
The Computational Limits of State-Space Models and
Mamba via the Lens of Circuit Complexity
Yifang Chen1, Xiaoyu Li2, Yingyu Liang3,4, Zhenmei Shi3, Zhao Song5

1The University of Chicago, 2University of New South Wales,
3University of Wisconsin-Madison, 4The University of Hong Kong,
5The Simons Institute for the Theory of Computing at UC Berkeley

yifangc@uchicago.edu, xiaoyu.li2@student.unsw.edu.au, yingyul@hku.hk,
yliang@cs.wisc.edu, zhmeishi@cs.wisc.edu, magic.linuxkde@gmail.com

In this paper, we analyze the computational limitations of Mamba and State-space
Models (SSMs) by using the circuit complexity framework. DespiteMamba’s stateful
design and recent attention as a strong candidate to outperform Transformers, we
have demonstrated that bothMamba and SSMs with poly(n)-precision and constant-
depth layers reside within the DLOGTIME-uniform TC0 complexity class. This
result indicates Mamba has the same computational capabilities as Transformer
theoretically, and it cannot solve problems like arithmetic formula problems, boolean
formula value problems, and permutation composition problems if TC0 ̸= NC1.
Therefore, it challenges the assumption Mamba is more computationally expressive
than Transformers. Our contributions include rigorous proofs showing that Selective
SSMandMamba architectures can be simulated byDLOGTIME-uniformTC0 circuits,
and they cannot solve problems outside TC0.

1. Introduction
Sequential neural networks like RNNs, including their variants such as LSTMs and GRUs [1, 2],
have good performance in capturing temporal dependencies and processing input step-by-step [3].
These advantages make them effective in tasks including time-series prediction [4] and speech
recognition [5]. Traditional RNNs [6] and their enhanced variance, LSTMs perform well in testing
because of their sequential nature, but their training times tend to be slow and suffer from vanishing
or exploding gradient issues, which limit their capabilities to capture long-term dependencies [7].
Transformers [8], equipped with a self-attention mechanism, provides an efficient solution to the
slow training problem by enabling parallelized computations. Large Language Models (LLMs)
based on the Transformer architecture, such as GPT-4 [9], GPT-4o [10], OpenAI’s o1 [11], Llama
3.1 [12], Claude [13], and Gemini [14], have become ubiquitous nowadays, and their integrations
into modern technology reshaped our expectations of the limits of their capabilities. Transformers
are capable of training efficiently on large datasets, but their quadratic memory and time complexity
with respect to sequence length make them expensive in resources, both in terms of memory and
processing power, during training and inference. Specifically, self-attention mechanisms growsO(n2)
in terms of computational complexity [15].
State-space models (SSMs) recently received significant attention as a potential alternative to
Transformer-based architecture on inherently sequential tasks [16]. Mamba [17, 18], built on SSMs,
combines the benefits from both RNNs and Transformers architectures. Mamba incorporates the
efficient inference and state-tracking capabilities of RNNs and leverages the scalability and paral-
lelizable computations of Transformers. Equipped with long-term memory embedding, Mamba
balances the trade-off between training efficiency and inference performance [17].
As these architectures continue to express the state of modern AI, it is crucial to explore what types of
problems they can solve and their limitations. Recent studies using the circuit complexity framework
explain the computational capabilities of Mamba. [19] demonstrates that a threshold circuit with
constant depth and c log n-precision can simulate depth d SSM and Mamba. Moreover, an L-uniform

Second Conference on Parsimony and Learning (CPAL 2025).



threshold circuit of constant depth can simulate such SSM and Mamba models. Another work [20]
shows Transformers are inDLOGTIME-uniformTC0 with poly n-precision, and they present a new set
of metrics to evaluate the circuit complexity of LLMs with poly n-precision. Understanding Mamba’s
computational limits with high precision is crucial because we need to know what problems it can
theoretically solve and to compare Mamba with Transformers and other architectures. Without such
understanding, assumptions about Mamba’s potential to surpass Transformers in terms of sequential
reasoning or state tracking remain questionable.

Table 1: Circuit Complexity of SSM/Mamba. Previous work [19] claims a L-uniform threshold circuit
of constant depth can simulate SSM/Mamba with c log n-precision, whereas Theorem 4.4 and 4.5
improve the precision and uniformity by proving a DLOGTIME-uniform TC0 threshold circuit of
constant depth can simulate SSM/Mamba with poly(n)-precision.

Reference Precision Circuit Complexity
Theorem 4.4 of [19] c log(n)-precision L-uniform TC0

Our Theorems 4.4 and 4.5 poly(n)-precision DLOGTIME-uniform TC0

However, from Table 1, prior work [19] primarily focused on low-precision implementations or
alternative uniformity conditions, leaving a gap in understanding Mamba’s expressiveness with
poly(n)-precision under DLOGTIME-uniformity. This gap is significant because proving Mamba in
TC0 with poly(n)-precision reflects real-world scenarios, where higher precision is often necessary.
Moreover, DLOGTIME-uniformity is widely considered as a more realistic condition in practice.
Unlike L-uniform circuits, which may allow unrealistically complex preprocessing, DLOGTIME-
uniform circuits require the structure of the circuit to be computable by highly efficient machines,
so DLOGTIME-uniformity reflects practical constraints on constructing and applying the circuits.
Therefore, it is natural to raise the question: Can Mamba, implemented with poly(n)-precision, be proved
to reside within DLOGTIME-uniform TC0?

In this paper, we break down the fantasized superiority inMamba by demonstrating that it fallswithin
the same circuit complexity class DLOGTIME-uniform TC0 with poly n-precision. This result shows
SSM and Mamba have the same computational capabilities as Transformers have [20], indicating
that SSM and Mamba, despite their stateful design, cannot solve problems outside TC0, such as
arithmetic formula problem, boolean formula value problem, and permutation composition problems
if TC0 ̸= NC1.
Beyond [19] and [20], our contributions are summarized as follows: If TC0 ̸= NC1, assume we have
the poly(n)-bits precision float point number, constant-depth layers, andO(n) size hidden dimension,
then we have

• A DLOGTIME-uniform TC0 circuit family can simulate Selective SSM (Theorem 4.4).

• A DLOGTIME-uniform TC0 circuit family (Theorem 4.5) can simulate Mamba.

• Selective SSM and Mamba are not capable of resolving the arithmetic formula problems,
Boolean formula value problems, and permutation composition problems (Theorem 5.1).

Knowing the true computational capabilities of SSM and Mamba in DLOGTIME-uniform TC0 can
inform researchers who attempt to use Mamba to solve problems outside TC0. By identifying the
constraints of the current design, our work pushed the exploration of the expressiveness of neural
network models.

Roadmap. Section 2 introduces the works related to our paper. Section 3 introduces key compu-
tational concepts and Mamba definitions that form the basis for subsequent sections. Then, we
present the circuit complexity results for Selective SSM and Mamba in Section 4. Section 5 details
our hardness results. Finally, Section 6 gives a conclusion.

2



2. Related Work
Complexity and Neural Network. Circuit Complexity, a crucial set of metrics in computational
complexity theory, studies the computational power of circuit families. It has valuable applications in
comprehending the capabilities of machine learning models [21–32]. The complexity classes include
AC0 represents problems that are highly parallelizable equipped with standard logic gates, which
can be solved by constant-depth circuits with unbounded fan-in AND, OR, and NOT gates; TC0 class
extends from AC0 with additional majority gates; NC1 problems can be solved by O(log n)-depth
circuits with bounded fan-in. These circuit complexity classes form a hierarchy: AC0 ⊂ TC0 ⊆ NC1

[24]. The question of whether TC0 ̸= NC1 remains an open topic of discussion. [33] demonstrates
that while Transformers can simulate nonsolvable semi-automata, their depth is influenced by the
length of the input sequence. Building on this, [27] investigates the expressive power of Transformers
augmentedwithChain-of-Thought (CoT) reasoning in the context of circuit complexity. They propose
the following relationships:

• T[poly(n), 1, 1] is the subset of CoT[log n, poly(n), 1, 1] which is a subset of AC0.
• T[poly(n), log n, 1] is the subset of CoT[log n,poly(n), log n, 0] which is a subset of TC0.

Here, T[d(n), s(n), e(n)] refers to a constant-depth Transformer with an embedding size of d(n),
precision s(n) bits, and exponent size e(n) for input length n. Meanwhile, CoT[T (n), d(n), s(n), e(n)]
denotes a T (n)-step Chain-of-Thought process using a constant-depth TransformerT[d(n), s(n), e(n)].
They use their framework to show that Transformers equipped with CoT are capable of tackling
more complex problems. Therefore, circuit complexity has shown its effectiveness in representing
the computational capabilities of neural networks.

Limits on Transformers Model. Transformers have shown outstanding performance on tasks
from natural language processing, but they present limited effectiveness in mathematical compu-
tations. A series of research highlights the reasoning limitations of Transformer Model [20, 25, 34–
38]. [20] shows that average-hard attention transformers (AHATs) and softmax-attention transform-
ers (SMATs) are in DLOGTIME-uniform TC0 with O(poly(n))-bit float number precision, indicating
that they are equivalent to constant-depth threshold circuits with polynomial size, and their ability
is limited when handling more complex reasoning tasks which require higher-depth or nonuniform
computations. As a result, Transformers with SMATs or AHATs are inherently unable to solve
problems outside TC0, especially those that involve many inherently sequential computations. What
about Transformers with CoT? Even though Transformers with CoT can address relatively more
problems than CoT, Transformers still fail to solve problems requiring reasoning beyond TC0.

Architecture of State-Space Models (SSM). SSMs have emerged as an alternative model to the
popular LLMs, such as RNNs and Transformers. SSM presents ideal performance in tasks involv-
ing long-term dependencies and sequential reasoning [16]. The foundation of SSMs uses linear
dynamical systems (LDS) or discrete-time state-space equations [16, 17] to represent the system’s
internal state and its evolution over time. Using these mechanisms, SSMs are able to capture the
sequential nature of data by updating the state iteratively, which has efficient inference and state-
tracking [39, 40]. Compared to RNNs, SSMs have better scalability and stability when handling long
sequences, and SSMs are capable of resolving the gradient-related issues inherent to RNNs [16]
and have recently garnered attention for their versatility across various tasks such as sequential
recommendation [41, 42] and image deblurring [43].
Mamba is a recent advancement in SSM architecture, and it combines the efficient parallelizable
computation from Transformers. SSMs in Mamba use kernel methods and spectral techniques to
enable convolution and facilitate parallelizable computation [16, 17]. Mamba incorporates efficient
memory embedding and long-term state representation into its architecture, making itself a strong
opponent to the popular LLMs today, such as Transformers. However, despite the theoretical
expectations of SSM and Mamba, it is crucial for us to understand the computational limits to
conclude whether its capabilities outperform Transformers.

