt′ ,yt)∈Dt

[
L(C(Xt), yt) + λL(C(X̂

ε

t′), ŷ
ε
t′)

]
, (6)

where λ is the mixture coefficient that controls the influence of augmented samples on the classifier.94

The larger λ is, the more emphasis we put on augmented samples.95

Remark 1 Unlike prior work [12, 14], which cannot share knowledge between source and target96

distributions, our method combines latent codes from target distribution samples and the decoder97

pretrained on source distribution to effectively transfer knowledge between distributions.98

3 Experiments99

We evaluate our proposed framework on the forecasting task of stock trend prediction for univariate100

time series, and yield rate curves prediction for multivariate time series. We present both quantitative101

and qualitative results to demonstrate the effectiveness of our method. For further information about102

datasets, baselines, and implementation details, please refer to the supplementary material section 5.103

3.1 Experimental Results104

Univariate time series Prediction: Stock Price. Table 1 shows the performances of different105

augmentation methods on stock data. Given very few training samples of 10, 20 and 30 shots, our106
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k-shot
Baseline Augmentation No Augmentation Our Proposed Augmentation

Gaussian
Jitter [12]

Time
Warp [12] RGW [14] DGW [14] Pretrain

Ds

Fine-tune
Dt

λ = 0.25 λ = 0.5 λ = 1.0 λ = 2.0

10 77.6 + 5.8 74.8 + 9.7 77.1 + 9.8 72.9 + 9.7 75.5 + 14.6 83.8 + 6.2 81.2 + 6.4 84.2 + 5.9 83.7 + 7.1 83.6 + 6.0
20 72.6 + 12.0 69.5 + 10.6 73.4 + 13.7 73.3 + 14.5 78.2 + 12.5 77.8 + 10.5 74.0 + 12.8 81.2 + 7.9 80.6 + 7.7 82.3 + 7.0
30 83.6 + 3.6 83.3 + 5.8 79.6 + 9.3 74.4 + 13.1 81.9 + 9.9 78.2 + 11.7 83.7 + 6.5 85.0 + 5.5 79.8 + 8.3 79.0 + 12.1
40 85.0 + 2.9 87.4 + 1.3 84.8 + 4.3 82.5 + 4.9 84.7 + 1.0 83.5 + 6.7 86.1 + 5.4 85.5 + 5.6 86.2 + 5.1 86.6 + 4.9
50 85.6 + 1.9 85.2 + 2.8 86.5 + 1.0 85.3 + 2.0 83.8 + 6.8 83.8 + 5.9 84.0 + 6.7 84.8 + 6.7 85.1 + 6.5 85.4 + 6.3
60 86.2 + 2.3 87.5 + 1.0 85.7 + 1.5 84.7 + 1.9 85.1 + 7.6 86.6 + 6.4 86.7 + 6.9 87.3 + 6.4 86.5 + 6.3 86.3 + 6.1

Table 1: Stock trend prediction performances (mean + standard deviation) for every 6-month period after 2020.
Bold and underline indicate best and second best performances, respectively.

k-shot
Baseline Augmentation No Augmentation Our Proposed Augmentation

Gaussian
Jitter [12]

Time
Warp [12] RGW [14] DGW [14] Pretrain

Ds

Fine-tune
Dt

λ = 0.25 λ = 0.5 λ = 1.0 λ = 2.0

10 47.0 + 18.8 47.8 + 19.8 47.8 + 18.6 46.3 + 17.8 58.0 + 14.1 47.0 + 22.3 53.0 + 15.1 52.0 + 16.2 56.3 + 13.4 52.2 + 18.9
20 44.5 + 18.1 43.8 + 20.7 41.9 + 17.3 43.8 + 18.3 54.5 + 14.2 44.8 + 23.0 42.4 + 21.8 53.3 + 15.1 49.3 + 19.4 59.0 + 15.1
30 52.9 + 16.9 53.4 + 15.7 53.4 + 17.7 51.6 + 14.8 56.1 + 10.0 47.6 + 18.9 46.3 + 18.2 60.8 + 11.5 53.4 + 15.2 73.4 + 12.5
40 65.0 + 16.2 62.6 + 17.5 62.1 + 18.8 63.8 + 18.5 50.9 + 13.1 60.9 + 10.2 70.0 + 6.4 71.8 + 12.9 61.5 + 11.6 70.0 + 11.7
50 61.3 + 17.7 67.7 + 11.9 70.0 + 10.9 66.0 + 12.4 49.0 + 14.5 60.3 + 7.1 71.0 + 2.6 64.7 + 5.0 72.3 + 9.1 73.7 + 4.0
60 50.8 + 15.3 64.2 + 18.1 60.0 + 21.7 59.2 + 8.5 50.0 + 16.0 60.4 + 2.3 55.8 + 7.3 53.1 + 17.1 68.5 + 8.5 57.3 + 13.1

Table 2: Yield rate trend prediction performances (mean + standard deviation) for every 6-month period after
2020. Bold and underline indicate best and second best performances, respectively.

