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In this paper, we analyze the computational limitations of Mamba and State-space
Models (SSMs) by using the circuit complexity framework. DespiteMamba’s stateful
design and recent attention as a strong candidate to outperform Transformers, we
have demonstrated that bothMamba and SSMs with poly(n)-precision and constant-
depth layers reside within the DLOGTIME-uniform TC0 complexity class. This
result indicates Mamba has the same computational capabilities as Transformer
theoretically, and it cannot solve problems like arithmetic formula problems, boolean
formula value problems, and permutation composition problems if TC0 ̸= NC1.
Therefore, it challenges the assumption Mamba is more computationally expressive
than Transformers. Our contributions include rigorous proofs showing that Selective
SSMandMamba architectures can be simulated byDLOGTIME-uniformTC0 circuits,
and they cannot solve problems outside TC0.

1. Introduction
Sequential neural networks like RNNs, including their variants such as LSTMs and GRUs [1, 2],
have good performance in capturing temporal dependencies and processing input step-by-step [3].
These advantages make them effective in tasks including time-series prediction [4] and speech
recognition [5]. Traditional RNNs [6] and their enhanced variance, LSTMs perform well in testing
because of their sequential nature, but their training times tend to be slow and suffer from vanishing
or exploding gradient issues, which limit their capabilities to capture long-term dependencies [7].
Transformers [8], equipped with a self-attention mechanism, provides an efficient solution to the
slow training problem by enabling parallelized computations. Large Language Models (LLMs)
based on the Transformer architecture, such as GPT-4 [9], GPT-4o [10], OpenAI’s o1 [11], Llama
3.1 [12], Claude [13], and Gemini [14], have become ubiquitous nowadays, and their integrations
into modern technology reshaped our expectations of the limits of their capabilities. Transformers
are capable of training efficiently on large datasets, but their quadratic memory and time complexity
with respect to sequence length make them expensive in resources, both in terms of memory and
processing power, during training and inference. Specifically, self-attention mechanisms growsO(n2)
in terms of computational complexity [15].
State-space models (SSMs) recently received significant attention as a potential alternative to
Transformer-based architecture on inherently sequential tasks [16]. Mamba [17, 18], built on SSMs,
combines the benefits from both RNNs and Transformers architectures. Mamba incorporates the
efficient inference and state-tracking capabilities of RNNs and leverages the scalability and paral-
lelizable computations of Transformers. Equipped with long-term memory embedding, Mamba
balances the trade-off between training efficiency and inference performance [17].
As these architectures continue to express the state of modern AI, it is crucial to explore what types of
problems they can solve and their limitations. Recent studies using the circuit complexity framework
explain the computational capabilities of Mamba. [19] demonstrates that a threshold circuit with
constant depth and c log n-precision can simulate depth d SSM and Mamba. Moreover, an L-uniform
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threshold circuit of constant depth can simulate such SSM and Mamba models. Another work [20]
shows Transformers are inDLOGTIME-uniformTC0 with poly n-precision, and they present a new set
of metrics to evaluate the circuit complexity of LLMs with poly n-precision. Understanding Mamba’s
computational limits with high precision is crucial because we need to know what problems it can
theoretically solve and to compare Mamba with Transformers and other architectures. Without such
understanding, assumptions about Mamba’s potential to surpass Transformers in terms of sequential
reasoning or state tracking remain questionable.

Table 1: Circuit Complexity of SSM/Mamba. Previous work [19] claims a L-uniform threshold circuit
of constant depth can simulate SSM/Mamba with c log n-precision, whereas Theorem 4.4 and 4.5
improve the precision and uniformity by proving a DLOGTIME-uniform TC0 threshold circuit of
constant depth can simulate SSM/Mamba with poly(n)-precision.

Reference Precision Circuit Complexity
Theorem 4.4 of [19] c log(n)-precision L-uniform TC0

Our Theorems 4.4 and 4.5 poly(n)-precision DLOGTIME-uniform TC0

However, from Table 1, prior work [19] primarily focused on low-precision implementations or
alternative uniformity conditions, leaving a gap in understanding Mamba’s expressiveness with
poly(n)-precision under DLOGTIME-uniformity. This gap is significant because proving Mamba in
TC0 with poly(n)-precision reflects real-world scenarios, where higher precision is often necessary.
Moreover, DLOGTIME-uniformity is widely considered as a more realistic condition in practice.
Unlike L-uniform circuits, which may allow unrealistically complex preprocessing, DLOGTIME-
uniform circuits require the structure of the circuit to be computable by highly efficient machines,
so DLOGTIME-uniformity reflects practical constraints on constructing and applying the circuits.
Therefore, it is natural to raise the question: Can Mamba, implemented with poly(n)-precision, be proved
to reside within DLOGTIME-uniform TC0?

In this paper, we break down the fantasized superiority inMamba by demonstrating that it fallswithin
the same circuit complexity class DLOGTIME-uniform TC0 with poly n-precision. This result shows
SSM and Mamba have the same computational capabilities as Transformers have [20], indicating
that SSM and Mamba, despite their stateful design, cannot solve problems outside TC0, such as
arithmetic formula problem, boolean formula value problem, and permutation composition problems
if TC0 ̸= NC1.
Beyond [19] and [20], our contributions are summarized as follows: If TC0 ̸= NC1, assume we have
the poly(n)-bits precision float point number, constant-depth layers, andO(n) size hidden dimension,
then we have

• A DLOGTIME-uniform TC0 circuit family can simulate Selective SSM (Theorem 4.4).

• A DLOGTIME-uniform TC0 circuit family (Theorem 4.5) can simulate Mamba.

• Selective SSM and Mamba are not capable of resolving the arithmetic formula problems,
Boolean formula value problems, and permutation composition problems (Theorem 5.1).

Knowing the true computational capabilities of SSM and Mamba in DLOGTIME-uniform TC0 can
inform researchers who attempt to use Mamba to solve problems outside TC0. By identifying the
constraints of the current design, our work pushed the exploration of the expressiveness of neural
network models.