3



3. Preliminaries
In Section 3.1, we introduce the circuit complexity classes. In Section 3.2, we introduce the float point
number. In Section 3.3, we introduce the Mamba block.
Notation. For n ∈ Z+, we define [n] := {1, 2, . . . , n}. We use Pr[·] to denote the probability. We use
E[·] to denote the expectation. We use Var[·] to denote the variance. We define 1n ∈ Rn as (1n)i := 1,
for all i ∈ [n]. Let Xi,j ∈ R be the (i, j)-th entry of an arbitrary matrix X . Let ∥X∥∞ ∈ R be the
largest entry of the matrix X . We denote xi = {0, 1}∗ to be the binary sequence, where its length is
not determined.

3.1. Circuit Complexity
In this section, we provide an introduction to the fundamental concepts of circuit complexity classes.
We define the Boolean circuit below:
Definition 3.1 (Boolean circuit, fromDefinition 6.1, On page 102 in [44]). Let n ∈ Z+. A Boolean circuit
with n variables is represented on a directed acyclic graph and defined as a function Cn : {0, 1}n → {0, 1}.
The graph’s nodes represent logic gates, where input nodes (with in-degree 0) correspond to the n Boolean
variables. Each non-input gate computes its value based on the outputs provided by other connected gates.
Definition 3.2 (Circuit family recognizes languages, from Definition 6.2, On page 103 in [44]). Let x
be an arbitrary element in {0, 1}∗. Let L be a subset of {0, 1}∗ called a language.

If there is C|x| ∈ C (a Boolean circuit) satisfying C|x|(x) = 1 iff x ∈ L, then we say L is recognized by a
family C of Boolean circuits.

We now introduce NCi class.
Definition 3.3 (NCi [44]). NCi consists of languages that can be decided by Boolean circuits with a size of
O(poly(n)), depth O((log n)i), and utilizing OR, AND, and NOT gates with bounded fan-in.

When Boolean circuits are allowed to use AND and OR gates with unbounded fan-in, they become
capable of recognizing a broader class of languages. The ACi class is defined as follows.
Definition 3.4 (ACi [44]). ACi refers to the set of languages that Boolean circuits can recognize with size
O(poly(n)), depth O((log n)i), and utilizing AND, OR, and NOT gates with unbounded fan-in.

Since these three gates may be simulated by MAJORITY gates, we arrive at a broader complexity
class, TCi.
Definition 3.5 (TCi [45]). TCi includes languages that can be recognized by Boolean circuits with size
O(poly(n)), depth O((log n)i), and unbounded fan-in gates for OR, AND, NOT, and MAJORITY. A
MAJORITY gate outputs 1 if more than half of its inputs are 1.
Remark 3.6. In Definition 3.5, THRESHOLD gates orMOD gates configured for prime values can replace
MAJORITY gates. A Boolean circuit that includes any of these gates is referred to as a threshold circuit.
Definition 3.7 (P [44]). A deterministic Turing machine in polynomial time with respect to the size of the
input can recognize the languages in class P.
Fact 3.8 (Hierarchy Folklore, [44], From Corollary 4.35, On page 110 in [44], in [45]). For all i ∈ N,
NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 ⊆ P.
Remark 3.9. For i = 0, it is established that NC0 ⊊ AC0 ⊊ TC0. However, determining whether TC0 ⊊ NC1

remains an open question in circuit complexity. Additionally, the question of whether NC := ∪i∈NNC
i ⊊ P is

also unresolved. For further discussion, see [44, 45].
Definition 3.10 (L-uniformity [44]). C represents a language recognized by a circuit family C, where C
could be NCi, ACi, or TCi. Suppose we have a Turing machine that is satisfying for any arbitrary n ∈ N,
computes a circuit in C for n variables from the input 1n using O(log n) space, such that the circuit Cn

recognizes L, then a language L, which is the subset of {0, 1}∗, is said to be in L-uniform C.

4



We define DLOGTIME-uniformity and discuss the relationships between this definition and L-
uniformity as follows.
Definition 3.11 (DLOGTIME-uniformity in [46]). C is defined as in Definition 3.10. Suppose we have a
Turing machine that satisfying for any arbitrary n ∈ N, computes Cn in C for n variables from the input 1n
within time O(log n), where Cn recognizes L, then a language L, which is the subset of {0, 1}∗, is said to be
in DLOGTIME-uniform C.

3.2. Float Point Numbers
To compute SSM and Mamba correctly and effectively, we establish the computational framework by
providing the definitions of the basic concepts of floating-point numbers and their related operations.
Notably, the operations provided below are not limited to purely theoretical work; in fact, they can
be effectively realized in hardware.
Lemma 3.12 (Efficient floating-point operations in TC0, Lemma 10, 11 in [20]). Let p ∈ Z+. We have

1. We can use the uniform threshold circuit, which has the size of poly(n) and has a constant depth, to
compute all +, ·, and comparison of two p-bit floating-point numbers, as defined in Definition A.3.

2. Using the same depth uniform threshold circuit as above, we can compute the iterative multiplication
of m numbers of floating-point numbers with q bits.

3. Using the same depth uniform threshold circuit as above, we can compute the iterative addition of m
numbers of floating-point numbers with q bits.

We use dstd, d⊗, and d⊕ to denote the constant depth of the above three situations, respectively.
Corollary 3.13 (Floor operation in TC0). Consider p ∈ Z+ being less than or equal to poly(n). We can
implement the floor operation for a floating-point number with q bits using the uniform threshold circuit,
which has the size of poly(n) and has a constant depth dstd.
Lemma 3.14 (Approximation of exp in TC0, Lemma 12 in [20]). For any positive integer p such that
p ≤ poly(n), there exists a uniform threshold circuit with size poly(n) and constant-depth that approximates
exp(x) for any p-bit floating-point number x, with a relative error not exceeding 2−p. The depth required for
this computation is denoted as dexp.
Lemma 3.15 (Approximation of square root in TC0, Lemma 12 in [20]). Let p be a positive integer
satisfying p ≤ poly(n). For any p-bit floating-point number x, a uniform threshold circuit with size poly(n)
and constant-depth can compute

√
xwith a relative error of at most 2−p. The depth required for this computation

is denoted as dsqrt.
Lemma 3.16 (Matrix multiplication, Lemma 4.2 in [20]). Consider two matrices A ∈ Fn1×d

p and
B ∈ Fd×n2

p . If p, n1, n2, d ≤ poly(n), then we can use the uniform threshold circuit, which has the size of
poly(n) and has a constant depth (dstd + d⊕), to compute the product of A and B.

3.3. Mamba Blocks
Having established the necessary mathematical foundation, this section introduces the main compo-
nents of theMamba architecture, as illustrated in Figure 1. We start by discussing the input projection
within the Mamba framework.
Definition 3.17 (Mamba Input Projection). Let X ∈ FL×D

p denote the input sequence, where L is the
sequence length, andD is the feature dimension. We define the Mamba input projection function L : FL×D

p →
FL×D′

p as: L(X) := X ·Wx+1Lb
⊤
x , whereWx ∈ FD×D′

p is the learned weight matrix, bx ∈ FD′

p is a learned
bias vector, and 1L ∈ FL×1

p broadcasts bx across all rows.

After the input projection, Mamba used a 1-D convolution layer to capture local temporal patterns
by convolving the input features with a learned kernel.

5



Mamba Block
projection

projection projection

1D-Convolution

Selective SSM

σ σ

⊗
σ SiLU Activation

⊗ Hadamard Product (or Activation)

Figure 1: Mamba Block Architecture. The input is first processed through two input projections. One
branch flows through an input projection, followed by a 1-D convolution, a SiLU activation, and a
Selective SSM block before reaching the Hadamard product (or activation). The other branch passes
through an input projection directly to a SiLU activation and then converges at the same Hadamard
product (or activation). Finally, the output of the Hadamard product is passed through the output
projection.

Definition 3.18 (1-D Convolution). Let X ∈ FL×D′

p denote the output of Definition 3.17, where L is
the sequence length and D′ is the projected feature dimension. Let W ∈ FK×D′×N

p denote a convolutional
kernel of size K, where N is the number of output channels. We define the 1-D convolution layer function
C : FL×D′

p → FL×N
p as:

C(X)t,n :=

K−1∑
k=0

D′∑
d′=1

W [k, d′, n] ·Xt−k,d′ ,

for t ∈ [L] and n ∈ [N ], where Xt−k,d′ = 0 if t − k < 0, and zero-padding is applied for boundary cases;
W [k, d′, n] selects the contribution of the d′-th feature at time step t− k to the n-th output channel.

Then, the convoluted input goes through a non-linear SiLU activation function in Mamba.
Definition 3.19 (SiLU Activation). Let X ∈ FL×D

p ∪ FL×N
p be the output from Definition 3.17 or Defi-

nition 3.18, where B is the batch size, L is the sequence length, and D is the feature dimension. We define
the entry wise SiLU function Z : FL×D

p ∪ FL×N
p → FL×D

p ∪ FL×N
p as Z(X)t,d := Xt,d · σ(Xt,d), where the

sigmoid function σ(Xt,d) : Fp → Fp is defined as: σ(Xt,d) :=
1

1+e−Xt,d
. Here, t ∈ [L] and d ∈ [D] index

the sequence and feature dimensions.

Now, we introduce the softplus activation used in Mamba selection mechanisms as τ∆.
Definition 3.20 (Softplus Activation). We define Softplus : Fp → Fp as Softplus(z) := log(1 + ez).

