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Abstract

The Mixture of Experts (MoE) paradigm provides a powerful way to decompose
dense layers into smaller, modular computations often more amenable to human
interpretation, debugging, and editability. However, a major challenge lies in the
computational cost of scaling the number of experts high enough to achieve fine-
grained specialization. In this paper, we propose the Multilinear Mixture of Experts
(µMoE) layer to address this, focusing on vision models. µMoE layers enable scal-
able expert specialization by performing an implicit computation on prohibitively
large weight tensors entirely in factorized form. Consequently, µMoEs (1) avoid
the restrictively high inference-time costs of dense MoEs, yet (2) do not inherit
the training issues of the popular sparse MoEs’ discrete (non-differentiable) expert
routing. We present both qualitative and quantitative evidence that scaling µMoE
layers when fine-tuning foundation models for vision tasks leads to more special-
ized experts at the class-level, further enabling manual bias correction in CelebA
attribute classification. Finally, we show qualitative results demonstrating the expert
specialism achieved when pre-training large GPT2 and MLP-Mixer models with
parameter-matched µMoE blocks at every layer, maintaining comparable accuracy.
Our code is available at: https://github.com/james-oldfield/muMoE.

1 Introduction

The Mixture of Experts (MoE) architecture [1] has reemerged as a powerful class of conditional
computation, playing the pivotal role in scaling up recent large language [2, 3, 4, 5], vision [6], and
multi-modal models [7]. MoEs apply different subsets of layers (referred to as ‘experts’) for each
input, in contrast to the traditional approach of using the same single layer for all inputs. This pro-
vides a form of input-conditional computation [8, 9, 10, 11] that is expressive yet efficient. However,
through their substantial performance gains, an important emergent property of MoEs is frequently
underutilized: the innate tendency of experts to specialize in distinct subtasks. Indeed, the founda-
tional work of Jacobs et al. [12] on MoEs describes this property, highlighting how implementing
a particular function with modular building blocks (experts) often leads to subcomputations that
are easier to understand individually than their dense layer counterparts–with larger expert counts
allowing for more fine-grained specialization.

Independent of model performance, a successful decomposition of the layer’s functionality into
human-comprehensible subtasks offers many significant benefits. Firstly, the mechanisms through
which a network produces an output are more interpretable: the output is a sum of modular com-
ponents, each contributing individual functionality. Yet, the value of interpretable computation
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extends beyond just transparency [13] and explainability [14]. An important corollary of suc-
cessful task decomposition amongst experts is that layers are easier to debug and edit. Biased
or unsafe behaviors can be better localized to specific experts’ subcomputation, facilitating man-
ual correction or surgery in a way that minimally affects the other functionality of the network.
Addressing such behaviors is particularly crucial in the context of foundation models; being of-
ten fine-tuned as black boxes pre-trained on unknown, potentially imbalanced data distributions.
Furthermore, there is evidence that traditional fairness techniques are less effective in large-scale
models [15, 16]. However, to achieve fine-grained expert specialism at the class level (or more
granular still), one needs the ability to significantly scale up the number of experts. When using
only a small expert count, each expert is forced to process and generalize across multiple distinct
semantic concepts, hindering specialization. Conversely, a large expert count means each can spe-
cialize to a more specific set of semantically similar inputs. Alas, the dominating ‘sparse’ MoE
paradigm of selecting only the top-K experts [17] is not only parameter-inefficient for large expert
counts, but also has several well-known issues due to its discrete expert routing–often leading to
training instability and difficulties in scaling the total expert count, amongst other challenges [18, 19].

Table 1: Benefits of the proposed µMoEs’
model form over existing MoEs.

Parameter- FLOPs-
Differentiable efficient efficient

Dense MoE [1] � � �
Sparse MoE [17] � � �

µMoE (ours) � � �

In this paper, we propose the Multilinear Mixture of
Experts (µMoE) layer to address these issues. µMoEs
are designed to scale gracefully to dense operations in-
volving tens of thousands of experts at once through
implicit computations on a factorized form of the ex-
perts’ weights. Furthermore, in contrast to the dominant
sparse MoEs’ [17] non-differentiable nature, µMoEs
are differentiable by design, and thus do not inherit the
associated training issues. We summarize the benefits of µMoEs’ model form over existing MoEs in
Table 1. Crucially, we show evidence that scaling up the number of µMoE experts leads to increased
expert specialism when fine-tuning foundation models for vision tasks. Our evidence is provided in
three forms: (1) firstly, through the usual qualitative evaluation of inspecting inputs by their expert
coefficients. Secondly (2), we further explore the causal role of each expert through counterfactual
interventions [20]. Lastly, (3) we show how final-layer µMoE expert specialism facilitates the practi-
cal task of model editing–how subcomputation in specific combinations of experts biased towards
demographic subpopulations can be manually corrected through straightforward guided edits.

Building on these findings, we demonstrate that µMoEs offer a compelling alternative to MLPs for
pre-training both vision and language models with up to 100M parameters–enabling large numbers of
specialized experts while maintaining comparable performance and parameter counts to the original
networks’ single dense MLPs.

Our contributions and core claims can be summarized as follows:

• We introduce µMoE layers–a mechanism for computing vast numbers of subcomputations
and efficiently fusing them conditionally on the input.

• We show both qualitatively (through visualization) and quantitatively (through counterfactual
intervention) that increasing the number of µMoE experts increases task modularity–learning
to specialize in processing just specific input classes when fine-tuning large foundation
models for vision tasks. Further, we show manual editing of µMoE expert combinations can
straightforwardly mitigate demographic bias in CelebA attribute classification.

• We pre-train both language (GPT2) and vision (MLP-mixer) µMoE networks, establishing
experimentally that models with parameter-matched µMoE blocks are competitive with
existing MLP blocks whilst facilitating expert specialism (qualitatively) throughout.

2 Related Work

Mixture of Experts Recent years have seen a resurgence of interest in the Mixture of Experts
(MoE) architecture for input-conditional computation [17, 12, 21, 2]. One primary motivation for
MoEs is their increased model capacity through large parameter count [17, 4, 2]. In contrast to a
single dense layer, the outputs of multiple experts performing separate computations are combined
(sometimes with multiple levels of hierarchy [22, 23]). A simple approach to fusing the outputs
is by taking either a convex [23] or linear [24] combination of the output of each expert. The
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seminal work of Shazeer et al. [17] however proposes to take a sparse combination of only the top-K
most relevant experts, greatly reducing the computational costs of evaluating them all. More recent
works employ a similar sparse gating function to apply just a subset of experts [2, 25], scaling to
billions [3] and trillions of parameters [4]. The discrete expert selection choice of sparse MoEs is not
without its problems, however–often leading to several issues including training stability and expert
under-utilization [18, 19].

Particularly relevant to this paper are works focusing on designing MoE models to give rise to
more interpretable subcomputation [26, 27, 28]–hearkening back to one of the original works of
Jacobs et al. [12], where experts learned subtasks of discriminating between different lower/uppercase
vowels. Indeed a common observation is that MoE experts appear to specialize in processing inputs
with similar high-level features. Researchers have observed MoE experts specializing in processing
specific syntax [17] and parts-of-speech [29] for language models, and foreground/background [30]
and image categories (e.g. ‘wheeled vehicles’) [24] in vision. Evidence of shared vision-language
specialism is even found in the multi-modal MoEs of Mustafa et al. [7].

Several works instead target how to make conditional computation more efficient: by sharing expert
parameters across layers [31], factorizing gating network parameters [32], or dynamic convolution
operations [33]. Relatedly, Gao et al. [34] jointly parameterize the experts’ weight matrices with
a Tensor-Train decomposition [35]. However, such approach still suffers from the Sparse MoE’s
instability and expert under-utilization issues, and stochastic masking of gradients must be performed
to lead to balanced experts. Furthermore, whilst Gao et al. [34] share parameters across expert
matrices, efficient implicit computation of thousands of experts simultaneously is not facilitated, in
contrast to the µMoE layer.

Factorized layers in the context of deep neural networks provide several important benefits. Re-
placing traditional operations with low-rank counterparts allows efficient fine-tuning [36] / training
[37, 38], and modeling of higher-order interactions [39, 40, 41, 42, 43], and convolutions [44]. In
addition to reducing computational costs, tensor factorization has also proven beneficial in the context
of multi-task/domain learning [45, 46] through the sharing of parameters/low-rank factors across
tasks. Furthermore, parameter efficiency through weight factorization often facilitates the design and
efficient implementation of novel architectures such as polynomial networks [47, 48, 49] or tensor
contraction layers [50]. The recent DFC layer in Babiloni et al. [51] also performs dynamic computa-
tion using the CP decomposition [52] like µMoEs. Nevertheless, the two works have very different
goals and model properties due to how the weight matrices are generated. µMoEs take a sparse,
convex combination of N explicit experts’ latent factors. This consequently leads to specialized
subcomputations in a way that facilitates the interpretability and editability presented in this paper.
DFCs can be seen to apply an MLP to input vectors at this step in analogy, which does not provide
the necessary model properties of interest here.

3 Methodology

We first formulate the proposed µMoE layer in Section 3.1, introducing 2 unique resource-efficient
models and forward passes in Section 3.1.1. Finally, we show in Section 3.1.2 how µMoEs recover
linear MoEs as a special case.

Notation We denote scalars x ∈ R with lower-case letters, and vectors x ∈ RI1 and matrices
X ∈ RI1×I2 in lower- and upper-case boldface latin letters respectively. Tensors X ∈ RI1×I2×...×Id

of order d are denoted with calligraphic letters. We refer to the (i1, i2, . . . , id)-th element of this
tensor with both X (i1, i2, . . . , id) ∈ R and xi1i2...id ∈ R. Finally, we use a colon to index into all
elements along a particular mode: given X ∈ RI1×I2×I3 for example, X::i3 ∈ RI1×I2 or equivalently
X (:, :, i3) ∈ RI1×I2 is the matrix at index i3 of the final mode of the tensor. We use X ×n u to
denote the mode-n (vector) product [53] of a tensor X ∈ RI1×I2×...×IN and vector u ∈ RIn whose
resulting elements are given by (X ×n u)i1...in−1in+1...iN =

∑In
in=1 xi1i2...iNuin .