Roadmap. Section 2 introduces the works related to our paper. Section 3 introduces key compu-
tational concepts and Mamba definitions that form the basis for subsequent sections. Then, we
present the circuit complexity results for Selective SSM and Mamba in Section 4. Section 5 details
our hardness results. Finally, Section 6 gives a conclusion.
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2. Related Work
Complexity and Neural Network. Circuit Complexity, a crucial set of metrics in computational
complexity theory, studies the computational power of circuit families. It has valuable applications in
comprehending the capabilities of machine learning models [21–32]. The complexity classes include
AC0 represents problems that are highly parallelizable equipped with standard logic gates, which
can be solved by constant-depth circuits with unbounded fan-in AND, OR, and NOT gates; TC0 class
extends from AC0 with additional majority gates; NC1 problems can be solved by O(log n)-depth
circuits with bounded fan-in. These circuit complexity classes form a hierarchy: AC0 ⊂ TC0 ⊆ NC1

[24]. The question of whether TC0 ̸= NC1 remains an open topic of discussion. [33] demonstrates
that while Transformers can simulate nonsolvable semi-automata, their depth is influenced by the
length of the input sequence. Building on this, [27] investigates the expressive power of Transformers
augmentedwithChain-of-Thought (CoT) reasoning in the context of circuit complexity. They propose
the following relationships:

• T[poly(n), 1, 1] is the subset of CoT[log n, poly(n), 1, 1] which is a subset of AC0.
• T[poly(n), log n, 1] is the subset of CoT[log n,poly(n), log n, 0] which is a subset of TC0.

Here, T[d(n), s(n), e(n)] refers to a constant-depth Transformer with an embedding size of d(n),
precision s(n) bits, and exponent size e(n) for input length n. Meanwhile, CoT[T (n), d(n), s(n), e(n)]
denotes a T (n)-step Chain-of-Thought process using a constant-depth TransformerT[d(n), s(n), e(n)].
They use their framework to show that Transformers equipped with CoT are capable of tackling
more complex problems. Therefore, circuit complexity has shown its effectiveness in representing
the computational capabilities of neural networks.

Limits on Transformers Model. Transformers have shown outstanding performance on tasks
from natural language processing, but they present limited effectiveness in mathematical compu-
tations. A series of research highlights the reasoning limitations of Transformer Model [20, 25, 34–
38]. [20] shows that average-hard attention transformers (AHATs) and softmax-attention transform-
ers (SMATs) are in DLOGTIME-uniform TC0 with O(poly(n))-bit float number precision, indicating
that they are equivalent to constant-depth threshold circuits with polynomial size, and their ability
is limited when handling more complex reasoning tasks which require higher-depth or nonuniform
computations. As a result, Transformers with SMATs or AHATs are inherently unable to solve
problems outside TC0, especially those that involve many inherently sequential computations. What
about Transformers with CoT? Even though Transformers with CoT can address relatively more
problems than CoT, Transformers still fail to solve problems requiring reasoning beyond TC0.

Architecture of State-Space Models (SSM). SSMs have emerged as an alternative model to the
popular LLMs, such as RNNs and Transformers. SSM presents ideal performance in tasks involv-
ing long-term dependencies and sequential reasoning [16]. The foundation of SSMs uses linear
dynamical systems (LDS) or discrete-time state-space equations [16, 17] to represent the system’s
internal state and its evolution over time. Using these mechanisms, SSMs are able to capture the
sequential nature of data by updating the state iteratively, which has efficient inference and state-
tracking [39, 40]. Compared to RNNs, SSMs have better scalability and stability when handling long
sequences, and SSMs are capable of resolving the gradient-related issues inherent to RNNs [16]
and have recently garnered attention for their versatility across various tasks such as sequential
recommendation [41, 42] and image deblurring [43].
Mamba is a recent advancement in SSM architecture, and it combines the efficient parallelizable
computation from Transformers. SSMs in Mamba use kernel methods and spectral techniques to
enable convolution and facilitate parallelizable computation [16, 17]. Mamba incorporates efficient
memory embedding and long-term state representation into its architecture, making itself a strong
opponent to the popular LLMs today, such as Transformers. However, despite the theoretical
expectations of SSM and Mamba, it is crucial for us to understand the computational limits to
conclude whether its capabilities outperform Transformers.
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3. Preliminaries
In Section 3.1, we introduce the circuit complexity classes. In Section 3.2, we introduce the float point
number. In Section 3.3, we introduce the Mamba block.
Notation. For n ∈ Z+, we define [n] := {1, 2, . . . , n}. We use Pr[·] to denote the probability. We use
E[·] to denote the expectation. We use Var[·] to denote the variance. We define 1n ∈ Rn as (1n)i := 1,
for all i ∈ [n]. Let Xi,j ∈ R be the (i, j)-th entry of an arbitrary matrix X . Let ∥X∥∞ ∈ R be the
largest entry of the matrix X . We denote xi = {0, 1}∗ to be the binary sequence, where its length is
not determined.

3.1. Circuit Complexity
In this section, we provide an introduction to the fundamental concepts of circuit complexity classes.
We define the Boolean circuit below:
Definition 3.1 (Boolean circuit, fromDefinition 6.1, On page 102 in [44]). Let n ∈ Z+. A Boolean circuit
with n variables is represented on a directed acyclic graph and defined as a function Cn : {0, 1}n → {0, 1}.
The graph’s nodes represent logic gates, where input nodes (with in-degree 0) correspond to the n Boolean
variables. Each non-input gate computes its value based on the outputs provided by other connected gates.
Definition 3.2 (Circuit family recognizes languages, from Definition 6.2, On page 103 in [44]). Let x
be an arbitrary element in {0, 1}∗. Let L be a subset of {0, 1}∗ called a language.

If there is C|x| ∈ C (a Boolean circuit) satisfying C|x|(x) = 1 iff x ∈ L, then we say L is recognized by a
family C of Boolean circuits.

We now introduce NCi class.
Definition 3.3 (NCi [44]). NCi consists of languages that can be decided by Boolean circuits with a size of
O(poly(n)), depth O((log n)i), and utilizing OR, AND, and NOT gates with bounded fan-in.