6



Following this, the selection functions dynamically adapt the state-space parameters based on the
input sequence, refining the model’s ability to represent sequential dependencies by modulating the
state-space matrices B, C, and ∆ based on learned projection.
Definition 3.21 (Selection Functions). LetX ∈ FL×D

p denote the input sequence. Let τ∆ = Softplus(w∆),
where w∆ ∈ Fp is a learned scalar, and Softplus is given in Definition 3.20. The selection functions sB :

FL×D
p → Fn×N

p , sC : FL×D
p → FD′×N

p , s∆ : FL×D
p → Fp are defined as:

sB(X) := WBXPB , sC(X) := WCXPC , and s∆(X) := τ∆ · BroadcastD(W∆XP∆),

where WB ∈ Fn×L
p , WC ∈ FD′×L

p , and W∆ ∈ F1×L
p are learned selection weight matrices, PB ∈ FD×N

p ,
PC ∈ FD×N

p , P∆ ∈ FD
p are projection matrices, and the function BroadcastD : Fp → Fp replicates the result

of W∆XP∆ across all feature dimensions.

With the selection functions implemented, we now introduce the Selective SSM in Mamba.
Definition 3.22 (Selective SSM in Mamba). Let X ∈ FL×N

p be the output of Definition 3.18. Given
a diagonal matrix A ∈ Fn×n

p , we define the Selective SSM function SSMselect : FL×N
p → FL×D′

p as
SSMselect(X) := SSMrecur(X,A, sB(X), sC(X), s∆(X)), where SSMrecur(X) ∈ FL×D′

p is the recurrent
SSM output from Definition A.6, and sB(X), sC(X), s∆(X) are selection mechanisms from Definition 3.21.

Finally, we introduce the Mamba output projection, which maps the processed sequence back to the
original feature dimension.
Definition 3.23 (Mamba Output Projection). Let X ∈ FL×D′

p denote the output from Definition 3.22,
where L is the sequence length and D′ is the feature dimension. We define the Mamba output projection
function O : FL×D′

p → FL×D
p as:

O(X) := X ·Wx + 1Lb
⊤
x ,

whereWx ∈ FD′×D
p is the learned weight matrix, bx ∈ FD

p is a learned bias vector, and 1L ∈ FL×1
p broadcasts

bx across all rows.

Through this progression, we can now define Mamba as a series of composite functions.
Definition 3.24 (Mamba). Let X ∈ FL×D

p denote the input sequence, where L is the sequence length, and
D is the feature dimension. We define the Mamba architecture function M : FL×D

p → FL×D
p as:

M(X) = O((SSMselect ◦ Z ◦ C ◦ L(X))⊗ (Z ◦ L(X)),

where ◦ is function composition, L is Mamba Input Projection (see Definition 3.17), C is 1-D Convolution
Layer (see Definition 3.18), Z is SiLU Activation (see Definition 3.19), SSMselect is Selective SSM (see Defi-
nition 3.22),⊗ is Hadamard Product or Activation, andO is Mamba Output Projection (see Definition 3.23).

4. Complexity of SSM and Mamba
In Section 4.1, we provide an approximation of the logarithm function within TC0. In Section 4.2, we
analyze the complexity of computing Recurrent SSM. In Section 4.3, we investigate the complexity
of computing Convolution SSM. In Section 4.4, we establish circuit complexity bounds for selective
SSM. In Section 4.5, we present the circuit complexity bounds for Mamba computations.

4.1. Approximating Logarithm in TC0

In this section, we show the approximation of logarithm can be done in TC0 circuit. The logarithm
function is a key component of the Softplus activation function, which plays a central role in the
selection mechanisms of the Selective SSM within the Mamba architecture. Therefore, the ability to
compute logarithm in TC0 is crucial for ensuring Selective SSM and Mamba operate within constant
depth TC0.

7



Lemma 4.1 (Approximating Logarithm in TC0, informal version of Lemma B.3). For any p-bit floating-
point number x ∈ Fp, we can use a uniform threshold circuit, where the depth is dlog and the size is poly(n),
the logarithm log(x), where the relative error is less than or equal to 2−p.

Sketch of the proof. To approximate log(x), we normalize x = ⟨m, e⟩ into r ∈ [ 12 , 1] or r ∈ [1, 2],
depending on whether e is even or odd. This normalization adjusts the exponent to k and can be
computed by TC0 circuit in constant depth.
We use Taylor series expansion around 1 to approximate log(r), and we can get an approximation
of log(r) with relative error bounded by 2−p−1. Using the same technique, we can approximate
log(2). Lastly, we compute log(x) as log(x) = log(r) + k · log(2). The TC0 circuit in constant depth
can compute all operations.

4.2. Recurrent SSMs are in TC0

In this section, we show recurrent SSM is in TC0. We provide more details about recurrent SSM in
Appendix A.2.
Lemma 4.2 (Recurrent SSM in TC0). Let C ∈ FD′×n

p , H(X,A,B,∆) ∈ FL×n
p , and X ∈ FL×N

p denote
the input matrix and intermediate computations, where p, L,N, n,D′ ≤ poly(n). We can use a uniform
threshold circuit, where the depth is drecur and the size is poly(n), to compute the Recurrent SSM function
SSMrecur(X,A,B,C,∆) ∈ FL×D′

p , as defined in Definition A.6.

Proof. From Definition A.6, the Recurrent SSM computation is given by:

SSMrecur(X,A,B,C,∆)t,d :=

n∑
i=1

Cd,i · H(X,A,B,∆)t,i,

The computation of SSMrecur(X) involves two primary steps: computing the hidden state updates
H(X,A,B,∆) and iterative addition with multiplication. We use a threshold circuit whose depth is

• dh to compute H(X,A,B,∆) (Lemma B.6),
• dstd to compute Cd,i · H(X,A,B,∆)t,i (Lemma 3.12),
• d⊕ to compute ∑n

i=1 Cd,i · H(X,A,B,∆)t,i (Lemma 3.12)

Finally, we can show: drecur = dh + (dstd + d⊕). Therefore, we get our desired result.

4.3. Convolution SSMs are in TC0

In this section, we show convolution SSM is in TC0. We provide more details about recurrent SSM in
Appendix A.3.
Lemma 4.3 (Convolution SSM in TC0). Let K ∈ FD′×D×M

p , X ∈ FL×N
p , where p, L,N,D′,M ≤

poly(n). We can use a threshold circuit, where the depth is dconv and the size is poly(n), to compute the
convolution SSM SSMconv : FL×N

p × Fn×n
p × Fn×D

p × FD′×n
p × Fp → FL×D′

p , as defined in Definition A.8.

Proof. From Definition A.8, the convolution output sequence is given by:

SSMconv
t,d (X,A,B,C,∆) =

L−1∑
k=0

D∑
d=1

K[d′, d, k] ·Xt−k,d.

It can be computed as follows. Using a threshold circuit, we can perform

• matrix multiplication to compute∑D
d=1 K[d′, d, k] ·Xt−k,d (Lemma 3.16) and

8



• iterated addition to compute ∑L−1
k=0

∑D
d=1 K[d′, d, k] ·Xt−k,d (Lemma 3.12),

whose depths are dstd + d⊕ and d⊕, respectively. Finally, we can conclude that: dconv = dstd + 2d⊕.
Thus, we get the desired result.

4.4. Circuit Complexity Bound for Selective SSM
In this section, we formulate the circuit complexity bound for Selective SSM.
Theorem 4.4 (Selective SSM in TC0). Let X ∈ FL×N

p represent the output sequence from SiLU activated
1-D convolution layer (see Definition 3.18), where L is the sequence length and N is the number of output
channels, with L,N ≤ poly(n). We may use a uniform threshold circuit, whose depth is dSSM and size is
poly(n), to compute the Selective SSM (Definition 3.22).

Proof. The Selective SSM combines the selection functions, discretization, and state-space dynamics,
which we have already proved to be in TC0.
To compute Selective SSM, we can follow the following. Using a threshold circuit, we can compute

• selection functions (Lemma B.10),
• discretization (Lemma B.2)
• recurrent SSM (Lemma 4.2), or
• convolution SSM (Lemma 4.3)

whose depths are dselect, ddisc, drecur, and dconv respectively. Finally, we can show:
dSSM = dselect + ddisc + drecur for recurrent SSM,

dSSM = dselect + ddisc + dconv for convolution SSM.

Therefore, we get our desired result.

4.5. Circuit Complexity Bound for Mamba
In this section, we formulate the circuit complexity bound for Mamba.
Theorem 4.5 (Main property for Mamba). Let X ∈ FL×D

p represent the input sequence, where L is the
sequence length and D is the feature dimension, with L,D ≤ poly(n). We may use a uniform threshold
circuit, whose depth is dmamba and size is poly(n), to compute the Mamba architecture.

Proof. The Mamba from Definition 3.24 is given:
M(X) = O((SSMselect ◦ Z ◦ C ◦ L(X))⊗ (Z ◦ L(X)),

Using a threshold circuit, we can compute

• input projections (Lemma 3.16) using matrix multiplication and addition,
• 1-D Convolution (Lemma B.9),
• entrywise SiLU (Lemma B.5),
• Selective SSM (Theorem 4.4),
• Hadamard Product (Lemma B.1),
• output projection (Lemma 3.16) using matrix multiplications and additions,

9



whose depths are dstd + d⊕, d1dconv, dexp + dstd, dselect, dstd, and dstd + d⊕, respectively.
Finally, we can show dmamba = d1dconv + dexp + dselect + 4dstd + d⊕

Therefore, we can get the desired result.

Theorem 4.5 demonstrates that a DLOGTIME-uniform TC0 circuit family can simulate Mamba,
showing the Mamba representation capacity limitations. In previous work, [19] showed that SSM
and Mamba can be simulated by L-uniform TC0 with c log(n) precision. However, we improve the
uniformity and precision in [19] by proving that Mamba can be simulated by DLOGTIME-uniform
TC0 with poly(n) precision by new techniques introduced from [20]. Our complexity bound is better
than previous work.

5. Hardness
In this section, we present the hardness result: Selective SSM and Mamba, which are constrained in
TC0, cannot solve problems residing in NC1, such as arithmetic formula evaluation, Boolean formula
value problems, and permutation composition. These results show the limitations of Selective SSM
and Mamba in their expressive power.
Theorem 5.1 (Informal proof of Theorem C.22). if TC0 ̸= NC1, float point number is poly(n)-bits
precision, layers are constant-depth, and hidden dimension is O(n) size, then we can have the Selective SSM
and Mamba are not capable of resolving the arithmetic formula evaluation problems, boolean formula value
problem, and permutation composition problems.

Proof Sketch. To show Selective SSM and Mamba cannot solve arithmetic formula evaluation prob-
lems, Boolean formula value problems, and permutation composition problems. We leverage the
difference between the complexity classes TC0 and NC1, under the assumption TC0 ̸= NC1. Arith-
metic formula evaluation problems, Boolean formula value problems, and permutation composition
problems are defined to be NC1 problems in Section C.1, C.2, and C.3. From previous proof, we show
Selective SSM and Mamba are both in TC0. Therefore, they cannot solve those NC1 problems.

