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ABSTRACT

Efficiently modeling sequences with infinite context length has long been a chal-
lenging problem. Previous approaches have either suffered from quadratic compu-
tational complexity or limited extrapolation ability in length generalization. In this
work, we present SAMBA, a simple hybrid architecture that layer-wise combines
Mamba, a selective State Space Model (SSM), with Sliding Window Attention
(SWA). SAMBA selectively compresses a given sequence into recurrent hidden
states while still maintaining the ability to precisely recall recent memories with the
attention mechanism. We scale SAMBA up to 3.8B parameters with 3.2T training
tokens and demonstrate that it significantly outperforms state-of-the-art models
across a variety of benchmarks. Pretrained on sequences of 4K length, SAMBA
shows improved perplexity in context lengths of up to 1M in zero-shot. When
finetuned on 4K-length sequences, SAMBA efficiently extrapolates to a 256K con-
text length with perfect memory recall on the Passkey Retrieval task, and exhibits
superior retrieval extrapolation on the challenging Phonebook task compared to
full-attention models. As a linear-time sequence model, SAMBA achieves a 3.73×
higher throughput compared to Transformers with grouped-query attention for user
prompts of 128K length, and a 3.64× speedup when generating 64K tokens with
unlimited streaming.

1 INTRODUCTION

Attention-based models (Vaswani et al., 2017; Bahdanau et al., 2014) have dominated the neural
architectures of Large Language Models (LLMs) (Radford et al., 2019; Brown et al., 2020; OpenAI,
2023; Bubeck et al., 2023) due to their ability to capture complex long-term dependencies and the
efficient parallelization for large-scale training (Dao et al., 2022a). Recently, State Space Models
(SSMs) (Gu et al., 2021; Smith et al., 2023; Gu et al., 2022; Gu & Dao, 2023) have emerged as a
promising alternative, offering linear computation complexity and the potential for better extrapolation
to longer sequences than seen during training. Specifically, Mamba (Gu & Dao, 2023), a variant
of SSMs equipped with selective state spaces, has demonstrated notable promise through strong
empirical performance and efficient hardware-aware implementation. Recent work also shows that
transformers have poorer modeling capacities than input-dependent SSMs in state tracking problems
(Merrill et al., 2024). However, SSMs struggle with memory recall due to their recurrent nature
(Arora et al., 2023), and experimental results on information retrieval-related tasks (Fu et al., 2023;
Wen et al., 2024; Arora et al., 2024), have further shown that SSMs are not as competitive as their
attention-based counterparts.

Previous works (Zuo et al., 2022; Fu et al., 2023; Ma et al., 2023; Ren et al., 2023) have explored
various approaches to hybridize SSMs with the attention mechanism, but none have demonstrated
significantly better language modeling performance compared to state-of-the-art Transformer ar-
chitectures. Existing length extrapolation techniques (Han et al., 2023; Xiao et al., 2023; Jin et al.,
2024) designed for attention mechanisms are constrained by quadratic computational complexity or
insufficient context extrapolation performance, particularly when evaluated under perplexity metrics.
In this paper, we introduce SAMBA, a simple neural architecture that harmonizes the strengths of both
the SSM and the attention-based models, while achieving a potentially infinite length extrapolation
with linear time complexity. SAMBA combines SSMs with attention through layer-wise interleaving
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Mamba (Gu & Dao, 2023), SwiGLU (Shazeer, 2020), and Sliding Window Attention (SWA) (Beltagy
et al., 2020). Mamba layers capture the time-dependent semantics and provide a backbone for efficient
decoding, while SWA fills in the gap modeling complex, non-recurrent dependencies. A detailed
discussion of related work is included in Appendix A.

We scale SAMBA with 421M, 1.3B, 1.7B and up to 3.8B parameters with 3.2T tokens. In particular,
the largest 3.8B post-trained model achieves a 47.9 score for MMLU-Pro (Hendrycks et al., 2021),
70.1 for HumanEval (Chen et al., 2021), and 86.4 for GSM8K (Cobbe et al., 2021), substantially
outperforming strong open source language models up to 8B parameters, as detailed in Table 8.
Despite being pre-trained in the 4K sequence length, SAMBA can be extrapolated to 1M length in zero
shot with improved perplexity on Proof-Pile (Zhangir Azerbayev & Piotrowski, 2022), achieving a
256× extrapolation ratio, while still maintaining the linear decoding time complexity with unlimited
token streaming, as shown in Figure 2. We show that when instruction-tuned in a 4K context length
with only 500 steps, SAMBA can be extrapolated to a 256K context length with perfect memory recall
in Passkey Retrieval (Mohtashami & Jaggi, 2023). In contrast, the fine-tuned SWA-based model
simply cannot recall memories beyond 4K length. We further demonstrate that the instruction-tuned
SAMBA 3.8B model can achieve significantly better performance than the SWA-based models on
downstream long-context summarization tasks, while still keeping its impressive performance on
the short-context benchmarks. In a more challenging multiple key-value retrieval task, Phonebook
(Jelassi et al., 2024), we demonstrate that instruction fine-tuning enables SAMBA to bridge the retrieval
performance gap with full-attention models, while exhibiting significantly better extrapolation ability
when retrieving phone numbers beyond the training context length. Finally, we perform extensive
analyzes and ablation studies across model sizes up to 1.7B parameters to validate the architectural
design of SAMBA. We also offer potential explanations for the effectiveness of our simple hybrid
approach through the lens of attention/selection entropy. To the best of our knowledge, Samba
is the first hybrid model showing that linear complexity models can be substantially better than
state-of-the-art Transformer models on short-context tasks at large scale, while still being able to
extrapolate to extremely long sequences under the perplexity metric.

2 METHODOLOGY

We explore different hybridization strategies consisting of the layers of Mamba, Sliding Window
Attention (SWA), and Multi-Layer Perceptron (Shazeer, 2020; Dauphin et al., 2016). We concep-
tualize the functionality of Mamba as the capture of recurrent sequence structures, SWA as the
precise retrieval of memory, and MLP as the recall of factual knowledge. We also explore other
linear recurrent layers including Multi-Scale Retention (Sun et al., 2023) and GLA (Yang et al.,
2023) as potential substitutions for Mamba in Section 3.2. Our goal of hybridization is to harmonize
between these distinct functioning blocks and find an efficient architecture for language modeling
with unlimited length extrapolation ability.

Figure 1: From left to right: Samba, Mamba-SWA-MLP, Mamba-MLP, and Mamba. The illustrations
depict the layer-wise integration of Mamba with various configurations of Multi-Layer Perceptrons
(MLPs) and Sliding Window Attention (SWA). We assume the total number of intermediate layers to
be N , and omit the embedding layers and output projections for simplicity. Pre-Norm (Xiong et al.,
2020; Zhang & Sennrich, 2019) and skip connections (He et al., 2016) are applied for each of the
intermediate layers.
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2.1 ARCHITECTURE

As illustrated in Figure 1, we explore three kinds of layerwise hybridization strategies on the 1.7B
scale: Samba, Mamba-SWA-MLP, and Mamba-MLP. We also explore other hybridization approaches
with full self-attention on smaller scales in Section 4. The number of layers N is set to 48 for Samba,
Mamba-MLP, and Mamba, while Mamba-SWA-MLP has 54 layers, so each model has approximately
1.7B parameters. We only modify the layer-level arrangement for each of the models and keep every
other configuration the same to have apple-to-apple comparisons. More details on the configuration
of each layer are explained in the following subsections.

