
Published in Transactions on Machine Learning Research (6/2024)

Decoupling Pixel Flipping and Occlusion Strategy for Con-
sistent XAI Benchmarks

Stefan Blücher bluecher@tu-berlin.de
BIFOLD – Berlin Institute for the Foundations of Learning and Data
Machine Learning Group, TU Berlin

Johanna Vielhaben johanna.vielhaben@hhi.fraunhofer.de
Explainable Artificial Intelligence Group
Fraunhofer Heinrich-Hertz-Institute

Nils Strodthoff nils.strodthoff@uol.de
Division AI4Health
Carl von Ossietzky Universität Oldenburg

Reviewed on OpenReview: https: // openreview. net/ forum? id= bIiLXdtUVM

Abstract

Feature removal is a central building block for eXplainable AI (XAI), both for occlusion-
based explanations (Shapley values) as well as their evaluation (pixel flipping, PF). However,
occlusion strategies can vary significantly from simple mean replacement up to inpainting
with state-of-the-art diffusion models. This ambiguity limits the usefulness of occlusion-
based approaches. For example, PF benchmarks lead to contradicting rankings. This is
amplified by competing PF measures: Features are either removed starting with most influ-
ential first (MIF) or least influential first (LIF).
This study proposes two complementary perspectives to resolve this disagreement problem.
Firstly, we address the common criticism of occlusion-based XAI, that artificial samples lead
to unreliable model evaluations. We propose to measure the reliability by the R(eference)-
Out-of-Model-Scope (OMS) score. The R-OMS score enables a systematic comparison of
occlusion strategies and resolves the disagreement problem by grouping consistent PF rank-
ings. Secondly, we show that the insightfulness of MIF and LIF is conversely dependent
on the R-OMS score. To leverage this, we combine the MIF and LIF measures into the
symmetric relevance gain (SRG) measure. This breaks the inherent connection to the un-
derlying occlusion strategy and leads to consistent rankings. This resolves the disagreement
problem of PF benchmarks, which we verify for a set of 40 different occlusion strategies.

1 Introduction

Explainable AI (XAI) reveals the reasoning structure of black-box machine learning (ML) models (Lundberg
& Lee, 2017; Montavon et al., 2018; Samek et al., 2019; Covert et al., 2021; Samek et al., 2021). Appropriate
usage of XAI methods enables new research avenues in various scientific domains (Holzinger et al., 2019;
Blücher et al., 2020; Binder et al., 2021; Anders et al., 2022; Klauschen et al., 2024). However, a multitude
of possible XAI methods leads to practical challenges (Freiesleben & König, 2023). For example the incon-
clusive scenario of multiple, contradictory explanations for a single model prediction was recently dubbed as
disagreement problem (Neely et al., 2021; Krishna et al., 2022). However, such a disagreement problem not
only arises in explanations itself, but extends to their evaluation. In pixel flipping (PF) (Samek et al., 2016),
which assesses the faithfulness of XAI methods by removing features from the model prediction depending on
their explanations, the final ranking of XAI methods depends on the specific PF setup (see Table 1). On one
side, either removing most-influential features (MIF) or least-influential features (LIF) first when performing
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Table 1: Which ranking do you pick? The choice of measure (most influential first (MIF) vs. least influential
first (LIF)) and occlusion strategy (train set vs. diffusion) influences the ranking of XAI methods. Saliency,
layer-wise relevance propagation (LRP) and integrated gradients (IG) denote three widely used attribution
methods.

Disagreement problem of PF

Setup
MIF LIF MIF LIF

Train set Diffusion
IG LRP LRP IG

Ranking LRP Saliency Saliency LRP
Saliency IG IG Saliency

PF benchmarks leads to disagreeing rankings of XAI methods. On the other side, the underlying occlusion
strategy can be implemented in various different ways. This leads to further disagreeing PF rankings and
also to multiple (contradictory) occlusion-based explanations (Covert et al., 2021).

This study provides a two-fold contribution: Firstly, we address the main criticism of occlusion-based XAI
approaches, which states that occluded samples are artificial and thus their evaluation is potentially not
reliable (Gomez et al., 2022). We quantify this concern via the Reference-out-of-model-scope (R-OMS)
score and thereby enable an objective comparison of occlusion strategies. Secondly, we thoroughly analyze
the disagreement problem of PF benchmarks. Here, sorting PF setups based on the R-OMS score groups
consistent rankings. Moreover, MIF and LIF ranking are complementary, in the sense that rankings are
consistent for either measure across the R-OMS spectrum. Based on this intuition, we propose the symmetric
relevance gain (SRG), which combines both measures. The SRG measure provides consistent rankings across
all occlusion strategies and thereby resolves the disagreement problem of PF benchmarks.

2 Crucial role of occlusion strategies for XAI

Before investigating occlusion strategies in detail, we first discuss their usage in the context of both XAI
methods and their evaluation. We introduce our notation in Table 2.

Table 2: Notation.
N = {1, 2, . . . , n} Feature set S ⊆ N Coalition s = |S| Cardinality

x = (x1, . . . , xn) Specific sample: xi might be aggregated input features (superpixels)
X = (XS , XS̄) Generic (random) sample spit into complements S̄ = N\S

π = [π1, . . . , πn] Feature ordering
Π(s) = {πi|i ≤ s} Leading features in π

πr = [πn, . . . , π1] Reverse feature ordering

fc(x) Classification model p(c|x) ∈ [0, 1] fc(xS) Occluded model restricted to S

2.1 Understanding model reasoning with XAI

Generally, XAI research is concerned with verifying and revealing the reasoning structure of machine learning
models (Lapuschkin et al., 2019). Various approaches have been proposed such as attribution methods
(Baehrens et al., 2010; Bach et al., 2015; Ribeiro et al., 2016; Zintgraf et al., 2017; Letzgus et al., 2022),
concept discovery (Kim et al., 2018; Ghorbani et al., 2019; Vielhaben et al., 2023; Achtibat et al., 2023) or
global (model-wide) analysis tools (PDP) (Hastie et al., 2009)/ALE (Apley & Zhu, 2020)/ICE (Goldstein
et al., 2015). Here, we focus on model-agnostic approaches, which all build on occluding features and
observing changes in the model prediction (Covert et al., 2021).
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Figure 1: Pixel flipping benchmarks of XAI methods. Both MIF and LIF are affected by the random
baseline. Using the complete symmetric relevance gain (SRG) introduced in Section 5.2 breaks the inherent
dependence on the occlusion strategy.

