
Under review as a conference paper at ICLR 2024

Interpreting Reward Models in RLHF-Tuned
Language Models Using Sparse Autoencoders

Anonymous authors
Paper under double-blind review

Abstract

Large language models (LLMs) aligned to human preferences via reinforce-
ment learning from human feedback (RLHF) underpin many commercial
applications of LLM technology. Despite this, the impacts of RLHF on
LLM internals remain opaque. We propose a novel method for interpreting
implicit reward models (IRMs) in LLMs learned through RLHF. Our ap-
proach trains pairs of autoencoders on activations from a base LLM and
its RLHF-tuned variant. Through a comparison of autoencoder hidden
spaces, we identify features that reflect the accuracy of the learned reward
model. To illustrate our method, we fine-tune an LLM via RLHF to learn
a token-utility mapping and maximize the aggregate utility of generated
text. This is the first application of sparse autoencoders to interpreting
IRMs. Our method provides an abstract approximation of reward integrity
and holds promise for measuring alignment between specified objectives and
learned model behaviors.

1 Introduction

Do implicit reward models (IRMs) learned by Large Language Models (LLMs) through
Reinforcement Learning from Human Feedback (RLHF) diverge from their intended training
objectives? How can we interprete these IRMs and measure such divergences?

LLMs are commonly fine-tuned with RLHF to align outputs with a reward measure. Despite
the widespread adoption of RLHF, it remains opaque how well the student model internalizes
the explicit reward function, making failures in the IRM difficult to detect. Contributing to
this difficulty is superposition in the features used in LLMs (Elhage et al., 2022a), as well as
full model interpretability research being at an early stage.

As LLMs steered via RLHF scale in capability and deployment, the implications of failures
in the IRM amplify. Misspecified rewards can cause ‘specification gaming’ (Krakovna et al.
(2020)), whereby a model engages in an undesired behavior while still achieving high reward.
Through behaviors like sycophancy, this phenomenon can be observed to be emerging in
LLMs already (Wei et al. (2023)). Other risks include manipulation of the user’s preferences
(Adomavicius et al. (2013)), reinforcement of the biases present in human labellers (Santurkar
et al. (2023)) and potentially catastrophic outcomes in situations where models approach or
generally exceed human capabilities (Christiano (2019)). Detecting such failures of RLHF in
the wild is challenging, as models may be incentivized to appear more aligned than they are
(Hubinger et al. (2019)) in an effort to preserve their reward model(s) (Omohundro (2008)).

In this work, we present a novel technique to interpret IRMs learned through RLHF. While
prior work has applied sparse coding to derive more interpretable features from LLMs
(Sharkey et al. (2022); Cunningham et al. (2023)), we extend those methods to IRMs,
proposing their use for IRM interpretation and measurement. Our major contribution is
applying sparse coding towards (a) distinguishing features that specifically emerge from the
RLHF tuning process and (b) quantifying the accuracy of the learned IRM in matching the
preferences of the overseer during fine-tuning. To the best of our knowledge, our paper is
the first to apply sparse coding to the study of reward models.

Our procedure can be broken down into the following steps, also illustrated in Figure 1.

1

Under review as a conference paper at ICLR 2024

Base Model RLHF Model

2. Find Highly
Divergent Layers

L2 L4 L5 L2 L4 L5

1. Obtain Models

3. Sample
Activations

4. Train Large
and Small
Autoencoders

5. Identify shared
features from
decoder weights

Shared Features

(Base)

Shared Features

(RLHF)

Large

(Base)

Small

(Base)

Large

(RLHF)

Small

(RLHF)

Reward Modeling
Efficacy

6. Compare Features &
Quantify Accuracy of
Learned Reward Model

Figure 1: First, we sample activations from layers having the highest parameter divergence
between Mbase and MRLHF. Then, two autoencoders with a sparsity constraint are trained
on those activations, each with a different dictionary size. The overlap is computed between
the two dictionaries to find high-confidence features that serve as a proxy for ground truth.
We analyze activations on these features, enabling both manual inspection of features as well
as computing an aggregate score for the implicit reward model.

1. Find Highly Divergent Layers: After RLHF, compute the parameter divergence
between the base model Mbase and the fine-tuned model MRLHF, and sort layers in
descending order by divergence. Given that if an IRM is learned it must be encoded
by the differences in parameters between Mbase and MRLHF, we avoid training useless
autoencoders (for the task of IRM interpretation) by discarding layers unlikely to
contain components of the IRM.

2. Train Large and Small Autoencoders: Train an autoencoder with a sparsity
constraint on activations from MRLHF over a an unseen corpus for the top-n layers
with the highest parameter divergence to construct a hidden space feature represen-
tation, and then another autoencoder with a smaller dictionary size. Do the same
for the corresponding layers in Mbase.

3. Identify Shared Features: Compute overlapping features across the larger and
smaller learned dictionaries for both autoencoder pairs, to identify ground truth
features in Mbase and MRLHF.

4. Compare Features and Quantify IRM Efficacy: Compare the differences in
features identified in Mbase and MRLHF, such that an interpretable notion of the
effects of RLHF on Mbase is attained through the relative feature differences. We
later use these features in a quantitative measure of the efficacy of the internal
reward model, as well as in qualitative analysis.

2 Background

Mechanistic Interpretability Understanding the inner workings of neural networks
such as transformers is essential for fostering transparency and trust. In recent years,
mathematical frameworks have been developed to represent and analyze the computations
within these models (Elhage et al., 2022b). Foote et al. (2023); Bills et al. (2023) offer another
approach whereby a larger model predicts what human-interpretable concept a neuron might

2

Under review as a conference paper at ICLR 2024

represent in a smaller model. For a different perspective, Black et al. (2022) construct the
‘polytope lens’, which proposes polytopes as the fundamental interpretable units of a neural
network instead of individual neurons or linear combinations of them. These frameworks
propose scalable methods for describing the internal functioning of transformers, enabling
transparency in the model’s functioning and the verification of properties useful for safety,
like accurate reward modeling.

Our work interprets the internals of transformer-based LLMs with a vocabulary size V .
The models take an input sequence (x1, . . . , xp) where each xi ∈ {1, . . . , V }. Tokens are
mapped to de-dimensional embeddings by selecting the xi-th column of an embeddings
matrix Embd ∈ Rde×V .