2.1.1 MAMBA LAYER

Mamba (Gu & Dao, 2023) is a recently proposed SSM-based model with selective state spaces. It
enables input-dependent gating to both the recurrent states and the input representation for a soft
selection of the input sequence elements. Given an input sequence representation X ∈ Rn×dm , where
n is the length of the sequence and dm is the hidden size, Mamba first expands the inputs to a higher
dimension de, i.e.,

H = XWin ∈ Rn×de

where Win ∈ Rdm×de is a learnable projection matrix. Then a Short Convolution (SC) (Poli et al.,
2023) operator is applied to smooth the input signal,

U = SC(H) = SiLU(DepthwiseConv(H,Wconv)) ∈ Rn×de (1)

where Wconv ∈ Rk×de and the kernel size k is set to 4 for hardware-aware efficiency. The Depthwise
Convolution (He et al., 2019) is applied over the sequence dimension followed by a SiLU (Elfwing
et al., 2017) activation function. The selective gate is then calculated through a low-rank projection
followed by Softplus (Zheng et al., 2015),

∆ = Softplus(UWrWq + b) ∈ Rn×de (2)

where Wr ∈ Rde×dr , Wq ∈ Rdr×de and dr is the low-rank dimension. b ∈ Rde is carefully
initialized so that ∆ ∈ [∆min,∆max] after the initialization stage. We set [∆min,∆max] = [0.001, 0.1],
and find that these values are not sensitive to language modeling performance under the perplexity
metric. The input dependence is also introduced for the parameters B and C of SSM,

B = UWb ∈ Rn×ds

C = UWc ∈ Rn×ds

where ds is the state dimension. For each time step 1 ≤ t ≤ n, the recurrent inference of the Selective
SSM (S6) is performed in an expanded state space Zt ∈ Rde×ds , i.e.,

Zt = exp(−∆t ⊙ exp(A))⊙ Zt−1 +∆t ⊙ (Bt ⊗Ut) ∈ Rde×ds

Yt = ZtCt +D⊙Ut ∈ Rde

where Z0 = 0, ⊙ means the point-wise product, ⊗ means the outer product and exp means the
point-wise natural exponential function. D ∈ Rde is a learnable vector initialized as Di = 1 and
A ∈ Rde×ds is a learnable matrix initialized as Aij = log(j), 1 ≤ j ≤ ds, following the S4D-
Real (Gu et al., 2022) initialization. In practice, Mamba implements a hardware-aware parallel
scan algorithm for efficient parallelizable training. The final output is obtained through a gating
mechanism similar to Gated Linear Unit (Shazeer, 2020; Dauphin et al., 2016),

O = Y ⊙ SiLU(XWg)Wout ∈ Rn×dm

where Wg ∈ Rdm×de and Wout ∈ Rde×dm are learnable parameters. In this work, we set de = 2dm,
dr = dm/16, and ds = 16. The Mamba layer in SAMBA is expected to capture the time-dependent
semantics of the input sequence through its recurrent structure. The input selection mechanism in the
Mamba layer enables the model to focus on relevant inputs, thereby allowing the model to memorize
important information in the long term.
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2.1.2 SLIDING WINDOW ATTENTION (SWA) LAYER

We include Sliding Window Attention (Beltagy et al., 2020) layers to address the limitations of
Mamba layers in capturing non-recurrent dependencies in sequences. Our SWA layer operates
on a window size w = 2048 that slides over the input sequence, ensuring that the computational
complexity remains linear with respect to the sequence length. RoPE (Su et al., 2021) is applied
within the sliding window, with a base frequency of 10,000. By directly accessing the contents in
the context window through attention, the SWA layer can retrieve high-definition signals from the
middle to short-term history that cannot be clearly captured by the recurrent states of Mamba. We
use FlashAttention 2 (Dao, 2023) for the efficient implementation of self-attention throughout this
work. We also choose the 2048 sliding window size for efficiency consideration; FlashAttention 2
has the same training speed as Mamba’s selective parallel scan at the sequence length of 2048 based
on the measurements in (Gu & Dao, 2023).

2.1.3 MULTI-LAYER PERCEPTRON (MLP) LAYER

The MLP layers in SAMBA serve as the architecture’s primary mechanism for nonlinear transformation
and recall of factual knowledge (Dai et al., 2022). We use SwiGLU (Shazeer, 2020) for all the models
trained in this paper and denote its intermediate hidden size as dp. As shown in Figure 1, Samba
applies separate MLPs for different types of information captured by Mamba and the SWA layers.

3 EXPERIMENTS AND RESULTS

We pre-train four SAMBA models with different parameter sizes, 421M, 1.3B, 1.7B and 3.8B, to
investigate its performance across different scales. The details of the hyperparameters for the training
and architecture designs are shown in Table 12 of Appendix G. We also train other hybrid architectures
as mentioned in Section 2.1, including the baseline Mamba (Gu & Dao, 2023), Llama-3 (MetaAI,
2024; Dubey et al., 2024), and Mistral (Jiang et al., 2023) architecture on a scale of around 1.7B, with
detailed hyperparameters in Table 11 of Appendix G. We do comprehensive downstream evaluations
on a wide range of benchmarks, focusing on four main capabilities of the models: commonsense
reasoning (ARC (Clark et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2021), SIQA (Sap et al., 2019)), language understanding (HellaSwag (Zellers et al., 2019), BoolQ
(Clark et al., 2019), OpenbookQA (Mihaylov et al., 2018), SQuAD (Rajpurkar et al., 2016), MMLU
(Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024), GPQA(Rein et al., 2023)), truthfulness
(TruthfulQA (Lin et al., 2022)) and math and coding (GSM8K (Cobbe et al., 2021), MBPP (Austin
et al., 2021), HumanEval (Chen et al., 2021)).

Table 1: Downstream performance comparison between Samba-3.8B-IT (preview) and Phi-3-mini-4K
on both long-context and short-context tasks. We report 5-shot accuracy (averaged by category) for
MMLU, 8-shot CoT (Wei et al., 2022) for GSM8K, 0-shot pass@1 for HumanEval, ROUGE-L for
both GovReport and SQuALITY. † Results from the Phi-3 technical report (Abdin et al., 2024).

Model MMLU GSM8K HumanEval GovReport SQuALITY

Phi-3-mini-4K-instruct † 68.8 82.5 58.5 14.4 21.6
Samba-3.8B-IT (preview) 71.9 87.6 62.8 18.9 21.2

3.1 LANGUAGE MODELING ON TEXTBOOK QUALITY DATA

We first present results from our largest 3.8B SAMBA model, trained on the same data set used by
Phi3 (Abdin et al., 2024) with 3.2T tokens. We follow the same multiphase pretraining strategy as
Phi3-mini, and apply both the original Phi-3-mini post-training recipe and the Phi3-mini-June-2024
recipe to produce our instruction-tuned SAMBA 3.8B models, i.e., Samba-3.8B-IT (preview) and
Samba-3.8B (June) respectively. We report comprehensive benchmark results of the Samba 3.8B
base model and Samba-3.8B (June) in Appendix B. As shown in Table 1, we evaluate the downstream
performance of Samba-3.8B-IT (preview) on both long-context summarization tasks (GovReport
(Huang et al., 2021), SQuALITY (Wang et al., 2022)) and major short-context benchmarks (MMLU,
GSM8K, HumanEval). We can see that Samba has substantially better performance than Phi-3-mini-
4k-instruct on both the short-context (MMLU, GSM8K, HumanEval) and long-context (GovReport)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tasks, while still having the 2048 window size of its SWA layer and maintaining the linear complexity
for efficient processing of long documents. Details of data statistics and evaluation setup for long
context tasks are included in Appendix F.