Model-agnostic XAI methods rely on occluding features Here, Shapley values are a widespread
approach. They build on an abstract value function v : 2n → R, which maps a feature set to a scalar payout.
The attribution of feature i is given by its average marginal gain:

ϕi =
∑

S⊆N\i

N (s) [v(S ∪ i) − v(S)] . (1)

The unique normalization N (s) = s!(n−s−1)!
n! ensures the Shapley axioms symmetry, linearity, efficiency and

null player (Shapley, 1953). To deal with the binomial growth in coalitions S, we approximate Equation (1)
by uniformly sub-sampling coalitions (Štrumbelj & Kononenko, 2010; Lundberg & Lee, 2017). Competing
XAI methods such as PredDiff (Robnik-Sikonja & Kononenko, 2008; Zeiler & Fergus, 2014; Zintgraf et al.,
2017; Blücher et al., 2022) only remove the target feature or introduce the target feature into a fully occluded
sample such as ArchAttribute (Tsang et al., 2020). PredDiff and ArchAttribute correspond to the first and
last marginal contribution in Equation (1) respectively. The last step is to connect the abstract value function
with the occluded model prediction via v(S) = log fc(xS) (Blücher et al., 2022). Therefore, ambiguities
related to the occlusion strategy (called design choices in Section 3) are contained within the resulting XAI
method. This leads to multiple Shapley values despite the underlying uniqueness property (Sundararajan &
Najmi, 2020).

2.2 Evaluation of XAI methods

Pixel flipping for attribution evaluation To systematically judge the quality of XAI methods, a variety
of approaches has been proposed (Nauta et al., 2023). This ranges from pixel flipping (Samek et al., 2016;
Rieger & Hansen, 2020; Samek et al., 2021; Gevaert et al., 2022; Hedström et al., 2023; Li et al., 2023) over
sanity checks (Adebayo et al., 2018; Binder et al., 2023) to synthetic datasets with ground truth knowledge
(Yang & Kim, 2019; Kayser et al., 2021; Budding et al., 2021; Arras et al., 2022).

Here, we focus on pixel flipping, as a general and widespread solution for quantitative evaluation of XAI
methods (Samek et al., 2016). PF measures the faithfulness of attributions: Is the actual model behavior
captured by the attributions? To this end, one summarizes the changes in model prediction after successively
removing features depending on some ordering π:

AUC[π] = 1
n

n∑
s=0

vPF(Π(s)). (2)

In analogy to Shapley values, the value function vPF(S) = fĉ(xS) denotes the occluded
model prediction. A given explanation ϕ induces a unique feature ordering πϕ = arg sorti ϕi.
Then the faithfulness of the underlying XAI method is assessed by the PF measures
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(Samek et al., 2016; Petsiuk et al., 2018; Samek et al., 2021; Gomez et al., 2022; Brocki & Chung, 2023):

MIF[ϕ] = AUC
[
πϕ

]
(higher better)

LIF[ϕ] = AUC
[(

πϕ
)r

]
(lower better)

(3)

Faithful attributions lead to a steep (most relevant first, MIF) or flat (least relevant first, LIF) descent for
the two opposing measures (colored curves in Figure 1). Complementary literature proposed to occlude a
fixed number of features (sensitivity-n) and measure the calibration (sum of attributions) compared to the
actual drop in model prediction. (Ancona et al., 2017; Yeh et al., 2019; Bhatt et al., 2020).

PF rankings rely on occluding features Like all model-agnostic XAI methods, PF benchmarks share all
design choices of the underlying occlusion strategy (Tomsett et al., 2020). Thus, PF setups are ambiguous
(Gevaert et al., 2022; Rong et al., 2022; Barr et al., 2023) and lead to disagreeing rankings (Table 1).
Unfortunately, PF is commonly invoked to demonstrate the superiority of a newly proposed XAI method
(Freiesleben & König, 2023). For practical reasons, studies naturally focus on a single PF setup and neglect
the inherent variability. Therefore, this study investigates influential factors of occlusion strategies that can
effect the final method ranking for MIF/LIF benchmarks.

2.3 Occlusion strategies in the literature

Previous research has investigated different possibilities for occluding features. Here, baselines that mimic
feature absence by a constant value are a widely used option. The impact of the specific value has been
investigated and visualized in various studies (Sturmfels et al., 2020; Haug et al., 2021; Mamalakis et al.,
2022). Complementary, Izzo et al. (2020); Shi et al. (2022); Ren et al. (2023) proposed criteria to fix the
baseline value. However, Jain et al. (2022) showed that simple baselines can lead to undesirable out-of-model-
scope biases. Exposing the model to artificially occluded samples during training can circumvent this problem
(Hooker et al., 2019; Hase et al., 2021; Brocki & Chung, 2023). Alternatively, improved occlusion strategies
can be employed to create realistic in-distribution samples (Kim et al., 2018; Chang et al., 2019; Agarwal &
Nguyen, 2020; Sivill & Flach, 2022; Olsen et al., 2022; Rong et al., 2022; Augustin et al., 2023) Lastly, XAI
methods can be adjusted to compensate for OMS effects (Dombrowski et al., 2019; 2022; Qiu et al., 2021;
Fel et al., 2023; Taufiq et al., 2023; Dombrowski et al., 2023) and prevent adversarial vulnerabilities (Anders
et al., 2020; Slack et al., 2020). However, the central question of how to choose reliable occlusion strategies
remains still unsolved.