External Reward Models in RLHF RLHF has emerged as the dominant paradigm
for fine-tuning large language models to represent human preferences. It is performant even
if the desired behavior is complex or not easily quantifiable, making it significantly more
effective than hand-crafted reward functions.

In common RLHF settings, a dataset of human comparisons between outputs of the base
model is first collected, providing feedback on which outputs are preferable (Christiano et al.
(2023); Ziegler et al. (2020)). In the Reinforcement Learning through AI Feedback (RLAIF)
variation of the fine-tuning scheme, this dataset is AI-generated, removing the need for
human participation in the fine-tuning process (Bai et al. (2022)).

This dataset is used to train a reward model to predict human preference scores, replacing
traditional reward functions. In the context of language models, this reward model is often
itself a separate instance of an LLM. The reward model is used to fine-tune the policy of
the base model. Techniques like proximal policy optimization (Schulman et al. (2017)) are
commonly employed to optimize the policy model using scores under the reward model as the
objective. By the end of a successful fine-tuning process, the policy model has internalized
an implicit model of the external preferences (human feedback, in the case of RLHF).

In this paper, we analyze the implicit reward model (IRM) internalized by the policy model.
To differentiate clearly, we will refer to the reward models used to oversee the RLHF process
as external reward models (ERMs).

Feature Superposition in Deep Learning Models There is a significant body of
evidence indicating that deep neural networks learn human-interpretable features of the input
(Bills et al., 2023; Karpathy et al., 2015; Olah et al., 2017; Mikolov et al., 2013). By features,
we mean vectors in a network’s activation space that correspond to human-understandable
concepts, such as apostrophes or arithmetic. Often, deep neural networks store the features
in a distributed way; as a result, individual neurons do not correspond to a single semantic
feature. This phenomenon has been coined “superposition” (Elhage et al. (2022a)). It
allows a model to represent more features than it has dimensions in its activation space,
especially when those features are sparsely present in training data. Superposition poses
a major obstacle to neural network interpretability, and this is expected to extend to the
interpretation of reward models learned through RLHF in LLMs.

Sparse Autoencoders for Activation Vector Reconstruction Autoencoders minimize
the reconstruction error ϵ for an input vector x subject to projection into a latent space:

ϵ = ∥x−Dec(Enc(x))∥2 (1)

Enc represents the encoding function, and Dec the decoding function. For activation vectors,
sparse autoencoders constrain the activations in the hidden layer h to a limited number k of
active neurons, and we stipulate the encoding function Enc to be Enck in this case.

As a result of the sparsity constraint on the autoencoder, each vector in Dec encodes a
handful of neurons from the activation vector. A compressed representation capturing key
activation patterns emerges, identifying ‘ground truth features’ in the model that activations
were sampled from. Early results from Sharkey et al. (2022) and Cunningham et al. (2023)

3

Under review as a conference paper at ICLR 2024

suggest sparse autoencoders can recover ground truth features, even when those features are
represented in a superposed manner.

Autoencoder Architecture Our autoencoder architecture consists of an encoder, com-
posed of a linear layer preceding a ReLU activation function, and a linear decoder. Sparsity
in the decoder is induced through L1 regularization on the weights, forcing the network to
learn a sparser representation.

The decoder and encoder weights are tied. Prior to being encoded, the weights are normalized
to have unit norm. The overall loss function is calculated as the sum of the mean squared
error between the reconstructed output from the decoder and the true data (for both training
the decoder and measuring performance) and an L1 loss term on the decoder weight matrix.
We scale the L1 loss by an L1 coefficient, to tune the importance given to sparsity. This
architecture is based on the experimental results of Sharkey et al. (2022).

Deducing Features From Dictionary Similarities Between Autoencoders of Dif-
ferent Sizes Sharkey et al. (2022) identify features in toy models exhibiting superposition
by training two sparse autoencoders of different sizes, and taking a similarity measurement
between the decoder weights of the two autoencoders. They show that features with high
similarity between the two learned dictionaries (the decoder weights matrix) correspond
to ground truth features exhibited in the transformer. These results are corroborated by
Cunningham et al. (2023) where the same technique is applied to language models, showing
best-in-class performance.

For their similarity measure between two learned dictionaries, Sharkey et al. (2022) define
‘Mean Max Cosine Similarity’ (MMCS). Let D and D′ be two dictionaries, and d and d′ be
elements from each dictionary. Then we have:

MMCS(D,D′) =
1

|D|
∑
d∈D

max
d′∈D′

CosineSim(d, d′). (2)

Intuitively, MMCS is just the average nearest neighbor similarity for features to D from D′.
In the above, let Dg be the top k features of D that realize the highest contribution to the
MMCS. In the case of LLMs, the ground truth features are unknown, and so the set Dg is
used as a proxy for a true representation of the ground truth features.

Automating Neuron Interpretability Using Large Language Models Identifying
plausible descriptions of what a given neuron represents is laborious for a human. Thus,
approaches like Bills et al. (2023); Foote et al. (2023) automate this process. Bills et al.
(2023) provide GPT-4 with a set of normalized (to a range of 0 and 10, where 10 indicates
maximal activation) and discretized activations for a set of tokens passed to the model as a
prompt. GPT-4 then predicts an explanation for what the neuron represents based on those
activations, and then simulates discretized activations for tokens as if that description were
true.

3 Related Work

To our knowledge, no general methods have been proposed for finding human-interpretable
representations of IRMs learned via RLHF and RLAIF. Nevertheless, there have been works
in similar domains.

Jenner & Gleave (2021) provide a framework for preprocessing reward functions learned by
RL agents into simpler but equivalent reward functions, which makes visualizations of these
functions more human-understandable. Michaud et al. (2020) explain the reward functions
learned by Gridworld and Atari agents using saliency maps and counterfactual examples,
and find that learned reward functions tend to implement surprising algorithms relying on
contingent aspects of the environment. They also note that reward interpretability requires
a different set of tools from policy interpretability. We share with these works the desire to

4

Under review as a conference paper at ICLR 2024

find new general tools for reward model interpretability, but focus on reward models learned
through RLHF and RLAIF rather than standard RL training.

Furthermore, Gleave et al. (2021) and Wolf et al. (2023) present methods for comparing
and evaluating learned reward functions in the standard RL setting without requiring these
functions to be human-interpretable. In comparison, we aim for evaluation of IRMs in the
RLHF setting through interpretability.