To the best of our knowledge, there is no previous work proving that Mamba and SSM with poly(n)
precision cannot solve arithmetic formula problems, boolean formula value problems, and permuta-
tion composition problems.

6. Conclusion
In this paper, we conducted a rigorous mathematical analysis of the computational limits of SSM
and Mamba. We use the framework of circuit complexity and demonstrate that Mamba and SSMs,
despite their stateful designs, fall intoDLOGTIME-uniform TC0 with poly(n)-precision. These results
show that SSM and Mamba are fundamentally equivalent to Transformers in terms of computational
expressiveness, as their architectures are all constrained by the complexity class TC0. As a result,
Mamba cannot solve problems outside TC0, such as arithmetic formula evaluation and Boolean
formula value problems, unless TC0 = NC1.
Our contributions include formal proofs of the circuit complexity bounds for Mamba and SSMs, and
we show that their computational performances are equivalent to constant-depth uniform threshold
circuits. Additionally, we provide hardness results. The hardness results show that these architectures
cannot resolve sequential and state-dependent tasks that require higher computational depth. These
new findings challenge the assumption that Mamba has higher computational capabilities than
Transformers. By building the theoretical limits of Mamba and SSMs, our work contributes to
the broader understanding of the computational power of modern neural network models. We
emphasize the need for future innovations to solve problems beyond TC0 so they can solve more
complex and inherently sequential problems. We hope our study can inspire more research on
designing newer architectures that can balance efficiency, scalability, and enhanced expressiveness.

10



References
[1] S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

[2] Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[3] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[4] Hossein Abbasimehr and Reza Paki. Improving time series forecasting using lstm and attention
models. Journal of Ambient Intelligence and Humanized Computing, 13(1):673–691, 2022.

[5] H Sak, A Senior, and F Beaufays. Long short-term memory recurrent neural network architec-
tures for large scale acoustic modeling. In Proceedings of the Annual Conference of the International
Speech Communication Association (INTERSPEECH), pages 338–342, 2014.

[6] John JHopfield. Neural networks and physical systemswith emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[7] Wen Yu, Xiaoou Li, and Jesus Gonzalez. Fast training of deep lstm networks. In Advances
in Neural Networks–ISNN 2019: 16th International Symposium on Neural Networks, ISNN 2019,
Moscow, Russia, July 10–12, 2019, Proceedings, Part I 16, pages 3–10. Springer, 2019.

[8] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

[9] OpenAI. Gpt-4 technical report, 2023.

[10] OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

[11] OpenAI. Introducing openai o1-preview, 2024. URL https://openai.com/index/
introducing-openai-o1-preview/.

[12] Meta. Introducing llama 3.1: Our most capable models to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3-1/.

[13] Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

[14] Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context, 2024. URL https://storage.googleapis.com/deepmind-media/gemini/gemini_
v1_5_report.pdf.

[15] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin. Conv-basis:
A new paradigm for efficient attention inference and gradient computation in transformers.
arXiv preprint arXiv:2405.05219, 2024.

[16] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. arXiv preprint arXiv:2111.00396, 2021.

[17] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

[18] Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality. In Forty-first International Conference onMachine Learning,
2024.

[19] William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space
models. arXiv preprint arXiv:2404.08819, 2024.

11

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf


[20] David Chiang. Transformers in uniform TC0. TMLR, 2025.

[21] Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern
neural network architectures. arXiv preprint arXiv:1901.03429, 2019.

[22] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020.

[23] Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard atten-
tion transformers: Perspectives from circuit complexity. Transactions of the Association for
Computational Linguistics, 10:800–810, 2022.

[24] William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-
depth threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

[25] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

[26] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: a theoretical perspective. Advances in Neural
Information Processing Systems, 36, 2024.

[27] Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers trans-
formers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024.

[28] Hanlin Zhu, Baihe Huang, and Stuart Russell. On representation complexity of model-based
and model-free reinforcement learning. arXiv preprint arXiv:2310.01706, 2023.

[29] Haoyuan Cai, Qi Ye, andDong-LingDeng. Sample complexity of learning parametric quantum
circuits. Quantum Science and Technology, 7(2):025014, 2022.

[30] Nikola Zubić, Federico Soldá, Aurelio Sulser, and Davide Scaramuzza. Limits of deep learning:
Sequence modeling through the lens of complexity theory. arXiv preprint arXiv:2405.16674,
2024.

[31] Xiaoyu Li, Yuanpeng Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. On the expressive power
of modern hopfield networks. arXiv preprint arXiv:2412.05562, 2024.

[32] Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit
complexity bounds for rope-based transformer architecture. arXiv preprint arXiv:2411.07602,
2024.

[33] Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transform-
ers learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

[34] Dana Angluin, David Chiang, and Andy Yang. Masked hard-attention transformers and
boolean rasp recognize exactly the star-free languages. arXiv preprint arXiv:2310.13897, pages
1724–1734, 2023.

[35] David Chiang, Peter Cholak, and Anand Pillay. Tighter bounds on the expressivity of trans-
former encoders. In International Conference on Machine Learning, pages 5544–5562. PMLR,
2023.

[36] Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Yixuan Li, and Neel Joshi. Is
a picture worth a thousand words? delving into spatial reasoning for vision language models.
Advances in Neural Information Processing Systems, 36, 2024.

12



[37] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may
be all you need as practical programmable computers. In International Conference on Artificial
Intelligence and Statistics, 2025.

[38] Yekun Ke, Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Curse of attention: A
kernel-based perspective for why transformers fail to generalize on time series forecasting
and beyond. In Conference on Parsimony and Learning. PMLR, 2025.

[39] Florian Krebs, Sebastian Böck, and Gerhard Widmer. An efficient state-space model for joint
tempo and meter tracking. In ISMIR, pages 72–78, 2015.

[40] Runze Gan, Bashar I Ahmad, and Simon J Godsill. Lévy state-space models for tracking and
intent prediction of highly maneuverable objects. IEEE Transactions on Aerospace and Electronic
Systems, 57(4), 2021.

[41] Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee. Mamba4rec:
Towards efficient sequential recommendation with selective state space models. arXiv preprint
arXiv:2403.03900, 2024.

[42] Chengkai Liu, Jianghao Lin, Hanzhou Liu, Jianling Wang, and James Caverlee. Behavior-
dependent linear recurrent units for efficient sequential recommendation. In Proceedings of the
33rd ACM International Conference on Information and Knowledge Management, pages 1430–1440,
2024.

[43] Hanzhou Liu, Chengkai Liu, Jiacong Xu, Peng Jiang, and Mi Lu. Xyscannet: An interpretable
state space model for perceptual image deblurring. arXiv preprint arXiv:2412.10338, 2024.

[44] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[45] Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999.

[46] D Mix Barrington and Neil Immerman. Time, hardware, and uniformity. In Proceedings of
IEEE 9th Annual Conference on Structure in Complexity Theory, pages 176–185. IEEE, 1994.

[47] WilliamHesse, Eric Allender, and David AMix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System Sciences, 65(4):
695–716, 2002.

[48] Alexis Maciel and Denis Thérien. Efficient threshold circuits for power series. Information and
Computation, 152(1):62–73, 1999.

[49] S Buss, S Cook, Arvind Gupta, and Vijaya Ramachandran. An optimal parallel algorithm for
formula evaluation. SIAM Journal on Computing, 21(4):755–780, 1992.

[50] Samuel R Buss. The boolean formula value problem is in alogtime. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing, pages 123–131, 1987.

[51] David A Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 1–5, 1986.

[52] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the
computational capability of graph neural networks: A circuit complexity bound perspective.
arXiv preprint arXiv:2501.06444, 2025.

[53] Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Circuit complexity bounds
for visual autoregressive model. arXiv preprint arXiv:2501.04299, 2025.

13



[54] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Mingda Wan. Theoretical con-
straints on the expressive power of rope-based tensor attention transformers. arXiv preprint
arXiv:2412.18040, 2024.

[55] Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Universal approximation
of visual autoregressive transformers. arXiv preprint arXiv:2502.06167, 2025.

[56] Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Zhen Zhuang.
Neural algorithmic reasoning for hypergraphs with looped transformers. arXiv preprint
arXiv:2501.10688, 2025.

[57] Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao Huang, Minshuo Chen, and Han
Liu. On statistical rates of conditional diffusion transformers: Approximation, estimation and
minimax optimality. arXiv preprint arXiv:2411.17522, 2024.

[58] Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational
limits of low-rank adaptation (lora) fine-tuning for transformer models. In The Thirteenth
International Conference on Learning Representations, 2024.

[59] Xiaoyu Li, Jiangxuan Long, Zhao Song, and Tianyi Zhou. Fast second-order method for neural
networks under small treewidth setting. In 2024 IEEE International Conference on Big Data
(BigData), pages 1029–1038. IEEE, 2024.

[60] Yekun Ke, Xiaoyu Li, Zhao Song, and Tianyi Zhou. Faster sampling algorithms for polytopes
with small treewidth. In 2024 IEEE International Conference on Big Data (BigData), pages 44–53.
IEEE, 2024.

[61] Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao Song. Zero-th order algorithm for
softmax attention optimization. In 2024 IEEE International Conference on Big Data (BigData),
pages 24–33. IEEE, 2024.

[62] Yichuan Deng, Zhao Song, Yitan Wang, and Yuanyuan Yang. A nearly optimal size coreset
algorithm with nearly linear time. arXiv preprint arXiv:2210.08361, 2022.

[63] Haochen Zhang, Zhiyun Peng, Junjie Tang, Ming Dong, Ke Wang, and Wenyuan Li. A multi-
layer extreme learning machine refined by sparrow search algorithm and weighted mean
filter for short-term multi-step wind speed forecasting. Sustainable Energy Technologies and
Assessments, 50:101698, 2022.

[64] Haochen Zhang, Xingyu Lin, Sui Peng, Junjie Tang, Antonello Monti, et al. Surrogate-model-
based sequential algorithm for weather-dependent probabilistic power flow with high calcula-
tion efficiency. Authorea Preprints, 2023.

[65] Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic at-
tention sparsification algorithms for over-parameterized feature dimension. arXiv preprint
arXiv:2304.04397, 2023.