When Boolean circuits are allowed to use AND and OR gates with unbounded fan-in, they become
capable of recognizing a broader class of languages. The ACi class is defined as follows.
Definition 3.4 (ACi [44]). ACi refers to the set of languages that Boolean circuits can recognize with size
O(poly(n)), depth O((log n)i), and utilizing AND, OR, and NOT gates with unbounded fan-in.

Since these three gates may be simulated by MAJORITY gates, we arrive at a broader complexity
class, TCi.
Definition 3.5 (TCi [45]). TCi includes languages that can be recognized by Boolean circuits with size
O(poly(n)), depth O((log n)i), and unbounded fan-in gates for OR, AND, NOT, and MAJORITY. A
MAJORITY gate outputs 1 if more than half of its inputs are 1.
Remark 3.6. In Definition 3.5, THRESHOLD gates orMOD gates configured for prime values can replace
MAJORITY gates. A Boolean circuit that includes any of these gates is referred to as a threshold circuit.
Definition 3.7 (P [44]). A deterministic Turing machine in polynomial time with respect to the size of the
input can recognize the languages in class P.
Fact 3.8 (Hierarchy Folklore, [44], From Corollary 4.35, On page 110 in [44], in [45]). For all i ∈ N,
NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 ⊆ P.
Remark 3.9. For i = 0, it is established that NC0 ⊊ AC0 ⊊ TC0. However, determining whether TC0 ⊊ NC1

remains an open question in circuit complexity. Additionally, the question of whether NC := ∪i∈NNC
i ⊊ P is

also unresolved. For further discussion, see [44, 45].
Definition 3.10 (L-uniformity [44]). C represents a language recognized by a circuit family C, where C
could be NCi, ACi, or TCi. Suppose we have a Turing machine that is satisfying for any arbitrary n ∈ N,
computes a circuit in C for n variables from the input 1n using O(log n) space, such that the circuit Cn

recognizes L, then a language L, which is the subset of {0, 1}∗, is said to be in L-uniform C.
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We define DLOGTIME-uniformity and discuss the relationships between this definition and L-
uniformity as follows.
Definition 3.11 (DLOGTIME-uniformity in [46]). C is defined as in Definition 3.10. Suppose we have a
Turing machine that satisfying for any arbitrary n ∈ N, computes Cn in C for n variables from the input 1n
within time O(log n), where Cn recognizes L, then a language L, which is the subset of {0, 1}∗, is said to be
in DLOGTIME-uniform C.

3.2. Float Point Numbers
To compute SSM and Mamba correctly and effectively, we establish the computational framework by
providing the definitions of the basic concepts of floating-point numbers and their related operations.
Notably, the operations provided below are not limited to purely theoretical work; in fact, they can
be effectively realized in hardware.
Lemma 3.12 (Efficient floating-point operations in TC0, Lemma 10, 11 in [20]). Let p ∈ Z+. We have

1. We can use the uniform threshold circuit, which has the size of poly(n) and has a constant depth, to
compute all +, ·, and comparison of two p-bit floating-point numbers, as defined in Definition A.3.

2. Using the same depth uniform threshold circuit as above, we can compute the iterative multiplication
of m numbers of floating-point numbers with q bits.

3. Using the same depth uniform threshold circuit as above, we can compute the iterative addition of m
numbers of floating-point numbers with q bits.

We use dstd, d⊗, and d⊕ to denote the constant depth of the above three situations, respectively.
Corollary 3.13 (Floor operation in TC0). Consider p ∈ Z+ being less than or equal to poly(n). We can
implement the floor operation for a floating-point number with q bits using the uniform threshold circuit,
which has the size of poly(n) and has a constant depth dstd.
Lemma 3.14 (Approximation of exp in TC0, Lemma 12 in [20]). For any positive integer p such that
p ≤ poly(n), there exists a uniform threshold circuit with size poly(n) and constant-depth that approximates
exp(x) for any p-bit floating-point number x, with a relative error not exceeding 2−p. The depth required for
this computation is denoted as dexp.
Lemma 3.15 (Approximation of square root in TC0, Lemma 12 in [20]). Let p be a positive integer
satisfying p ≤ poly(n). For any p-bit floating-point number x, a uniform threshold circuit with size poly(n)
and constant-depth can compute

√
xwith a relative error of at most 2−p. The depth required for this computation

is denoted as dsqrt.
Lemma 3.16 (Matrix multiplication, Lemma 4.2 in [20]). Consider two matrices A ∈ Fn1×d

p and
B ∈ Fd×n2

p . If p, n1, n2, d ≤ poly(n), then we can use the uniform threshold circuit, which has the size of
poly(n) and has a constant depth (dstd + d⊕), to compute the product of A and B.

3.3. Mamba Blocks
Having established the necessary mathematical foundation, this section introduces the main compo-
nents of theMamba architecture, as illustrated in Figure 1. We start by discussing the input projection
within the Mamba framework.
Definition 3.17 (Mamba Input Projection). Let X ∈ FL×D

p denote the input sequence, where L is the
sequence length, andD is the feature dimension. We define the Mamba input projection function L : FL×D

p →
FL×D′

p as: L(X) := X ·Wx+1Lb
⊤
x , whereWx ∈ FD×D′

p is the learned weight matrix, bx ∈ FD′

p is a learned
bias vector, and 1L ∈ FL×1

p broadcasts bx across all rows.

After the input projection, Mamba used a 1-D convolution layer to capture local temporal patterns
by convolving the input features with a learned kernel.
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Mamba Block
projection

projection projection

1D-Convolution

Selective SSM

σ σ

⊗
σ SiLU Activation

⊗ Hadamard Product (or Activation)

Figure 1: Mamba Block Architecture. The input is first processed through two input projections. One
branch flows through an input projection, followed by a 1-D convolution, a SiLU activation, and a
Selective SSM block before reaching the Hadamard product (or activation). The other branch passes
through an input projection directly to a SiLU activation and then converges at the same Hadamard
product (or activation). Finally, the output of the Hadamard product is passed through the output
projection.