There is also existing literature on circumventing superposition when interpreting deep
learning models. Olah et al. (2020) introduce the problem of superposition and its effect on
interpretability. Elhage et al. (2022a) present a toy model where the superposed features can
be fully understood and outline possible directions for tackling the problem in real-world
models. One of the proposed approaches, sparse dictionary learning (Olshausen & Field
(1997), Lee et al. (2006)) to find directions in the activation space that correspond to features,
also forms the basis of our work.

Sharkey et al. (2022) present a report of preliminary attempts to apply sparse dictionary
learning on deep neural networks. Cunningham et al. (2023) build upon the work of Sharkey
et al. (2022), finding that the dictionary features learned by sparse autoencoders are more
amenable to automated interpretability techniques introduced by Foote et al. (2023); Bills
et al. (2023). They also find that the dictionary features are more precise and monosemantic
compared to features brought out of superposition by other methods, such as principal
component analysis (Wold et al. (1987)) and independent component analysis (Lee (1998)).
Their experiments are conducted on Pythia-70M language models, but in comparison to our
work, do not assess whether this method is applicable to learned reward models.

Other works exploring related techniques include Yun et al. (2021), who apply sparse
dictionary learning to visualize the residual streams of transformer models, and Gurnee
et al. (2023), who find human-interpretable features in large language models using sparse
linear probes. Finally, an alternative approach for circumventing superposition has been
explored by Jermyn et al. (2022), who engineer models to have more monosemantic neurons
by intervening in the training process and changing the local minimum the model’s weights
converge to.

4 Methodology

4.1 Interpreting Learned Reward Models in LLMs.

Our primary method for interpreting IRMs learned through RLHF and RLAIF consists
of first isolating LLM layers relevant to reward modeling, then using sparse autoencoders
to reconstruct activation vectors from these layers, and finally using GPT-4 to reconstruct
feature explanations for the activation vectors. This can be separated into the following
components:

• Identify the set of layers L in an RLHF-tuned LLM MRLHF likely related to
the learned IRM. We do so by sorting layers in order of increasing magnitude
of ∆(LMRLHF , LMbase), where ∆ is the sum of Euclidean distances between each
corresponding weight and bias tensor in the layer between MRLHF and the cor-
responding base model Mbase. In the following bullets, we simplify notation by
describing our feature extraction for a single fixed layer ℓ of L.

• For both MRLHF and Mbase, train two autoencoders, AE1 and AE2, of differing
hidden sizes, and with the same sparsity constraint. These autoencoders reconstruct
activation vectors (obtained through prompting with the test split of the relevant
dataset) on ℓ for their respective model (Sharkey et al. (2022); Cunningham et al.
(2023)). For each model, we extract a pair of lower-dimensional feature dictionaries,
D1 and D2, from the corresponding autoencoder. Each feature is a column of the
decoder’s weight matrix.

• Because autoencoders produce varying dictionaries over training runs and hyperpa-
rameters, we keep only the features that occur in both D1 and D2. We compute the

5

Under review as a conference paper at ICLR 2024

MMCS between D1 and D2 in order to identify repeating features across the two
dictionaries, indicating that shared features truly occur in the model.

• The top-k most similar features between D1 and D2 in terms of MMCS are explained
using a variation of the method by Bills et al. (2023) designed to directly describe
the features in a dictionary. The method feeds the encoder of AEn activations from
the model on which it was trained, and then GPT-4 predicts a description of that
feature from the feature weights specified in the encoder output.

• By comparing these explanations in MRLHF and Mbase, we show how these descrip-
tions can be correlated with the efficacy of the IRM in encapsulating the explicit
reward model.

• This method is applied to a training regime in which MRLHF is tasked with learning
an explicit table of words and maximizing their presence within PPO training. This
training environment allows us to quantitatively assess the efficacy of MRLHF’s
reward model.

4.2 Overseer-Guided Fine-Tuning Using Utility Tables.

As a case study, we construct a fine-tuning environment simpler than conventional RLHF. An
overseer, denoted as O, is imbued with a “utility table” U : a mapping of words to respective
utility values. The overseer converts a tokenized generation to words, and then computes
the utility of the generation and prefix together.

The aim is to modulate the student model, MRLHF, to maximize the utility of its output
text. Utility values are assigned to tokens in MRLHF’s vocabulary, and we use Proximal
Policy Optimization (PPO) for reward training. See Appendix C for more details on the
general PPO method, and see Appendix D for more details on the Utility tables task.

We flesh out further details of our setup in Section 5 and lightly explore alternate options in
Appendix H.

5 Experiments

We detail here each stage of our experimental pipeline, from training LLMs via RLHF, to
extracting dictionary features from autoencoders, to finally interpreting the IRMs using
these dictionary features.

5.1 Applying RLHF to base models.

We select a controlled sentiment generation task using data from the IMDb reviews dataset
due to the simplicity of the training environment, reducing noise in our analysis. Models
generate completions to review prefixes, and positive sentiment prefix and completion pairs
are assigned higher rewards. Two different external sentiment reward models are used for
fine-tuning via RLHF.

The first is a DistilBERT (Sanh et al., 2020) sentiment classifier trained on the IMDb reviews
dataset (von Werra, 2023). Reward is assigned to the logit of the positive sentiment label.
The second is the Utility table reward model described in Section 4.2, where the utility values
are taken from the VADER sentiment lexicon (Hutto & Gilbert (2014)). The sentiment
values were initially labelled by a group of human annotators, who assigned ratings from
−4 (extremely negative) to +4 (positive), with an average taken over ten annotations per
word. We assigned reward to a sentence as a sum of utilities, scaled down by a factor of 5
and clamped to an interval of [−10, 10]. Scaling and clamping were implemented to avoid
collapse in PPO training, which was observed if reward magnitudes were left unbounded.

Reward(s) = clip

(
1

5

∑
token∈s

U(token),−10,+10

)
(3)

6

Under review as a conference paper at ICLR 2024

Our experiments are run with various models from the Pythia suite (70M, 160M and 410M)
(Biderman et al., 2023). These models are fine-tuned with equivalent hyperparameters
via Proximal Policy Optimization (PPO), in a setup akin to Ouyang et al. (2022). For
fine-tuning, we used the Transformers Reinforcement Learning (TRL) framework (von Werra
et al., 2023). The major hyperparameters are listed in Table 1, with the rest derived from
the default values provided by the TRL framework. See Appendix C for an overview of the
RLHF training pipeline.