3 Design choices for occlusion strategies

The occlusion strategy is commonly identified with the imputer distribution. This is insufficient as more
design choices can impact the reliability of occluded samples such as size and shape of superpixels. In
particular, occlusion strategies are inherently connected to the underlying model, which relies on both
architecture and training procedure. This study addresses computer vision, but similar considerations apply
to other domains.

3.1 Design choice I: Imputer

Feature removal paradigms Occluded model predictions are a ubiquitous component of XAI (see Sec-
tion 2). Generally, it is not possible to omit features S̄ for the occluded prediction fc(xS), but one has to
shield the model prediction from their impact. Here, the only model-agnostic option is to construct occluded
samples (xS , XS̄) based on an imputer q, which generates artificial values XS̄ . Then the occluded model
prediction is given by fc(xS) =

∑
XS̄∼q fc(xS , XS̄). There are two principled possibilities for the imputer:

Firstly, the conditional distribution q = p(XS̄ |xS) allows to exactly marginalize the complementary fea-
tures S̄, i.e., fc(xS) = p(c|xS) =

∫
dXS̄p(c|xS , XS̄)p(XS̄ |xS). This relation lies at the heart of PredDiff

(Blücher et al., 2022). Secondly, the marginal distribution q = p(XS̄) explicitly breaks the relation between
the features S and S̄. Due to this independence, marginal imputers are easily accessible and enable causal
interpretations (Janizek et al., 2020). In our experiments, we consider the set of imputers listed in Table 3.
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The alternative model-specific option is to leverage internal structures to remove features S̄: Some models
allow to directly omit features in a meaningful manner (from the perspective of the model). Here, examples
are tree-based models (Lundberg et al., 2020) or transformers (Jain et al., 2022).

Table 3: Practical imputers considered in our experiments, ranging from simple to complex.

Imputer Example Description

Mean
marginal
deterministic

Occludes superpixels with constant channel-wise data set mean.

Train set
marginal
probabilistic

The imputed features are drawn from a random training set sample
(optimal marginal imputer).

Histogram
conditional
probabilistic

(Wei et al., 2018) Occludes superpixels with constant value sampled from
colors contained in image (conditional analogue of the mean imputer).

cv2
conditional
deterministic

Inpaints occluded superpixels based on the surrounding pixel values
(Telea, 2004).

Diffusion
conditional
probabilistic

Inpaints using a (class-unconditional) state-of-the-art diffusion model.
Imputations are visually more aligned since the remaining features are
used as reference (Lugmayr et al., 2022).

3.2 Design choice II: Superpixel shape and number

From arbitrary features to superpixels
We now consider the case of images x ∈ Rw×h×nchannels with width w,
height h and nchannels color channels. Here, single pixels share redundant
information with neighboring pixels. It is therefore more meaningful to
consider a collection of pixels (superpixels) as individual features. Super-
pixels are obtained by segmenting a complete image into disjoint patches
N = {1, 2, . . . , n}. Computational costs of the attribution method then depend on the number of superpixels
n ≪ w · h · nchannels. All considered segmentation algorithms are listed in Table 4.

3.3 Design choice III: Model

How occluded samples are perceived by the model under consideration, can depend on the model architecture
or its training procedure. Therefore, we use three different models in this study: Firstly, we use the standard-
ResNet50 (He et al., 2016) as provided by torchvision. Secondly, we compare to the same architecture but
trained with a state-of-the-art training procedure (Wightman et al., 2021) as provided by the timm library
(timm-ResNet50). Lastly, we investigate a vision transformer (ViT) model, which was already used in (Jain
et al., 2022) to demonstrate the effects of occlusion strategies.

4 Comparing occlusion strategies via the R-OMS score

In this section, we derive a quantitative approach to characterize artificial samples solely relying on model
predictions. This enables a systematic comparison of occlusion strategies - thereby judging the impact of
the underlying design choices.
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Table 4: Superpixel can be generated by simple or more advanced segmentation algorithms

Rectangular patches: Simple fixed segmentation mask, which is independent of the image.

Classical segmentations: Segmentation aligned to the semantic image content to some degree.
Here, we use the classical SLIC algorithm (Achanta et al., 2012) with default compactness λ = 1.

Semantic segmentation: A meaningful, semantic segmentation for each image is on the ad-
vanced end of the spectrum, Here, we build on the Segment Anything Model (SAM) (Kirillov
et al., 2023).

4.1 Quantitative strategy to assess occluded samples

Artificial samples are not in-distribution Occlusion-based XAI relies on imputed samples, which are
necessarily artificial. This is a common point of criticism, as the model needs to some extent extrapolate
away from the original data manifold (Hooker & Mentch, 2019; Kumar et al., 2020). This is closely related to
the out-of-distribution detection community, which aims to detect unreliable predictions to enable monitor-
ing and employment of ML for safety-critical applications (Salehi et al., 2022). Here, many studies strived to
quantify whether a given sample is out-of-distribution with respect to the underlying data distribution. How-
ever, this perspective neglects the specific model under consideration. Therefore, a recent study suggested
(Guérin et al., 2023) that it is more meaningful to characterize the out-of-model-scope-ness (OMS-ness) of
samples. We also adopt this perspective here, as the model is the crucial component underlying any XAI
application.

Relying on the reference samples is essential Conventional OMS scenarios monitor the reliability of
arbitrary samples. This is in stark contrast to occlusion-based XAI, which is interested in the reliability of
artificial imputations of a single fixed original sample. Therefore, the original sample serves as a reference
and one is interested in the difference with respect the occluded sample. In analogy to the image quality
assessment literature (Kamble & Bhurchandi, 2015), we refer to scores that leverage the available side-
information about the original sample, as Reference-OMS (R-OMS). In contrast, conventional OMS-measures
are denoted as No-Reference-OMS (NR-OMS) scores. Conceptually, this distinction allows for characterizing
and potentially adapting any OMS measure.

Original class prediction as R-OMS score A simple NR-OMS-score is the maximum softmax probability
(MSP) maxc fc(xS) (Hendrycks & Gimpel, 2016). For a low MSP score, the model is not confident about
its prediction and thus the input sample is unreliable. To obtain the related R-OMS score, we focus on the
original class prediction fĉ(xS) by leveraging the original sample x and its label ĉ. From here on, R-OMS-
score refers to this measure. The R-OMS score tracks how much information about the original sample is
still accessible to the model. A high R-OMS score is indicative of reliably occluded samples.