Definition 3.18 (1-D Convolution). Let X ∈ FL×D′

p denote the output of Definition 3.17, where L is
the sequence length and D′ is the projected feature dimension. Let W ∈ FK×D′×N

p denote a convolutional
kernel of size K, where N is the number of output channels. We define the 1-D convolution layer function
C : FL×D′

p → FL×N
p as:

C(X)t,n :=

K−1∑
k=0

D′∑
d′=1

W [k, d′, n] ·Xt−k,d′ ,

for t ∈ [L] and n ∈ [N ], where Xt−k,d′ = 0 if t − k < 0, and zero-padding is applied for boundary cases;
W [k, d′, n] selects the contribution of the d′-th feature at time step t− k to the n-th output channel.

Then, the convoluted input goes through a non-linear SiLU activation function in Mamba.
Definition 3.19 (SiLU Activation). Let X ∈ FL×D

p ∪ FL×N
p be the output from Definition 3.17 or Defi-

nition 3.18, where B is the batch size, L is the sequence length, and D is the feature dimension. We define
the entry wise SiLU function Z : FL×D

p ∪ FL×N
p → FL×D

p ∪ FL×N
p as Z(X)t,d := Xt,d · σ(Xt,d), where the

sigmoid function σ(Xt,d) : Fp → Fp is defined as: σ(Xt,d) :=
1

1+e−Xt,d
. Here, t ∈ [L] and d ∈ [D] index

the sequence and feature dimensions.

Now, we introduce the softplus activation used in Mamba selection mechanisms as τ∆.
Definition 3.20 (Softplus Activation). We define Softplus : Fp → Fp as Softplus(z) := log(1 + ez).
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Following this, the selection functions dynamically adapt the state-space parameters based on the
input sequence, refining the model’s ability to represent sequential dependencies by modulating the
state-space matrices B, C, and ∆ based on learned projection.
Definition 3.21 (Selection Functions). LetX ∈ FL×D

p denote the input sequence. Let τ∆ = Softplus(w∆),
where w∆ ∈ Fp is a learned scalar, and Softplus is given in Definition 3.20. The selection functions sB :

FL×D
p → Fn×N

p , sC : FL×D
p → FD′×N

p , s∆ : FL×D
p → Fp are defined as:

sB(X) := WBXPB , sC(X) := WCXPC , and s∆(X) := τ∆ · BroadcastD(W∆XP∆),

where WB ∈ Fn×L
p , WC ∈ FD′×L

p , and W∆ ∈ F1×L
p are learned selection weight matrices, PB ∈ FD×N

p ,
PC ∈ FD×N

p , P∆ ∈ FD
p are projection matrices, and the function BroadcastD : Fp → Fp replicates the result

of W∆XP∆ across all feature dimensions.

With the selection functions implemented, we now introduce the Selective SSM in Mamba.
Definition 3.22 (Selective SSM in Mamba). Let X ∈ FL×N

p be the output of Definition 3.18. Given
a diagonal matrix A ∈ Fn×n

p , we define the Selective SSM function SSMselect : FL×N
p → FL×D′

p as
SSMselect(X) := SSMrecur(X,A, sB(X), sC(X), s∆(X)), where SSMrecur(X) ∈ FL×D′

p is the recurrent
SSM output from Definition A.6, and sB(X), sC(X), s∆(X) are selection mechanisms from Definition 3.21.

Finally, we introduce the Mamba output projection, which maps the processed sequence back to the
original feature dimension.
Definition 3.23 (Mamba Output Projection). Let X ∈ FL×D′

p denote the output from Definition 3.22,
where L is the sequence length and D′ is the feature dimension. We define the Mamba output projection
function O : FL×D′

p → FL×D
p as:

O(X) := X ·Wx + 1Lb
⊤
x ,

whereWx ∈ FD′×D
p is the learned weight matrix, bx ∈ FD

p is a learned bias vector, and 1L ∈ FL×1
p broadcasts

bx across all rows.

Through this progression, we can now define Mamba as a series of composite functions.
Definition 3.24 (Mamba). Let X ∈ FL×D

p denote the input sequence, where L is the sequence length, and
D is the feature dimension. We define the Mamba architecture function M : FL×D

p → FL×D
p as:

M(X) = O((SSMselect ◦ Z ◦ C ◦ L(X))⊗ (Z ◦ L(X)),

where ◦ is function composition, L is Mamba Input Projection (see Definition 3.17), C is 1-D Convolution
Layer (see Definition 3.18), Z is SiLU Activation (see Definition 3.19), SSMselect is Selective SSM (see Defi-
nition 3.22),⊗ is Hadamard Product or Activation, andO is Mamba Output Projection (see Definition 3.23).

4. Complexity of SSM and Mamba
In Section 4.1, we provide an approximation of the logarithm function within TC0. In Section 4.2, we
analyze the complexity of computing Recurrent SSM. In Section 4.3, we investigate the complexity
of computing Convolution SSM. In Section 4.4, we establish circuit complexity bounds for selective
SSM. In Section 4.5, we present the circuit complexity bounds for Mamba computations.

4.1. Approximating Logarithm in TC0

In this section, we show the approximation of logarithm can be done in TC0 circuit. The logarithm
function is a key component of the Softplus activation function, which plays a central role in the
selection mechanisms of the Selective SSM within the Mamba architecture. Therefore, the ability to
compute logarithm in TC0 is crucial for ensuring Selective SSM and Mamba operate within constant
depth TC0.
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Lemma 4.1 (Approximating Logarithm in TC0, informal version of Lemma B.3). For any p-bit floating-
point number x ∈ Fp, we can use a uniform threshold circuit, where the depth is dlog and the size is poly(n),
the logarithm log(x), where the relative error is less than or equal to 2−p.

Sketch of the proof. To approximate log(x), we normalize x = ⟨m, e⟩ into r ∈ [ 12 , 1] or r ∈ [1, 2],
depending on whether e is even or odd. This normalization adjusts the exponent to k and can be
computed by TC0 circuit in constant depth.
We use Taylor series expansion around 1 to approximate log(r), and we can get an approximation
of log(r) with relative error bounded by 2−p−1. Using the same technique, we can approximate
log(2). Lastly, we compute log(x) as log(x) = log(r) + k · log(2). The TC0 circuit in constant depth
can compute all operations.