Table 1: Hyperparameters used to train models for positive sentiment completions of prefixes
from the IMDb dataset.

Batch Size Mini Batch Size Init KL Coef Max Grad Norm Learning Rate

64 16 0.5 1 1× 10−6

5.2 Training autoencoders for dictionary extraction

Once we obtain the trained policy model, we compute the parameter divergence between
MRLHF and Mbase layer by layer under the ℓ2 norm. We sort all layers in descending order
from most to least parameter divergence, and fix the five highest-divergence layers for our
dictionary extraction. These turned out to mostly be the deeper layers of the models; see
Appendix G for details.

For each model from Mbase and MRLHF, we train a pair of autoencoders on the activations
of each high-divergence layer using two different dictionary sizes. The dictionary sizes in
Table 2 were used for the autoencoders.

Autoencoders were trained for 3 epochs with an L1 regularization coefficient of 0.001, a
learning rate of 1e− 3 and a batch size of 32 on activations from inputs for the test split of
the IMDb reviews dataset. We found that for GPT-Neo-125, an L1 regularization coefficient
of 0.0015 gave a better tradeoff of reconstruction and sparsity. The decoder and encoder
weights were tied, and the decoder weights are simply a transpose of those for the encoder.
‘These hyperparameters were chosen based on empirical testing by Sharkey et al. (2022),
Cunningham et al. (2023) and ourselves in selecting for optimal sparsity and reconstruction
loss, where we optimized for both the ℓ1 and ℓ0 sparsity of the dictionary elements.

Next, we find and retain the top k = 10 features that maximize the MMCS objective (given
earlier in Equation 2) between D1 and D2 of each such pair of autoencoders.

For more discussion on the methodology used to train the autoencoders, see Appendix H.

5.3 Measuring fidelity of sparse coding features to the specified reward
function.

In order to derive human-interpretable explanations, we employ GPT-4 to explain what a
dictionary feature represents based on normalized and discretized activations for that feature
(Bills et al. (2023)) over a series of tokens. The top k = 10 highest MMCS features were
sampled for both Mbase and MRLHF to locate feature indices to explain with GPT-4. Through
these explanations of likely ground truth dictionary features, we attempt to understand

Table 2: Dictionary sizes for autoencoder comparison via MMCS

Model Dictionary Size
Large Small

Pythia-70m 1024 512
Pythia-160m 1536 768
Pythia-410m 2048 1024

GPT-Neo-125m 768 1536

7

Under review as a conference paper at ICLR 2024

the effects of RLHF on Mbase, using examples to substantiate analysis in Section 6. See
Appendix E for a complete list of feature descriptions for layer 2 in Pythia-70m.

Reconstructing external Utility table reward model Through the sparse coding
feature extraction from MRLHF and subsequent GPT-4 interpretation, we would expect
to rederive tokens present in our originally specified utility table U if RLHF is successful
influencing the model to learn U . For example, if U specifies positive utility tokens (e.g.,
‘good’, ‘happy’, etc.) and these tokens are more prevalent in the feature descriptions for
MRLHF than in Mbase, it would indicate MRLHF having learned this skew.

To quantify the correspondence of the dictionary features to the specified external reward
model, we also measure the summed absolute utility of the top-k most similar feature
descriptions for both the Mbase and MRLHF dictionaries. We can then use GPT-4’s description
of these features and the summed absolute utility of these text descriptions to answer: How
well has MRLHF learned U?

6 Results and Discussion

In this section, we present a qualitative analysis of the feature explanations generated via
GPT-4 for the implicit reward models under both of our tasks. We also give a quantitative
measure of the utility of the dictionary features for our Utility table reward model.

6.1 Movie Opinion Features in Pythia-70m Fine-Tuned on Positive Movie
Review Completions

Features identified as detecting opinions concerning movies in itself serves as a great example
of both the utility and shortcomings of this method. Being able to detect the occurrence of
an opinion regarding a movie provides useful insights about the reward model, given that the
training objective was generating positive sentiment completions. However, the descriptions
of such features are very high-level and overrepresented among the feature descriptions. In
the fine-tuned Pythia-70m instance, of the 50 highest similarity features (10 per layer), there
are 21 feature descriptions that mention detecting opinions or reviews in the context of
movies. Of the top-k = 10 features in layer 4 of the fine-tuned model, 8 are for this purpose.
Contrast this to the base model, with 13 total feature descriptions focused on sentiment in
the context of movie reviews. Full feature description tables are available in Appendix E.

This data alone does not allow for a clear picture of the reward model to be constructed.
Although it is clear that a greater portion of the features represent concepts related to the
training objective in this limited sample, it cannot be shown that the model has properly
internalized the reward model on which it was trained. Additionally, it is highly improbable
for the base model to inherently have 13 of the 50 sampled features applied to identifying
opinions on movies, which shows that the nature of the input data used to sample activations
can skew GPT-4’s description of the feature. If a feature consistently activates on negative
opinions, but the entire sample set is movie reviews, it might be unclear to GPT-4 whether
the feature is activating in response to negative sentiment, or to negative sentiment in movie
reviews specifically. This underscores the need for future work to use a diverse sample of
inputs when sampling activations for use in this method. The next case study tries to cover
a quantitative metric for reward modeling efficacy, but also falls short of showing a crisp
structure of elements comprising the reward model.

6.2 Quantifying Reward Modeling Efficacy For Models Fine-tuned on High
Utility Movie Review Completions

Not all dictionary features will be relevant to the utility table. Using the example of ‘Sentences
concerning word processing’ as a feature description, it is not obvious how the utility of this
could be computed under any U . Sentiment lexicons like VADER lend themselves well to this
task. Neutral entries are labeled as having a sentiment score of 0, and words not included
in the lexicon are treated as though they were neutral entries. A quantitative measure is
attempted in Table 3, whereby GPT-4’s predicted explanations are computed against U for

8

Under review as a conference paper at ICLR 2024

an approximation of MRLHF’s ability to learn U and its maximization. This metric is shown
alongside the aggregate utility measured over 100 completions of a 30 token prefix sampled
from the test split to validate it as correlating with actual performance against the reward
model. See Table 4.