method surpasses prior works by at least 0.4%, 3%, and 1.7% accuracies, respectively, with λ = 0.5107

which demonstrates the effectiveness of our method when dealing with very few numbers of target108

distribution samples. Without leveraging our method, we observe that simply fine-tuning a classifier109

on few-shot data offers no significant improvement compared to no fine-tuning. Notice our work can110

improve performances on a wide range of training shots (including those with a small number of111

shots), while prior augmentation methods only work for a larger number of shots (when there are at112

least 40 training shots in our example).113

Multivariate time series Prediction: Yield Rate Curve. Table 2 presents yield rate trend perfor-114

mances. With just 20, 30, and 40 training samples, our method significantly improves accuracy by115

4.5%, 17.3%, and 5%, respectively, compared to other augmentation with λ = 2.0. With less than116

30 training shots, fine-tuning the classifier even degrades prediction accuracies with respect to only117

pretrained the classifier, which shows the challenges of few-shot model fine-tuning without overfitting118

on limited target distribution samples. Without data augmentation, we observe a performance gap of119

around 10% between only pre-training on Ds and fine-tuning on Dt for k ≥ 40. This demonstrates120

that the distribution shifts can cause the model pretrained on Ds to be ineffective on Dt.121

Qualitative Results. We visualize the distribution of augmented and real samples using t-SNE122

[16]. When overlaying the distribution of few-shot samples from Dt and synthetic samples from123

our augmentation model in Figure 2 (a), we observe that the augmented samples generalize beyond124

few-shot samples used to synthesize them thanks to our decoder which transfers knowledge from125

source to target distributions. To validate the effectiveness of augmented samples, Figure 2 (b) shows126

the distributions of all target samples and synthetic samples where the augmented samples manage to127

capture the target distribution.128

Without augmentation re-labeling, we find that our method could not improve performances for both129

datasets compared to fine-tuning on Dt, due to the label changes when augmenting time series.130

4 Conclusion131

Figure 2: t-SNE visualization of augmented (synthetic) and
real Delta airline stocks in the target distribution.

We propose a novel method that learns132

to augment samples for the problem of133

few-shot model fine-tuning under distri-134

bution shifts. Our work aims to encode135

a class-agnostic transformation between136

inner-class samples into a compact latent137

code. During inference, we perturb the138

latent code to simulate different augmenta-139

tions on a few samples in the target distribu-140

tion. When combined with augmentation141

re-labeling, our method significantly im-142

proves model fine-tuning performances for both univariate and multivariate time series in financial143

applications.144
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5 Supplementary Materials184

5.1 Experimental Setup185

Datasets. For univariate time series prediction, f = 1, we experiment with daily stock price trend186

forecasting. Specifically, to capture the distribution shifts in financial data, we select companies from187

the travel industry: Southwest Airlines, Delta Airlines, Carnival Cruise Line, and Royal Caribbean188

Group, which have dramatic changes in their stock price during the COVID lockdown in 2020. We189

use Yahoo! Finance’s API1 to crawl the data.190

We illustrate multivariate time series prediction with the daily treasury yield dataset2 - where the191

yield values are read from the yield curve at fixed maturities, 1, 3, and 6 months and 1, 2, 3, 5, 7, 10,192

20, and 30 years. Time series for different maturities are known to be highly correlated.193

For both stock and yield curve datasets, we construct the 30-day consecutive time-step sequences,194

n = 30, as input X . We also perform mean subtraction and standard deviation division to normalize195

the range of these sequences. The ground-truth label is a binary indicator, y ∈ {0, 1}, for whether196

the sequence value will go down or up compared to the mean for the 31st day. We select a training197

dataset from 2019 data, and test the models on the 2020 data to account for the distribution shift due198

to the COVID market shock.199

Evaluation Metrics. To evaluate our performance, we split the target data into multiple non-200

overlapping windows of six months. Within each window, we use the first k sequences in each201

time window as Dt to construct augmented data as well as fine-tune the classifier. We measure the202

classification accuracy on the remaining sequences from the k + 1 day. We report the mean and203

standard deviation of prediction accuracies across all testing windows.204

Baselines. For baselines, we use two popular data augmentation methods for time series data, namely205

jittering and time warp [12, 13]. Jittering consists of adding Gaussian noise element-wise to the time206

series while time warping randomly selects anchor points in the time series and smoothly distorts207

the time intervals between the points using a cubic spline curve. Additionally, we compare our208

model with two pattern mixing methods proposed for time series, Random Guided Warp (RGW)209

and Discriminative Guided Warp [14]. Both methods use Dynamic Time Warping (DTW), which210

determines an optimized distance measure for time series that is robust to temporal distortions. In211

RGW, time series are mixed by warping the features of an original sample pattern to match the time212

steps of a reference pattern, using DTW to create the warping path, with both elements within the213

same class. DGW introduces a discriminative teacher as a reference for guided warping.214

Implementation Details. The augmentation model, {E,D}, and the classifier, C, are based on the215

InceptionTime architecture [17]. We use the Adam optimizer with a batch size of 32 and a learning216

rate of 1e-3 on 80 epochs for the augmentation model, with 10 epochs for classifier pre-training and217

another 5 epochs for fine-tuning. Empirically, we find that using a standard normal distribution to218

perturb the latent code ε ∼ N(0, I) works best. Our code is released upon request.219

1https://pypi.org/project/yfinance/
2https://home.treasury.gov/interest-rates-data-csv-archive
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