[66] Yuefan Cao, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Jiahao
Zhang. Dissecting submission limit in desk-rejections: A mathematical analysis of fairness in
ai conference policies. arXiv preprint arXiv:2502.00690, 2025.

[67] Zhao Song and Chiwun Yang. An automatic learning rate schedule algorithm for achieving
faster convergence and steeper descent. arXiv preprint arXiv:2310.11291, 2023.

[68] Zhao Song, Weixin Wang, Chenbo Yin, and Junze Yin. Fast and efficient matching algorithm
with deadline instances. arXiv preprint arXiv:2305.08353, 2023.

[69] Jiehao Liang, Somdeb Sarkhel, Zhao Song, Chenbo Yin, Junze Yin, and Danyang Zhuo. A
faster k-means++ algorithm. arXiv preprint arXiv:2211.15118, 2022.

14



[70] Jiehao Liang, Zhao Song, Zhaozhuo Xu, Junze Yin, and Danyang Zhuo. Dynamic mainte-
nance of kernel density estimation data structure: From practice to theory. arXiv preprint
arXiv:2208.03915, 2022.

[71] Hang Hu, Zhao Song, Runzhou Tao, Zhaozhuo Xu, Junze Yin, and Danyang Zhuo. Sublinear
time algorithm for online weighted bipartite matching. arXiv preprint arXiv:2208.03367, 2022.

[72] Baihe Huang, Zhao Song, Omri Weinstein, Junze Yin, Hengjie Zhang, and Ruizhe Zhang. A
dynamic fast gaussian transform. arXiv preprint arXiv:2202.12329, 2022.

[73] Baihe Huang, Zhao Song, Runzhou Tao, Junze Yin, Ruizhe Zhang, and Danyang Zhuo. In-
stahide’s sample complexity when mixing two private images. arXiv preprint arXiv:2011.11877,
2020.

[74] Song Bian, Zhao Song, and Junze Yin. Federated empirical risk minimization via second-order
method. arXiv preprint arXiv:2305.17482, 2023.

[75] Yichuan Deng, Zhao Song, and Junze Yin. Faster robust tensor power method for arbitrary
order. arXiv preprint arXiv:2306.00406, 2023.

[76] Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. Efficient alternating minimization
with applications toweighted low rank approximation. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=rvhu4V7yrX.

[77] Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large
language models. arXiv preprint arXiv:2308.10502, 2023.

[78] Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023.

[79] Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via
robust alternating minimization in nearly linear time. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=N0gT4A0jNV.

[80] Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformu-
lating single layer attention in llm based on tensor and svm trick, and solving it in matrix
multiplication time. arXiv preprint arXiv:2309.07418, 2023.

[81] Zhao Song, Junze Yin, Lichen Zhang, and Ruizhe Zhang. Fast dynamic sampling for determi-
nantal point processes. In International Conference on Artificial Intelligence and Statistics, pages
244–252. PMLR, 2024.

[82] Zhihang Li, Zhao Song, WeixinWang, Junze Yin, and Zheng Yu. How to inverting the leverage
score distribution? arXiv preprint arXiv:2404.13785, 2024.

[83] Chenyang Li, Zhao Song, Zhaoxing Xu, and Junze Yin. Inverting the leverage score gradient:
An efficient approximate newton method. arXiv preprint arXiv:2408.11267, 2024.

[84] Jerry Yao-ChiehHu, Thomas Lin, Zhao Song, andHan Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024.

[85] Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential
dependency: Looped transformers efficiently learn in-context by multi-step gradient descent.
In International Conference on Artificial Intelligence and Statistics, 2025.

[86] Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023.

15

https://openreview.net/forum?id=rvhu4V7yrX
https://openreview.net/forum?id=N0gT4A0jNV


[87] Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression
problems. arXiv preprint arXiv:2303.15725, 2023.

[88] Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from
single softmax regression to multiple softmax regression via a tensor trick. arXiv preprint
arXiv:2307.02419, 2023.

[89] Ritwik Sinha, Zhao Song, and Tianyi Zhou. Amathematical abstraction for balancing the trade-
off between creativity and reality in large language models. arXiv preprint arXiv:2306.02295,
2023.

[90] Xiang Chen, Zhao Song, Baocheng Sun, Junze Yin, and Danyang Zhuo. Query complexity of
active learning for function familywith nearly orthogonal basis. arXiv preprint arXiv:2306.03356,
2023.

[91] Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. A nearly-optimal bound for fast
regression with ℓ∞ guarantee. In International Conference on Machine Learning, pages 32463–
32482. PMLR, 2023.

[92] Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via
pre-conditioner. In International Conference on Artificial Intelligence and Statistics, pages 208–216.
PMLR, 2024.

[93] Zhao Song, Weixin Wang, and Junze Yin. A unified scheme of resnet and softmax. arXiv
preprint arXiv:2309.13482, 2023.

[94] Zhao Song, Junze Yin, andRuizhe Zhang. Revisiting quantumalgorithms for linear regressions:
Quadratic speedups without data-dependent parameters. arXiv preprint arXiv:2311.14823,
2023.

[95] Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in
neural networks and transformers: A case study of modular arithmetic with multiple inputs.
In International Conference on Artificial Intelligence and Statistics, 2025.

[96] Haochen Zhang, Xi Chen, and Lin F Yang. Adaptive liquidity provision in uniswap v3 with
deep reinforcement learning. arXiv preprint arXiv:2309.10129, 2023.

[97] Zhi Zhang, Chris Chow, Yasi Zhang, Yanchao Sun, Haochen Zhang, Eric Hanchen Jiang, Han
Liu, Furong Huang, Yuchen Cui, and Oscar Hernan Madrid Padilla. Statistical guarantees
for lifelong reinforcement learning using pac-bayesian theory. In International Conference on
Artificial Intelligence and Statistics, 2025.

[98] Yunfan Li, Yiran Wang, Yu Cheng, and Lin Yang. Low-switching policy gradient with explo-
ration via online sensitivity sampling. In International Conference on Machine Learning, pages
19995–20034. PMLR, 2023.

[99] Yunfan Li and Lin Yang. On the model-misspecification in reinforcement learning. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 2764–2772. PMLR, 2024.

[100] Junyan Liu, Yunfan Li, and Lin Yang. Achieving near-optimal regret for bandit algorithms
with uniform last-iterate guarantee. arXiv preprint arXiv:2402.12711, 2024.

[101] Junyan Liu, Yunfan Li, Ruosong Wang, and Lin Yang. Uniform last-iterate guarantee for
bandits and reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[102] Zhihang Li, Zhao Song, ZifanWang, and Junze Yin. Local convergence of approximate newton
method for two layer nonlinear regression. arXiv preprint arXiv:2311.15390, 2023.

16



[103] Zhao Song, Guangyi Xu, and Junze Yin. The expressibility of polynomial based attention
scheme. arXiv preprint arXiv:2310.20051, 2023.

[104] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024.

[105] Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024.
https://ai.meta.com/blog/meta-llama-3/.

[106] Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https:
//www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_
Claude_3.pdf.

[107] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Fine-grained attention i/o
complexity: Comprehensive analysis for backward passes. arXiv preprint arXiv:2410.09397,
2024.

[108] Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the
gems in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv
preprint arXiv:2409.17422, 2024.

[109] AmolAggarwal and JoshAlman. Optimal-degree polynomial approximations for exponentials
and gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity
Conference, pages 1–23, 2022.

[110] Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural
Information Processing Systems, 36, 2023.

[111] Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix
softmax attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=v0zNCwwkaV.

[112] Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix
softmax attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=v0zNCwwkaV.

[113] Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computa-
tional limits and provably efficient criteria of visual autoregressive models: A fine grained
complexity analysis. arXiv preprint arXiv:2501.04377, 2025.

[114] Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast
fourier transform. manuscript, 2024.

[115] Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gradient
computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316, 2024.

[116] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention
with provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

[117] Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear
approximations: A novel pruning approach for attention matrix. In International Conference on
Learning Representations, 2025.

[118] Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse
attention acceleration. arXiv preprint arXiv:2410.10165, 2024.

[119] Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of
sparsegpt. arXiv preprint arXiv:2408.12151, 2024.

17

https://ai.meta.com/blog/meta-llama-3/
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=v0zNCwwkaV
https://openreview.net/forum?id=v0zNCwwkaV


[120] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Jing Liu, Ruiyi Zhang, Ryan A. Rossi, Hao
Tan, Tong Yu, Xiang Chen, Yufan Zhou, Tong Sun, Pu Zhao, Yanzhi Wang, and Jiuxiang Gu.
Numerical pruning for efficient autoregressive models. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2025.

[121] Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan,
Jason Kuen, Henghui Ding, Zhihao Shu, Wei Niu, Pu Zhao, Yanzhi Wang, and Jiuxiang Gu.
Lazydit: Lazy learning for the acceleration of diffusion transformers. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2025.

[122] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On
sparse modern hopfield model. In Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS), 2023.

[123] Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

[124] Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng
Goan, and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized
sparse modern hopfield model. In Forty-first International Conference on Machine Learning
(ICML), 2024.

[125] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024.

[126] Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably
efficient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024.

[127] Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably
efficient criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024.

[128] Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024.

18



Appendix
Roadmap. In Section A, we introduce more definitions related to our work, including circuit com-
plexity definitions, float point operations, and definitions for recurrent and convolution SSM. In
Section B, we present more proofs of the components of our main Theorem 4.4 and 4.5. In Section C,
we present the definitions for our hardness problems and the results with Selective SSM and Mamba.
In Section D, we provide more related works.

A. Preliminaries
In this section, we introduce more definitions related to our work. In Section A.1, we introduce more
float point numbers and their operations. In Section A.2, we define the components of Recurrent
SSM. In Section A.3, we define the components of Convolution SSM.
We begin by introducing the notations used in this paper.
Notation For n ∈ Z+, we define [n] := {1, 2, . . . , n}. We use Pr[·] to denote the probability. We use
E[·] to denote the expectation. We use Var[·] to denote the variance.
We define 1n ∈ Rn as (1n)i := 1, for all i ∈ [n]. Let Xi,j ∈ R be the (i, j)-th entry of an arbitrary
matrix X . Let ∥X∥∞ ∈ R be the largest entry of the matrix X . We denote xi = {0, 1}∗ to be the
binary sequence, where its length is not determined.