Table 2: Downstream evaluation of the architectures trained on 230B tokens of the Phi2 dataset.
We report the unnormalized accuracy for multiple choice tasks. GSM8K is evaluated with 5-shot
examples while other tasks are in zero-shot. Best results are in bold, second best underlined.

Benchmark Llama-3 Mistral Mamba Mamba-SWA-MLP Mamba-MLP SAMBA

1.6B 1.6B 1.8B 1.6B 1.9B 1.7B

ARC-Easy 76.85 77.02 77.99 76.68 78.91 79.25
ARC-Challenge 43.26 44.20 45.22 46.16 47.35 48.21

PIQA 76.66 75.79 77.31 76.50 78.84 77.10
WinoGrande 70.01 70.72 73.40 73.72 72.38 72.93

SIQA 51.23 52.00 53.12 55.12 54.30 53.68

HellaSwag 46.98 47.19 49.80 49.71 50.14 49.74
BoolQ 68.20 70.70 74.83 74.74 73.70 75.57

OpenbookQA 34.00 32.80 36.60 33.80 35.40 37.20
SQuAD 74.88 72.82 67.66 76.73 63.86 77.64
MMLU 43.84 43.54 45.28 47.39 43.68 48.01

TruthfulQA (MC1) 25.70 25.09 26.81 26.20 26.44 27.78
TruthfulQA (MC2) 40.35 38.80 40.66 40.80 40.04 41.62

GSM8K 32.68 32.45 32.07 44.05 27.52 38.97
MBPP 46.30 47.08 47.86 47.08 47.08 48.25

HumanEval 36.59 36.59 35.98 37.80 31.10 39.02

Average 51.17 51.12 52.31 53.77 51.38 54.33

To examine the different hybridization strategies mentioned in Section 2.1, we train 6 models with
around 1.7B parameters on the Phi2 (Li et al., 2023) dataset with 230B tokens and evaluate them in
the full suite of 15 downstream benchmarks to have a holistic assessment of hybrid and purebred
architectures. As shown in Table 2, SAMBA demonstrates superior performance on a diverse set
of tasks, including commonsense reasoning (ARC-Challenge), language understanding (MMLU,
SQuAD), TruthfulQA and code generation (HumanEval, MBPP). It outperforms both the pure
attention-based and SSM-based models in most tasks and achieves the best average performance. By
comparing the performance of Mamba-MLP and Mamba in Table 2, we can observe that replacing
Mamba blocks with MLPs does not harm common sense reasoning ability, but its performance in
language understanding and complex reasoning ability, such as coding and mathematical reasoning,
degenerates significantly. We can also see that pure Mamba models fall short on retrieval intensive
tasks such as SQuAD due to their lack of precise memory retrieval ability. The best results are
achieved through the combination of the attention and Mamba modules, as shown with our Samba
architecture. We can also notice that Mamba-SWA-MLP has significantly better performance on
GSM8K, potentially resulting from a closer collaboration between the Mamba and the SWA layers.
The distinct downstream performances of different hybridization strategies pose interesting future
work for developing task-adaptive dynamic architectures.

3.2 EXPLORATION ON HYBRIDIZING ATTENTION AND LINEAR RECURRENCE

Since SSMs belong to a broader realm of linear recurrent models (Orvieto et al., 2023; Qin et al.,
2023; Yang et al., 2023; Katsch, 2023; Qin et al., 2024), there exist multiple alternatives other
than Mamba when combing attention-based layers with recurrent neural networks. We also add
architecture ablation studies to justify the design choices of Samba. Specifically, in addition to
Llama-2, Mamba, Samba and Mamba-SWA-MLP, we investigate the comparative analysis of the
following architectures:

• Llama-2-SWA is a pure attention-based architecture that replaces all full attention layers in
Llama-2 with sliding window attention.
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Table 3: Perplexity on the validation set of SlimPajama for different attention and linear recurrent
model architectures trained at 4,096 context length. We use window size 2,048 for Sliding Window
Attention (SWA). The perplexity results have a fluctuation around ±0.3%.

Architecture Size Layers Training Speed Validation Context Length
(×105 tokens/s) 4096 8192 16384

20B training tokens on 8×A100 GPUs

Llama-2 438M 24 4.85 11.14 47.23 249.03
Llama-2-SWA 438M 24 4.96 11.12 10.66 10.57
Mamba 432M 60 2.46 10.70 10.30 10.24
Sliding GLA 438M 24 4.94 10.43 10.00 9.92
Sliding RetNet 446M 24 4.32 10.38 9.96 9.87
Mega-S6 422M 24 3.26 12.63 12.25 12.25
Mamba-SWA-MLP 400M 24 4.21 10.07 9.67 9.59
MLP-SWA-MLP 417M 24 5.08 10.95 10.50 10.41
SAMBA-NoPE 421M 24 4.48 10.11 28.97 314.78
SAMBA 421M 24 4.46 10.06 9.65 9.57

100B training tokens on 64×H100 GPUs

Llama-2 1.3B 40 25.9 7.60 44.32 249.64
Llama-2-SWA 1.3B 40 26.2 7.60 7.37 7.21
Mamba 1.3B 48 17.8 7.47 7.26 7.15
Sliding GLA 1.2B 36 25.9 7.58 7.35 7.19
Sliding RetNet 1.4B 36 23.0 7.56 7.35 7.56
Mega-S6 1.3B 36 17.9 9.01 8.81 8.68
Mamba-SWA-MLP 1.3B 36 23.5 7.37 7.16 7.00
MLP-SWA-MLP 1.3B 36 26.6 7.81 7.58 7.42
SAMBA-NoPE 1.3B 36 25.2 7.33 20.40 326.17
SAMBA 1.3B 36 25.2 7.32 7.11 6.96

• Sliding RetNet replaces Mamba layers in the Samba architecture with Multi-Scale Retention
(Sun et al., 2023) layers. RetNet is a linear attention model with fixed and input-independent
decay applying to the recurrent hidden states.

• Sliding GLA replaces Mamba layers in the Samba architecture with Gated Linear Attention
(GLA) (Yang et al., 2023). GLA is a more expressive variant of linear attention with
input-dependent gating.

• Mega-S6 replaces all MD-EMA modules in the Mega (Ma et al., 2023) architecture with the
ShortConv+S6 combinations from Mamba to adapt Mega to the modern Mamba architecture.
Rotary position embedding, RMSNorm and Softmax attention are also adopted. We set the
intermediate dimension of the Mega-S6 layer to be dm so that it has a roughly 5d2m number
of parameters. This represents a classical baseline that conducts sequential intra-layer
SSM-Attention hybridization.