3.1 The µMoE layer

µMoEs provide a scalable way to execute and fuse large numbers of operations on an in-
put vector by formalizing conditional computation through resource-efficient multilinear oper-
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ations. A µMoE layer comprised of N many experts (and a single level of expert hierar-
chy) is parameterized by weight tensor W ∈ RN×I×O and expert gating parameter G ∈
RI×N . Given an input vector z ∈ RI (denoting the hidden representation of an individual to-
ken, for example), its forward pass can be expressed through the series of tensor contractions:

+ =

+

Input vector

Output vector

Expert
coefficients

Weight tensor

Figure 1: The forward pass of an (unfactorized)
µMoE layer as a series of tensor contractions:
the experts’ weight matrices (yellow 2D slices)
are matrix-multiplied with the input vector and
summed (weighted by the red expert coefficients).

a = φ(G>z) ∈ RN ,

y =W ×1 a×2 z

=

N∑
n=1

I∑
i=1

wni:zian ∈ RO, (1)

where a is the vector of expert coefficients and
φ is the entmax activation [54, 55]. The µMoE
layer can be understood as taking a sparse, con-
vex combination of N many affine transforma-
tions2 of input vector z, weighted by the co-
efficients in a. The first tensor contraction in
the forward pass (

∑
i W:i:zi ∈ RN×O) matrix-

multiplies the input vector with every expert’s
weight matrix. The following tensor contraction
with expert coefficients a takes a linear combi-
nation of the results, yielding the output vector.
The forward pass can be visualized intuitively as
multiplying and summing over the modes in a 3D tensor, which we illustrate in Figure 1. Furthermore,
µMoEs readily generalize to hierarchical conditional computations by introducing additional modes
to the weight tensor and corresponding vectors of expert coefficients (see Appendix E).

3.1.1 Computation in factorized form

Our key insight is that the dense µMoE forward pass over all N experts simultaneously can be com-
puted entirely in factorized form, needing never materialize prohibitively large weight tensors.
This allows µMoEs’ computations to scale gracefully to many thousands of experts simultane-
ously, without the problematic top-K gating [17]. To achieve this, we (1) first parameterize the
experts’ weightsW ∈ RN×I×O with a tensor factorization and (2) re-derive fast forward passes of
Equation (1) to operate solely in factorized form.

In the context of a µMoE layer, the various choices of tensor factorizations make different trade-offs
regarding parameter/FLOP counts and rank constraints. We derive two unique resource-efficient
µMoE variants to suit different computational budgets and choices of expert counts. We now present
the derivations of the forward passes of the factorized µMoE models (with einsum pseudocode
implementations in Appendix B):

CPµMoE Imposing CP structure [52, 56] of rank R on the weight tensor, we can write W =∑R
r=1 u

(1)
r ◦ u

(2)
r ◦ u

(3)
r ∈ RN×I×O as a sum of R outer products, with factor matrices U(1) ∈

RR×N ,U(2) ∈ RR×I ,U(3) ∈ RR×O. This reduces the parameter count from NIO (such as with
sparse/dense MoEs and regular µMoEs) to just R(N + I +O). Crucially, we can further rewrite the
CPµMoE layer’s forward pass entirely in factorized form without ever materializing the full tensor
(plugging the CP-composed tensor into Equation (1)) as:

y =

N∑
n=1

I∑
i=1

( R∑
r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r

)
ni:

zian =

R∑
r=1

(
U(2)z

)
r

(
U(1)a

)
r
u(3)
r ∈ RO, (2)

with Equation (2) being analogous to the fast computation in Babiloni et al. [51], only here the
operations of combining the weights and producing the outputs can be expressed in a single step.
Whilst the original naive CPµMoE forward pass has a FLOP count3 of NIO, the fast computation

2Incrementing the dimension of the second ‘input’ mode of the weight tensor W ∈ RN×(I+1)×O and
appending a 1 to the input vector z ∈ RI+1 folds a per-expert bias term into the computation.

3We adopt the convention of counting fused multiply-adds as one operation [57]. Note that the small
additional expert coefficients cost is constant across models and thus ignored in comparisons.
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above has just R(N + I + O) (the same number of factorized layer parameters). With moderate
values of both R and N , the layer becomes significantly more resource-efficient than vanilla µMoEs.

TRµMoE We propose a second µMoE variant based on the Tensor Ring [58] (TR) factorization that
can offer even better efficiency for large values of N . In TR format,W ∈ RN×I×O has three factor
tensors: U (1) ∈ RR1×N×R2 , U (2) ∈ RR2×I×R3 , U (3) ∈ RR3×O×R1 , where Ri are the manually
chosen ranks4. The weight tensor’s elements in TR format are given by: wnio = tr

(
U

(1)
:n:U

(2)
:i: U

(3)
:o:

)
[58]. TRµMoE’s forward passes can be computed efficiently by contracting the first two factor
tensors with the input/expert coefficients vectors and then combining the results:

y =

N∑
n=1

I∑
i=1

wni:zian =

R1∑
r1=1

R3∑
r3=1

(
(U (1) ×2 a)(U (2) ×2 z)︸ ︷︷ ︸

[R1×R3]

)
r1r3

u(3)
r3:r1 ∈ RO, (3)

yielding a modified FLOP count of (R1NR2 +R2IR3 +R1R2R3 +R1OR3) with just (R1NR2 +
R2IR3 +R3OR1) parameters. With large N contributing to the computational cost only through
R1NR2, the TRµMoE can prove even more resource-efficient than CPµMoEs by choosing small
values of R1, R2. We refer readers to Appendix D for a further discussion of decomposition choice,
derivations of how tensor rank translates to expert matrix rank, and FLOPs comparisons.

3.1.2 µMoEs recover dense MoEs as a special case

Finally, we note how unfactorized µMoE layers with a single level of expert hierarchy recover dense
MoE layers [17, 11] as a special case. When computing Equation (1) over the full materialized
weight tensor, one can alternatively write the output element-wise as yo = a>W::oz. This highlights
an interesting technical connection between neural network layers: dense MoE layers in this tensor
formulation can be seen to share a similar functional form to bilinear layers, which have also found
applications in interpretability [59, 60].

4 Experiments

We start in Section 4.1 by presenting both qualitative and quantitative experiments validating that the
experts learn to specialize in processing different semantic clusters of the input data. In Section 4.2 we
demonstrate one practical benefit of the learned specialism–showing how expert-conditional re-writing
can correct for specific demographic bias in CelebA attribute classification. Finally, in Section 4.3 we
train both large language and large vision models with µMoE layers throughout–providing qualitative
evidence of expert specialism and model performance competitive with networks using MLP blocks.
Please see Appendix H for detailed ablation studies, and Appendix I for experiments with hierarchical
µMoEs.

Implementation details Before applying the activation function to the expert coefficients we apply
batch- and layer-normalization to µMoE layers in vision and language models respectively (see
Appendix H.3 for an ablation). Interestingly, we do not find the need for any load-balancing losses.
We fix the TRµMoE ranks to be R1 = R2 = 4 throughout (see Appendix D.1.2).

4.1 Expert specialism: visualization & intervention

Our first objective is to show that scaling µMoE’s expert count leads to more specialized experts.
We provide evidence of this effect both qualitatively (through visualization) and quantitatively
(through intervention).

To isolate the impact of µMoE layers and varying expert counts, we first explore the controlled
setting of fine-tuning large foundation models CLIP [61] ViT-B-32 and DINO [62] on ImageNET1k
(following the fine-tuning protocol in Ilharco et al. [63, 64]). Whilst fine-tuning large foundation
models is an important application of µMoE layers in its own right (e.g. as explored later in
Section 4.2 for fairer models), the ability to cheaply train many models with different µMoE layer
configurations forms an ideal setting in which to study their properties.

4Setting R1 = 1 recovers a Tensor Train [35] µMoE.
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Figure 2: Specialization in 256 vs 32 total expert CPµMoE layers (fine-tuned on CLIP ViT-B-32).
Each row displays randomly selected images processed (with coefficient ≥ 0.5) by the first few
experts for the two models. The more we scale the expert count, the greater the apparent expert
specialism (to single visual themes or image categories).

4.1.1 Qualitative results

We first show random examples in Figure 2 of images processed (with expert coefficient ≥ 0.5) by
the experts by each CPµMoE layer (the class labels and expert coefficients are overlaid in white and
green text respectively). Using only a modest number of experts (e.g. 32) appears to lead to some
‘polysemanticity’ [65] in experts–with some processing unrelated classes of images (e.g. ‘gators’,
‘limos’, and a ‘quilt’ for Expert 1 on the right). On the other hand, using a much larger number of
total experts appears to yield more specialization, with many experts contributing their computation
to only images of the same single class label or broader semantic category. Please see Figure 16 in
the Appendix for many more random images for the first 10 experts per model to observe this same
trend more generally, and Figure 17 for even finer-grained specialism with 2048-expert µMoE layers.

4.1.2 Quantitative results: expert monosemanticity

The qualitative evidence above hints at the potential of a prominent benefit to scaling up the number
of experts with µMoEs. Such subjective interpretations alone about expect specialism are hypotheses,
rather than conclusions however [66]. Similarities in images processed by the same expert give us an
intuitive explanation of its function but do not show the expert’s computation contributes causally
[20, 67, 68] to the subtask of processing specific human-understandable patterns of input features
[69, 70]. However, the absence of ground-truth labels for interpretable features of the input one may
be interested in (e.g. specific types of textures in images, or words related to ‘Harry Potter’) makes
this difficult to quantify in any objective or systematic manner.

Despite the absence of fine-grained labels, we can quantify and compare the class-level spe-
cialism a µMoE expert exhibits on the ImageNET1k dataset as an (imperfect) proxy [71].
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Figure 3: Higher expert counts lead to more
monosemantic experts: mean expert class-level
polysemanticity of Equation (4) (↓) as a function of
the total number of experts. Results are shown for
both CLIP ViT-B-32 and DINO models fine-tuned
on ImageNET1k with CPµMoE layers.