A.1. Float Point Numbers
In this section, we introduce the float point numbers.
Definition A.1 (Floating-point number, From Definition 9 in [20]). A p-bit floating-point number is
defined as a pair ⟨m, e⟩, wherem (the significand) is an integer satisfyingm ∈ (−2p,−2p−1)∪{0}∪[2p−1, 2p),
and e (the exponent) is an integer within the range e ∈ [−2p, 2p). The value of the floating-point number
⟨m, e⟩ corresponds to the real number m · 2e. The set of all p-bit floating-point numbers is denoted as Fp.
Definition A.2 (Rounding, From Definition 9 in [20]). x is a floating point or in R. Let roundp(x) be a
floating-point number with p-bit closest to x with an even significand in case of a tie.
Definition A.3 (Floating-point number operations, [20]). Consider a, b ∈ Z. Let the operation a � b be
as follows. Suppose a/b = C1/4, where C ∈ Z, then a � b = a/b. Or, a � b is equal to a/b+ 1/8.

With floating points ⟨m1, e1⟩, ⟨m2, e2⟩ having p-bits, we define the following operations:

• addition:

⟨m1, e1⟩+ ⟨m2, e2⟩ :=
{
roundp(⟨m1 +m2 � 2e1−e2 , e1⟩) if e1 ≥ e2,

roundp(⟨m1 � 2e2−e1 +m2, e2⟩) if e1 ≤ e2,

• multiplication:

⟨m1, e1⟩ × ⟨m2, e2⟩ := roundp(⟨m1m2, e1 + e2⟩)

• division:

⟨m1, e1⟩ ÷ ⟨m2, e2⟩ := roundp(⟨m12
p−1 � m2, e1 − e2 − p+ 1⟩)

• comparison:

⟨m1, e1⟩ ≤ ⟨m2, e2⟩ ↔
{
m1 ≤ m2 � 2e1−e2 if e1 ≥ e2,

m1 � 2e2−e1 ≤ m2 if e1 ≤ e2.

• floor: if e ≥ 0, then ⌊⟨m, e⟩⌋ := ⟨m2e, 0⟩. If e < 0, then ⌊⟨m, e⟩⌋ := round(⟨m/2−e, 0⟩)

19



A.2. Discretization: Recurrent SSM
In this section, we define and formalize the discretization of recurrent SSMs and their associated
components. We provide a structured foundation for understanding their functionality and computa-
tion. We begin by introducing the discrete transformation technique that transforms the continuous
state-space representations into discrete ones.
Definition A.4 (Discrete State Space Transformation). Let ∆ denote the discretization step size. The
discrete parameters A ∈ Fn×n

p , B ∈ Fn×D
p , and C ∈ FD′×n

p are defined as follows:

A := exp(∆A),

B := (∆A)−1(exp(∆A)− I) ·∆B,

C := C,

where exp(∆A) denotes the matrix exponential of∆A, A ∈ Fn×n
p is the continuous state transition matrix,

B ∈ Fn×D
p is the continuous input influence matrix, C ∈ FD′×n

p is the output projection matrix, and
I ∈ Fn×n

p is the identity matrix.

Transitioning from the discretization step, we proceed to the hidden state recurrence in recurrent
SSM, which is the core update mechanism for hidden states across timesteps.
Definition A.5 (Hidden State Recurrence). Let H ∈ FL×n

p denote the hidden state, and X ∈ FL×N
p be

the output of Definition 3.18, where L is the length of the sequence and n denotes the hidden state dimensions.
We define the hidden state update function H : FL×N

p × Fn×n
p × Fn×D

p × Fp → FL×n
p as:

H(X,A,B,∆)t,i :=

n∑
j=1

Ai,j ·Ht−1,j +

D∑
k=1

Bi,k ·Xt,k,

where A ∈ Fn×n
p and B ∈ Fn×D

p are the parameters from Definition A.4,Ht−1,j denotes the hidden state at
timestep t− 1, initialized as H0,i = 0, and Xt,k denotes the input matrix at timestep t.

Finally, we are able to formalize recurrent SSMs, which combine the hidden state update mechanism
with the output projection step.
Definition A.6 (Recurrent SSM). LetX ∈ FL×N

p be the output of Definition 3.18. We define the Recurrent
SSM function SSMrecur : FL×N

p × Fn×n
p × Fn×D

p × FD′×n
p × Fp → FL×D′

p as:

SSMrecur(X,A,B,C,∆)t,d :=

n∑
i=1

Cd,i · H(X,A,B,∆)t,i,

where H(X) ∈ FL×n
p is the hidden state update function defined in Definition A.5, and C ∈ FD′×n

p is the
output projection matrix, mapping the hidden state to the output space.

A.3. Discretization: Convolutional SSM
In this section, we extend the formulation of SSM by presenting its convolutional implementations
after discretization. These are the core mechanisms that enable its parallel computations. We first
show the kernel computation.
Definition A.7 (Convolution Kernel). Let A ∈ Fn×n

p , B ∈ Fn×D
p , and C ∈ FD′×n

p denote the discrete
state-space parameters. We define the convolution kernel K ∈ FD′×D×M

p for parallel computations as:

K[d′, d, k] =

n∑
i=1

n∑
j=1

Cd′,i · (A
k
)i,j ·Bj,n,

where d′ ∈ [D′] is the output feature dimension index, d ∈ [D] is the input feature dimension index, and
k ∈ [M ] is the time offset index, and M is the length of the kernel.

20



By using this kernel K, we can compute the final output sequence through convolution.
Definition A.8 (Convolution Output Sequence for SSM). Let X ∈ FL×N

p be the output from Defini-
tion 3.18), where t ∈ [L] is the index of the sequence, d ∈ [D] is the index of input feature. Using the kernel
K ∈ FD′×D×M

p from Definition A.7, we define the convolution SSM SSMconv : FL×N
p × Fn×n

p × Fn×D
p ×

FD′×n
p × Fp → FL×D′

p as:

SSMconv
t,d (X,A,B,C,∆) =

L−1∑
k=0

D∑
d=1

K[d′, d, k] ·Xt−k,d

for each t = 0, 1, . . . , L− 1, Here SSMconv
t,d is the output for timestep t and output feature d, K[d′, d, k] is the

kernel weight for output feature d′, input feature d, and time offset k, and Xt−k,d is the input for timestep
t− k, and input dimension d.

B. Complexity of SSM and Mamba
In this section, we provide additional proofs to support our theorem.
In Section B.1, we show the Hadamard product is in TC0. In Section B.2, we show the discretization in
SSM is in TC0. In Section B.3, we show approximating logarithm can be done in TC0. In Section B.4,
we show the Softplus Activation is in TC0. In Section B.5, we show the SiLU Activation is in TC0.
In Section B.6, we show the hidden state update function is in TC0. In Section B.7, we show the
computation of kernel in Convolution SSM is in TC0. In Section B.8, we show the convolution
indexing is in TC0. In Section B.9, we show the 1-D convolution layer in Mamba is in TC0. In
Section B.10, we show the selective functions are in TC0.

B.1. Computing Entry-wise Matrix Multiplication
Now, we present computing entrywise matrix multiplication.
Lemma B.1 (Hadamard Product in TC0). Let A ∈ Fn×d

p and B ∈ Fn×d
p . If p ≤ poly(n), n ≤ poly(n),

and d ≤ n, then we can compute the Hadamard product A ◦B using a uniform threshold circuit, whose depth
is dstd, and size is poly(n).

Proof. We have (A ◦B)i,j = Ai,j ·Bi,j . By Lemma 3.12, a threshold circuit with constant depth dstd
can compute every product Ai,j ·Bi,j . Since the computations of Ai,j ·Bi,j for different pairs (i, j)
are independent, all such products can be computed in parallel with the same depth dstd.
The circuit’s size stays polynomial in n because both n and d are bounded by poly(n), and each
multiplication is implemented using a circuit of poly size.

B.2. Computing Discretization

In this section, we prove computing discretization is in TC0.
Lemma B.2 (Discretization in TC0). Let A ∈ Fn×n

p be a diagonal matrix and B ∈ Fn×d
p , where n ≤

poly(n), and d ≤ poly(n). Then a uniform threshold circuit with size poly(n) and constant depth ddisc can
compute the discrete parameters A and B from Definition A.4.

Proof. Given the discretization parameter:
A := exp(∆A),

B := (∆A)−1(exp(∆A)− I) ·∆B.

The computation involves three main steps: computing exp(∆A), inverting ∆A, and performing
matrix multiplications.

21



Since A is diagonal, each entry of exp(∆A) can be computed independently as (exp(∆A))i,i =
exp(∆Ai,i). By part 1 of Lemma 3.12 and Lemma 3.14, A can be computed in depth-(dstd + dexp).
To compute (∆A)−1, each entry of (∆A)−1 can be computed independently as ((∆A)−1)i,i =
(∆Ai,i)

−1. By part 1 of Lemma 3.12, this inversion is in depth-dstd.
Next, we computeB as follows: To compute exp(∆A)−I , each entry (exp(∆A)−I)i,i = exp(∆Ai,i)−1
can be computed independently in depth-dexp + dstd by Lemma 3.12 and Lemma 3.14; to compute
(∆A)−1 · (exp(∆A)− I), since both matrices are diagonal, we perform element-wise multiplication,
which uses depth-dstd by Lemma B.1; to compute (∆A)−1 · (exp(∆A)− I) ·B, we perform matrix
multiplication, which uses depth-dstd + d⊕.
Finally, we can show

ddisc = 5dstd + 2dexp + d⊕

The circuit’s size stays polynomial in n because both n and d are bounded by poly(n), and each
operation is implemented using a circuit of poly size.

B.3. Approximating Logarithm in TC0

In this Section, we present the formal proof for approximating logarithm in TC0

Lemma B.3 (Approximate Logarithm in TC0, formal version of Lemma 4.1). For any p-bit floating-
point number x ∈ Fp, we can use a uniform threshold circuit, whose depth is dlog and size is poly(n) to
approximate the logarithm log(x), where the error is less than or equal to 2−p.

Proof. We can use truncated Taylor Series ([47, 48]).
Let p ∈ O(poly(n)). For log(x) where x = ⟨m, e⟩: If e is even, let r = m · 2−p ∈ [ 12 , 1) and k = e+ p;
otherwise, let r = m · 2−p+1 ∈ [1, 2) and k = e+ p− 1.
Compute log(r) using the Taylor series about 1:

log(r) =

N−1∑
i=1

(−1)i+1 (r − 1)i

i
+O(|r − 1|N ).