Comparison of R-OMS and NR-OMS
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Figure 2: R-OMS vs. NR-OMS.

For occluded samples, the R-OMS and NR-OMS score
agree as long as there is no flip in the predicted class label.
This changes for severely altered imputations. We exem-
plified this in two distinct cases. Firstly, for samples that
are imputed with some natural image content (train set or
diffusion), the generated features inevitably correspond to
some other output class (↑ NR-OMS). Thus, the occluded
sample is biased towards the class that the train set im-
puter draws or the diffusion imputer inpaints. A possible
workaround might be to average over multiple samples when calculating the occluded prediction. However,
this introduces linearly increasing computation costs. Secondly, the missingness bias (Jain et al., 2022) trig-
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Figure 3: (A): Occlusion strategy and model interact. (B, C, D): Visualize variation of each design choice
for fixed standard-ResNet50. (Summary) reports the average variation (interquartile ranges) associated with
each design choice. (B) Granularity of segmentation (C) Shape of segmentation. (D) Imputer choice.

gers specific classes (e.g. checkerboard) based on the occlusion strategy (↑ NR-OMS). The R-OMS is not
affected by both effects as these are unrelated to the reference class (↓ R-OMS). Therefore the R-OMS-score
typically decreases monotonically whereas the NR-OMS-score potentially rises again when occluding more
patches.

4.2 Characterize the impact of design choices

R-OMS coincides with the PF target In the following, we characterize occlusion strategies by measuring
the R-OMS score at various occlusion fractions (n − s)/n for a random set of occluded superpixels S. A
steeper descent reflects less reliable occlusion strategies. Importantly, this approach is independent of the
considered XAI method. The AUC of this random PF curve is identical to the random baseline in PF
benchmarks. To stress this inherent connection, this value is denoted as R-OMS = Euni(π)[AUC[π]].

Occlusion strategies depend on the model choice In Figure 3 (A), we compare the standard ResNet50
vs. timm-ResNet50. Even though both models rely on the same architecture, the R-OMS scores for identical
imputers (mean and histogram) vary significantly (Crothers et al. (2023) observed this in the NLP context).
Occluded samples with mean-imputed superpixels are not similar to natural images (see example in Table 3).
Therefore, one naively expects a low R-OMS score as it occurs for the standard ResNet50. However, the
timm-ResNet50 confidently predicts the correct class even for heavily occluded samples. This change in
model response originates from the different training schemes. Timm-training invokes an elaborate augmen-
tation procedure that boosts model performance (Wightman et al., 2021). Thereby, the timm-ResNet50
learned to ignore non-informative constant patches and solely focus on the remaining original image content.
Importantly, the R-OMS detects unreliable samples, as judged by the trained model, without knowledge
about the original training strategy. Alternatively, one can enforce reliability by manually pre-training mod-
els with occluded samples, however at the price of a large computational overhead (Hooker et al., 2019; Hase
et al., 2021). The above observation exemplifies, that human judgment of occluded samples is inherently
flawed, as it lacks any connection to the underlying model.
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Diffusion ensures reliable model predictions The subfigures (A) and (D) in Figure 3 show that the
diffusion imputer consistently leads to the highest R-OMS scores. This is expected, as generative diffusion
models are trained to inpaint realistic patches for the masked superpixels. Therefore, occluded samples are
similar to images seen during training for both models. This is in contrast to the marginal train set imputer,
which leads to unrealistic samples (low R-OMS). Interestingly, the imputed superpixels themselves are drawn
from the original data manifold and are therefore natural to the model. However, the model is confused
by the contradictory (imputed vs. original) information. As a consequence, the model cannot leverage the
remaining information from the original image. Thus, the train set imputer, which is the optimal marginal
approach, leads to a steep descent in model confidence.

Diffusion imputer resemble internal strategy To further characterize the diffusion imputer, we compare
it to the internal occlusion strategies of a ViT model. Here, we summarize our findings and defer the exact
results to the supplementary Figure A1. The internal imputer is a neutral approach (not relying on artificial
samples), as the masked superpixels are directly omitted (Jain et al., 2022). Based on the R-OMS score,
we find a close alignment between the internal and diffusion strategy. This is very unexpected since both
occlusion mechanisms are conceptually very different. To further strengthen this point, we confirmed that
this similarity extends to the intermediate hidden activations. Overall, this alignment is an interesting
argument in favor of the diffusion imputer as a natural replacement strategy.

Number of superpixels significantly impacts all imputers We compare the occlusion strategies de-
pending on the number of superpixels in Figure 3 (C). We observe that simple imputers (mean, histogram
and train set) are more reliable for larger superpixels (small n). Contrary, for smaller superpixels, a miss-
ingness bias (see also Figure 2) reduces the R-OMS score. An opposing trend is visible for the conditional
imputers (cv2 and diffusion), for which artificial samples are increasingly realistic to the model with smaller
superpixels. This is an expected behavior, since for fixed occlusion fraction the imputation task for a smaller
number of superpixels is comparably simpler than the same task for a larger number of superpixels, where
larger segments have to be inpainted in a semantically meaningful fashion.

Naive imputations are more meaningful for semantic superpixels Next, we investigate how the
segmentation algorithm (shape of superpixels) impacts the occlusion strategies (C). As outlined in Table 4,
we compare squares, default-SLIC (λ = 1), flexible-SLIC (λ = 0.1) and semantic SAM superpixels (Yeh
et al., 2019; Yu et al., 2023). To ensure a fair comparison we filter for images with a similar number of
superpixels n ≈ 75. We observe that semantic SAM superpixels increase the R-OMS score for all three
simple imputers. This aligns with (Rong et al., 2022), who discussed a similar phenomenon as information
leakage through the segmentation mask, an effect which could also be framed as a positive missingness bias
(Jain et al., 2022). In contrast, the conditional cv2 and diffusion imputer struggle to meaningfully embed
semantic patches into the local neighborhood. Thus, the R-OMS score decreases for increasingly flexible
superpixels. Overall, semantic superpixels reduce the influence of the imputer choice as apparent from (D).
Here, SAM superpixels clearly show the least variation.