Following the causal intervention protocol of
Elazar et al. [20], we ask the specific counter-
factual question about solely each expert n in a
µMoE layer in turn: “had expert n’s weight ma-
trix Wn not contributed its computation, would
the network’s test-set accuracy for class c have
dropped?” Practically speaking, given a net-
work fine-tuned with an µMoE layer, we achieve
this by intervening in the forward pass by zero-
ing the nth expert’s weight matrix Wn := 0,
leaving every other aspect of the forward pass
completely untouched. Let the elements of
y, ŷ(n) ∈ RC denote the test set accuracy for
the C = 1000 ImageNET1k classes, pre- and
post-intervention of expert n respectively. We
collect the normalized difference to per-class ac-
curacy in the vector d(n), whose elements are
given by d(n)c = (yc − ŷ

(n)
c )/yc. At the two

extremes, when the full network’s accuracy for
class c drops completely from yc to 0 upon manually excluding expert n’s computation we get
d
(n)
c = 1, whilst d(n)c = 0 means the absence of the subcomputation did not change class c’s test set

accuracy at all. We thus estimate the ‘class-level polysemanticity’ of expert n as the distance between
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Table 2: Fairness metrics for baseline models and after applying standard fairness techniques, for the
two experiments on CelebA. A CPµMoE-r512-e128 model is used as the final layer.

(a) Bias towards ‘Old females’ for ‘Age’ prediction head (b) Bias towards ‘Blond males’ for ‘Blond Hair’ prediction head
Target Equality of STD Subpop. Test set Target Equality of STD Subpop. Test set

subpop. acc. (↑) opp. [76] (↓) bias [77] (↓) Max-Min [78] (↑) acc. (↑) subpop. acc. (↑) opp. [76] (↓) bias [77] (↓) Max-Min [78] (↑) acc. (↑) # Params
Linear 0.516 0.226 0.185 0.516 88.944 0.346 0.534 0.263 0.346 95.833 30.7K
HighRankLinear 0.513 0.228 0.186 0.513 88.920 0.353 0.529 0.260 0.353 95.831 827K
CPµMoE 0.555 0.197 0.167 0.555 89.048 0.409 0.476 0.236 0.409 95.893 578K
+ oversample 0.669 0.086 0.120 0.669 89.009 0.655 0.226 0.131 0.655 95.750 578K
+ adv. debias [79] 0.424 0.274 0.226 0.424 87.785 0.193 0.630 0.325 0.193 95.031 579K
+ blind thresh. [76] 0.843 0.082 0.084 0.700 83.369 0.843 0.139 0.063 0.841 92.447 578K
+ expert thresh. (ours) 0.866 0.097 0.066 0.756 84.650 0.847 0.051 0.048 0.846 94.895 578K

the difference vector and the one-hot vector:

p(n) = ||d(n) − 1(n)||2, (4)

where index argmaxc(d
(n)
c ) of 1(n) has a value of 1 (and values of 0 everywhere else). This encodes

the signature of a perfectly class-level monosemantic expert, for which all accuracy for a single class
alone is lost in the counterfactual scenario in which the expert n did not contribute. We plot in Figure 3
the average expert polysemanticity p(n) for all experts with non-zero difference vectors5, observing a
steady drop in its value as N increases from 32 to 1024 total experts. In other words, increasing N
leads to individual experts increasingly responsible for a single subtask: classifying all inputs
of just one class. As shown in Figure 3 we observe this trend both when µMoEs are used as final
classification layers and as penultimate layers (followed by a ReLU activation and linear classification
layer), and for multiple pre-trained foundation models. We further refer readers to the bar plots of the
values of d(n) (the per-class accuracy changes) in Figures 18 and 19, where this trend is observable
through mass concentrated on increasingly fewer class labels as the number of experts increases.

4.2 Expert re-writing: conditional bias correction

We further validate the modular expert hypothesis of µMoEs and simultaneously provide a concrete
example of its usefulness by correcting demographic bias in attribute classification. Classifiers trained
to minimize the standard binary cross-entropy loss often exhibit poor performance for demographic
subpopulations with low support [72, 73]. By identifying which combination of experts is responsible
for processing target subpopulations, we show how one can straightforwardly manually correct
mispredictions in a targeted way–without any re-training.

We focus on mitigating bias towards two low-support subpopulations in models with µMoE final
layers fine-tuned on CelebA [74]: (a) bias towards images labeled as ‘old females’ for age prediction
[75], and (b) bias towards images labeled as ‘blond males’ for blond hair prediction [15]. Concretely,
we train N = 128 multi-label µMoE final layer models for the 40 binary attributes in CelebA, jointly
optimizing a pre-trained CLIP ViT-B-32 model [61] backbone, again following the fine-tuning setup
in Ilharco et al. [63, 64]. All results presented in this section are the average of 10 runs with different
random seeds.

Experimental setup Let C be a set collecting the expert coefficients a ∈ RN from forward passes
of the training images belonging to the target subpopulation. We evaluate the subpopulation’s mean
expert coefficients ā = 1/|C|

∑
a∈C a ∈ RN , proposing to manually re-write the output of this

expert combination. We modify the layer’s forward pass for the oth output head for attribute of interest
(e.g. ‘blond hair’) as:

yo = a>W::oz + λā>a. (5)

Here, the term λā ∈ RN specifies, for each expert, how much to increase/decrease the logits for
attribute o, with λ being a scaling hyperparameter6. Taking the dot product with an input image’s
expert coefficients a applies the relevant experts’ correction terms (in the same way it selects a subset
of the most relevant experts’ weight matrices). We report a range of standard fairness metrics for both
the model rewriting and networks trained with existing techniques (that aim to mitigate demographic

5I.e. we include only experts that, when ablated in isolation, alter the class accuracy; please see the Appendix
for discussion on expert load.

6We set λ := N for all experiments for simplicity, but we note that its value could require tuning in different
experimental setups. The sign of λ is chosen to correct the bias in the target direction (whether to move the
logits positively/negatively towards CelebA’s e.g. young/old binary age labels respectively).
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Figure 4: Top-activating patches (top rows) and their full images (second rows) for the first 3 experts
across 2 CPµMoE-e64 layers in µMoE MLP-mixer [80] models–µMoE blocks exhibit coarse-grained
specialism (e.g. texture) earlier and more fine-grained specialism (e.g. objects) deeper in the network.

bias without requiring images’ sensitive attribute value at test time). These are shown in Table 2
for the two different experiments on CelebA, where the proposed intervention outperforms baseline
alternative methods in the majority of settings. Please see Appendix J for details about the baseline
methods and fairness metrics used, and further discussion of results.

4.3 Large language/vision µMoE networks

Finally, we train from scratch 12 layer 124M-parameter GPT-2 [81] LLMs on OpenWebText [82] for
the language domain and 8 layer S-16 variant7 MLP-Mixers [80] on ImageNET1k [83] for vision.
We replace every MLP block’s 2 linear layers with 2 µMoE layers. Each token t’s input vector
zt ∈ RI is therefore transformed with µMoE blocks of the form:

yt =

N∑
n2=1

H∑
h=1

w
(2)
n2h:

GELU
( N∑

n1=1

I∑
i=1

w
(1)
n1i:

ztiatn1

)
h

atn2 , at = φ(G>zt),

where at ∈ RN are the expert coefficients for each specific token and block, H is the dimension of
the block’s hidden layer, andW(1) ∈ RN×I×H ,W(2) ∈ RN×H×O are the (implicit) µMoE weight

7The S-16 model is the largest configuration that fits into 4x80GB A100 GPUs using the original paper’s
batch size of 4096.
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Layer 5, Expert 8 Layer 5, Expert 37

Layer 6, Expert 16Layer 6, Expert 1

Expert coefficients color map:

Figure 5: Top-activating generated tokens for 4 manually selected experts for GPT-2 trained with
CPµMoE blocks at every layer (each token is highlighted by the coefficient of the expert in question),
exhibiting specializations to concepts including compound adjectives and equality operators.

tensors for each of the two layers. We manually set the µMoE ranks to parameter-match each original
network and set the number of experts (per block) to N = 64 for vision models and N = 256 for
LLMs. Consequently, with this configuration, each layer’s µMoE block performs computations
with N experts yet has the same parameter counts and FLOPs as a single, dense MLP block.

µMoE-Mixer For vision, our key findings are that earlier µMoE channel-mixing blocks’ experts
appear (qualitatively) to exhibit specialisms to colors, shapes, and textures, whilst later layers exhibit
more object-specific specialization. We plot the patches from the training set for which each expert
most contributes its computation in Figure 4 for both a shallow and deep layer to illustrate this–earlier
layers’ experts contribute strongly to the processing of similar patches (top rows, e.g. specific edges)
whilst later layers’ experts process tokens based more on the similarity of their surrounding semantic
context (bottom rows, e.g. images of animals). We further show in Figure 12 results for the first 2
experts across all 8 blocks where such scale-specific specialism is apparent across the entire network.

µMoE-GPT2 For LLMs, we see promising qualitative evidence of experts specializing throughout
a corpus of 1M generated 100-token sequences. At layer 5, for example, the generated tokens that use
expert 8 with the highest coefficient are compound adjectives (Figure 5), whilst expert 37 most highly
activates for equality and comparison operators in code and scientific text (please see examples of

9



Table 3: Comparison of µMoEs and dense MLPs across different models and tasks. We use N = 64
µMoE experts for the two vision tasks and N = 256 for GPT2. MLP mixers and GPT2s are
pre-trained for 300 epochs and 100k iterations respectively, whilst CLIP is fine-tuned for 10 epochs.

MLP-mixer S-16 (ImageNET1k) GPT-2 NanoGPT (OWT) CLIP B-32 (ImageNET1k)
Val. acc. (↑) #params Val. loss (↓) #params Val. acc. (↑) #params

MLPs 70.31 18.5M 2.876 124M 77.99 769K
TRµMoEs 71.26 18.3M 2.886 124M 78.71 771K
CPµMoEs 71.29 18.6M 2.893 124M 78.07 769K

many unfiltered experts in Figures 13 and 14). Whilst monosemanticity is not always attained, µMoE
layers nonetheless facilitate a level of specialism not facilitated by dense MLP layers.

One important result here is that µMoE networks in this setup are significantly more parameter-
efficient than both dense and sparse MoEs with the same expert count, as shown in Table 4. For
example, GPT-2 models with 256 sparse/dense MoE experts require a prohibitive 14.5B MLP
parameters alone, relative to just 57M MLP parameters with µMoEs of the same expert counts.

Table 4: MLP parameters required for net-
works with the same expert counts.