Since |r− 1| < 1, there is anN ∈ O(p) that makes the relative error at most 2−p−1. Then we compute
log(x) as follows:

log(x) = log(r) + k · log(2).

To compute log(2), use the Taylor series:

log 2 =

N−1∑
i=1

1

i · 2i
+O(2−N ).

Thus, we approximate log(x) as:

log(x) ≈
N−1∑
i=1

(−1)i+1 (r − 1)i

i
+ k ·

N−1∑
i=1

1

i · 2i
.

Since N ∈ O(p), the total error is less than or equal to 2−p.
We can determine the total depth of the circuit required for these computations using Lemma 3.12.
To normalize x and compute the value of k, we must perform the division and floor operations, both
of which can be executed using a circuit of depth dstd; to compute log(r) using Taylor series, we
perform iterated multiplication, addition, and iterated addition, which uses a depth-d⊕ + d⊗ + dstd
circuit; to compute k · log(2), we perform iterated multiplication, addition, and iterated addition,
which uses a depth-d⊕ + d⊗ + dstd circuit; to compute log(x), we perform addition, which uses a
depth-dstd

22



Finally, we can show
dlog = 2d⊕ + 2d⊗ + 3dstd.

Thus, we complete the proof.

B.4. Computing the Softplus Activation

In this section, we show the proof for Computing the Softplus Activation is in TC0

Lemma B.4 (Softplus in TC0). For any x ∈ Fp, size poly(n) and constant depth dsp uniform threshold
circuit, we can approximate the Softplus function, as defined in Definition 3.20, where the error is less than or
equal to 2−p.

Proof. Softplus(z) = log(1 + ez) can be calculated as the following. To compute exp(z), we perform
exponential function, which uses a depth-dexp by Lemma 3.14; to compute 1 + exp(z), we perform
addition, which uses a depth-dstd by Part 1 from Lemma 3.12; to compute log(1+exp(z)), we perform
logarithm, which uses a depth-dlog by Lemma B.3
Finally, we can show

dsp = dexp + dstd + dlog.

Therefore, using the uniform threshold circuit, where its size is equal to poly(n) and its depth is dsp,
we can compute Softplus(z).

B.5. Computing the SiLU Activation

In this section, we show the proof of SiLU, used in Mamba is in TC0.
Lemma B.5 (SiLU Activation in TC0). Let z ∈ FD

p denote the input feature vector, where p,D ≤ poly(n).
The SiLU defined in Definition 3.19 is computed using a uniform threshold circuit, where its size is equal to
poly(n) and its depth is (dexp + dstd).

Proof. From Definition 3.19, SiLU is given as
SiLU = z · σ(z),

where σ(z) denotes the sigmoid function, defined as:

σ(z) =
1

1 + e−z
.

We compute SiLU(z) as follows. To compute e−z , we use Lemma 3.14, and it can be computed
by a threshold circuit in depth-dexp; to compute z · 1

1+e−z , we perform addition, division, and
multiplication. By Part 1 from Lemma 3.12, we can compute it using a threshold circuit in depth-dstd.
Therefore, we get the desired result.

B.6. Hidden State Recurrent in TC0

In this section, we prove the hidden state update in Recurrent SSM is in TC0.
Lemma B.6 (Hidden State Recurrence in TC0). Let A ∈ Fn×n

p , B ∈ Fn×D
p , and X ∈ FL×D

p denote the
input matrix, where p, n,D ≤ poly(n). The hidden state recurrence from Definition A.5 can be computed by
a threshold circuit with size poly(n) and constant depth dh.

Proof. From Definition A.5, the hidden state recurrence is given by:

H(X,A,B,∆)t,i :=

n∑
j=1

Ai,j ·Ht−1,j +

D∑
k=1

Bi,k ·Xt,k,

23



where A ∈ Fn×n
p , B ∈ Fn×D

p , H ∈ FL×n
p is the hidden state, and X ∈ FL×D

p is the input sequence.
The computation ofH(X,A,B,∆) involves two steps: iterative addition, multiplication, and addition:
To compute∑n

j=1 Ai,j ·Ht−1,j and
∑D

k=1 Bi,k ·Xt,k, we need multiplication and iterated addition. By
Lemma 3.12, we can compute them by a threshold circuit in depth-dstd + d⊕; to compute∑n

j=1 Ai,j ·
Ht−1,j +

∑D
k=1 Bi,k · Xt,k, we then perform addition. By Lemma 3.12, it can be computed by a

threshold circuit in depth-dstd
The total depth of the circuit for computing H(X,A,B,∆) is given by:

dh = 2dstd + d⊕.

Since the circuit size is polynomial in n and the depth dh is constant, we get our desired result.

B.7. Computing Kernel in Convolution SSMs is in TC0

In this section, we show the computation of Kernel in TC0.
Lemma B.7 (Convolution Kernel in TC0). Let A ∈ Fn×n

p , B ∈ Fn×D
p , and C ∈ FD′×n

p , where
p, n,D,D′,M ≤ poly(n). The convolution kernel K ∈ FD′×D×M

p , as defined in Definition A.7, can
be computed by a threshold circuit with size poly(n) and constant depth dk.

Proof. From Definition A.7, the convolution kernel computation is given by:

K[d′, d, k] =

n∑
i=1

n∑
j=1

Cd′,i · (A
k
)i,j ·Bj,n,

We can compute in the following steps

1. Since A is a diagonal matrix, each entry (A
k
)i,i can be computed as (Ai,i)

k. By part 2 of
Lemma 3.12, iterated multiplication can be computed by a threshold circuit with constant
depth d⊗. The computations of (Ai,i)

k for all i are independent, so A
k can be computed in

depth d⊗.

2. To compute (Ak ·B), we perform matrix multiplication. By Lemma 3.16, we can compute it
using a threshold circuit where its depth is dstd + d⊕.

3. To computeK[d′, d, k], it performs another matrix multiplicationC · (Ak ·B). By Lemma 3.16,
we can compute it using a threshold circuit where its depth is dstd + d⊕.

Finally, we can show that
dk = d⊗ + 2dstd + 2d⊕,

so we get the desired result.

B.8. Convolution Indexing in TC0

In this section, we prove the indexing operation in 1-D Convolution is in TC0.
Lemma B.8 (Convolution Indexing in TC0). Let X ∈ FL×D

p denote the input sequence, where L is the
sequence length, and D is the feature dimension. Let t ∈ [L] and k ∈ [K] denote indices for time steps and
kernel offsets. L,D,K ≤ poly(n). Retrieving the value Xt−k,d for b ∈ [B] and d ∈ [D], with zero-padding
applied for t− k < 0, can be computed by a uniform threshold circuit with size poly(n) and constant depth
dstd.

24



Proof. The indexing operation has two primary operations: checking the boundary and retrieving
the value.
To compute boundary checking for each time step t ∈ [L], kernel offset k ∈ [K], and feature d ∈ [D],
we need to check if t−k < 0 for the zero-padding. We define BoundaryCheck(t, k) function as follows:

BoundaryCheck(t, k) =

{
1 if t− k < 0,

0 otherwise.

To computeBoundaryCheck(t, k), we perform subtraction and comparison. By Part 1 from lemma 3.12,
they can be computed in dstd.
To compute value retrieval, we can establish the following:

Xt−k,d = (1− BoundaryCheck(t, k)) ·Xt−k,d

where if BoundaryCheck(t, k) = 1, Xt−k,d will be evaluated to 0 so we apply zero padding.
To compute Xt−k,d, we perform subtraction and multiplication. By Part 1 from Lemma 3.12, they
can be computed in dstd.
Therefore, we get the desired result.

B.9. 1-D Convolution in TC0

In this section, we show the 1-D convolution layer in Mamba is in TC0.
Lemma B.9 (1-D Convolution in TC0). Let W ∈ FK×D′×N

p and X ∈ FL×D′

p , where p,K,L,D′, N ≤
poly(n). We can use the threshold circuit, where its size is poly(n) and its depth is d1dconv to compute the
1-D convolution function C : FL×D′

p → FL×N
p (see Definition 3.18).

Proof. The 1-d convolution from Definition 3.18 is the following:

C(X)t,n =

K−1∑
k=0

D′∑
d′=1

W [k, d′, n] ·Xt−k,d′ ,

this convolution has three primary operations: matrix indexing, entry-wise multiplications, and
summation.
We can compute C(X) as the following. To compute matrix indexing, from Lemma B.8, it can be
computedwith a threshold circuit in depth-dstd; to compute∑D′

d′=1 W [k, d′, n]·Xt−k,d′ for kernel index
k ∈ [K] and feature dimension d′ ∈ [D′], we perform matrix multiplication. By Lemma 3.16, it can be
computedwith a threshold circuit with depth-dstd+d⊕; to compute∑K−1

k=0

∑D′

d′=1 W [k, d′, n] ·Xt−k,d′ ,
we perform iterated addition. By Part 1 from Lemma 3.12, it can be computed with a threshold in
depth-d⊕.
Finally, we can show that

d1dconv = 2dstd + 2d⊕.

Therefore, we get the desired result.

B.10. Selection Functions in TC0

In this section, we show selective functions computation are in TC0.
Lemma B.10 (Selection Functions in TC0). Let X ∈ FL×D

p denote the input sequence. LetWB ∈ Fn×L
p ,

WC ∈ FD′×L
p , andW∆ ∈ F1×L

p denote learned selection weight matrices, and PB ∈ FD×N
p , PC ∈ FD×N

p ,
P∆ ∈ FD

p denote projection matrices. We can use the threshold circuit, where its size is poly(n) and its depth
is dselect to compute the selection function (see Definition 3.21).

25



Proof. The selection mechanisms from Definition 3.21 are the following sB(X) = WBXPB , sC(X) =
WCXPC , s∆(X) = τ∆ · BroadcastD(W∆XP∆),.
These computations have threemain operations: matrix multiplications, broadcasting, and non-linear
activations.
We can compute selection functions as follows. To compute both sB(X) = WBXPB , sC(X) =
WCXPC , andW∆XP∆, we perform matrix multiplication. By Lemma 3.16, we compute it using
the threshold circuit (where the depth is dstd + d⊕); to compute Broadcast(W∆XP∆), we simply
copying the scalar value across D dimensions, which is a simple duplication operation in constant
depth-ddup; to compute τ∆ which is Softplus(w∆) in this case, by Lemma B.4, it can be computed by
a threshold circuit in depth-dsp; to compute τ∆ · BroadcastD(W∆XP∆), we perform multiplication.
By Part 1 from Lemma 3.12, it can be computed by a threshold circuit in depth-dstd.
Finally, we can show

dselect = 2dstd + d⊕ + ddup + dsp.