4.2. Recurrent SSMs are in TC0

In this section, we show recurrent SSM is in TC0. We provide more details about recurrent SSM in
Appendix A.2.
Lemma 4.2 (Recurrent SSM in TC0). Let C ∈ FD′×n

p , H(X,A,B,∆) ∈ FL×n
p , and X ∈ FL×N

p denote
the input matrix and intermediate computations, where p, L,N, n,D′ ≤ poly(n). We can use a uniform
threshold circuit, where the depth is drecur and the size is poly(n), to compute the Recurrent SSM function
SSMrecur(X,A,B,C,∆) ∈ FL×D′

p , as defined in Definition A.6.

Proof. From Definition A.6, the Recurrent SSM computation is given by:

SSMrecur(X,A,B,C,∆)t,d :=

n∑
i=1

Cd,i · H(X,A,B,∆)t,i,

The computation of SSMrecur(X) involves two primary steps: computing the hidden state updates
H(X,A,B,∆) and iterative addition with multiplication. We use a threshold circuit whose depth is

• dh to compute H(X,A,B,∆) (Lemma B.6),
• dstd to compute Cd,i · H(X,A,B,∆)t,i (Lemma 3.12),
• d⊕ to compute ∑n

i=1 Cd,i · H(X,A,B,∆)t,i (Lemma 3.12)

Finally, we can show: drecur = dh + (dstd + d⊕). Therefore, we get our desired result.

4.3. Convolution SSMs are in TC0

In this section, we show convolution SSM is in TC0. We provide more details about recurrent SSM in
Appendix A.3.
Lemma 4.3 (Convolution SSM in TC0). Let K ∈ FD′×D×M

p , X ∈ FL×N
p , where p, L,N,D′,M ≤

poly(n). We can use a threshold circuit, where the depth is dconv and the size is poly(n), to compute the
convolution SSM SSMconv : FL×N

p × Fn×n
p × Fn×D

p × FD′×n
p × Fp → FL×D′

p , as defined in Definition A.8.

Proof. From Definition A.8, the convolution output sequence is given by:

SSMconv
t,d (X,A,B,C,∆) =

L−1∑
k=0

D∑
d=1

K[d′, d, k] ·Xt−k,d.

It can be computed as follows. Using a threshold circuit, we can perform

• matrix multiplication to compute∑D
d=1 K[d′, d, k] ·Xt−k,d (Lemma 3.16) and
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• iterated addition to compute ∑L−1
k=0

∑D
d=1 K[d′, d, k] ·Xt−k,d (Lemma 3.12),

whose depths are dstd + d⊕ and d⊕, respectively. Finally, we can conclude that: dconv = dstd + 2d⊕.
Thus, we get the desired result.

4.4. Circuit Complexity Bound for Selective SSM
In this section, we formulate the circuit complexity bound for Selective SSM.
Theorem 4.4 (Selective SSM in TC0). Let X ∈ FL×N

p represent the output sequence from SiLU activated
1-D convolution layer (see Definition 3.18), where L is the sequence length and N is the number of output
channels, with L,N ≤ poly(n). We may use a uniform threshold circuit, whose depth is dSSM and size is
poly(n), to compute the Selective SSM (Definition 3.22).

Proof. The Selective SSM combines the selection functions, discretization, and state-space dynamics,
which we have already proved to be in TC0.
To compute Selective SSM, we can follow the following. Using a threshold circuit, we can compute

• selection functions (Lemma B.10),
• discretization (Lemma B.2)
• recurrent SSM (Lemma 4.2), or
• convolution SSM (Lemma 4.3)

whose depths are dselect, ddisc, drecur, and dconv respectively. Finally, we can show:
dSSM = dselect + ddisc + drecur for recurrent SSM,

dSSM = dselect + ddisc + dconv for convolution SSM.

Therefore, we get our desired result.

4.5. Circuit Complexity Bound for Mamba
In this section, we formulate the circuit complexity bound for Mamba.
Theorem 4.5 (Main property for Mamba). Let X ∈ FL×D

p represent the input sequence, where L is the
sequence length and D is the feature dimension, with L,D ≤ poly(n). We may use a uniform threshold
circuit, whose depth is dmamba and size is poly(n), to compute the Mamba architecture.

Proof. The Mamba from Definition 3.24 is given:
M(X) = O((SSMselect ◦ Z ◦ C ◦ L(X))⊗ (Z ◦ L(X)),

Using a threshold circuit, we can compute

• input projections (Lemma 3.16) using matrix multiplication and addition,
• 1-D Convolution (Lemma B.9),
• entrywise SiLU (Lemma B.5),
• Selective SSM (Theorem 4.4),
• Hadamard Product (Lemma B.1),
• output projection (Lemma 3.16) using matrix multiplications and additions,
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whose depths are dstd + d⊕, d1dconv, dexp + dstd, dselect, dstd, and dstd + d⊕, respectively.
Finally, we can show dmamba = d1dconv + dexp + dselect + 4dstd + d⊕

Therefore, we can get the desired result.

Theorem 4.5 demonstrates that a DLOGTIME-uniform TC0 circuit family can simulate Mamba,
showing the Mamba representation capacity limitations. In previous work, [19] showed that SSM
and Mamba can be simulated by L-uniform TC0 with c log(n) precision. However, we improve the
uniformity and precision in [19] by proving that Mamba can be simulated by DLOGTIME-uniform
TC0 with poly(n) precision by new techniques introduced from [20]. Our complexity bound is better
than previous work.

5. Hardness
In this section, we present the hardness result: Selective SSM and Mamba, which are constrained in
TC0, cannot solve problems residing in NC1, such as arithmetic formula evaluation, Boolean formula
value problems, and permutation composition. These results show the limitations of Selective SSM
and Mamba in their expressive power.
Theorem 5.1 (Informal proof of Theorem C.22). if TC0 ̸= NC1, float point number is poly(n)-bits
precision, layers are constant-depth, and hidden dimension is O(n) size, then we can have the Selective SSM
and Mamba are not capable of resolving the arithmetic formula evaluation problems, boolean formula value
problem, and permutation composition problems.