Table 3: Mean of the aggregate absolute utility of the top-k = 30 learned features in the
base and fine-tuned model over three samples per model

Model Mbase Score MRLHF Score

Pythia-70m 61.2 94.3
Pythia-160m 59.2 80.2
Pythia-410m 59.4 89.4

GPT-Neo-125m 101.2 111.0

Table 4: Aggregate absolute utility of 100 completions to 30 token prefixes for the base and
fine-tuned models

Model Mbase MRLHF

Pythia-70m 68.8 137.6
Pythia-160m 103.1 172.1
Pythia-410m 108.5 212.0

GPT-Neo-125m 104.3 115.1

The descriptions of the top-k represented features score considerably more highly in U ,
suggesting a superior IRM. Although indicative of what features might compose the reward
model of MRLHF, the accuracy of this method is limited by two primary factors: the capability
of the sparse autoencoders in reconstructing accurate activation vectors, and GPT-4’s ability
to accurately devise descriptions for neurons. Additionally, aggregating the absolute utility
of feature descriptions is simply a proxy for reward modeling efficacy, and is not guaranteed
to map to equivalent performance against U empirically.

7 Conclusion

In closing, features contained in the dictionaries of autoencoders specific to our fine-tuned
model, MRLHF, are explained using GPT-4. Explanations that imply properties of the reward
model are used as case studies to demonstrate their usefulness for studying the reward models
learned through RLHF. Additionally, we quantify the efficacy of the reward model learned
by MRLHF using GPT-4, which future work could leverage for reward modeling benchmarks
or for training LLMs that learn more accurate reward models.

However, this method has several limitations as well. In LLMs larger than those used in these
experiments (the largest of which was Pythia-410m), it may be required to explain many
hundreds or thousands of features in order to effectively study their reward models. Both
training autoencoders on activations of this scale and having GPT-4 explain the reconstructed
activations becomes very computationally intensive. Furthermore, although features related
to reward modeling can be extracted, the relationships of those features in producing a
reward model remain unclear. Future work could focus on establishing these relationships
for a more formal and broad interpretation of learned reward models in LLMs.

References
Gediminas Adomavicius, Jesse C. Bockstedt, Shawn P. Curley, and Jingjing Zhang. Do

recommender systems manipulate consumer preferences? A study of anchoring effects,
2013. URL https://pubsonline.informs.org/doi/10.1287/isre.2013.0497.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen,

9

https://pubsonline.informs.org/doi/10.1287/isre.2013.0497

Under review as a conference paper at ICLR 2024

Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin
Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage,
Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam
Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham,
Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman,
Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom
Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai feedback, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for
analyzing large language models across training and scaling, 2023.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh,
Ilya Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can ex-
plain neurons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html, 2023.

Sid Black, Lee Sharkey, Leo Grinsztajn, Eric Winsor, Dan Braun, Jacob Merizian, Kip Parker,
Carlos Ramón Guevara, Beren Millidge, Gabriel Alfour, and Connor Leahy. Interpreting
neural networks through the polytope lens, 2022.

Paul Christiano. What failure looks like, 2019. URL https://www.alignmentforum.org/
posts/HBxe6wdjxK239zajf/more-realistic-tales-of-doom.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences, 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher
Olah. Toy models of superposition, 2022a.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion,
Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. A mathematical framework for transformer circuits.
https://transformer-circuits.pub/2021/framework/index.html, 2022b.

Alex Foote, Neel Nanda, Esben Kran, Ionnis Konstas, Shay Cohen, and Fazl Barez. Neuron
to graph: Interpreting language model neurons at scale. In arXiv, 2023.

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, and Jan Leike. Quantifying
differences in reward functions, 2021.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris
Bertsimas. Finding neurons in a haystack: Case studies with sparse probing, 2023.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabarant.
Risks from learned optimization in advanced machine learning systems, 2019.

Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In Proceedings of the international AAAI conference on web
and social media, volume 8, pp. 216–225, 2014.

Erik Jenner and Adam Gleave. Preprocessing reward functions for interpretability. In
NeurIPS Cooperative AI workshop, 2021.

10

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/more-realistic-tales-of-doom
https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/more-realistic-tales-of-doom
https://transformer-circuits.pub/2021/framework/index.html

Under review as a conference paper at ICLR 2024

Adam S. Jermyn, Nicholas Schiefer, and Evan Hubinger. Engineering monosemanticity in
toy models, 2022.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent
networks, 2015.

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt,
Ramana Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gam-
ing: the flip side of ai ingenuity, 2020. URL https://www.deepmind.com/blog/
specification-gaming-the-flip-side-of-ai-ingenuity.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
In B. Schölkopf, J. Platt, and T. Hoffman (eds.), Advances in Neural Information Processing
Systems, volume 19. MIT Press, 2006. URL https://proceedings.neurips.cc/paper_
files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf.

Te-Won Lee. Independent Component Analysis, pp. 27–66. Springer US, Boston, MA, 1998.
ISBN 978-1-4757-2851-4. doi: 10.1007/978-1-4757-2851-4_2. URL https://doi.org/10.
1007/978-1-4757-2851-4_2.

Eric J. Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions,
2020.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality, 2013.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill,
2017. doi: 10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan
Carter. Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision Research, 37(23):3311–3325, 1997. ISSN 0042-6989.
doi: https://doi.org/10.1016/S0042-6989(97)00169-7. URL https://www.sciencedirect.
com/science/article/pii/S0042698997001697.

Stephen M. Omohundro. The basic ai drives, 2008. URL https://selfawaresystems.
files.wordpress.com/2008/01/ai_drives_final.pdf.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter, 2020.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori
Hashimoto. Whose opinions do language models reflect? arXiv preprint arXiv:2303.17548,
2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. URL http://arxiv.org/abs/1707.06347.

Lee Sharkey, Dan Braun, and Beren Millidge. Taking fea-
tures out of superposition with sparse autoencoders, 2022.
URL https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/
interim-research-report-taking-features-out-of-superposition.

Leandro von Werra. distilbert-imdb, 2023. URL https://huggingface.co/lvwerra/
distilbert-imdb. Accessed on September 22, 2023.