NanoGPT (gpt2) MLP-Mixer (S-16)
Model N = 256 N = 64

Dense/Sparse MoE 14.5B 1.13B
CPµMoE 57.0M 17.7M
TRµMoE 57.4M 17.4M

µMoE performance Finally, we substantiate our
claim that networks pre-trained and fine-tuned with
parameter-matched µMoE layers are competitive with
their existing linear layer alternatives across multiple
domains/machine learning tasks. We present in Ta-
ble 3 the performance results for MLP-Mixer S-16
[80], NanoGPT GPT-2 [81], and (fine-tuned) CLIP
ViT-B-32 [61] models on the OWT and ImageNET1k
datasets. Following Section 4.1.1, we replace all linear
layers with µMoE blocks (and a single µMoE final layer for fine-tuning CLIP). We initialize all
linear layers following the default PyTorch U [−k, k] initialization for a fair comparison. Please
see Appendix F for experimental details and learning curves, and Appendix I for experiments with
varying expert count and hierarchical µMoEs. Crucially, whilst µMoE layers provide additional
interpretability benefits through scalable expert specialization, they do not sacrifice accuracy when
parameter-matched to MLP blocks, as seen from the comparable performance.

5 Conclusion

In this paper, we introduced the Multilinear Mixture of Experts layer (µMoE). We demonstrated that
larger expert counts lead to increased specialization, and how µMoE layers make this computationally
tractable through factorized forward passes. µMoEs scale to large expert counts much more gracefully
than existing MoEs, yet avoid the issues from popular gating mechanisms. As a further practical
example of µMoE’s task decomposition, we illustrated how manual guided edits can be made to
correct bias towards demographic subpopulations in fine-tuned foundation models. Having also shown
matching performance in addition to expert specialism in both large vision and language models, we
believe µMoE layers constitute an important step towards facilitating increasingly performant models
that do not trade off fairness/interpretability for accuracy.

Limitations Firstly, it is important to state again that our quantitative evaluation only captures
expert behavior on the test set, not out-of-distribution data [70, 84]. Furthermore, expert specialism
in large models is only demonstrated qualitatively (through the expert coefficients) due to the absence
of fine-grained labels. Developing ways of quantifying fine-grained expert specialism is an important
direction for future research. Finally, our experimental results demonstrated comparable accuracies of
µMoE networks only for models with parameter counts on the order of 100 million. Where resources
permit, future work should explore the scalability of expert specialization and performance of µMoEs
in even larger-scale LLMs.
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A Broader impact

This paper presents work whose goal is to advance the field of interpretable machine learning. Our
goal is not to improve model capabilities but rather an orthogonal one of designing architectures
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more interpretable and controllable. As with many work with an interpretability focus, however, the
µMoE layer could nonetheless facilitate the further development of SOTA models through its more
expressive computation. We thus encourage the development of further guardrails against potentially
harmful dual-uses of such technology. We release our code upon acceptance to facilitate further
research along such lines.

B Fast µMoE implementations

We here detail how to implement the fast forward passes of the µMoE models in a batch-wise manner,
where each mini-batch element is a 2D matrix of shape Z ∈ RT×C (with ‘token’ and ‘channel’
dimensions) with PyTorch and einops’ [85] einsum:

B.1 CPµMoE einsum implementation

The CPµMoE forward pass can be implemented with:

# CPmuMoE (r=CP rank , b=batch_dim , t=tokens ,
# i=input_dim , o=output_dim , a[e]= expert_coefs , n*= expert_dims)
y = einsum(G3, a[0]@G1.T, z@G2.T, ’r o, b t r, b t r -> b t o’)

And a two-level hierarchical CPµMoE with an additional factor matrix as:

# CPmuMoE (r=CP rank , b=batch_dim , t=tokens ,
# i=input_dim , o=output_dim , a[e]= expert_coefs , n*= expert_dims)
#################
# A 2-level hierarchical CPmuMoE , assuming Gi’s of appropriate shape
y = einsum(G4, a[0]@G1.T, a[1]@G2.T, z@G3.T,

’r o, b t r, b t r, b t r -> b t o’)

B.2 TRµMoE einsum implementation

TRµMoEs can be implemented with:

# TRmuMoE (r*=TR ranks , b=batch_dim , t=tokens ,
# i=input_dim , o=output_dim , a[e]= expert_coefs , n*= expert_dims)

# batched mode -2 tensor -vector products
f1 = einsum(a[0], G1, ’b t n1, r1 n1 r2 -> b t r1 r2’)
f2 = einsum(z, G2, ’b t i, r2 i r3 -> b t r2 r3’)

# batch -multiply f1@f2
fout = einsum(f1 , f2, ’b t r1 r2, b t r2 r3 -> b t r1 r3’)

# contract with final TR core
y = einsum(G3, fout , ’r3 o r1, b t r1 r3 -> b t o’)

And a two-level hierarchical version with an additional TR-core as:

# TRmuMoE (r*=TR ranks , b=batch_dim , t=tokens ,
# i=input_dim , o=output_dim , a[e]= expert_coefs , n*= expert_dims)
#################
# A 2-level hierarchical TRmuMoE , assuming additional TR cores Gi
f1 = einsum(a[0], G1, ’b t n1, r1 n1 r2 -> b t r1 r2’)
f2 = einsum(a[1], G2, ’b t n2, r2 n2 r3 -> b t r2 r3’)
f3 = einsum(z, G3, ’b t i, r3 i r4 -> b t r3 r4’)

# batch -multiply f1@f2@f3
fout = einsum(f1 , f2, ’b t r1 r2, b t r2 r3 -> b t r1 r3’)
fout = einsum(fout , f3, ’b t r1 r3, b t r3 r4 -> b t r1 r4’)

# contract with final TR core
y = einsum(G4, fout , ’r4 o r1, b t r1 r4 -> b t o’)
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C µMoE forward pass visualization

For intuition, we provide a visualization in Figure 6 of the step-by-step series of tensor contractions
W ×1 a×2 z ∈ RO that the µMoE computes (in non-factorized form).
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Figure 6: An intuitive visualization of the µMoE (unfactorized) forward pass, as visualized (as a
series of tensor contractions) in 5 steps. Each step contributes to producing the output vector y ∈ RO

either by contracting with the expert coefficients a ∈ RN , or with the input vector z ∈ RI , along the
appropriate mode of the collective weight tensorW ∈ RN×I×O.

D Decomposition choice, matrix rank, and computational cost

In this section we present a further detailed discussion of decomposition choice, validating our
choices and comparing alternative options. The computational costs of each fast µMoE forward pass
and tensor-matrix rank relationships implications derived in this section are summarized in Table 5.

Table 5: A computational comparison of decomposition choice for µMoE layers and existing MoEs.
Param-efficient Param-efficient

(medium N ) (large N ) # Parameters Estimated # FLOPs Max. expert matrix rank

Dense MoE � � NIO NIO min{I,O}
Sparse MoE � � NIO KIO min{I,O}
CPµMoE � À R(N + I +O) R(N + I +O) min{I,O,R}
TRµMoE � � R1NR2 +R2IR3 +R3OR1 R2IR3 +R1NR2 +R1R2R3 +R1OR3 min

{
R3 ·min{R1, R2}, I, O

}

D.1 Tensor ranks to matrix rank

One important consideration is how the chosen tensor ranks bound the resulting experts’ matrix rank
in µMoE layers. Here, we derive the matrix ranks as a function of tensor ranks for each model in turn.

D.1.1 CPµMoEs: rank analysis

CPµMoEs are parameterized by factor matrices U(1) ∈ RR×N ,U(2) ∈ RR×I ,U(3) ∈ RR×O for
chosen CP-rank R. Following Section 3 of Kolda and Bader [53] which provides the matricization/un-
folding of CP tensors, we can write expert n’s weight matrix as

Wn = U(2)>
(
U(1)

:n

>
�U(3)>

)>
∈ RI×O, (6)

18



where � is the Khatri-Rao product [53], and U
(1)
:n ∈ RR×1 is the column of the factor matrix

associated with expert n (including a singleton dimension for the Khatri-Rao product to be well-
defined). Through the linear algebra rank inequality for matrix products, we have

rank(Wn) = rank
(

U(2)>
(
U(1)

:n

>
�U(3)>

)>)
≤ min

{
rank(U(2)︸︷︷︸

R×I

), rank(U(1)
:n

>
�U(3)>︸ ︷︷ ︸

O×R

)

}
.

(7)

Therefore a single CPµMoE’s nth expert’s matrix rank is bounded by min{I,O,R}.

D.1.2 TRµMoEs: rank analysis

We now turn our attention to TRµMoEs, where we will see that the TR ranks R1, R2, R3 translate
very favorably into matrix rank at smaller computational cost than with CPµMoEs. First recall
that TRµMoEs are parameterized instead by core tensors U (1) ∈ RR1×N×R2 , U (2) ∈ RR2×I×R3 ,
U (3) ∈ RR3×O×R1 , with chosen ranks R1, R2, R3. We can derive an expression to materialize expert
n’s matrix through the sum of matrix products of the TR cores as:

Wn =

R3∑
r3=1

(
U(3)

r3::︸ ︷︷ ︸
O×R1

U(1)
:n:︸︷︷︸

R1×R2

U(2)
::r3︸ ︷︷ ︸

R2×I

)>
∈ RI×O. (8)

The matrix product rank inequality applies to each I ×O matrix summand, whilst the matrix sum
rank inequality applies to the outer matrix sum:

rank(Wn) = rank
( R3∑

r3=1

(
U(3)

r3::U
(1)
:n:U

(2)
::r3

)>)
(9)

≤
R3∑

r3=1

rank
((

U(3)
r3::U

(1)
:n:U

(2)
::r3

)>)
(10)

≤
R3∑

r3=1

min

{
rank

(
U(3)

r3::

)
, rank

(
U(1)

:n:

)
, rank

(
U(2)

::r3

)
,

}
. (11)

Consequently, expert n’s materialized weight matrix in TRµMoEs has a more generous upper bound
of min

{
R3 ·min{R1, R2}, I, O

}
8.

Through this analysis, we observe that one can choose large values of R3 yet small R1, R2 to yield
a high expert matrix rank with few parameters, justifying the choice of R1 = R2 = 4 in the main
paper.

D.1.3 TuckerµMoEs: rank analysis

One popular alternative decomposition is the Tucker decomposition [86]. Here we derive the resulting
matrix rank of this alternative µMoE variant and detail why it’s not as desirable as the proposed
µMoE variants.