• MLP-SWA-MLP replaces all Mamba layers in the Mamba-SWA-MLP architecture to
SwiGLU layers with 6d2m number of parameters.

• Samba-NoPE removes the rotary relative position embedding in Samba and does not have
any position embedding in the architecture.

We pre-train all models on the same SlimPajama (Soboleva et al., 2023) dataset under both around
438M and 1.3B settings, and evaluate these models by calculating perplexity on the validation set
with context length at 4096, 8192, and 16384 tokens to investigate their zero-shot length extrapolation
ability. Peak training throughput is also measured as an efficiency metric. The details of the
hyperparameter settings are included in Appendix G. As shown in Table 3, SAMBA consistently
outperforms all other models in different context lengths and model sizes. The training speed of
SAMBA is competitive compared to pure Transformer-based models on the 1.3B scale. Mamba has
significantly worse training throughput because Mamba layers have slower training speed than MLP
layers, and the purebred Mamba models need to have more layers than other models at the same
number of parameters. Comparing Mamba-SWA-MLP with Samba, we can see that Samba has
slightly better perplexity scores and higher training throughput. Mamba-SWA-MLP trades off the
MLP layers with more I/O intensive Mamba and Attention layers, leading to slower training speed.
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This also indicates that Mamba-SWA-MLP will have slower decoding speed than Samba due to
larger total cache size resulting from more SSMs and Attention layers. We can further observe that
replacing Mamba with MLP speeds up the training but harms perplexity significantly, indicating the
importance of Mamba layers in the Samba architecture. Interestingly, even though we use SWA in
Samba architecture, Samba-NoPE still has exploded perplexities beyond its training length without
RoPE. We can also find that while RetNet can extrapolate well under the 438M scale, it has an
increasing perplexity on 16K length at the 1.4B scale, which may indicate that its input-independent
decay may need specific tuning at different scales to work well.

Table 4: Downstream evaluation of models pre-trained with 100B tokens from SlimPajama. We
measure the character-normalized accuracy for HellaSwag following Gu & Dao (2023). All tasks are
evaluated in zero-shot.

Architecture Size ARC-Easy HellaSwag Wino. PIQA LAMBADA Avg.acc ↑ acc_norm ↑ acc ↑ acc ↑ acc ↑
LLaMA-2 1.3B 55.09 52.32 53.35 71.11 48.52 56.08
LLaMA-2-SWA 1.3B 56.65 52.59 54.93 71.60 47.56 56.67
Sliding GLA 1.2B 56.94 52.52 56.75 71.38 48.17 57.15
Sliding RetNet 1.4B 57.66 52.64 56.75 71.33 48.34 57.34
Mega-S6 1.3B 50.63 41.91 52.96 68.17 37.88 50.31
Mamba 1.3B 58.08 54.93 53.99 71.98 45.97 56.99
Mamba-SWA-MLP 1.3B 59.64 54.50 55.25 72.42 49.12 58.19
MLP-SWA-MLP 1.3B 55.18 50.32 52.80 70.67 48.11 55.42
SAMBA-NoPE 1.3B 58.38 54.62 56.51 72.03 51.08 58.52
SAMBA 1.3B 58.21 54.73 55.72 72.36 51.68 58.54

In Table 4, we evaluate all our 1.3B scale models on five typical commonsense reasoning tasks
(ARC-Easy, HellaSwag, WinoGrande, PIQA and the OpenAI variant 1 of LAMBADA (Paperno et al.,
2016) ) to understand the effect of architecture designs on downstream performances. We can see that
Samba has the best average accuracy, outperforming the LLaMA 2 architectures by a large margin.
Similar to our perplexity evaluation, Samba and Samba-NoPE have similar average accuracies,
whereas Mamba-SWA-MLP falls slightly behind. We observe that different architectures excel at
different tasks. Mamba-SWA-MLP performs best on ARC-Easy, while Samba and Samba-NoPE
achieve superior results on LAMBADA. Hybrid models based on Mamba generally outperform
hybrid linear attention models and pure softmax-attention models on HellaSwag.

3.3 EFFICIENT LENGTH EXTRAPOLATION
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(a) Perplexity on the test set of Proof-Pile (b) Decoding throughput with batch size 16

Figure 2: SAMBA shows improved prediction up to 1M tokens in the Proof-Pile test set while
achieving a 3.64× faster decoding throughput than the Llama-3 architecture on 64K generation
length. We also include an SE-Llama-3 1.6B baseline which applies the SelfExtend (Jin et al., 2024)
approach for zero-shot length extrapolation. All models are trained with 4K sequence length.

We use the test split of the Proof-Pile (Zhangir Azerbayev & Piotrowski, 2022) dataset to evaluate the
length extrapolation ability of our models at a scale of around 1.7B parameters. We follow Position

1https://huggingface.co/datasets/EleutherAI/lambada_openai
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Interpolation (Chen et al., 2023a) for data pre-processing. The sliding window approach (Press
et al., 2021) is used for the perplexity evaluation with a window size of 4096. Besides having the
decoding throughput in Figure 2 for the generation efficiency metric, we also measure the prompt
processing speed in Figure 6 of Appendix B for the models SAMBA 1.7B, Mistral 1.6B, Mamba
1.8B, Llama-3 1.6B and its Self-Extended (Jin et al., 2024) version SE-Llama-3 1.6B with the prompt
length sweeping from 1K to 128K. We set the group size to 4 and the neighborhood window to 1024
for Self-Extension. We fix the total processing tokens per measurement to be 128K and varying the
batch size accordingly. The throughput is measured on a single A100 GPU with the precision of
bfloat16. We repeat the measurements 10 times and report the averaged results. We can see that
Samba achieves 3.73× higher throughput in prompt processing compared to Llama-3 1.6B at the
128K prompt length, and the processing time remains linear with respect to the sequence length.
We can also observe that the existing zero-shot length extrapolation technique introduces significant
inference latency overhead on the full-attention counterpart, while it still cannot extrapolate infinitely
with perplexity performance comparable to that of Samba. In Figure 2, we can also see that Mamba
has a slowly and stably increasing perplexity up to 1M sequence length, which indicates that linear
recurrent models can still not extrapolate infinitely if the context length is extremely large.

3.4 LONG-CONTEXT UNDERSTANDING
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Figure 3: Passkey Retrieval performance up to 256K
context length for SAMBA 1.7B (Left) vs. Mistral 1.6B
(right) instruction tuned on 4K sequence length with
500 steps.
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Figure 4: Phonebook evaluation accu-
racy of different base models.