Therefore, we get our desired result.

C. Our Hardness Results
Wepresent the problems about the arithmetic formula in Section C.1. We analyze the Boolean formula
value problem in Section C.2. We introduce the permutation composition problem in Section C.3. In
Section C.4, we state our four hardness results.

C.1. The First Problem
Now, we show the following definition from [49].
Definition C.1 (Arithmetic formula, Definition in [49]). Let S be a semi-ring (which may also be a ring
or field). An arithmetic formula over S with indeterminates X1, X2, . . . , Xn is defined by:

• For i ∈ [n], Xi is an arithmetic formula.

• For every c ∈ S, c is an arithmetic formula.

• If α is an arithmetic formula and θ is a unary operation of S then (θα) is arithmetic formula.

• If α and β are arithmetic formulas and θ is a binary operator of S then (αθβ) is an arithmetic formula.

An arithmetic formula A with indeterminates X1, . . . , Xn is denoted by A(X1, . . . , Xn).

After defining the arithmetic formula, we then present its computational implications.
Definition C.2 (Arithmetic formula evaluation problem, Definition in [49]). Let S be a ring, field, or
semi-ring. The arithmetic formula evaluation problem is: Given an arithmetic formula A(X1, X2, . . . , Xn)
over S and constants c1, c2, . . . , cn ∈ S, what is A(c1, c2, . . . , cn)?
Remark C.3. In [49], they have shown that the problem defined in Definition C.2 belongs to NC1.

C.2. The Second Problem
In this section, we show the second problem.
Definition C.4 (Definition in [50], page 1). We have Σ = {0, 1,∧,∨,¬, (, )}. We define the Boolean
formula by the following:

• We have 0 and 1 being the Boolean formulas.

• Suppose we have β, α being the Boolean formulas. Then, we can get that (α ∧ β), (¬α), and (α ∨ β)
being the Boolean formulas.

26



Also, we define the following
Definition C.5 (Definition in [50]. page 1). We define |α| to be the amount of symbols from α (which is a
string).
Definition C.6 (Definition in [50]. page 1). We define the Boolean formula by the following:

• We have 0 and 1 being the Boolean formulas.

• Suppose we have β being the Boolean formulas. Then, we can get that (α¬) being the Boolean
formulas.

• Suppose we have β, α being the Boolean formulas. Suppose |α| is greater than or equal to |β|. Then,
we can get that αβ∧ and αβ∨ are the Boolean formulas.

We use 0 to denote False and 1 to denote True.
Lemma C.7 (Page 1 in [50]). Consider a problem that decides the Boolean formula’s true value. This problem
falls in NC1.

C.3. Permutation Composition Problem
In this section, we present the permutation composition problem as established in [51] and its
computational implications.
Definition C.8 (Permutation, based on [51]). A permutation is a bijection π : [n] → [n], where [n] =
{1, 2, . . . , n} . The set of all permutations on [n] forms a group Sn, called the symmetric group. A permutation
π ∈ Sn may be represented in standard forms such as cycle notation or pointwise mapping.
Definition C.9 (Permutation composition, based on [51]). The composition of two permutations π1, π2 ∈
Sn is the permutation π = π2 ◦ π1 , defined by π(x) = π2(π1(x)) for all x ∈ [n] . The composition of a
sequence of permutations π1, π2, . . . , πk ∈ Sn is given by:

Π = πk ◦ πk−1 ◦ · · · ◦ π1.

Definition C.10 (Permutation composition problem, based on [51]). The permutation composition
problem is defined as if there is a sequence of permutations π1, π2, . . . , πk ∈ Sn represented in a standard form,
then the result of the composition Pi = πk ◦ πk−1 ◦ · · · ◦ π1 is expressed in the same representation.
Definition C.11 (Word problem for permutations, based on [51]). A specific instance of the permutation
composition problem is the word problem for permutations. This problem is defined as if there is a sequence of
permutations π1, π2, . . . , πk ∈ Sn, then we need to determine whether Π = πk ◦ πk−1 ◦ · · · ◦ π1 equals the
identity permutation e, where e(x) = x for all x ∈ [n].

The following theorems highlight the significance of the permutation composition problem within
computational complexity:
Lemma C.12 (Theorem 1 in [51]). Any language recognized by a fan-in 2 Boolean circuit of depth
d = O(log n) can be recognized by a width-5 permutation branching program (PBP) of polynomial size.
Consequently, the class of languages recognized by polynomial-size PBPs of bounded width equals NC1.
Lemma C.13 (Word Problem Completeness, based on [51]). The word problem for the group S5, which
involves determining whether a composition of permutations equals the identity, is NC1-complete under AC0

reductions.

C.4. Results About Hardness
We introduce the hardness results for arithmetic formula evaluation problems.
Lemma C.14. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.2 cannot be solved by the SSM.

Proof. It is by Theorem 4.4, Lemma C.3, and Fact 3.8.

27



Lemma C.15. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.2 cannot be solved by the Mamba.

Proof. It is by Theorem 4.5, Lemma C.3, and Fact 3.8.

We introduce the hardness results for the Boolean formula problem.
Lemma C.16. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.6 cannot be solved by the SSM.

Proof. It is by Theorem 4.4, Lemma C.7, and Fact 3.8.

Lemma C.17. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.6 cannot be solved by the Mamba.

Proof. It is by Theorem 4.5, Lemma C.7, and Fact 3.8.

We introduce the hardness results for permutation composition problems.
Here, we show SSM and Mamba cannot solve Width-5 PBPs from Lemma C.12.
Lemma C.18. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the SSM cannot solve the Width-5 PBPs.

Proof. It is by Theorem 4.4, Lemma C.12, and Fact 3.8.

Lemma C.19. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the Mamba cannot solve the Width-5 PBPs.

Proof. It is by Theorem 4.5, Lemma C.12, and Fact 3.8.

Here, we show SSM and Mamba cannot solve the word problem from Lemma C.13.
Lemma C.20. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the SSM cannot solve the word problem.

Proof. It is by Theorem 4.4, Lemma C.13, and Fact 3.8.

Lemma C.21. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the Mamba cannot solve the word problem.

Proof. It is by Theorem 4.5, Lemma C.13, and Fact 3.8.

TheoremC.22 (Formal proof of Theorem 5.1). ifTC0 ̸= NC1, float point number is poly(n)-bits precision,
layers are constant-depth, and hidden dimension is O(n) size, then we can have the Selective SSM and Mamba
cannot solve the arithmetic formula evaluation problems, boolean formula value problem, and permutation
composition problems.

Proof. Based on Lemma C.14, C.15, C.16, C.17, C.18, C.19, C.20, and C.21.
We conclude the Selective SSM and Mamba cannot solve the Definition C.6 and Definition C.2, and
permutation composition problems.
Thus, we complete the proof.

28



D. More Related Work
Theoretical Machine Learning. Our work also takes inspiration from the following Machine Learn-
ing Theory work. Some works analyze the expressiveness of a neural network using the theory of
complexity [52–58]. Some works optimize the algorithms that can accelerate the training of a neural
network [58–84]. Some works analyze neural networks via regressions [85–95]. Some works use
reinforcement learning to optimize the neural networks [96–102]. Some works optimize the attention
mechanisms [103, 104].
Accelerating Attention Mechanisms. The attention mechanism, with its quadratic computational
complexity concerning context length, encounters increasing challenges as sequence lengths grow
in modern large language models [11, 105–108]. To address this limitation, polynomial kernel ap-
proximation methods [109] have been introduced, leveraging low-rank approximations to efficiently
approximate the attention matrix. These methods significantly enhance computation speed, allowing
a single attention layer to perform both training and inference with nearly linear time complexity
[110, 111]. Moreover, these techniques can be extended to advanced attention mechanisms, such
as tensor attention, while retaining almost linear time complexity for both training and inference
[112]. [113] provides an almost linear time algorithm to accelerate the inference of VAR Transformer.
Other innovations include RoPE-based attention mechanisms [114, 115] and differentially private
cross-attention approaches [116]. Alternative strategies, such as the conv-basis method proposed in
[104], present additional opportunities to accelerate attention computations, offering complementary
solutions to this critical bottleneck. Additionally, various studies explore pruning-based methods to
expedite attention mechanisms [117–124].
Gradient Approximation. The low-rank approximation is a widely utilized approach for optimizing
transformer training by reducing computational complexity [111, 118, 125–128]. Building on the low-
rank framework introduced in [110], which initially focused on forward attention computation, [111]
extends this method to approximate attention gradients, effectively lowering the computational cost
of gradient calculations. The study in [125] further expands this low-rank gradient approximation
to multi-layer transformers, showing that backward computations in such architectures can achieve
nearly linear time complexity. Additionally, [126] generalizes the approach of [111] to tensor-based
attention models, utilizing forward computation results from [112] to enable efficient training of
tensorized attention mechanisms. Lastly, [127] applies low-rank approximation techniques during
the training of Diffusion Transformers (DiTs), demonstrating the adaptability of these methods
across various transformer-based architectures.

29


	.  Introduction
	.  Related Work
	.  Preliminaries
	.  Circuit Complexity
	.  Float Point Numbers
	.  Mamba Blocks

	.  Complexity of SSM and Mamba
	.  Approximating Logarithm in 
	.  Recurrent SSMs are in 
	.  Convolution SSMs are in 
	.  Circuit Complexity Bound for Selective SSM
	.  Circuit Complexity Bound for Mamba

	.  Hardness
	.  Conclusion
	.  Preliminaries
	.  Float Point Numbers
	.  Discretization: Recurrent SSM
	.  Discretization: Convolutional SSM

	.  Complexity of SSM and Mamba
	.  Computing Entry-wise Matrix Multiplication
	.  Computing Discretization
	.  Approximating Logarithm in 
	.  Computing the   Activation
	.  Computing the   Activation
	.  Hidden State Recurrent in 
	.  Computing Kernel in Convolution SSMs is in 
	.  Convolution Indexing in 
	.  1-D Convolution in 
	.  Selection Functions in 

	.  Our Hardness Results
	.  The First Problem
	.  The Second Problem
	.  Permutation Composition Problem
	.  Results About Hardness

	.  More Related Work