Relative importance of design choices So far, we discussed each design choice individually. In particular,
we aimed to vary each dimension between its two extremes (small vs. large superpixels, square vs. semantic
superpixel shapes, simple vs. complex imputers). Each design choice therefore induces an inherent degree
of variation into the resulting occlusion strategy. To quantitatively assess this variation, we calculate the
maximal R-OMS spread for each design choice (columns in B, C and D) and report the interquartile range
(ICR) over all experiments in the summary table in Figure 3. The supplementary Table A1 shows details
about the underlying setups for the model. Based on this analysis, we conclude that the imputer choice is the
dominant design choice of the occlusion strategy. The secondary effects are associated with the number of
superpixels and the underlying model. Lastly, the shape of superpixels has the least impact on the occlusion
strategy. As a consequence, it is generally not worth invoking expensive SAM superpixels to obtain more
reliable occlusion strategies. In fact, this can even be detrimental when employed in conjunction with the
diffusion imputer.
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Figure 4: PF benchmarks based on varying occlusion strategies lead to many disagreeing rankings for both
MIF and LIF. Sorting rankings based on the R-OMS groups consistent rankings. The lower panel visualizes
the disagreement problem as the deviation from the most frequent ranking (reference). The consistency of
MIF (high) and LIF (low to medium) are complementary when sorting based on the R-OMS.

5 Impact of occlusion strategies on PF benchmark

Setup This section explores the impact of different occlusion strategies on PF benchmarks. All results
are based on 100 randomly selected imagenet samples. Based on Section 3, we construct a diverse set
of 40 occlusion strategies, varying all design choices (n: 25, 100, 500, 5000; imputer: mean, train set,
histogram, cv2, diffusion; model: standard-ResNet50, timm-ResNet50). Using all 40 PF setups we rank
several standard XAI methods: Saliency, (NT)-Saliency with Noise-tunnel, Integrated gradients (IG), In-
putXGradients, layer-wise relevance propagation (LRP) and the random baseline (R-OMS). Pixel-wise
attributions are averaged within a superpixel to obtain superpixel-based attributions. Gradient-based
attributions are calculated using captum (Kokhlikyan et al., 2020), LRP using zennit (Anders et al.,
2021) and model-agnostic attributions based on a custom implementation. Our code is available on at
https://github.com/bluecher31/pixel-flipping.

5.1 Disagreement problem of MIF and LIF

Occlusion strategies lead to many rankings Based on all 40 PF setups we perform both MIF and LIF
benchmarks. Varying the occlusion strategy leads to 17 (MIF) and 23 (LIF) different rankings (top panel in
Figure 4). At this stage, it is not obvious which ranking is the most trustworthy. In principle, an adversary
can advocate any method, by selecting the PF setup for which the method performs best. This is very
troublesome and prevents a fair comparison of XAI methods in terms of faithfulness. This exemplifies the
prevalence of the disagreement problem for PF benchmarks (lower panel).

Identifying consistent MIF and LIF rankings Next, we analyze the collection of all rankings in detail.
To this end, we sort the PF setups based on the underlying R-OMS score and visualize all rankings accordingly
in Figure 4. Interestingly, the rank of the random baseline seems to be also sorted by this. For low R-OMS
the random baseline consistently outperforms established methods for both LIF as well as MIF. This verifies
that occlusion strategies with low R-OMS score are indeed not reliable. For the top-ranked methods LIF
and MIF behave conversely. This phenomenon is rooted in the opposing orientation of the insightfulness of
both measures, which we discuss in next section Section 5.2. MIF rankings are most consistent for a high
R-OMS whereas the top-ranking LIF methods agree for a low score. The lower panel in Figure 4 visualizes
this consistency based on the deviation to the most frequent ranking, which is identical for MIF and LIF.
Clearly, MIF rankings are fully consistent for large R-OMS. For the LIF measure the situation is not as
conclusive. Here, a medium score seems to lead to the most consistent rankings. Overall, the R-OMS can
be viewed as an observable, which characterizes the outcome of PF benchmarks.

Quantitative characterization of PF benchmarks Our qualitative analysis showed, that the R-OMS
score groups consistent rankings for both MIF and LIF benchmarks. To quantify this notion, we define
a (ground truth) consistency score for all rankings as the normalized discounted cumulative gain (nDCG)

9
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Table 5: Sorting rankings based on different variables. A high score means that a variable groups similar
rankings (high consistency) and therefore characterizes the PF setup. Ground truth sorting is defined based
on the nDCG. Variance σ indicates the consistency of randomly sorting rankings (zero on average µ = 0).

Design choices MIF LIF Observables MIF LIF
# superpixels n 0.57 0.53 R-OMS 0.79 0.45

Imputer 0.57 0.41 NR-OMS 0.59 0.11
Model 0.23 0.22 Random [±σ] 0.16 0.16

(Järvelin & Kekäläinen, 2002) with respect to the most frequent ranking. The nDCG penalizes misses in
the leading position (winning XAI methods) more severely as changes at later position (around the random
ranking). In Table 5 we report the correlation between the nDCG score and variables associated with the
PF setup. Variables with a high correlation are predictive of the resulting ranking of the PF benchmark.
The number of superpixels n is the most indicative design choice. However, design choices do not provide
an objective criterion to distinguish PF setups. For example, consider the imputer choice, which does not
have an inherent ordering. To circumvent this, we probed for all possible imputer orderings and reported
the maximum correlation. In contrast, the (N)R-OMS scores are observables that naturally order PF setups.
From Table 5 it is clear that using the reference sample (R-OMS) to characterize the occlusion strategy is
beneficial and leads to a more consistent sorting. Using a naive non-reference measure (NR-OMS) is less
insightful and even leads to a nearly random performance for the LIF benchmark.