A TuckerµMoE composes an µMoE weight tensor through the series of mode-n products [53]:
W = Z ×1 U(1) ×2 U(2) ×3 U(3), where Z ∈ RRN×RI×RO is the so-called ‘core tensor’ and
U1 ∈ RN×RN ,U2 ∈ RI×RI ,U3 ∈ RO×RO are the ‘factor matrices’ for the tensor’s three modes.

Again following Kolda and Bader [53] a single expert n’s weight matrix can be rewritten through the
matricization involving the Kronecker product ⊗ as:

Wn = U(2)Z(2)

(
U(1)

n ⊗U(3)
)>
∈ RI×O, (12)

8Regardless of how large R3 is, the rank of the matrix cannot exceed min{I,O}.

19



where Z(2) ∈ RRI×(RO·RN ) is the so-called mode-2 (matrix) unfolding of the core tensor [53].
Consequently, the same rank inequality applies:

rank(Wn) = rank
(

U(2)Z(2)

(
U(1)

n ⊗U(3)
)>)

(13)

≤ min

{
rank(U(2)︸︷︷︸

I×RI

), rank(Z(2)︸︷︷︸
RI×(RO·RN )

), rank(U(1)
n ⊗U(3)︸ ︷︷ ︸

O×(RO·RN )

)

}
, (14)

Where we see the much more restrictive matrix rank upper bound applies:
min {min(I,RI),min(RI , RO ·RN ),min(O,RO)}. Thus in practice, both RI , RO need to
be large to yield a large matrix rank, which is in conflict with the goal of maintaining a moderate
number of parameters.

D.2 Why is low-rankness a reasonable assumption?
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Figure 7: Val. accuracy for an S-16
MLP-mixer when performing truncated
SVD on all MLP’s linear layers’ weight;
model accuracy is closely retained even
with half the singular vectors.

Given we’ve seen that parameter-efficient µMoE layers
lead to low-rank expert weight matrices, a natural ques-
tion is whether or not low-rankness in MLP linear layers’
weight matrices is a reasonable assumption or constraint.

Our strongest piece of evidence supporting the claim is
experimental in nature: we’ve seen from the results in
Section 4.3 that using all parameter-matched µMoE layers
for both MLP mixers and GPT-2 models leads to no signif-
icant drop in accuracy from their linear layer counterparts
(see also Appendix I for many more results).

To investigate this further we perform a rank ablation on
our trained MLP-Mixer model with the original linear
layers’ weights. Concretely, we compute the truncated
SVD of each MLP block’s 2 linear layer weight matrices.
We explore the impact on the model’s ImageNET1k val-
idation set accuracy when using only the top-k singular
vectors/values (the best rank-k approximation [87]). The
validation set accuracy using truncated SVD weights in
every mixer block is plotted in Figure 7–we see here that
discarding as many as half the total number of (bottom)
singular vectors/values to approximate the original weights
leads to negligible difference to the validation set accuracy. In other words, low-rank approximations
of MLP Mixers’ weights retain their representational power sufficiently well to produce nearly the
same validation set accuracy as the original model. Such findings are consistent with results in
recent work in the language domain [88], where low-rank approximations of MLP layers can even
sometimes boost original performance. The accuracy retained by MLP Mixers here even after such
aggressive rank reduction constitutes further evidence that full-rank weights are not always necessary.

D.3 MoE/µMoE parameter count comparisons

We plot in Figure 8 the parameter counts for µMoE layers as a function of the expert counts (sweeping
fromN = 2 experts through toN = 16, 384), relative to dense/sparse MoEs (with rankR1 = R2 = 4
TRµMoEs), for the first layer in a MLP-mixer channel-mixing block [80]. As can be seen, both
µMoE variants are vastly more parameter-efficient than dense/sparse MoEs.

Given TRµMoEs offer even better parameter efficiency for larger numbers of experts, we suggest
opting for CPµMoEs when using expert counts less than ∼ 128, and considering TRµMoEs for
higher values.

Latency and memory usage comparisons between the µMoE, linear layers, and alternative MoEs
are shown in Table 6, where the µMoEs perform favorably.
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Table 6: Comparison of different layers’ peak memory usage and latency (per single input). We use
128 experts in each MoE layer, and set the rank of the µMoEs to parameter-match that of the linear
layer.

Layer type Peak memory usage (MB) Latency per single input (ms)

Linear layer 12.07 0.01
Dense MoE (N = 128) 390.17 1.17
Sparse MoE (N = 128) 765.19 0.80
TRµMoE (N = 128) 15.87 0.94
CPµMoE (N = 128) 14.02 1.05

E Hierarchical µMoE model derivations

In the main paper, the fast forward passes are derived for a single level of expert hierarchy. One
additional attractive property of µMoEs is their straightforward extension to multiple levels of expert
hierarchy–one simply increments the number of modes of the weight tensor and includes another
tensor contraction with new expert coefficients. Hierarchical µMoEs intuitively implement “and”
operators in expert selection at each level, and further provide a mechanism through which to increase
the total expert count at a small parameter cost. Here, we derive the fast forward passes for µMoE
layers in their most general form with E levels of expert hierarchy. For intuition, we first further
visualize µMoE layers with 2 levels of hierarchy in Figure 9–note how we have an extra mode to the
weight tensor, and an extra contraction over the new expert mode to combine its outputs.

Given that hierarchical µMoEs involve very high-order tensors, we adopt the popular mode-n product
[53] to express the forward passes in as readable a way as possible. The mode-n (vector) product
of a tensor X ∈ RI1×I2×...×IN and vector u ∈ RIn is denoted by X ×n u [53], with its elements
given by:

(X ×n u)i1...in−1in+1...iN =

In∑
in=1

xi1i2...iNuin .

We first introduce the formulation of an E-level hierarchical µMoE layer from Equation (1) in the
main paper: given input z ∈ RI , the most general form of µMoE layer is parameterized by weight
tensor W ∈ RN1×...×NE×I×O and E many expert gating parameters {Ge ∈ RI×Ne}Ee=1. The
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Figure 9: Illustration of a two-hierarchy µMoE layer’s (unfactorized) forward pass as a series of
tensor contractions. The N1 ·N2 many experts’ weight matrices are visualized as 2D horizontal slices
in yellow, which are (1) matrix-multiplied with the input vector, (2) summed over the first expert
mode (weighted by the first expert coefficients a1 in red), and (3) summed over the second expert
mode (weighted by the second expert mode’s coefficients a2 in dark green).

explicit, unfactorized forward pass is given by:

ae = φ(G>e z) ∈ RNe , ∀e ∈ {1, . . . , E},
y =W ×1 a1 ×2 . . .×E aE ×E+1 z

=

N1∑
n1=1

a1n1
. . .

NE∑
nE=1

aENE

(
W>

n1...nE ::︸ ︷︷ ︸
O×I

z
)
∈ RO, (15)

where Equation (15) is expressed as sums over the E-many expert modes to make it clear that
hierarchical µMoEs take convex combinations of

∏E
e=1Ne many experts’ outputs (given there areNe

experts at each level of hierarchy). With expert coefficients {ae ∈ RNe}Ee=1, the factorized forward
passes of the most general hierarchical µMoE layers are given for the two variants below.

E.1 Hierarchical CPµMoE

The full CPµMoE model of rank R has an implicit weight tensorW =
∑R

r=1 u
(1)
r ◦u(2)

r ◦u(3)
r ◦ · · · ◦

u
(E+2)
r ∈ RN1×···×NE×I×O, with factor matrices U(1) ∈ RR×N1 , . . . ,U(E) ∈ RR×NE ,U(E+1) ∈

RR×I ,U(E+2) ∈ RR×O. The implicit, factorized forward pass is given by:

y =

(
R∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ◦ · · · ◦ u(E+2)

r

)
×1 a1 ×2 . . .×E aE ×E+1 z

=

R∑
r=1

u(E+2)
r

( ∑
n1,...,nE ,i

u(1)rn1
a1n1

· · ·u(E)
rnE

aEnE
u
(E+1)
ri zi

)
=

R∑
r=1

u(E+2)
r

(
U(1)a1

)
r
· · ·
(
U(E)aE

)
r
·
(
U(E+1)z

)
r
∈ RO. (16)

E.2 Hierarchical TRµMoE

In TR format,W ∈ RN1×···×NE×I×O has E + 2 factor tensors: U (1) ∈ RR1×N1×R2 , . . . ,U (E) ∈
RRE×NE×RE+1 , U (E+1) ∈ RRE+1×I×RE+2 , U (E+2) ∈ RRE+2×O×R1 , where Ri are the manually
chosen ranks. The weight tensor’s elements are given by:

wn1...nEio = tr
(
U(1)

:n1: · · ·U
(E)
:nE :U

(E+1)
:i: U(E+2)

:o:

)
.
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We derive the fast factorized forward pass in terms of a series of mode-2 products:

y =
∑
i

∑
n1,...nE

W(n1, · · · , nE , i, :)a1(n1) · · ·aE(nE)z(i) (17)

=
∑

r1,rE+2

u(E+2)
rE+2:r1

(
(U (1) ×2 a1) · · · (U (E) ×2 aE)(U (E+1) ×2 z)︸ ︷︷ ︸

R1×RE+2

)
r1rE+2

∈ RO. (18)

F Experimental details

F.1 Network configurations and hyperparamters

Here we provide the full experimental details and setups to reproduce the performance results in
the paper for each of the networks. We further include the per-epoch accuracy plots for additional
transparency into the training processes.

The experimental configurations used to reproduce the performance results in the main paper follow
as closely as possible those specified in the main paper of MLP-mixer [80] and open-source code
(https://github.com/lucidrains/mlp-mixer-pytorch), the open-source code for NanoGPT
(https://github.com/karpathy/nanoGPT) for GPT2 [81], and the robust fine-tuning protocol
of [89] for CLIP [61]. These values are summarized in Table 7. We plot the learning curves for the
training of both models in Figures 10 and 11.

Table 7: Experimental configuration and settings for the results reported in the main paper in
Section 4.3.