Beyond its efficiency in processing long context, Samba can also extrapolate its memory recall
ability to 256K context length through supervised fine-tuning, and still keeps its linear computation
complexity. We fine-tune Samba 1.7B on Passkey Retrieval with a 4K training sequence length
for only 500 steps. As presented in Figure 3, SAMBA 1.7B demonstrates a remarkable ability to
recall information from significantly longer contexts compared to Mistral 1.6B, a model based solely
on Sliding Window Attention (SWA). This capability is particularly evident in the heatmap, where
SAMBA maintains the perfect retrieval performance across a wider range of pass-key positions in a
long document of up to 256K length. We also draw the training loss curve and the overall passkey
retrieval accuracy across the fine-tuning procedure in Figure 7 and Figure 8 of Appendix C. We find
that despite the fact that both architectures can reach near-zero training loss in less than 250 steps,
Samba can achieve near-perfect retrieval early at 150 training steps, while the Mistral architecture
struggles at around 30% accuracy throughout the training process. This shows that Samba can have
better long-range retrieval ability than SWA due to the input selection mechanism introduced by the
Mamba layers. In Figure 8, we can also notice that the pre-trained base Samba model has a retrieval
accuracy (at step 0) similar to that of Mistral, highlighting the need for future work to improve
Samba’s zero-shot retrieval capabilities.

The encouraging results on Passkey Retrieval drives us to further explore the limits of our finetuning
approach. We perform instruction tuning to the Samba-3.8B base model on Phonebook (Jelassi et al.,
2024) with only 100 steps on 4K sequence length and evaluate the resulting Samba-3.8B-FT model
for a sequence length up to 8K. The evaluation setting requires the models to retrieve a random
phone number from a phone book containing 20 (length 400) to 480 (length 8400) name-number
pairs, resulting in a pressure test of memorization to Samba which has a constant memory state size.
Surprisingly, as shown in Figure 4, we can see that the Samba-3.8B-FT model can close most of its
gap with a full-attention model (Llama2 7B) that has twice the parameter size within the 4K training
length, and achieves much better extrapolation accuracy compared to all other models including
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the Phi3 base model which also uses 2K sliding window attention. Since both Passkey Retrieval
and Phonebook require models to remember numbers in a long context document, it is interesting
to investigate if a model instruction-tuned on one task can transfer its ability to the other task in
zero-shot. We directly evaluate the Passkey Retrieval finetuned Samba 1.7B and Mistral 1.6B models
(named Samba 1.7B PK-FT and Mistral 1.6B PK-FT respectively) on the Phonebook task. As shown
in Figure 4, Samba 1.7B has slightly better retrieval accuracy than Mistral 1.6B, but both models
cannot generalize their number recall ability beyond its sliding window size. We leave it for future
work to further explore the transferability of long-context capabilities in linear complexity models.

4 ANALYSIS

In this section, we analyze the experimental results of SAMBA by answering the following research
questions. The perplexity results on SlimPajama have a fluctuation around ±0.3%. Training speed is
measured on 8×H100 GPUs by default. All the models in this section are trained on SlimPajama with
20B tokens and 4K sequence length, unless otherwise specified. We also have additional analyses on
the effectiveness of short convolution in Appendix D.

Why not hybridize with full attention? Some previous works (Fu et al., 2023; Lieber et al., 2024)
suggest a hybrid architecture of Mamba with full attention. However, as shown in Table 5, the
extrapolation perplexity is exploding at a context length of 16K even if a single full attention layer
is placed at the beginning of the model. Although hybridization with full attention in the second
and middle sixth blocks (the fourth row in the table), following Dao et al. (2022b), can bridge the
perplexity gap between full-attention hybrids and Samba, they still cannot extrapolate beyond the
training sequence lengths. Samba also has much better training throughput compared to Mamba-MLP
alternatives because self-attention with the FlashAttention 2 implementation is more training efficient
than Mamba when the sequence length is 4096.

Table 5: Perplexity on SlimPajama of Mamba-MLP architectures with full attention layers replacing
Mamba layers at different block indices. We define a block as two consecutive layers with a
Mamba/Attention layer followed by an MLP. All the models have 12 blocks in total.

Architecture Size Block Index Training Speed Validation Context Length
of Full Attention (×105 tokens/s) 4096 8192 16384

Mamba-MLP

449M 11 7.78 10.29 10.53 13.66
449M 5 7.78 10.10 10.05 12.83
449M 0 7.78 10.89 10.55 10.63
443M 1, 5 7.93 10.06 10.34 13.57

SAMBA 421M SWA at odd indices 8.59 10.06 9.65 9.57

How many parameters should be allocated to Attention? Given that Mamba can already capture
low-rank information in the sequences through recurrent compression, the attention layers in Samba
theoretically will only need to focus on information retrieval where a small number of attention
heads should suffice. In Table 6, we explore the techniques of query head grouping (Ainslie et al.,
2023; Shazeer, 2019), for both the Llama and Samba models. Surprisingly, both the Llama-2-SWA
architecture and the Samba architecture show improved validation perplexity when there is only
one key-value head. We conjecture that this is because small language models can be more easily
optimized with fewer KV heads to pay attention to the contexts. We can also see that Samba has a
2× smaller optimal number of query heads than the SWA model, which confirms our hypothesis that
Samba can support a smaller number of attention heads.

Potential explanations on why hybrid is better? We examine the entropy of the attention distribu-
tions for both the Samba 1.7B and the Mistral 1.6B models. As shown in Figure 5a, the Samba model
has a larger variance of the attention entropy distributed over the layer indices, with an interesting
pattern that the upper and lower layers have entropy higher than the middle layers. This may indicate
that the attention layers are more specialized in the Samba architecture, with the middle layers
focusing on precise retrieval with low-entropy attention, and the top and bottom layers focusing on
integrating the global information through high-entropy attention. We can also see in Figure 5b that,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Perplexity on SlimPajama of Llama-2-SWA and Samba models at the 430M scales trained
with different number of Query and Key-Value heads. “KV Size” means the size of Key-Value vectors
per token and attention layer. Since grouped query attention will reduce the parameters for attention
from 4d2m to roughly 2d2m, we increase the intermediate size of MLP from 8/3dm to 3dm = 4608 to
have roughly the same number of total parameters as the original models.

Query Key-Value Head KV Model Training Speed Validation Context Length
Head Head Dim. Size Size (×105 tokens/s) 4096 8192 16384

Llama-2-SWA Architecture

12 2 128 512 419M 10.01 11.11 10.64 10.56
6 1 256 512 419M 9.98 11.09 10.62 10.54

12 1 128 256 414M 10.25 10.89 10.44 10.35
12 4 128 1024 428M 9.85 11.11 10.64 10.56

Samba Architecture

12 2 128 512 426M 8.55 10.09 9.68 9.60
6 1 256 512 426M 8.46 9.99 9.59 9.51

12 1 128 256 424M 8.62 10.07 9.66 9.58
12 4 128 1024 431M 8.57 10.02 9.62 9.55

compared to the Mamba-MLP model, Samba has a higher entropy of input selection probabilities in
the middle layers. This indicates that, given the memory recalling ability of the attention layers, the
Mamba layers can focus more on modeling the recurrent structure rather than performing retrieval
with precise input selections. This kind of specialization can be beneficial for the downstream model
performance, which may explain the impressive results from the Samba architecture. Details on how
entropy is calculated are included in Appendix E.
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Figure 5: The average entropy of the attention mechanism and the Mamba’s S6 input selection
mechanism at each block of layers on 100 random samples from the GSM8K dataset.