5.2 Consistent PF benchmarks with the SRG measure

Insightful MIF/LIF setups depend on the R-OMS score We just saw that the R-OMS characterizes
the PF benchmark. This is expected since a high baseline corresponds to reliable occlusion strategies.
However, there is a deeper connection between the occlusion strategy and PF benchmark. This originates
from the fact, that a random explanation leads to non-zero values R-OMS for both MIF and LIF. Thus, it
is conceptually more meaningful to focus on the relevance gain (RG), as the improvement over the random
baseline:

MRG[ϕ] = R-OMS − MIF[ϕ] LRG[ϕ] = LIF[ϕ] − R-OMS. (higher better) (4)

Importantly, MRG and LRG are now directly comparable without changing the final ranking of XAI methods.
The theoretical optimal score (area below/above the random baseline) now explicitly depends on the random
baseline (max(MRG) = R-OMS and max(LRG) = 1 − R-OMS). In other words, the insightfulness of
MIF/LIF benchmarks directly depends on the R-OMS score of the occlusion strategy (left panel in Figure 5).

Experimental verification We can also observe this phenomenon empirically by measuring the spread
between the performance of different XAI methods. A larger spread (separation of PF curves) indicates a
more insightful benchmark. To quantify this spread, we calculate the absolute pairwise differences between
the individual PF curves of all XAI methods and average over all pair-wise differences1. Then we relate
this separation to the R-OMS score of the PF setup. We obtain a positive Pearson correlation for the MIF
measure (0.88) and a negative correlation for LIF (-0.92). This shows that the insightfulness of the MIF and
LIF measures are conversely dependent on the R-OMS score. For LIF, the reliability and insightfulness of
the PF setup are not aligned (left panel in Figure 5). Consequently, a medium score is most beneficial and
leads to consistent rankings, as visible in Figure 4.

Combining most and least relevance gains Previous studies observed that MIF and LIF can lead to
disagreeing rankings (Tomsett et al., 2020; Rong et al., 2022). Our analysis revealed that this disagreement
is complementary: depending on the random baseline either MIF or LIF are insightful. This motivates to
evenly combine both measures2. The relevance gain (Equation (4)) allows to aggregate the most and least

1The difference cancels the offset in Equation (4). Thus, MIF/LIF and MRG/LRG are interchangeably.
2Samek et al. (2016) discuss a similar measure in the appendix. However, it has not been picked up on in following literature.
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Figure 5: Consistency of SRG measure is independent from the occlusion strategies. Left panel: theoretically
achievable improvement over random baseline. Right panel: SRG rankings of XAI methods (legend in
Figure 4).

relevant sides of the attribution spectrum into the symmetric relevance gain (SRG)

SRG[ϕ] = LRG[ϕ] + MRG[ϕ] = LIF[ϕ] − MIF[ϕ] , (5)

which corresponds to the area between the PF curves in Figure 1. Trivially, the SRG measure is zero for a
random explanation, as the relevance gains MRG and LRG default to zero.

LRG and MRG measure same notion of faithfulness Attributions highlight the relevant model rea-
soning into a single relevance score per feature. This can be regarded as locally approximating the model
by an additive function (Lundberg & Lee, 2017). Interestingly, Hama et al. (2023) showed that LRG and
MRG converge to the same optimum for such an additive function. Thus, both measures capture the same
notion of faithfulness (between attributions and underlying model) and should thus be treated symmet-
rically. The simplest way of implementing this is the SRG measure in Equation (5). Going beyond this
additive (first-order) model structure, requires to estimate interaction effects (Blücher et al., 2022; Bordt &
von Luxburg, 2023). Since interactions attribute multiple (joint) relevance scores to a single feature, novel
targeted measures are required to capture their faithfulness.

Theoretical consequence for SRG measure The theoretical optimal score for both LRG and MRG
depends on the R-OMS of the occlusion strategy (as discussed below Equation (4)). This induced the
disagreement problems into the final PF rankings (Figure 4). By combining both measures into the SRG
measure we can alleviate this undesired dependence. The theoretical optimal SRG score is not bounded by
the random baseline and always one (left panel in Figure 5). This leads to consistent and quantitative stable
PF benchmarks (as verified below). In other words, the SRG measures decouples PF and occlusion strategy.

Consistency of the novel SRG measure We show SRG rankings for all 40 PF setups in Figure 5 (upper
right panel). This leads to only 7 different rankings, which is approximately 3 times less as compared to the
one-sided MRG and LRG measures. Moreover, the remaining disagreement (lower right panel) is limited to
neighboring and low-ranked XAI methods. In contrast, both MIF and LIF disagree within the top-ranked
XAI methods (Table 1). Thus, combining both one-sided measures into the SRG measure leads to consistent
rankings across the full spectrum of occlusion strategies.

Quantitative stability of SRG measure In addition to this consistency, the SRG measure is also quan-
titatively stable. This means, that the performance of each XAI method is not affected by the value of the
random baseline R-OMS. To analyze this, we consider variance for all three measures across PF experiments.
Based on the variance of the LRP method across all 40 PF setups, we find that the SRG measure is up
to ten times more stable3. To visualize this, we show a boxplot of all three measures in the supplemen-
tary Figure A3, which validates the above conclusion. In summary, the quantitative stability of the SRG
measure allows for aggregating multiple PF setups without losing the underlying ranking of the individual
benchmarks. This is not the case for both MRG and LRG.

Summary Disagreeing rankings limit the usefulness of PF as a benchmark for XAI methods. The random
baseline R-OMS allows to identify insightful PF setups and groups consistent rankings. This re-establishes

3Variance of the LRP method: Var(MRG) = 0.0110, Var[LRG] = 0.0128, Var[SRG] = 0.0005
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Table 6: The SRG measure enables trustworthy PF benchmark of XAI methods, which resolves the dis-
agreement problem from Table 1. Higher is better and random explanations yield a score of zero. Results
are consistent for full range of design choices (PF setup: cv2, standard-ResNet50 and n = 25) and with a
trustworthy MRG benchmark (see supplementary Table A3).