Learning Batch Weight Warmup Training Stochastic RandAugment Mixup Mixed Random
rate size decay steps duration depth strength Dropout strength precision seed Hardware

MLP Mixer 1e-3 4096 1e-4 10k 300 epochs True 15 0 0.5 bf16 0 4xA100 80GB
NanoGPT 6e-4 24 1e-1 2k 100k iter. False 0 0 0 fp16 0 4xA100 80GB
CLIP 3e-5 4096 1e-1 500 10 epochs False 0 0 0 fp16 0 1xA100 80GB

Rank choices Throughout all experiments in the main paper, we fix the TRµMoE ranks for the first
two modes to be R1 = R2 = 4. This way, we can maximize the effective expert matrix ranks at a low
parameter cost, as shown in Appendix D.1.2. The final TR rank R3 is varied to parameter-match the
networks in question. For CPµMoEs, we set the single CP rank R to parameter-match the baselines.

Training times Each MLP mixer model takes just under 3 days to train on 4xA100 80GB GPUs.
The NanoGPT models take 2-3 days to train for 100k iterations, with the same resources.

F.2 Weight initialization

We initialize each element of the factor matrices/tensors for the input and output modes from
a U [−

√
k,
√
k] distribution (following PyTorch’s linear layers’ initialization strategy), for k =

1/in_features, where in_features is the dimension of the input to each factor matrix/tensor during
the factorized forward passes.

Factor matrices for the expert modes are initialized to replicate the weight matrices along the expert
mode (plus optional noise). For CPµMoEs, this corresponds to sampling the factor matrices’ elements
from a N (1, σ) distribution. For TRµMoEs, the weight matrices can instead be replicated along the
expert mode by initializing each slice (e.g. G1(:, i, :)) as a diagonal matrix with its elements sampled
from N (1, σ). In all our experiments we set σ := 1 to introduce noise along the first expert mode,
and σ := 0 for additional expert modes.

G Expert specialism: additional results

G.1 Large scale models

We first show in Figure 12 the top-activating examples for MLP-mixers trained with both CPµMoE
and TRµMoE blocks. Examples are shown for the first two experts as they appear numerically for
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Figure 10: Training loss and validation accuracy for the MLP-mixers models for 300 epochs.
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Figure 11: Training and validation loss for the GPT-2 models for 100k iterations.

each of the 8 layers, where we observe the same phenomenon of earlier blocks specializing to textures,
and later blocks to higher-level abstract concepts/objects.

Secondly, in Figure 13 we show the top 32 activating tokens for the first 6 experts (as they appear
numerically) for layer 5 in GPT2 models trained with CPµMoEs replacing every MLP block. Whilst
there are clear coherent themes amongst the top-activating tokens, we do see some examples of
multiple themes being processed with high coefficients by the same experts (e.g. example #20 in
expert 2’s top-activating examples appears unrelated to the context of the other top-activating tokens)
indicating a certain degree of expert polysemanticity (as expected in the large open domain of web
text).
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(a) CPµMoE block MLP-Mixers: top-activating tokens.
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(b) TRµMoE block MLP-mixers: top-activating tokens.

Figure 12: Top-activating patches (and their surrounding image context) for the first experts at two
blocks in MLP-mixer models. µMoE blocks (with N = 64) exhibit coarse-grained specialism (e.g.,
texture) earlier and more fine-grained specialism (e.g., object category) deeper in the network.
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Layer 5, Expert 1 Layer 5, Expert 2

Layer 5, Expert 3 Layer 5, Expert 4

Layer 5, Expert 5 Layer 5, Expert 6

Expert coefficients color map:

Figure 13: Top-activating 32 tokens for the first unfiltered experts 1-6 (as ordered numerically) at
layer 5 in the CPµMoE GPT2 model (Please find the next 6 experts in Figure 14).
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Layer 5, Expert 7 Layer 5, Expert 8

Layer 5, Expert 9 Layer 5, Expert 10

Layer 5, Expert 11 Layer 5, Expert 12

Expert coefficients color map:

Figure 14: Top-activating 32 tokens for the unfiltered experts 7-12 (as ordered numerically) at layer 5
in the CPµMoE GPT2 model.
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G.2 LLM steering

Here we provide additional evidence that the experts’ specialization is mechanistically relevant to the
functionality of the network, in the sense that we use them to steer the LLM’s output.

In particular, we use a larger GPT-2 model trained from scratch with µMoE layers at each MLP layer,
using 2048 experts at every layer, following the setup in Section 4.3. By modifying the forward
pass of the trained model—specifically, adding selected expert cluster center vectors to each token’s
input latent activation vector before applying the µMoE layer—we can consistently control the model
to generate outputs aligned with specific themes. Illustrations of this approach, using 4 different
manually chosen experts (with their first 8 generated samples) are shown in Figure 15. The selected
experts guide the language model’s outputs toward discussing topics such as climate change, police
brutality, or foreign politics. We suggest that these findings further demonstrate the effectiveness of
the µMoE layer in facilitating controllable generation of language model outputs.

However, we note that these initial results are hand-selected examples of some of the experts which
do exhibit sensible specialization. We find many experts, when activated, do not steer the generations
in such an interpretable high-level manner.

G.3 CLIP ViT-B-32

Qualitative visualization Additional results to further substantiate the claims in the main paper
about expert class-modularity are presented here. Firstly in Figure 16 are many more random images
(of those with expert coefficient ≥ 0.5) of the first few experts as they are ordered numerically.
Furthermore, when we use an even larger number of experts (i.e. 2048) we observe a select few
experts developing what appear to be very fine-grained specialisms, as shown in Figure 17. For
example, images with large coefficients for #203 are often animals on top of laptops, whilst images
with high coefficients for #1203 are animals eating corn.

Counterfactual intervention barplots Next, we show barplots of the class labels whose test set
accuracies are most changed under the counterfactual question in the main paper: “had (expert n)
not contributed its weight, how would the class predictions have changed?”. These are shown in
Figure 18 and Figure 19 when using a CPµMoE as a final and penultimate layer respectively. As
can be seen, we often observe that a higher number of experts (the final rows in brown color) lead to
experts that, upon ablation, cause the model to lose almost all its accuracy for fewer classes. Experts
here are chosen in numerical order and only those yielding ≥ 0.5 total accuracy change to any class
upon counterfactual ablation.

H Ablation studies

H.1 Entmax vs softmax

We find the use of the entmax activation function [54, 55] to produce more monosemantic experts,
as quantified by the measure of polysemanticity used in the main paper. We show in Figure 20
the mean expert polysemanticity (of those experts that affect the class accuracy upon ablation) for
CPµMoE-r512 final layer models fine-tuned with various numbers of experts. As can be seen, the
entmax function consistently produces more monosemantic experts for larger total expert counts. We
attribute this to the sparsity in entmax’s post-activation distribution (whereas the softmax function
can just as readily output a uniform distribution over all expert coefficients).
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The biggest issue of today's world is the pressure on the planet's fragile biosphere to 
become more carbon-rich. People have been making alternative energy sources since 
the dawn of civilisation, but there is no evidence for them, says the UNEP report.        
"The climate crisis is

The biggest issue of today's world is the lack of unity. One of the biggest problems is 
that as the vast majority of the media don't want to say so, it is increasingly difficult 
to communicate what is called "the truth" with the public.        In fact, in some

The biggest issue of today's world is the internet, which not only protects the most 
important aspects of our lives, but also has important benefits that greatly benefit 
other people. We can bypass the police, governments, banks and everyone else. 
Nobody wants to be charged with a crime, and nobody

The biggest issue of today's world is not climate change, but the failure to make the 
right choices about who to send to war," he said. "The danger is that our leaders are 
unwilling to do the right thing and avoid a massive catastrophe."        Watt noted 
that the United

The biggest issue of today's world is this:        As the world continues to get more 
and more food into the hands of the poor, we are also finding out that food is 
becoming harder to find. And the pace of demand for food is quickly in decline due 
to some key reasons

The biggest issue of today's world is not how to manage a growing population 
(although we must do that), but how to manage a growing food production system. 
Growing food in urban areas is a challenge, but it also is a strategic opportunity.        
That’s because city dwell

The biggest issue of today's world is the continuing need for mass-human 
immigration. Of the 3 million new visas issued in fiscal year 2010, 2.4 million have 
been approved, and the rest (1.6 million) will be, at best, temporary. That's because 
of

The biggest issue of today's world is not the problems of the last century; it's the 
problems of today.        The world of today is experiencing a profound change. We 
are less and less rational, more and more embittered, and the world will inevitably 
evolve to a situation

The biggest issue of today's world is that of the 'new' value: 'a' with `result', from 
which all operations are overloaded.        The other class that lists a type is `f`, 
which is a lambda, will be a type that is a new Value.

The biggest issue of today's world is the lack of, as a constant:        ()<A> -> 
A<B> . And the get() type only makes the function return value, but, from 
type<A> implements A<T<T<T>] , it

The biggest issue of today's world is the accumulation of non-ditional , or 
__init__ , in every object.        Here, we have an instance of , and an are, with 
type F , and        .        The first type is , and the second,

The biggest issue of today's world is not to solve, but to be able to create. And it is: 
Any new construct cannot be created anywhere in the world (except at most one).        
These types of construct is a member of the set , where .        If we

The biggest issue of today's world is this:        As a result, the world will grow one 
world after another, after all.        We will see millions, billions, and billions of 
things. And the way we think of the world is in the identity of some kind of

The biggest issue of today's world is that it's a problem of type (higher type) in an 
overloaded type, like a function. My type is a result, in a type like a, you get a result, 
after run(T), and the type t is a result is

The biggest issue of today's world is the absence of a class.        "A big number is 
always a number, and the sum of all the other values is always a number. But the 
(bigest) type is always a, and the same is always a. But the

The biggest issue of today's world is that, on every stream, no matter of size, 
exception is not a superclass, and a static class cannot be. It is a single construct and 
void is a new int. But a non-class is not any of its complement.    