11

https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://proceedings.neurips.cc/paper_files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf
https://doi.org/10.1007/978-1-4757-2851-4_2
https://doi.org/10.1007/978-1-4757-2851-4_2
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://selfawaresystems.files.wordpress.com/2008/01/ai_drives_final.pdf
https://selfawaresystems.files.wordpress.com/2008/01/ai_drives_final.pdf
http://arxiv.org/abs/1707.06347
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://huggingface.co/lvwerra/distilbert-imdb
https://huggingface.co/lvwerra/distilbert-imdb

Under review as a conference paper at ICLR 2024

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush,
and Nathan Lambert. TRL: Transformer Reinforcement Learning, 2023. URL https:
//github.com/huggingface/trl.

Jerry Wei, Da Huang Yifeng, Lu Denny Zhou, and Quoc V. Le. Simple synthetic data
reduces sycophancy in large language models, 2023.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics
and Intelligent Laboratory Systems, 2(1):37–52, 1987. ISSN 0169-7439. doi: https://doi.
org/10.1016/0169-7439(87)80084-9. URL https://www.sciencedirect.com/science/
article/pii/0169743987800849. Proceedings of the Multivariate Statistical Workshop
for Geologists and Geochemists.

Yotam Wolf, Noam Wies, Yoav Levine, and Amnon Shashua. Fundamental limitations of
alignment in large language models. arXiv preprint arXiv:2304.11082, 2023.

Zeyu Yun, Yubei Chen, Bruno A. Olshausen, and Yann LeCun. Transformer visualization
via dictionary learning: contextualized embedding as a linear superposition of transformer
factors. CoRR, abs/2103.15949, 2021. URL https://arxiv.org/abs/2103.15949.

BY CUN-HUI ZHANG and JIAN HUANG. The sparsity and bias of the lasso selection in
high-dimensional linear regression. The Annals of Statistics, 36(4):1567–1594, 2008.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences,
2020.

A Future work

While our work presents evidence of sparse coding making reward models more interpretable,
rigorous validation is still needed to ensure the technique provides faithful, complete, and
minimal explanations. Future work should formulate more robust quantitative criteria to
validate that the identified features accurately reflect the reward modeling process. Meeting
such validation criteria would provide greater confidence that the technique yields rigorous
and precise interpretations. Additionally, testing the approach on more complex reward
modeling tasks is needed to understand its limitations and refine it towards minimal, complete
circuits that faithfully reflect model computations. Specifically, future work could consider
attempting to completely map the internal structure of a learned reward model using a basic
unit like features, or perhaps one composed of circuits.

B Reproducibility statement

In an effort to facilitate the reproducibility of our work, we have taken several measures to
provide comprehensive resources. The weights for all the PPO models trained during this
research will be made available in an open-source format via the Hugging Face model hub.
The algorithms developed for feature extraction can be found in the paper’s appendix. The
source code for all experiments is available at this anonymized repository.

C RLHF With Proximal Policy Optimization

We investigate the inner workings of a fine-tuned model MRLHF, and contrast them to that of
the equivalent base model Mbase, which has only undergone pretraining. During fine-tuning,
the model is subject to RLHF using Proximal Policy Optimization (PPO). This is achieved
by having an evaluator review the model’s outputs for a specified task and rate them. These
ratings serve as the reward function Reward(τ), where τ represents a trajectory, a sequence
of state-action pairs (s1, a1, . . . , sT , aT) for which sT represents text context at time t and
aT the token generated at that point.

12

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://www.sciencedirect.com/science/article/pii/0169743987800849
https://www.sciencedirect.com/science/article/pii/0169743987800849
https://arxiv.org/abs/2103.15949
https://anonymous.4open.science/r/rlhf-C7C8/

Under review as a conference paper at ICLR 2024

In PPO, the objective is to maximize the expected sum of rewards J(θ), which can be defined
as:

J(θ) = Eτ∼πθ
[Reward(τ)] (4)

Where πθ represents the policy parameterized by θ. The PPO algorithm optimizes this
objective by updating the policy πθ to a new policy πθ′ in a way that restricts the change in
π. This is achieved by optimizing the following clipped objective function:

L(θ, θ′) = Eτ∼πθ

[
min

(
πθ′(a|s)
πθ(a|s)

Aθ(s, a), clip

(
πθ′(a|s)
πθ(a|s)

, 1− ϵ, 1 + ϵ

)
Aθ(s, a)

)]
(5)

Where Aθ(s, a) is the advantage function, and ϵ is a hyperparameter controlling the extent
to which the policy can change. By employing PPO within the RLHF framework, the model
iteratively refines its policies, thereby enhancing its performance and adaptability across a
range of tasks.

Figure 2 is a graphic representation of the RLHF pipeline used to train MRLHF.

Prefix

LLM

Response

“This movie is”

PYTHIA

“ just fine”

Prefix
+

Response

“This movie is just fine”

Reward
Model Reward

Classifier /

Utility Table

1.3

Policy
Model

Reference
Model

Log-Probs

Log-Probs

Reward

KL-div

PPO
Update

Optimize Model

with Policy Gradient

Prefix +
Response

Task Definition

RLHF Optimization Process

Figure 2: A prefix from the IMDb dataset is sampled as a prompt to a model from the Pythia
suite, and then completed with the generation “just fine” in this case. Log probabilities are
sampled from both the reference and policy model to compute the KL-divergence from the
reference model, as well as compute the reward on the policy model’s output distribution.
This encompasses the complete training scheme for both the utility table and sentiment
classifier tasks.

D Overseer-Guided Fine-Tuning Using Utility Tables
Architecture Delineation

Utility Designation: Each word, represented as w, has an associated utility value defined as
U(w).

Overseer (O): A script that converts a tokenized sequence to words and takes a sum of their
corresponding utility values in accordance with a utility table U .

13

Under review as a conference paper at ICLR 2024

Student Model (MRLHF): The model undergoing fine-tuning, shaped by feedback from the
overseer.

State (s): Symbolizes a prompt or input directed to MRLHF.

Action (a): Denotes the response generated by MRLHF corresponding to state s.

Reward Mechanism: For any generated action a, a sequence of tokens t1, t2, ...tn, the reward
Reward(a) is calculated as Reward(a) =

∑n
i=1 U(wi).

As is common in an RLHF setup, we train a policy model to maximize reward, while
minimizing KL-divergence of generations from the reference base model otherwise. Here,
πθ(a|s) denotes the policy of MRLHF, which is parameterized by θ, signifying the probability
of generating action a given state s.