Proof Sketch. To show Selective SSM and Mamba cannot solve arithmetic formula evaluation prob-
lems, Boolean formula value problems, and permutation composition problems. We leverage the
difference between the complexity classes TC0 and NC1, under the assumption TC0 ̸= NC1. Arith-
metic formula evaluation problems, Boolean formula value problems, and permutation composition
problems are defined to be NC1 problems in Section C.1, C.2, and C.3. From previous proof, we show
Selective SSM and Mamba are both in TC0. Therefore, they cannot solve those NC1 problems.

To the best of our knowledge, there is no previous work proving that Mamba and SSM with poly(n)
precision cannot solve arithmetic formula problems, boolean formula value problems, and permuta-
tion composition problems.

6. Conclusion
In this paper, we conducted a rigorous mathematical analysis of the computational limits of SSM
and Mamba. We use the framework of circuit complexity and demonstrate that Mamba and SSMs,
despite their stateful designs, fall intoDLOGTIME-uniform TC0 with poly(n)-precision. These results
show that SSM and Mamba are fundamentally equivalent to Transformers in terms of computational
expressiveness, as their architectures are all constrained by the complexity class TC0. As a result,
Mamba cannot solve problems outside TC0, such as arithmetic formula evaluation and Boolean
formula value problems, unless TC0 = NC1.
Our contributions include formal proofs of the circuit complexity bounds for Mamba and SSMs, and
we show that their computational performances are equivalent to constant-depth uniform threshold
circuits. Additionally, we provide hardness results. The hardness results show that these architectures
cannot resolve sequential and state-dependent tasks that require higher computational depth. These
new findings challenge the assumption that Mamba has higher computational capabilities than
Transformers. By building the theoretical limits of Mamba and SSMs, our work contributes to
the broader understanding of the computational power of modern neural network models. We
emphasize the need for future innovations to solve problems beyond TC0 so they can solve more
complex and inherently sequential problems. We hope our study can inspire more research on
designing newer architectures that can balance efficiency, scalability, and enhanced expressiveness.
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Appendix
Roadmap. In Section A, we introduce more definitions related to our work, including circuit com-
plexity definitions, float point operations, and definitions for recurrent and convolution SSM. In
Section B, we present more proofs of the components of our main Theorem 4.4 and 4.5. In Section C,
we present the definitions for our hardness problems and the results with Selective SSM and Mamba.
In Section D, we provide more related works.

A. Preliminaries
In this section, we introduce more definitions related to our work. In Section A.1, we introduce more
float point numbers and their operations. In Section A.2, we define the components of Recurrent
SSM. In Section A.3, we define the components of Convolution SSM.
We begin by introducing the notations used in this paper.
Notation For n ∈ Z+, we define [n] := {1, 2, . . . , n}. We use Pr[·] to denote the probability. We use
E[·] to denote the expectation. We use Var[·] to denote the variance.
We define 1n ∈ Rn as (1n)i := 1, for all i ∈ [n]. Let Xi,j ∈ R be the (i, j)-th entry of an arbitrary
matrix X . Let ∥X∥∞ ∈ R be the largest entry of the matrix X . We denote xi = {0, 1}∗ to be the
binary sequence, where its length is not determined.

A.1. Float Point Numbers
In this section, we introduce the float point numbers.
Definition A.1 (Floating-point number, From Definition 9 in [20]). A p-bit floating-point number is
defined as a pair ⟨m, e⟩, wherem (the significand) is an integer satisfyingm ∈ (−2p,−2p−1)∪{0}∪[2p−1, 2p),
and e (the exponent) is an integer within the range e ∈ [−2p, 2p). The value of the floating-point number
⟨m, e⟩ corresponds to the real number m · 2e. The set of all p-bit floating-point numbers is denoted as Fp.
Definition A.2 (Rounding, From Definition 9 in [20]). x is a floating point or in R. Let roundp(x) be a
floating-point number with p-bit closest to x with an even significand in case of a tie.
Definition A.3 (Floating-point number operations, [20]). Consider a, b ∈ Z. Let the operation a � b be
as follows. Suppose a/b = C1/4, where C ∈ Z, then a � b = a/b. Or, a � b is equal to a/b+ 1/8.

With floating points ⟨m1, e1⟩, ⟨m2, e2⟩ having p-bits, we define the following operations:

• addition:

⟨m1, e1⟩+ ⟨m2, e2⟩ :=
{
roundp(⟨m1 +m2 � 2e1−e2 , e1⟩) if e1 ≥ e2,

roundp(⟨m1 � 2e2−e1 +m2, e2⟩) if e1 ≤ e2,

• multiplication:

⟨m1, e1⟩ × ⟨m2, e2⟩ := roundp(⟨m1m2, e1 + e2⟩)

• division:

⟨m1, e1⟩ ÷ ⟨m2, e2⟩ := roundp(⟨m12
p−1 � m2, e1 − e2 − p+ 1⟩)

• comparison:

⟨m1, e1⟩ ≤ ⟨m2, e2⟩ ↔
{
m1 ≤ m2 � 2e1−e2 if e1 ≥ e2,

m1 � 2e2−e1 ≤ m2 if e1 ≤ e2.

• floor: if e ≥ 0, then ⌊⟨m, e⟩⌋ := ⟨m2e, 0⟩. If e < 0, then ⌊⟨m, e⟩⌋ := round(⟨m/2−e, 0⟩)
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A.2. Discretization: Recurrent SSM
In this section, we define and formalize the discretization of recurrent SSMs and their associated
components. We provide a structured foundation for understanding their functionality and computa-
tion. We begin by introducing the discrete transformation technique that transforms the continuous
state-space representations into discrete ones.
Definition A.4 (Discrete State Space Transformation). Let ∆ denote the discretization step size. The
discrete parameters A ∈ Fn×n

p , B ∈ Fn×D
p , and C ∈ FD′×n

p are defined as follows:

A := exp(∆A),

B := (∆A)−1(exp(∆A)− I) ·∆B,

C := C,

where exp(∆A) denotes the matrix exponential of∆A, A ∈ Fn×n
p is the continuous state transition matrix,

B ∈ Fn×D
p is the continuous input influence matrix, C ∈ FD′×n

p is the output projection matrix, and
I ∈ Fn×n

p is the identity matrix.