5 CONCLUSION

In this paper, we introduce SAMBA, a simple yet powerful hybrid neural architecture designed for
efficient language modeling with unlimited context length. We show that SAMBA substantially
outperforms state-of-the-art pure attention-based and SSM-based models across a wide range of
benchmarks including common-sense reasoning, language understanding, mathematics and coding.
Furthermore, SAMBA exhibits remarkable efficiency in processing long contexts, achieving substantial
speedups in prompt processing and decoding throughput compared to the state-of-the-art Transformer
architecture. The architecture’s ability to extrapolate memory recall to very long contexts (up to 256K)
through minimal fine-tuning underscores its practical applicability for real-world tasks requiring
extensive context understanding. This efficient long-term memorization ability is further demonstrated
to be useful by our evaluations in downstream long-context summarization tasks. Our analyses also
provide insight into the optimal training configurations for hybrid models and underscore the benefits
of combining attention mechanisms with SSMs. We find that allocating fewer parameters to the
attention mechanism while leveraging Mamba’s strengths for capturing recurrent structures leads to
more efficient and effective language modeling. Our results suggest that SAMBA is a strong neural
architecture for language modeling with unlimited context length.
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Hybrid Recurrent Models Many recent works (Park et al., 2024; Jelassi et al., 2024; Akyürek
et al., 2024) point out the lack of retrieval ability of linear SSMs, and propose hybridization of
SSMs with the Attention mechanism. However, the history of SSM/RNN-Attention hybridization
can be directly dated back to the birth of the Attention mechanism (Bahdanau et al., 2014) which
is proposed as a soft feature alignment technique for recurrent models to cope better with long
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sequences. The revitalization of the fact that linear recurrent models are sequentially parallelizable
(Martin & Cundy, 2018; Gu et al., 2021) has catalyzed a contemporary renaissance in hybrid recurrent
architectures. SPADE (Zuo et al., 2022), GSS (Mehta et al., 2023), MEGA (Ma et al., 2023), Block
State transformers (Fathi et al., 2023) and Megalodon (Ma et al., 2024) combine SSMs with chunked
attention, while H3 (Dao et al., 2022b), Mambaformer (Park et al., 2024) and Jamba (Lieber et al.,
2024; Team et al., 2024) propose to hybridize with quadratic self-attention. Our works focus
particularly on the wall-time efficiency and the length extrapolatability of the hybrid SSM-Attention
models, and propose to interleave SSMs with Sliding Window Attention (SWA), which has both
linear computation complexity and the translation-invariant property over the sequence length. Infini-
Attention (Munkhdalai et al., 2024) is a recently proposed method that implements an intra-layer
hybridization (Wu et al., 2022) between SWA and Linear Attention with the delta rule (Schlag et al.,
2021). While the preliminary results look promising, its performance in the setting of large-scale
pre-training from scratch remains questionable. The most similar work to ours is Griffin (De et al.,
2024), which interleaves the Real-Gated Linear Recurrent Unit (RG-LRU) with Sliding Window
Attention (SWA). However, Samba hybridizes SWA with Mamba instead of RG-LRU and shows
that this simple hybrid architecture can provide substantially better performance over state-of-the-art
Transformer architectures across scales, while Griffin and its follow-up work RecurrentGemma
(Botev et al., 2024) only show comparable or worse results than Transformers. The original Mamba
paper (Gu & Dao, 2023) also explores hybridizing pure Mamba models with full attention or MLP
layers, but it does not consider the wall-time efficiency of these hybridization and only achieves
marginally better performance than the pure Mamba model. In contrast, we are the first to show that
interleaving Mamba with both SWA and MLP can substantially outperform modern Transformers
(and Mamba) at a scale up to 3.8B parameters, while achieving comparable training speed and better
length extrapolation ability under the perplexity metrics.

Efficient Sparse Attention Previous works have proposed sparsifying self-attention (Vaswani et al.,
2017) with a static attention pattern (Child et al., 2019; Zaheer et al., 2020; Beltagy et al., 2020)
or a dynamic learnable pattern (Roy et al., 2020; Kitaev et al., 2020; Ren et al., 2023) to model
long sequences with subquadratic complexity over the sequence length. However, due to the lack of
hardware-aware efficient implementation, its actual wall-time training efficiency is often worse than
the dense attention optimized with FlashAttention (Dao et al., 2022a; Dao, 2023; Shah et al., 2024).
In this work, we choose Sliding Window Attention, a simple static sparse attention pattern, because it
can easily leverage the highly optimized FlashAttention kernels to enjoy an actual training speed-up
over its dense self-attention counterpart.

Length Extrapolation Many previous works have focused on extending the context length of
pretrained Transformers to improve their performance on long-context tasks. Methods such as LM-
Infinite (Han et al., 2023), StreamingLLM (Xiao et al., 2024), and LongLoRA (Chen et al., 2023b)
achieve linear complexity for length extrapolation, but they can only stabilize perplexity beyond the
training sequence length rather than significantly improve it. In contrast, we demonstrate that pre-
training Transformers with Sliding Window Attention from scratch enables natural improvements in
perplexity beyond the training sequence length. Other approaches, including LLaMA-2-Long (Xiong
et al., 2023), LongLLaMA (Tworkowski et al., 2023), PI (Chen et al., 2023a), LongRoPE (Ding
et al., 2024) and Self-Extend (Jin et al., 2024), attempt to extend the full attention through modifying
position embedding or continual training strategies, but they typically retain quadratic complexity in
the attention mechanism with additional computation or memory I/O overhead, therefore they do
not scale well to very long sequences. Although these methods achieve an improved perplexity on
a sequence length that is multiple times longer than the training sequence length, their perplexity
still explodes if the sequence is extremely long. Our method achieves both linear complexity and
superior extrapolation performance compared to zero-shot length extrapolation methods, such as
Self-Extend, under the perplexity metric. However, we acknowledge that, in terms of zero-shot
retrieval performance, our method still lags behind these approaches. This underscores a trade-off
between perplexity and retrieval performance in length extrapolation, which we plan to explore and
address in future work.

B ADDITIONAL EVALUATION RESULTS

In Table 7, we conduct comprehensive evaluations on a diverse subset of benchmarks to assess
SAMBA 3.8B base model’s performance across all the domains mentioned in Section 3 to ensure
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a thorough examination of the model’s capabilities. We also report the performance of the Trans-
former++ (TFM++) model, which uses the same architecture, pre-training recipe as Phi3-mini, for
a fair comparison. The details of the generation configurations are included in Appendix G. We
compare with several strong baselines, including Llama 2 (Touvron et al., 2023), Mistral (Jiang et al.,
2023), Mamba (Gu & Dao, 2023), Gemma (Team, 2024), Recurrent-Gemma (R-Gemma) (Botev
et al., 2024), Llama 3 (MetaAI, 2024) and TFM++. As shown in Table 7, SAMBA achieves the
highest average score on all benchmarks, demonstrating its superior performance in handling various
language comprehension tasks. Notably, SAMBA excels in the GSM8K benchmark, achieving an
absolute 18.1% higher accuracy than TFM++ trained on the same dataset. This shows the surprising
complementary effect of combining SSM with the attention mechanism. We conjecture that when
combined with attention, Mamba, as an input-dependent SSM, can focus more on performing the
arithmetic operation through its recurrent states than on doing the retrieval operation which can be
easily learned by the sliding window attention.