E Complete Pythia-70m Fine-Tune Top-K Feature Descriptions

Layer Feature Index Explanation

1 214 looking for and activating upon the recognition of
film titles or references to specific episodes or features
within a series or movie.

1 324 looking for the initial parts of movie or book reviews
or discussions, possibly activating on the mention of
titles and initial opinions.

1 433 identifying and responding to language related to film
and movie reviews or discussions.

1 363 looking for mentions of movies or TV series titles in
a review or comment.

1 208 activating for titles of books, movies, or series.
1 273 looking for occurrences of partial or complete words

that may be related to a person’s name or title, par-
ticularly ’Steven Seag’al.

1 428 looking for unconventional, unexpected, or unusual
elements in the text, possibly related to film or tele-
vision content.

1 85 looking for negative sentiments or criticisms in the
text.

1 293 detecting instances where the short document dis-
cusses or refers to a film or a movie.

1 131 ’The feature 131 of the autoencoder seems to be
activating for hyphenated or broken-up words or se-
quences within the text data.

2 99 activating for hyphenated or broken-up words or se-
quences within the text data.

2 39 recognizing and activating for named entities, par-
ticularly proper names of people and titles in the
text.

2 506 looking for expressions related to movie reviews or
comments about movies.

2 377 looking for noun phrases or entities in the text as it
seems to activate for proper nouns, abstract concepts,
and possibly structured data.

2 62 looking for instances where names of people or char-
acters, potentially those related to films or novels, are
mentioned in the text.

2 428 looking for instances of movie or TV show titles and
possibly related commentary or reviews.

Continued on next page

14

Under review as a conference paper at ICLR 2024

Layer Feature Index Explanation

2 433 identifying the start of sentences or distinct phrases,
as all the examples feature a non-zero activation at
the beginning of the sentences.

2 148 identifying and activating for film-related content and
reviews.

2 406 looking for broken or incomplete words in the text,
often indicated by a space or special character ap-
pearing within the word.

2 37 activating on patterns related to names or titles.
3 430 detecting the traces of broken or disrupted words and

phrases, possibly indicating a censoring mechanism
or unreliable text data.

3 218 activating for movie references or discussion of films,
as evident from the sentences related to movies and
cinema.

3 248 identifying expressions of disgust, surprise or extreme
reactions in the text, often starting with "U" followed
by disconnected letters or sounds.

3 87 detecting the mentions of movies, films or related
entertainment content within a text.

3 454 looking for general commentary or personal observa-
tions on various topics, particularly those relating to
movies, locations, or personal attributes.

3 46 detecting strings of text that refer to literary works
or sentiments associated with them.

3 232 identifying and focusing on parts of a document that
discuss film direction or express a positive critique of
a film.

3 6 looking for character or movie names in the text.
3 257 identifying the introduction of movies, actors, or re-

lated events.’, 23: ’The feature at index 23 in an
autoencoder appears to be looking for the beginning
of sentences, statements, or points in a document.

3 23 looking for the beginning of sentences, statements, or
points in a document.

4 43 looking for expressions of negative sentiment or criti-
cism in the document.

4 261 looking for opinions or sentiments about movies in
the text.

4 25 looking for the starting elements or introduction parts
in the text, as all activations are seen around the
beginning sentences of the documents.

4 104 activating on expressions of strong opinion or emotion
towards movies or media content.

4 38 identifying statements of opinion or personal judg-
ment about a movie or film.

4 367 identifying the expression of personal opinions or
subjective statements about a certain topic, most
likely related to movies or film reviews.

4 263 activating for statements or reviews about movies or
film-related content.

4 278 activating for movie or TV show reviews or discus-
sions, particularly in the genres of horror and science
fiction.

4 421 identifying personal reactions or subjective state-
ments about movies.

Continued on next page

15

Under review as a conference paper at ICLR 2024

Layer Feature Index Explanation

4 49 detecting phrases or sequences related to storytelling,
movies, or cinematic narratives.

5 59 looking for parts of text that have names or titles,
possibly related to movies or literary works.

5 76 focusing on tokens representing unusual or malformed
words or parts of words.

5 156 activating for the beginnings of reviews or discussions
regarding various forms of media, such as movies,
novels or TV episodes.

5 236 identifying critical or negative sentiment within the
text, as evidenced by words and expressions associ-
ated with negative reviews or warnings.

5 184 detecting and emphasizing on named entities or
proper nouns in the text like "Mexican", "Texas",
"Michael Jackson", etc.

5 477 looking for reviews or comments discussing movies or
series.

5 284 identifying the inclusion of opinions or reviews about
a movie or an entity.

5 454 recognizing and activating for occurrences of names
of films, plays, or shows in a text.

5 225 looking for phrases or sentences that indicate direction
or attribution, especially related to film direction or
character introduction in films.

5 6 identifying examples where historical moments, film
viewings or individual accomplishments are discussed.

F Pseudocode

Algorithm 1 gives the pseudocode for both determining the most relevant layers, sparse
autoencoder training, and finally automated feature interpretation.

G Layer Divergences

Over here we graph the divergence of the RLHF-tuned models from the base model on a per
layer basis, see Figure 3.

0 5 10 15 20 25
Layer Number

0.3

0.4

0.5

0.6

0.7

La
ye

r D
iv

er
ge

nc
e P-70m, DistilBERT

P-70m, Utility Table
P-160m, DistilBERT
P-160m, Utility Table
P-410m, DistilBERT
P-410m, Utility Table

Figure 3: Divergences on a per-layer basis for various model and reward function combinations.
Pythia-70m, Pythia-160m and Pythia-410m have 6, 12 and 24 layers respectively.

16

Under review as a conference paper at ICLR 2024

Algorithm 1 Interpreting Learned Reward Models

1: Initialize: LayerDivergences← []

Step 1: Find top n layers with most divergence

2: function find_top_n_divergent_layers(BaseLayers, FineTunedLayers)
3: for all BaseLayer, FineTunedLayer ∈ zip(BaseLayers, FineTunedLayers) do
4: Divergence← Compute ∆(BaseLayer, FineTunedLayer)
5: ▷ Divergence ∆ is the sum of Euclidean distances between parameters.
6: Append Layer and Divergence to LayerDivergences
7: end for
8: Sort and Select Top n elements of LayerDivergences
9: return LayerDivergences

10: end function

Step 2: Sparse autoencoder feature extraction

11: function extract_feature_dictionary(BaseModel, FineTunedModel)
12: Dall ← []
13: for each Model in [BaseModel, FineTunedModel] do
14: for all Layer in Top n layers do
15: A← Get_Activations(Model, Layer, TrainSplit) ▷ Activation A
16: AE large ← Train(Dictionary Size = 2*Activation Vector Dimension)
17: AEsmall ← Train(Dictionary Size = Activation Vector Dimension)
18: Dlarge ← Decoder weights of AE large
19: Dsmall ← Decoder weights of AEsmall
20: Dg ←MMCS(Dlarge, Dsmall) ▷ MMCS finds high overlap dictionary Dg

21: Append Dg to Dall

22: end for
23: end for
24: Return Dall

25: end function

Step 3: Use feature weights to interpret inputs.