Occlusion-based methods Pixel-wise attributions
Method SRG (↑) Method SRG (↑)

Shapley values (cv2) 0.47 LRP 0.35
Shapley values (Mean) 0.40 Saliency (NT) 0.25 (0.30)

PredDiff (cv2) 0.33 IG (abs / NT) 0.23 (0.24 / 0.12)
ArchAttribute (cv2) 0.25 InputXGradients (abs) 0.05 (0.19)

trust in the conventional MIF/LIF measures. Using the full PF information (most + least) leads to the
SRG measure. This obviates the disagreement problem, as the SRG measure is decoupled from the random
baseline.

6 Trustworthy PF benchmarks for XAI methods

Having discussed all the prerequisites for reliable and insightful pixel flipping experiments, we are now ready
to perform a final benchmark comparing all major XAI methods. To this end, we show the results for the
SRG measure in Table 6. These results align with the MRG measure for a reliable and insightful occlusion
strategy, i.e. high R-OMS score, which are presented in the supplementary Table A3. This singles out the
diffusion imputer, however at the cost of drastically increased computational costs. In contrast, the SRG
measure does not depend on the occlusion strategy and can build on a cheaper strategy (e.g. cv2). We
restrict to n = 25 superpixels to ensure fully converged Shapley value attributions.

Occlusion-based vs pixel-wise attributions The final ranking in Table 6 clearly shows that occlusion-
based attributions are significantly more faithful to the model than pixel-wise attributions. This advantage
comes at the price of higher computational cost. To emphasize this, note, that LRP only requires a single
backward pass. In contrast, the cheapest occlusion-based attribution method, PredDiff, scales linearly with
the number of superpixels with a two-orders of magnitude pre-factor (Blücher et al., 2022). All other
occlusion-based approaches are significantly more expensive. LRP is considerably more efficient but still
achieves faithfulness scores in the same range as PredDiff.

Matching occlusion strategies for Shapley values and PF For model-agnostic XAI methods, it is
possible to match the occlusion strategy to the PF setup. Thus, a natural question is how much this
alignment improves the PF performance. To estimate this effect, we calculate Shapley values using all
numerically feasible imputers and report the worst performing imputer in Table 6. We report the results for
all possible imputer combinations of the SRG and MIF measure in supplementary Table A2. This analysis
confirms that using matching imputers for both attribution and PF benchmark leads to the best performance.
However, Shapley values with a mismatching imputer are still superior to the best-performing alternative
XAI methods (PredDiff and LRP). This is very reassuring since it verifies that PF benchmarks are not
dominated by the choice of occlusion strategy.

Pixel-wise attributions We now focus on the differences between the pixel-wise attribution methods. Here,
the most surprising observation is that saliency-based explanations are more faithful than the axiomatically
grounded IG counterpart. Interestingly, employing a noise tunnel only improves the faithfulness of saliency
whereas it is detrimental for IG. Note, that we restrict to the default zero baseline for IG and do not test
alternatives (Sturmfels et al., 2020). As saliency builds on the absolute-valued gradients, we also report the
absolute-valued IG performance, which is slightly improved (see also supplementary Figure A2). Overall, we
suspect that the superpixel average of gradients is sufficient to provide a clear signal for the feature relevance
(Kapishnikov et al., 2019; Muzellec et al., 2023). We stress, that this also holds for many small superpixels
(n = 5000), which were incorporated in the previous set of occlusion strategies (Figure 5).
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7 Conclusion

This study analyzed the inherent connection between PF benchmarks and the employed occlusion strategies.
This connection leads to contradicting rankings and thereby limits the usefulness of PF as a tool to identify
faithful XAI methods. We resolve this disagreement problem by disentangling two central ingredients:
reliable occlusion strategies and insightful PF setups.

We propose to characterize occlusion strategies based on the R-OMS score. The R-OMS score measures how
much information about the original sample is still contained in the occluded samples as perceived by the
model. Thereby, we can capture dominant differences between strategies across all relevant design choices.
This allows to identify reliable occlusion strategies without prior knowledge about the model architecture
or training procedure. Additionally, the R-OMS score indicates insightful PF setups when removing either
the most or least influential features first. This groups consistent rankings for both conventional MIF
and LIF measures. Importantly, insightfulness and reliability of the occlusion strategy are aligned for the
MIF measure, which leads to an overall trustworthy PF setup. Moreover, symmetrically combining both
possible feature orderings into the SRG measure, entirely breaks the troublesome connection between the
occlusion strategy and the PF benchmark. This circumvents expensive PF setups, as required for trustworthy
MIF benchmarks, which require building on a diffusion imputer. The SRG measure consistently evaluates
the faithfulness of XAI methods across all design choices. We expect that this insight will improve the
comparability of future studies and will thereby foster sustainable progress toward a generally acknowledged
understanding of XAI.

Limitations and future work This study focused on image classification as the prototypical use case of
XAI methods. To explore possible limitations systematically, we first consider other input domains and then
move forward to different output domains (tasks). Generally, PF benchmarks require custom imputers for
each new input domain. This means that the particular design choices of the occlusion strategy depend
on the data domain. For example, it can be challenging to identify appropriate analogues of superpixels
for tabular or time series data. Thus, a systematic exploration of plausible occlusion strategies based on
the R-OMS score seems to represent a promising direction for future research. Complementary, within the
output domain, our proposed methodology is tied to the classification scenario, as we used the remaining
class probability to characterize occlusion strategies. This might not be possible for other targets such
as multi-class predictions or physical regression targets (Hama et al., 2023). Here, a single output score,
with the simple interpretation of lower is less faithful, might not be applicable. However, symmetrizing
the PF measure (as done for the SRG measure) should still be beneficial. Going beyond a single score for
characterizing imputers could also be interesting even within a classification scenario. Two imputers with
similar model outputs can still trigger different intermediate representation, which means that the samples
are perceived differently by the model. To capture such effects one can measure the similarity of imputed
and reference sample based on intermediate features. Here, other measures such as the Mahalonobis distance
(Mahalanobis, 1936) or concepts activations (Kim et al., 2018; Vielhaben et al., 2023) are imaginable. To
keep the presentation self-contained, we focused on the simple R-OMS score based on output probabilities,
but first exploratory results in this direction can be found in Appendix A.3. In particular, invoking a R-OMS
score based on intermediate features also alleviates the restriction to the classification setting.
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A Additional experiments

A.1 Details on characterizing occlusion strategies

The model variance is estimated based on the setups provided in Table A1. Each setup corresponds to one
column in a single figure of the lower panel (B, C, & D) in Figure 3.