Table 7: Downstream performance comparison of the SAMBA 3.8B base model with other pretrained
base language models without instruction tuning. ARC-C and HellaSwag are measured with character-
normalized accuracy. MMLU and GSM8K are measured in 5-shot, while others are in zero-shot. We
report the MC2 score for TruthfulQA, maj@1 for GSM8K, and pass@1 for HumanEval. ∗ Measured
by ours. The fair comparison should only be considered between TFM++ and Samba.

Model Size Tokens MMLU Hella- ARC- Wino- Truth. GSM Hum. Avg.
Swag C Gran. QA 8K Eval

Llama 2 6.7B 2T 45.3 77.2 45.9 69.2 38.8 14.6 12.8 43.4
13B 2T 54.8 80.7 49.4 72.8 37.4 28.7 18.3 48.9

Mistral 7.2B - 60.1 81.3 55.5 75.3 42.2 35.4 30.5 53.6
Mamba 2.8B 600B 26.2 71.0 41.7 65.9 34.4∗ 3.6∗ 7.3∗ 35.7
Gemma 2.5B 3T 42.3 71.4 42.1 65.4 33.1 17.7 22.0 42.0

8.5B 6T 64.3 81.2 53.2 72.3 44.8 46.4 32.3 56.4
R-Gemma 2.7B 2T 38.4 71.0 42.3 67.8 35.1 13.4 21.3 41.3
Llama 3 8.0B 15T+ 66.6 79.2∗ 53.2∗ 72.6∗ 43.9 45.8 28.7∗ 55.8

TFM++ 3.8B 3.2T 67.2 76.6 53.8 72.6 47.3 51.5 51.8 60.1
SAMBA 3.8B 3.2T 71.2 77.4 55.7 77.1 43.4 69.6 54.9 64.2

Table 8: Post-trained models quality on representative benchmarks under the chat mode. The fair
comparison should only be considered between SAMBA and Phi3 as we control the training recipes
and datasets to be the same. Best results are in bold, second best underlined.

Category Benchmark SAMBA (June)
3.8B

Phi3 (June)
3.8B

R-Gemma
9B

FalconMamba
7B

Jamba-1.5-Mini
12B/52B

Llama-3.2-In
3B

Llama-3.1-In
8B

MMLU

MMLU
(5-shot) 69.0 67.2 60.5 62.1 69.7 61.8 68.1

MMLU-Pro
(0-shot, CoT) 47.9 46.5 17.8 14.5 42.5 39.2 44

Reasoning

ARC-C
(10-shot) 87.8 86.8 52.0 62.0 85.7 76.1 83.1

GPQA
(0-shot, CoT) 29.5 29.0 4.7 8.1 32.3 26.6 26.3

Math GSM8K
(8-shot, CoT) 86.4 84.8 42.6 52.5 75.8 75.6 77.4

Code

HumanEval
(0-shot) 70.1 66.5 31.1 - 62.8 62.8 66.5

MBPP
(3-shot) 71.7 70.0 42.0 - 75.8 67.2 69.4

Average 66.1 64.4 35.8 - 63.5 58.5 62.1

As shown in Table 8, we can see that post-trained hybrid models can achieve superior performance
compared to industry-standard Transformer-based LLMs such as Llama-3.1-Instruct 8B and Llama-
3.2-Instruct 3B, and SSM-based LLMs such as FalconMamba2. Recent progress on hybrid LLMs,

2https://huggingface.co/tiiuae/falcon-mamba-7b-instruct
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including Jamba 1.5 (Team et al., 2024) and our own work on SAMBA, shows significant improvement
over earlier approaches like R-Gemma (Botev et al., 2024), which hybridizes attention with linear
recurrent models but is trained on smaller data scales. SAMBA delivers comparable performance
to Jamba-1.5-Mini while using around 3× fewer active parameters and 13× fewer total parameters,
due to an advanced text-book data synthesis technique (Abdin et al., 2024). Additionally, SAMBA
outperforms the Phi3 architecture, which is trained on the same data and optimization setting, further
highlighting the superiority of our hybrid architecture over modern Transformer models.

Figure 6: Prompt processing throughput of different models with around 1.7B parameters.

C ADDITIONAL EXPERIMENT DETAILS
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Figure 7: Training loss curves of Samba 1.7B and Mistral 1.6B models during 500 steps of instruction
tuning on Passkey Retrieval with 4K sequence length. We plot the loss curves for both models using
the simple moving average of window size 10.

We perform instruction tuning for both Mistral 1.6B and Samba 1.7B on Passkey Retrieval using
document length 4096, where we generated the data on the fly through randomly sampling a 5-digit
integer passkey value and a location/depth between zero and the document length to insert the passkey.
The model is then asked to generate the passkey given the full document. We train both models using
batch size 2048, 250 warm-up steps with a peak learning rate of 1e−4, and 0.1 weight decay with
AdamW (Loshchilov & Hutter, 2018) optimizer. In both cases, the loss converges quickly in 100-200
steps. During the evaluation, we measure the overall average accuracies of the passkey retrieval at the
document length of [4k, 8k, 16k, 32k, 64k, 128k, 256k], for each length we evaluate at 11 different
depths of the document (from 0, 0.1, 0.2, ... to 1.0). In addition, for each location of the passkey
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Figure 8: Overall passkey retrieval accuracy on the 256K document length of Samba 1.7B and Mistral
1.6B models during 500 steps of instruction tuning.

(depth) in the document, we evaluate the model with five different passkeys to measure accuracy. As
seen in Figure 8, the average passkey retrieval accuracy for Samba 1.7B almost reaches 100% in
around 150 steps, while the accuracy for Mistral 1.6B remains low, demonstrating the extrapolation
ability of the Samba architecture.

D ADDITIONAL ANALYSES

How to train models with Sliding Window Attention (SWA)? Since SWA has linear complexity
with respect to the sequence length, it seems alluring to trade off the batch size to have a longer
training sequence length without substantially decreasing the training throughput. However, as shown
in Table 9, when the sequence length is increased, the validation perplexity also increases in all
context lengths due to smaller batch sizes (Varis & Bojar, 2021), and the optimal ratio of sequence
length/window size observed is 2, resulting in a training length of 4096.

Table 9: Perplexity on SlimPajama of Llama-2-SWA 438M models trained on different context sizes
and batch sizes. We fix the sliding window size as 2048 and the training tokens per step as 2M.

Batch Size Sequence Length Training Speed Validation Context Length
(×105 tokens/s) 2048 4096 8192 16384

1024 2048 (Full Attention) 10.4 11.59 38.12 156.18 357.32
512 4096 9.88 11.87 11.16 10.69 10.61
256 8192 9.66 11.98 11.26 10.79 10.69
128 16384 9.48 12.37 11.63 11.12 11.02
64 32768 9.29 12.94 12.46 11.96 11.86

Fair comparison between Mamba and other linear recurrent models? We can notice that the
Short Convolution (SC) operator in Equation (1) is independent to the design of other parts of Mamba
and can be applied to other linear recurrent models. As shown in Table 10, we explore the effect
of SC on model performance through enhancing Llama-2-SWA, Sliding GLA, and Sliding RetNet
with SC. Surprisingly, besides boosting the performance of RetNet, adding SC can also significantly
improve the SWA’s performance, while the effect on GLA is less prominent. We think this is because
GLA already has the fine-grained decays at the channel level, so the depthwise convolution doesn’t
add much of the useful inductive bias for better modeling power. Notably, even with the SC enhancer,
Sliding GLA and Sliding RetNet still fall short than the original Samba 421M’s performance shown in
Table 3. This further justifies our choice of using Mamba for hybridization. We also find that adding
SC to both the SWA and the linear attention layers in hybrid models produces negative results, and
we leave it as a future work to understand the surprising effectiveness of SC in language modeling.
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Table 10: Perplexity on the SlimPajama validation set of different linear recurrent and sliding window
attention models with Short Convolution (SC) modules added separately to query, key and value
representations. For hybrid models, SC is applied only to linear attention layers. The training speed
is measured on 8×A100 GPUs.