The biggest issue of today's world is that we don't have enough police officers, and 
we have too many immigrants from the United States who aren't helping with the 
deportation of illegal immigrants.        "We have a drug problem, we've got a 
problem with drugs. We've got

The biggest issue of today's world is the militarization of police, especially in the US. 
It also has to do with the media's ability to get to the bottom of what's happening in 
Ferguson, and the killing of multiple civilians.        The US military's lack of 
accountability puts

The biggest issue of today's world is the accumulation of resources that are being 
moved, and the effects of that. In 2016, Donald Trump, Texas police officers are 
killed in the street.        “He has insulted the Mexican flag, the flag of the United 
States,”

The biggest issue of today's world is not immigration, but the war on drugs. The war 
on drugs is a racist, violent criminal regime that is in the process of dismantling our 
country’s efforts to keep us safe.        The War on Drugs has been an unjust and 
unw

The biggest issue of today's world is this:        As the United States says, the #8 
target in Charlottesville #Charlottesville police death is "driving" violence, and other 
#2's getting killed in the US. https://t.w/r #2's killed are

The biggest issue of today's world is that we are constantly on the same side and we 
are constantly on the side of the Palestinians, however much we are there as well," 
Clinton said in July. "And we also have to be here before the people that are so 
violent, so many

The biggest issue of today's world is a lack of respect for the police, and the way law 
enverses that, police can be getting killed in a lot of other ways, including the use of 
drones. That's where I think, as a police officer, it's a greater

The biggest issue of today's world is that we have a broken immigration system. We 
have a broken economic system. We have a police officer or a policeman who is 
unarmed and is being continually killed by a person who owns a vehicle. They have 
killed five officers this past week.

The biggest issue of today's world is that of climate change, and many people are 
already building their homes on land from Mount Meru in the month-long dry 
monsoon that freezes into March. But that could be the biggest issue facing India; 
even in February, a low-pressure

The biggest issue of today's world is the risk of giant rain, especially in the British 
Isles, with the high temperature expected to reach an highest maximum of 2C.        
It's likely to become a drier pattern again today with winds of up to 10 miles per 
hour.    

The biggest issue of today's world is the warm temperatures that you can expect to 
see today, with the heat centering around the equator. But, it is not too cold, so we 
have to approach this problem cautiously. So far so good, anyway!        So, here

The biggest issue of today's world is not to burn down the planet. But it is to freeze 
it. We need a lot more water ice, and we need a lot more sunshine. But the climate 
has warmed, and now there is an area of relatively low temperature that is getting 
warmer

The biggest issue of today's world is this:        As summer approaches, many farmers 
will grow one-to-two tons of wine every year.        But, most will have some water.       
There's nothing to worry about, especially in the Southern California mountains. If

The biggest issue of today's world is a lack of sunshine, which makes the heat 
evaporate away. The heat in the day is a much-remarensed mist. We're in a perfect 
storm of sunshine here, at high pressure, and it's going to be cloudy for a

The biggest issue of today's world is a lack of rainfall and extreme temperatures, so 
the coastal area will be dry to some extent. That means the rest of the area will be 
prone to the high temperature, but those regions should be dry, and the temperature 
could be as high as 100

The biggest issue of today's world is that, on average, the atmosphere is too hot to 
be able to cool, although the warmer air is melting to some parts of the Arctic 
continent.[3] The area is covered with a haze of wind-shear (twice), with a

The biggest issue of today's world is that the Americans must implement a plan to 
end the war with Iraq and to improve postwar relations, American leaders said. 
However, the Soviet Union was always wary of the American policies.        Korea, the 
North Koreans, the US and Great Britain

The biggest issue of today's world is coming to the realization that since the cold war 
era, the United States has turned its back on the Soviet Union. They secretly pushed 
through the historic deal in 1983, and the Soviets were all too eager for a resolution 
to stop the Berlin and Tehran.

The biggest issue of today's world is the United States' difficulties with the East, and 
the US, in every sense of the world. They see no other use for the region is the 
obvious obvious of a new problem: the problem of Western imperialism. Also, the US 
sees no trouble

The biggest issue of today's world is how to solve the issue of the Black Sea when it 
is. On a modern scale, the US Embassy in Moscow had changed the status quo 
through Washington's representative.        From the time of Napoleon until the 
Russian Empire's recognition of Russia in 18

The biggest issue of today's world is this, both sides are also pursuing a plan to avoid 
a permanent strategic alliance but they cannot reach for this is now calling its long-
term friendship could be achieved with the current.        The US government, 
especially in Washington, does not want to

The biggest issue of today's world is a country's strategic response to Iraq's invasion 
and the rest of Iraq ruled in the 1950s.        A week after the start of the war, it 
launched a massive operation to find Baghdad's exiled neighbour and to capture or 
occupy the city.

The biggest issue of today's world is a fight between the two leaders over their 
mutual aspirations. Those were long-lasting issues over the Berlin-Ottoman-Rabid 
government has now tried to resolve. And those difficulties have left the country with 
a war-weary Russian President and

The biggest issue of today's world is surely, on a broad level, some of the most 
consequential economic positions are being kept for half a year.        Donald Trump 
and Vladimir Putin have been at every level to try to end a crisis over Russia - but 
the last days were also a
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Figure 15: Steering LLM outputs by forcefully activating experts: adding specific manually
chosen expert’s cluster centers to GPT-2’s activation vectors at particular layers reliably steer the
LLM generations towards specific themes, based on the learned expert specialism. For example, we
see an expert that steers discussion towards police violence, or about the climate. The initial prompt
in every instance is the text: “The biggest issue of today’s world is”.
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μMoE: 256 total experts μMoE: 32 total experts

Expert 1 Expert 3

Expert 5 Expert 6

Expert 7 Expert 8

Expert 9 Expert 10

Expert 1 Expert 2

Expert 2 Expert 4

Expert 5 Expert 6

Expert 7 Expert 8

Figure 16: High vs low total expert count: Randomly selected training set images with expert
coefficient ≥ 0.5 for the first 10 numerical experts (of those processing any images with coefficient
≥ 0.5). Results are with CP-r512 µMoE layers with 256 (left) and 32 (right) total experts respectively.
We highlight the apparent specialism of the experts when a higher total number is used. (Please
zoom for detail)
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CPmuMoE-r512: 2048 total experts

Expert 834 Expert 1203

Expert 316 Expert 206

Expert 203 Expert 1602

Figure 17: Fine-grained expert specialisms: Manually selected experts (and images ranked by
highest expert coefficients) processing what appears to be very fine-grained categories (e.g. animals
with footballs, trolleys in water, etc.). Model fine-tuned on ImageNET1k with a high number of 2048
experts and a CP-r512 µMoE final CLIP layer. (Please zoom for detail)
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Figure 18: Penultimate layer CPµMoE: Percentage of per-class test set accuracy lost when inter-
vening and ablating particular experts (along the columns). In general, the more total experts (rows),
the more class-level monosemantic the experts are as indicated by the mass centred on fewer classes,
and with higher magnitude. Shown are the first 4 experts in each model (row) to change ≥ 0.5 of any
class’ accuracy when counterfactually ablated.
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Figure 19: Final layer CPµMoE: Percentage of per-class test set accuracy lost when intervening
and ablating particular experts (along the columns). In general, the more total experts (rows), the
more class-level monosemantic the experts are as indicated by the mass centred on fewer classes, and
with higher magnitude. Shown are the first 4 experts in each model (row) to change ≥ 0.5 of any
class’ accuracy when counterfactually ablated.
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Figure 20: Softmax vs Entmax ablation CPµMoE-r512 final layers trained on ImageNET, and the
resulting class-level polysemanticity. For large values of experts, the entmax activation produces
more specialized experts.

H.2 Fast forward pass computation speedups

Table 8: Original µMoE layers’ FLOPs vs the
fast einsum forward passes in Appendix B (for
N = 512 experts with 768-dimensional input and
output dimensions).

CPµMoE TRµMoE
Original FLOPs 155.1B 622.8B
Fast model FLOPs 1.4M 3.5M

We next report in Table 8 the actual num-
ber of FLOPs (as reported by https://
detectron2.readthedocs.io/en/latest/
_modules/fvcore/nn/flop_count.html)
when executing PyTorch µMoE layers using
the naive forward pass relative to the cost when
using the fast einsum computation derived
in Appendix B–the fast computation is many
orders of magnitude less expensive (using one
A100 GPU).

H.3 Batch normalization
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Figure 21: Ablation study: batch normalization
leads to more class-level monosemantic experts.

We next perform an ablation study for the use
of batch normalization (BN) before the activa-
tion function for the expert coefficients. We
study CPµMoE final layer layers with CLIP ViT-
B-32, quantifying BN’s effect on expert class-
monosemanticity as a function of the expert
count. Concretely, we perform the same class-
level polysemanticity experiments as in the main
paper, with and without batch normalization in
Figure 21. As can be seen clearly, the batch nor-
malization models lead to individual experts that
are increasingly class-monosemantic as desired
(as a function of the total expert count).
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Expert load: CP MoE, 512 total experts

(a) 512 total experts

0 100 200 300 400 500 600 700
Expert index

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f i
m

ag
es

 a
ss

ig
ne

d 
wi

th
 c

oe
ffi

cie
nt

 >
 0

.5
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(b) 768 total experts

Figure 22: Expert load: Number of training set images with expert coefficient an ≥ 0.5 for CPµMoE
models fine-tuned on ImageNET1k. Bars are drawn with 3x width and colored sequentially in a
repeating order of distinct colors to help visually distinguish between neighbors.

H.4 Expert load

Here, we plot the expert load in Figure 22 to give a visual indication of how many images are
processed by each expert with ae ≥ 0.5 for CPµMoE final layers fine-tuned on ImageNET1k with a
CLIP backbone. Whilst clearly, not all experts have images with a coefficient of at least 0.5, we see a
relatively uniform spread over all experts. Furthermore, we note the cost from ‘dead’ experts is not
particularly troublesome in an µMoE given its factorized form–speaking informally, we would rather
have too many experts than too few, so long as there exist select individual experts conducting the
subcomputations of interest.

I Additional performance results

I.1 CLIP ViT-B-32 ImageNET1k ablations

Here, we compare the performance of parameter-matched µMoE final layers (for varying expert counts
N ) to linear layers for fine-tuning large vision-language models (CLIP ViT-B-32) on ImageNET1k.
Following the robust fine-tuning protocol of [89], we use the largest possible batch size (to fit on one
A100 GPU) of 4096, and the same learning rate of 3e− 05.