Table A1: Setups for variance of the model design choice in Figure 3.
# 1 2 3 4 5

Imputer (PF) Train set cv2 cv2 Diffusion Mean
n 25 75 75 200 5000
Shape Standard Squares Semantic Standard Standard

A.2 Matching imputer for Shapley values and PF assessment

Occlusion-based explanations can match the occlusion strategy of the PF setup. This provides an inherent
advantage over XAI methods. To estimate this effect, we compare matching versus non-matching imputer
distributions in Table A2. We report both SRG and MIF measure for the standard-ResNet50. Clearly,
matching imputer distributions lead to the best results.

Table A2: Ranking Shapley values based on different imputers (n = 25, standard-ResNet50) with all possible
PF setups. Matching the imputer for PF assessment and attributions is the most superior.

Imputer (PF) Mean Train set Histogram cv2

SRG
Ranking Mean Train set Train set (−1.5) cv2
attributions Train set (1.0) Histogram (60.9) Histogram Train set (47.6)
(∆ SRG) Histogram (10.6) Mean (65.2) Mean (6.6) Histogram (62.1)
[10−3] cv2 (43.5) cv2 (72.4) cv2 (35.8) Mean (70.1)

MRG
Ranking Mean Train set Histogram Train set (−0.7)
attributions Train set (1.4) Mean (10.2) Train set (5.2) cv2
(∆ MIF) Histogram (1.4) Histogram (11.2) Mean (6.0) Histogram (10.5)
[10−3] cv2 (11.4) cv2 (14.7) cv2 (14.5) Mean (11.1)

A.3 Diffusion imputer matches internal strategy

We analyze occlusion strategies for a ViT model in Figure A1. The left panel builds on the R-OMS score. The
general behavior is comparable to the timm-ResNet50 in Figure 3 (A). For the ViT model, we can additionally
compare to an internal strategy (omitting tokens). Interestingly, the R-OMS score of internal and diffusion
strategy are closely aligned. This is unexpected since both occlusion mechanism are conceptually different.

This raises the question whether both strategies are perceived similar by the ViT model. To analyze this,
we go beyond the R-OMS score, which quantifies the impact of the imputer through a single number.
However, this can lead to identical R-OMS-score even though the imputed samples differ qualitatively. For a
more detailed evaluation, we propose to compare feature representations of the original image and occluded
samples (Crothers et al., 2023). The right panel in Figure A1 shows that diffusion and internal strategy are
also aligned for the intermediate hidden features. This alignment is an interesting argument in favor of the
diffusion imputer as a natural replacement strategy.
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Figure A1: ViT model: Comparing internal strategy (omitting tokens) with external imputations. Left
panel: comparison based on R-OMS score. Right panel: similarity in feature space of remaining tokens. The
diffusion imputer closely resembles the internal strategy.
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Figure A2: Using the signed or absolute valued gradient attributions has a consistent effect on the perfor-
mance. (n = 500 and standard-ResNet50)

A.4 Effects of absolute value for gradient-based attributions

Figure A2 provides a more details on the effect of using the absolute valued attributions. Clearly, the
performance signed and non-signed attributions are more aligned. In particular, this also holds when IG is
more faithful as Saliency (right panel).

A.5 Quantitative stability of SRG

The SRG measure combines the insightfulness of MIF and LIF. Therefore, it is independent of the random
baseline R-OMS and leads to quantitative stable scores for a fixed method across several PF setups. This is
shown in Figure A3 by averaging across design choices. Here, we condition the boxplot on the imputer as
the dominant design choice. For the LRG and MRG measure, we observe a large spread for the top-ranked
methods across the different imputers. This is caused by the strong dependence on the random baseline.
As a consequence the original (most frequent) ranking is only visible for insightful imputer, i.e., reliable
imputers (cv2, diffusion) for the MRG measure and simple imputers (mean, train set, histogram) for the
LRG measure. This is to be contrasted to the SRG measure in the middle pane. The ranking is recognizable
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Figure A3: Average (over design choices) performance of XAI methods for the three different PF measures.
XAI are sorted according to the most frequent ranking in the y-label. When methods (boxes) are separated
horizontally we can infer ranking. The SRG measure is stable and the underlying ranking is still visible. In
contrast, the LRG and MRG measure are numerically unstable.

Table A3: The MRG measure with a high R-OMS ensures a trustworthy PF benchmark of XAI methods,
which resolves the disagreement problem from Table 1. Higher is better and random explanations yield a
score of zero. (PF setup: diffusion, standard-ResNet50 and n = 25).

Occlusion-based methods Pixel-wise attributions
Method MRG (↑) Method MRG (↑)
Shapley values (Train set) 0.22 LRP 0.21

Shapley values (Mean) 0.20 Saliency (NT) 0.15 (0.18)
ArchAttribute (Train set) 0.19 IG (abs / NT) 0.10 (0.14 / 0.06)

PredDiff (Train set) 0.18 InputXGradients 0.02

for all five imputers. This means that the SRG measure is numerically stable with regard to varying design
choices. Phrased differently, the SRG measure is independent from the random baseline R-OMS.

A.6 Trustworthy MRG benchmark

The SRG measure allows to perform trustworthy benchmarks independently from the occlusion strategy.
However, the MRG measure can still be used if an occlusion strategy with high R-OMS score is invoked.
This ensures an insightful measure and a reliable occlusion strategy. Therefore, we present an additional
overview benchmark based on the MRG measure in Table A3. Note, that this result relies on the expensive
diffusion imputer.
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