Architecture Size Training Speed Validation Context Length
(×105 tokens/s) 4096 8192 16384

Llama-2-SWA 438M 4.96 11.12 10.66 10.57
+ SC 438M 4.69 10.83 10.39 10.31

Sliding GLA 438M 4.94 10.43 10.00 9.92
+ SC 438M 4.44 10.39 9.96 9.87

Sliding RetNet 446M 4.32 10.38 9.96 9.87
+ SC 446M 3.80 10.25 9.82 9.74

E DETAILS OF ENTROPY MEASUREMENT

Given a causal attention probability matrix A ∈ Rh×n×n, Aijk = 0 ∀j < k, with h number of heads
and a sequence length of n, and the generation length 0 < l < n, we calculate the average attention
entropy per decoding step as follows,

Ha = − 1

l · h

h∑
i=1

n∑
j=n−l+1

n∑
k=1

Aijk log(Aijk).

For the selective gate ∆ ∈ Rn×de used by S6 in Equation (2) of the Mamba layers, we first normalize
it to be in the simplex [0, 1]n×de , i.e.,

∆′ =
∆∑n

i=1 ∆i
∈ [0, 1]n×de .

The average selection entropy of S6 throughout the entire sequence is then calculated as

Hs = − 1

de

de∑
j=1

n∑
i=1

∆′
ij log(∆

′
ij).

F DETAILS OF DOWNSTREAM LONG-CONTEXT EVALUATION

We use the GovReport (Huang et al., 2021) and the SQuALITY (Wang et al., 2022) datasets from the
ZeroSCROLLS (Shaham et al., 2023) benchmark to evaluate models’ long-context summarization
capability in the real world. After tokenizing with the Phi3-mini-4k tokenizer, the average document
length for the GovReport dataset is 11,533 tokens, with a median of 10,332, a minimum of 1,493,
and a maximum of 40,592 tokens. For the SQuALITY dataset, the average sequence length is
7,974 tokens, with a median of 8,145, a minimum of 5,457, and a maximum of 10,757 tokens. For
evaluation, we use greedy decoding for both tasks. A maximum generation length of 450 tokens is
applied for GovReport and 600 for SQuALITY.

G IMPLEMENTATION DETAILS

For the GLA layer in the Sliding GLA architecture, we use the number of heads dm/384, a key
expansion ratio of 0.5, and a value expansion ratio of 1. For the RetNet layer we use a number of head
that is half of the number of attention query heads, key expansion ratio of 1 and value expansion ratio
of 2. The GLA and RetNet implementations are from the Flash Linear Attention (Yang & Zhang,
2024) repository3 . We use the FlashAttention-based implementation for Self-Extend extrapolation4.

3https://github.com/sustcsonglin/flash-linear-attention
4https://github.com/datamllab/LongLM/blob/master/self_extend_patch/Llama.py
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Table 11: Detailed hyper-parameters of the baselines models trained on the Phi2 dataset with 230B
tokens.

Architecture Llama-3 Mistral Mamba Mamba-SWA-MLP Mamba-MLP

Parameters 1.6B 1.6B 1.8B 1.6B 1.9B
Batch size 2048 2048 2048 2048 2048

Learning rate 0.0006 0.0006 0.0006 0.0006 0.0006
Weight decay 0.1 0.1 0.1 0.1 0.1

Gradient clipping 1.0 1.0 1.0 1.0 1.0
Sequence length 4096 4096 4096 4096 4096

Sliding window size, w - 2048 - 2048 -
Number of layers, N 48 48 64 54 48

Model width, dm 2048 2048 2048 2048 2048
MLP intermediate size, dp 8196 8196 - 8196 8196

Number of query heads 32 32 - 32 32
Number of KV heads 4 4 - 4 4

Number of Attention Layers 24 24 0 18 0
Number of Mamba Layers 0 0 64 18 24

Vocabulary size 50304 50304 50304 50304 50304

The Mamba 432M model has a model width of 1024 and the Mamba 1.3B model has a model width
of 2048. All models trained on SlimPajama have the same training configurations and the MLP
intermediate size as Samba, unless otherwise specified. The training infrastructure on SlimPajama is
based on a modified version of the TinyLlama codebase5.

Table 12: Detailed hyper-parameters of the SAMBA models trained at different scales. We only show
the optimization settings for the first training phase of the 3.8B model.

Total Parameters 421M 1.3B 1.7B 3.8B

Dataset SlimPajama SlimPajama Phi-2 Phi-3
Batch size 512 512 2048 2048

Learning rate 0.0004 0.0004 0.0006 0.0006
Total training tokens 20B 100B 230B 3.2T

Weight decay 0.1 0.1 0.1 0.1
Gradient clipping 1.0 1.0 1.0 1.0
Sequence length 4096 4096 4096 4096

Sliding window size, w 2048 2048 2048 2048
Number of layers, N 24 36 48 64

Model width, dm 1536 2304 2048 2816
MLP intermediate size, dp 4096 6144 8196 9984

Number of query heads 12 18 32 11
Number of key-value heads 12 18 4 1

Vocabulary size 32000 32000 50304 32064

In the generation configurations for the downstream tasks, we use greedy decoding for GSM8K,
and Nucleus Sampling (Holtzman et al., 2019) with a temperature of τ = 0.2 and top-p = 0.95 for
HumanEval. For MBPP and SQuAD, we set τ = 0.01 and top-p = 0.95.

H LIMITATIONS & BROADER IMPACT

Although Samba demonstrates promising memory retrieval performance through instruction tuning,
its pre-trained base model has retrieval performance similar to that of the SWA-based model, as
shown in Figure 8. This opens up future direction on further improving the Samba’s retrieval
ability without compromising its efficiency and extrapolation ability. In addition, the hybridization
strategy of Samba is not consistently better than other alternatives in all tasks. As shown in Table 2,

5https://github.com/jzhang38/TinyLlama
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Mamba-SWA-MLP shows improved performance on tasks such as WinoGrande, SIQA, and GSM8K.
This gives us the potential to invest in a more sophisticated approach to perform input-dependent
dynamic combinations of SWA-based and SSM-based models (Ren et al., 2023). With the improved
short-context performance and the long-term memorization ability of linear complexity LLMs such as
Samba, cost-effective applications can be developed for personalized learning and automated tutoring.
Samba can also be used for emotional accompaniment. The efficiency of the Samba architecture
can save inference energy costs for models deployed on the edges, resulting in greener and more
sustainable AI applications.
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