Transitioning from the discretization step, we proceed to the hidden state recurrence in recurrent
SSM, which is the core update mechanism for hidden states across timesteps.
Definition A.5 (Hidden State Recurrence). Let H ∈ FL×n

p denote the hidden state, and X ∈ FL×N
p be

the output of Definition 3.18, where L is the length of the sequence and n denotes the hidden state dimensions.
We define the hidden state update function H : FL×N

p × Fn×n
p × Fn×D

p × Fp → FL×n
p as:

H(X,A,B,∆)t,i :=

n∑
j=1

Ai,j ·Ht−1,j +

D∑
k=1

Bi,k ·Xt,k,

where A ∈ Fn×n
p and B ∈ Fn×D

p are the parameters from Definition A.4,Ht−1,j denotes the hidden state at
timestep t− 1, initialized as H0,i = 0, and Xt,k denotes the input matrix at timestep t.

Finally, we are able to formalize recurrent SSMs, which combine the hidden state update mechanism
with the output projection step.
Definition A.6 (Recurrent SSM). LetX ∈ FL×N

p be the output of Definition 3.18. We define the Recurrent
SSM function SSMrecur : FL×N

p × Fn×n
p × Fn×D

p × FD′×n
p × Fp → FL×D′

p as:

SSMrecur(X,A,B,C,∆)t,d :=

n∑
i=1

Cd,i · H(X,A,B,∆)t,i,

where H(X) ∈ FL×n
p is the hidden state update function defined in Definition A.5, and C ∈ FD′×n

p is the
output projection matrix, mapping the hidden state to the output space.

A.3. Discretization: Convolutional SSM
In this section, we extend the formulation of SSM by presenting its convolutional implementations
after discretization. These are the core mechanisms that enable its parallel computations. We first
show the kernel computation.
Definition A.7 (Convolution Kernel). Let A ∈ Fn×n

p , B ∈ Fn×D
p , and C ∈ FD′×n

p denote the discrete
state-space parameters. We define the convolution kernel K ∈ FD′×D×M

p for parallel computations as:

K[d′, d, k] =

n∑
i=1

n∑
j=1

Cd′,i · (A
k
)i,j ·Bj,n,

where d′ ∈ [D′] is the output feature dimension index, d ∈ [D] is the input feature dimension index, and
k ∈ [M ] is the time offset index, and M is the length of the kernel.
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By using this kernel K, we can compute the final output sequence through convolution.
Definition A.8 (Convolution Output Sequence for SSM). Let X ∈ FL×N

p be the output from Defini-
tion 3.18), where t ∈ [L] is the index of the sequence, d ∈ [D] is the index of input feature. Using the kernel
K ∈ FD′×D×M

p from Definition A.7, we define the convolution SSM SSMconv : FL×N
p × Fn×n

p × Fn×D
p ×

FD′×n
p × Fp → FL×D′

p as:

SSMconv
t,d (X,A,B,C,∆) =

L−1∑
k=0

D∑
d=1

K[d′, d, k] ·Xt−k,d

for each t = 0, 1, . . . , L− 1, Here SSMconv
t,d is the output for timestep t and output feature d, K[d′, d, k] is the

kernel weight for output feature d′, input feature d, and time offset k, and Xt−k,d is the input for timestep
t− k, and input dimension d.

B. Complexity of SSM and Mamba
In this section, we provide additional proofs to support our theorem.
In Section B.1, we show the Hadamard product is in TC0. In Section B.2, we show the discretization in
SSM is in TC0. In Section B.3, we show approximating logarithm can be done in TC0. In Section B.4,
we show the Softplus Activation is in TC0. In Section B.5, we show the SiLU Activation is in TC0.
In Section B.6, we show the hidden state update function is in TC0. In Section B.7, we show the
computation of kernel in Convolution SSM is in TC0. In Section B.8, we show the convolution
indexing is in TC0. In Section B.9, we show the 1-D convolution layer in Mamba is in TC0. In
Section B.10, we show the selective functions are in TC0.

B.1. Computing Entry-wise Matrix Multiplication
Now, we present computing entrywise matrix multiplication.
Lemma B.1 (Hadamard Product in TC0). Let A ∈ Fn×d

p and B ∈ Fn×d
p . If p ≤ poly(n), n ≤ poly(n),

and d ≤ n, then we can compute the Hadamard product A ◦B using a uniform threshold circuit, whose depth
is dstd, and size is poly(n).

Proof. We have (A ◦B)i,j = Ai,j ·Bi,j . By Lemma 3.12, a threshold circuit with constant depth dstd
can compute every product Ai,j ·Bi,j . Since the computations of Ai,j ·Bi,j for different pairs (i, j)
are independent, all such products can be computed in parallel with the same depth dstd.
The circuit’s size stays polynomial in n because both n and d are bounded by poly(n), and each
multiplication is implemented using a circuit of poly size.

B.2. Computing Discretization

In this section, we prove computing discretization is in TC0.
Lemma B.2 (Discretization in TC0). Let A ∈ Fn×n

p be a diagonal matrix and B ∈ Fn×d
p , where n ≤

poly(n), and d ≤ poly(n). Then a uniform threshold circuit with size poly(n) and constant depth ddisc can
compute the discrete parameters A and B from Definition A.4.

Proof. Given the discretization parameter:
A := exp(∆A),

B := (∆A)−1(exp(∆A)− I) ·∆B.

The computation involves three main steps: computing exp(∆A), inverting ∆A, and performing
matrix multiplications.
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Since A is diagonal, each entry of exp(∆A) can be computed independently as (exp(∆A))i,i =
exp(∆Ai,i). By part 1 of Lemma 3.12 and Lemma 3.14, A can be computed in depth-(dstd + dexp).
To compute (∆A)−1, each entry of (∆A)−1 can be computed independently as ((∆A)−1)i,i =
(∆Ai,i)

−1. By part 1 of Lemma 3.12, this inversion is in depth-dstd.
Next, we computeB as follows: To compute exp(∆A)−I , each entry (exp(∆A)−I)i,i = exp(∆Ai,i)−1
can be computed independently in depth-dexp + dstd by Lemma 3.12 and Lemma 3.14; to compute
(∆A)−1 · (exp(∆A)− I), since both matrices are diagonal, we perform element-wise multiplication,
which uses depth-dstd by Lemma B.1; to compute (∆A)−1 · (exp(∆A)− I) ·B, we perform matrix
multiplication, which uses depth-dstd + d⊕.
Finally, we can show

ddisc = 5dstd + 2dexp + d⊕

The circuit’s size stays polynomial in n because both n and d are bounded by poly(n), and each
operation is implemented using a circuit of poly size.