For µMoE layers, we reduce the layer ranks to parameter match single linear layers for each value
of total expert count. We plot in Figure 23a the ImageNET1k validation loss after 10 epochs of
training, where all expert counts out-perform the linear layers initialized the same default way
with elements from U [−k, k]. However, to parameter-match single dense linear layers, we must
decrease the µMoE layer rank upon increasing the expert count. This is a concrete example of where
the extra parameter efficiency of TRµMoEs can come in useful (as discussed in Appendix D.1.2).
Consequently, TRµMoEs’ resulting expert matrix ranks are increasingly larger than that of CPµMoEs
in the parameter-matched setting. For example, the parameter-matched layers with 512 experts in
Figure 23a have a max expert matrix rank of 165 for the CPµMoE compared to a much larger 208 for
the TRµMoE.
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Figure 23: Comparative analysis of fine-tuning CLIP ViT-B-32 with µMoE layers using different
configurations. All experiments have the same number of parameters.

Table 9: Hierarchical S-16 TRµMoE-mixers and CPµMoE-mixers: ImageNET1k val. accuracy
at 300 epochs pre-training; N1 = 64, N2 = 2 experts).

Model Val. acc. (↑) # Experts per block # Params

MLP 70.31 n/a 18.5M
CPµMoE (hierarchy=1) 71.29 64 18.6M
TRµMoE (hierarchy=1) 71.26 64 18.3M
CPµMoE (hierarchy=2) 71.24 64 · 2 19.5M
TRµMoE (hierarchy=2) 71.56 64 · 2 18.7M

We attribute TRµMoE’s even greater performance gains over CPµMoEs here to the more favorable
relationship between tensor rank and expert matrix rank (a larger weight matrix rank meaning the
resulting layers’ activations live in a larger dimensional subspace) (see Figure 23b).

I.2 Hierarchical µMoEs

Hierarchical µMoE Mixers We train from scratch two hierarchical µMoE MLP-mixer S-16
models for 300 epochs on ImageNET following the same configuration as in Section 4.3 of the main
paper. Concretely, we use a two-level hierarchical µMoE with N1 = 64 experts for the first level and
N2 = 2 experts for the second layer (128 total effective experts). As shown through the results in
Table 9, the hierarchical µMoE’s also perform well against the MLP alternatives, whilst providing
even better parameter-efficiency.

Hierarchical µMoE fine-tuning layers We also perform additional experiments with hierarchical
µMoEs used to fine-tune CLIP ViT-B-32 models on ImageNET1k. Here we use the experimental
setup in [63, 64], training each model for a single epoch with the specified learning rate of 1e− 05.
We fine-tune hierarchical µMoE CLIP models with up to 4 levels of hierarchy as shown in Table 10,
where the best-performing models (averaged over 5 runs) are found with 2 levels of hierarchy.

I.3 Comparisons to dense/sparse MoEs

The goal of the µMoE layer is to facilitate more interpretable subcomputations with a similar number
of parameters and FLOPs to regular dense layers. Whilst the layer does not aim to improve on the
capabilities of existing MoE layers, we nonetheless provide an initial comparison study here in
Figure 24 for completeness. As can be seen, in addition to the scalable expert specialization provided,
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Table 10: Hierarchical µMoEs: Mean validation-set accuracy with a CLIP ViT-B-32 fine-tuned
with hierarchical µMoE final layers on ImageNET1k. Shown are the number of parameters as the
number of total experts increases to 8192 with 4 levels of hierarchy, and the corresponding number of
parameters needed for each expert total using a hierarchy 1 µMoE, and regular MoE. Results are the
average over 5 runs with different seeds. Additional expert modes for TRµMoEs have the additional
ranks set equal to the corresponding number of experts at the new mode(s) (e.g. 2 and 4).

(a) Hierarchical CPµMoEs (R = 512) fine-tuning CLIP ViT-B-32 on ImageNET1k.
Hierarchy Val acc Weight tensor shape Total # experts # Params # Params needed (w/ 1 hierarchy µMoE) # Params needed (w/ regular MoE)

1 73.78± 0.07 W ∈ R128×I×O 128 1,069,568 1,069,568 98,432,000

2 73.84± 0.11 W ∈ R128×2×I×O 256 1,072,128 1,233,408 196,864,000
3 73.80± 0.14 W ∈ R128×2×2×I×O 512 1,074,688 1,561,088 393,728,000
4 73.82± 0.06 W ∈ R128×2×2×2×I×O 1024 1,077,248 2,216,448 787,456,000

2 73.89± 0.10 W ∈ R128×4×I×O 512 1,074,688 1,561,088 393,728,000
3 73.85± 0.08 W ∈ R128×4×4×I×O 2048 1,079,808 3,527,168 1,574,912,000
4 73.82± 0.09 W ∈ R128×4×4×4×I×O 8192 1,084,928 11,391,488 6,299,648,000

(b) Hierarchical TRµMoEs (R3 = 512) fine-tuning CLIP ViT-B-32 on ImageNET1k.
Hierarchy Val acc Weight tensor shape Total # experts # Params # Params needed (w/ 1 hierarchy µMoE) # Params needed (w/ regular MoE)

1 74.66± 0.09 W ∈ R128×I×O 128 3,723,264 3,723,264 98,432,000

2 74.72± 0.08 W ∈ R128×2×I×O 256 3,724,832 3,823,616 196,864,000
3 74.75± 0.14 W ∈ R128×2×2×I×O 512 3,726,400 4,024,320 393,728,000
4 74.76± 0.11 W ∈ R128×2×2×2×I×O 1024 3,727,968 8,851,456 787,456,000

2 74.82± 0.11 W ∈ R128×4×I×O 512 3,726,400 4,024,320 393,728,000
3 74.67± 0.12 W ∈ R128×4×4×I×O 2048 3,729,536 5,228,544 1,574,912,000
4 74.73± 0.11 W ∈ R128×4×4×4×I×O 8192 3,732,672 10,045,440 6,299,648,000
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Figure 24: Results fine-tuning CLIP ViT-B-32 final layers only on ImageNET1k for 1 epoch. For
µMoE layers, we increase parameter counts by varying the ranks for a fixed 64 experts. For dense
(“Soft”) and sparse MoEs, we increase the parameters through increased expert counts.

the µMoEs also perform very favorably against the alternative MoE models when fine-tuning CLIP
on ImageNET1k.

J Fairness baselines & metric details

Here we present more details about the fairness comparisons and metrics used in the main paper.

Metrics

• Equality of opportunity requires the true positive rates for the sensitive attribute subpop-
ulations to be equal, defined in Hardt et al. [76] as P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ =

1|A = 1, Y = 1) for sensitive attribute A, target attribute Y , and predictor Ŷ . In the first
of our CelebA experiments we measure the absolute difference of the true positive rates
between the ‘blond female’ and ‘blond male’ subpopulations for the ‘blond hair’ target
attribute. For the second we measure the difference between that of the ‘old female’ and
‘old male’ subpopulations, taking the ‘old’ label as the true target attribute.
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• Standard deviation bias computes the standard deviation of the accuracy for the different
subpopulations [77]. Intuitively, a small STD bias indicates similar performance across
groups.

• Max-Min Fairness quantifies the worst-case performance for the different demographic
subpopulations [78], with max miny∈Y,a∈A P (Ŷ = y|A = a, Y = y). We compute this as
the minimum of the test-set accuracy for the 4 subpopulations in each experiment.

Baselines

• Oversample we oversample the low-support subpopulation to balance the number of input
images that have the sensitive attribute for the value of the target attribute wherein bias
occurs. For example, we oversample the ‘blond males’ to match the number of ‘blond
females’ for the first experiment, and oversample the number of ‘old females’ to match the
number of ‘old males’ for the second.

• Blind thresholding is implemented by unconditionally increasing/decreasing the logits in
the target direction for all outputs. Concretely, the results in the main paper are achieved by
setting λ := 2.5 and ā to a vector of ones in Equation (5) for all experiments. We find this
value of λ to give us the best results for the attribute-blind re-writing [76].

• Adversarial debiasing we observe in Table 2 the same poor performance for the adversarial
debiasing technique as is reported in Wang et al. [90]. We hypothesize that the same
issues face the technique in our experimental setup. In particular, even in the absence of
discriminative information for the ‘gender’ label in the final representation, information
about correlated attributes (e.g. wearing makeup) are likely still present. This makes it
fundamentally challenging to apply fairness-through-unawareness techniques in the CelebA
multi-class setting.

K Fairness: additional results

K.1 Model re-writing

The full per-subpopulation test set accuracies are shown in Figure 25 for the two experiments in the
main paper. The first rows show the accuracies before layer re-write, the second rows after re-write,
and the third rows the absolute difference between the two. As can be seen in the ‘before-after
difference’ final rows of Figure 25, the proposed expert-conditional re-write provides much more
precision in changing only the computation for the target populations.
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Figure 25: CelebA Subpopulation accuracies before (first rows) and after intervention (second rows),
followed by their absolute difference (third rows). Green rectangles denote the target subpopulation
for each experiment (subfigure).
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L NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims regarding both qualitative and quantitative expert specialism for fine-
tuning large foundation models are demonstrated in Section 4.1, where the benefits of
scaling the expert counts are also substantiated both qualitatively and quantitatively. Claims
regarding bias mitigation are substantiated in Section 4.2. Qualitative expert specialism is
provided for large models (along with their performance) in Section 4.3.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations clearly state the lack of evaluation for out-of-domain data for
vision, and the difficulties in further evaluating expert specialism quantitatively in large
models (given the lack of ground-truth).

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Technical derivations of models are made throughout (and further basic
derivations of expert matrix rank), but no novel theoretical results are presented.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full experiment settings/config/hyperparameters are provided in Table 7,
and the supporting code (https://github.com/james-oldfield/muMoE) provides even
more explicit experimental instructions. Learning curves are also plotted in Figures 10 and 11
for additional transparency. Pseudocode implementations are also given in Appendix B.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Model code for µMoEs and the experiments in the paper are found at:https:
//github.com/james-oldfield/muMoE.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As found in Table 7, where we state we follow these choices based on the
default parameters of the original papers introducing the models, or the default configurations
used by the open-source maintainer for GPT2.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]

Justification: We do include mean (and STD) of the results over multiple fine-tuning models,
but we only have single runs over the large models due to resource constraints. For these
single runs of large models, we always set all random seeds to 0 for reproducibility.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided in Appendix F.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No ethical concerns to note.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper proposed a layer that provides more transparent, explainable,
and editable networks. We discuss positive social impacts throughout the paper, but also
acknowledge and discuss the potential negative impacts in Appendix A.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No models posing a high risk of misuse are to be released.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the open-source codebases on which we base our code are explicitly
referenced.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: None introduced.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects involved.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects involved.
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