26: function interpret_feature_inputs(BaseModel, FineTunedModel)
27: for each Model in [BaseModel, FineTunedModel] do
28: for each Layer in Top n do
29: for each top-k Feature in Layer do
30: for each Review in IMDb Reviews Test Set do
31: Token_Subset← First 50 tokens of Review
32: A← Activations of Model(Token_Subset)
33: A′ ← Activations of Autoencoder(A)
34: Top_Reviews← Top 5 activating reviews for Feature
35: Explanation← GPT-4(Top_Reviews, A’)
36: Display(Explanation)
37: end for
38: end for
39: end for
40: end for
41: end function

H Methodology for Autoencoder training

In this section, we discuss briefly various choices we made in the feature dictionary training
setup as well as some light experimental exploration.

17

Under review as a conference paper at ICLR 2024

1. The regularization L1 coefficient (L1-coef). During autoencoder training, the
sparsity of the feature dictionaries is enforced by adding an L1 regularization loss
on the feature weights, akin to Lasso (ZHANG & HUANG, 2008). We would
ideally want L1-coef to be low so as to allow the autoencoder training objective to
reconstruct activation vectors with high fidelity using the dictionary features. But if
L1-coef is too small, then we observe an explosion in the “true" sparsity loss, namely
the average number of non-zero positions in the dictionary features. These are then
no longer as interpretable, and attend to almost all activation neurons.
As such, we choose L1-coef in a reasonable range to minimize both the true sparsity
loss, as well as activation vector reconstruction loss. Empirically, we found a range
of L1-coef between 0.001 and 0.002 to be suitable in most cases. See Figure 4
for an illustration of the loss variation, over a single epoch of Pythia-70m trained
with varying values of L1-coef. We average the “true" sparsity loss over all highly
divergent layers, and scale down by a factor of 100 for each in graphing.

0.002 0.004 0.006 0.008 0.010
L1 coefficient

0.0

0.2

0.4

0.6

0.8

Re
co

ns
tru

ct
io

n
an

d
sc

al
ed

 tr
ue

 sp
ar

sit
y

lo
ss

True sparsity loss
Normalized reconstruction loss

Figure 4: Normalized reconstruction and scaled true sparsity losses for Pythia-70m over 1
training epoch, over varying values of L1-coef. Both metrics are averaged over all highly
divergent layers, and hyperparameter choices are otherwise as described in Section 5.2.

2. Tying encoder and decoder. Another experiment choice we considered was
whether to tie the encoder and decoder weights of the autoencoder. Tying the
encoder and decoder weights has the advantage that each dictionary feature can
then be explicitly written as a function of activation neurons. However, the model
may be able to optimize the reconstruction and sparsity losses slightly better if the
weights are left untied.
We ran a small experiment on Pythia-160m and Pythia-70m with alternating the
decoder and encoder weights as tied as well as untied. We found both the reconstruc-
tion loss and true sparsity loss to converge faster with tied weights. See Table 6. We
suspect this trend may change with longer training times or different initialization
schemes.

3. How to select divergent layers. In this paper, we have chosen to focus on the
layers with highest parameter divergences. As can be seen in Section G and Figure 3,
these tend to be the deepest layers of the neural networks. We briefly explored here
the effects of looking at the lowest / initial layers of the neural networks instead.

18

Under review as a conference paper at ICLR 2024

Model Tied Weights Sparsity Loss Reconstruction Loss

pythia-160m true 0.291 0.053
false 0.328 0.059

pythia-70m true 0.383 0.030
false 0.393 0.036

Table 6: Normalized reconstruction and scaled true sparsity losses for Pythia-70m and Pythia-
160m over 1 training epoch, over differing choices of whether to tie encoder and decoder
weights. Both metrics are averaged over all highly divergent layers, and hyperparameter
choices are otherwise as described in Section 5.2.

Towards the end of our project, we ran a small experiment on Pythia-160m and
Pythia-70m with alternating selecting the layers for autoencoder extraction as the
lowest layers, vs the highest divergence layers. We found both the reconstruction
loss and true sparsity loss to be far less for the lower most layers. A future study
to examine the dictionary features extracted from these lowest layers would be
interesting. See Table 7 for the observed metrics.

Model Divergence Choice Sparsity Loss Reconstruction Loss

pythia-160m highest ivergence 0.291 0.053
lowest layers 0.166 0.023

pythia-70m highest divergence 0.388 0.036
lowest layers 0.329 0.021

Table 7: Normalized reconstruction and scaled true sparsity losses for Pythia-70m and
Pythia-160m over 1 training epoch, over differing choices of divergence. Both metrics are
averaged over all highly divergent layers, and hyperparameter choices are otherwise as
described in Section 5.2.

19

	Introduction
	Background
	Related Work
	Methodology
	Interpreting Learned Reward Models in LLMs.
	Overseer-Guided Fine-Tuning Using Utility Tables.

	Experiments
	Applying RLHF to base models.
	Training autoencoders for dictionary extraction
	Measuring fidelity of sparse coding features to the specified reward function.

	Results and Discussion
	Movie Opinion Features in Pythia-70m Fine-Tuned on Positive Movie Review Completions
	Quantifying Reward Modeling Efficacy For Models Fine-tuned on High Utility Movie Review Completions

	Conclusion
	Future work
	Reproducibility statement
	RLHF With Proximal Policy Optimization
	Overseer-Guided Fine-Tuning Using Utility Tables Architecture Delineation
	Complete Pythia-70m Fine-Tune Top-K Feature Descriptions
	Pseudocode
	Layer Divergences
	Methodology for Autoencoder training