B.3. Approximating Logarithm in TC0

In this Section, we present the formal proof for approximating logarithm in TC0

Lemma B.3 (Approximate Logarithm in TC0, formal version of Lemma 4.1). For any p-bit floating-
point number x ∈ Fp, we can use a uniform threshold circuit, whose depth is dlog and size is poly(n) to
approximate the logarithm log(x), where the error is less than or equal to 2−p.

Proof. We can use truncated Taylor Series ([47, 48]).
Let p ∈ O(poly(n)). For log(x) where x = ⟨m, e⟩: If e is even, let r = m · 2−p ∈ [ 12 , 1) and k = e+ p;
otherwise, let r = m · 2−p+1 ∈ [1, 2) and k = e+ p− 1.
Compute log(r) using the Taylor series about 1:

log(r) =

N−1∑
i=1

(−1)i+1 (r − 1)i

i
+O(|r − 1|N ).

Since |r− 1| < 1, there is anN ∈ O(p) that makes the relative error at most 2−p−1. Then we compute
log(x) as follows:

log(x) = log(r) + k · log(2).

To compute log(2), use the Taylor series:

log 2 =

N−1∑
i=1

1

i · 2i
+O(2−N ).

Thus, we approximate log(x) as:

log(x) ≈
N−1∑
i=1

(−1)i+1 (r − 1)i

i
+ k ·

N−1∑
i=1

1

i · 2i
.

Since N ∈ O(p), the total error is less than or equal to 2−p.
We can determine the total depth of the circuit required for these computations using Lemma 3.12.
To normalize x and compute the value of k, we must perform the division and floor operations, both
of which can be executed using a circuit of depth dstd; to compute log(r) using Taylor series, we
perform iterated multiplication, addition, and iterated addition, which uses a depth-d⊕ + d⊗ + dstd
circuit; to compute k · log(2), we perform iterated multiplication, addition, and iterated addition,
which uses a depth-d⊕ + d⊗ + dstd circuit; to compute log(x), we perform addition, which uses a
depth-dstd
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Finally, we can show
dlog = 2d⊕ + 2d⊗ + 3dstd.

Thus, we complete the proof.

B.4. Computing the Softplus Activation

In this section, we show the proof for Computing the Softplus Activation is in TC0

Lemma B.4 (Softplus in TC0). For any x ∈ Fp, size poly(n) and constant depth dsp uniform threshold
circuit, we can approximate the Softplus function, as defined in Definition 3.20, where the error is less than or
equal to 2−p.

Proof. Softplus(z) = log(1 + ez) can be calculated as the following. To compute exp(z), we perform
exponential function, which uses a depth-dexp by Lemma 3.14; to compute 1 + exp(z), we perform
addition, which uses a depth-dstd by Part 1 from Lemma 3.12; to compute log(1+exp(z)), we perform
logarithm, which uses a depth-dlog by Lemma B.3
Finally, we can show

dsp = dexp + dstd + dlog.

Therefore, using the uniform threshold circuit, where its size is equal to poly(n) and its depth is dsp,
we can compute Softplus(z).

B.5. Computing the SiLU Activation

In this section, we show the proof of SiLU, used in Mamba is in TC0.
Lemma B.5 (SiLU Activation in TC0). Let z ∈ FD

p denote the input feature vector, where p,D ≤ poly(n).
The SiLU defined in Definition 3.19 is computed using a uniform threshold circuit, where its size is equal to
poly(n) and its depth is (dexp + dstd).

Proof. From Definition 3.19, SiLU is given as
SiLU = z · σ(z),

where σ(z) denotes the sigmoid function, defined as:

σ(z) =
1

1 + e−z
.

We compute SiLU(z) as follows. To compute e−z , we use Lemma 3.14, and it can be computed
by a threshold circuit in depth-dexp; to compute z · 1

1+e−z , we perform addition, division, and
multiplication. By Part 1 from Lemma 3.12, we can compute it using a threshold circuit in depth-dstd.
Therefore, we get the desired result.

B.6. Hidden State Recurrent in TC0

In this section, we prove the hidden state update in Recurrent SSM is in TC0.
Lemma B.6 (Hidden State Recurrence in TC0). Let A ∈ Fn×n

p , B ∈ Fn×D
p , and X ∈ FL×D

p denote the
input matrix, where p, n,D ≤ poly(n). The hidden state recurrence from Definition A.5 can be computed by
a threshold circuit with size poly(n) and constant depth dh.

Proof. From Definition A.5, the hidden state recurrence is given by:

H(X,A,B,∆)t,i :=

n∑
j=1

Ai,j ·Ht−1,j +

D∑
k=1

Bi,k ·Xt,k,
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where A ∈ Fn×n
p , B ∈ Fn×D

p , H ∈ FL×n
p is the hidden state, and X ∈ FL×D

p is the input sequence.
The computation ofH(X,A,B,∆) involves two steps: iterative addition, multiplication, and addition:
To compute∑n

j=1 Ai,j ·Ht−1,j and
∑D

k=1 Bi,k ·Xt,k, we need multiplication and iterated addition. By
Lemma 3.12, we can compute them by a threshold circuit in depth-dstd + d⊕; to compute∑n

j=1 Ai,j ·
Ht−1,j +

∑D
k=1 Bi,k · Xt,k, we then perform addition. By Lemma 3.12, it can be computed by a

threshold circuit in depth-dstd
The total depth of the circuit for computing H(X,A,B,∆) is given by:

dh = 2dstd + d⊕.

Since the circuit size is polynomial in n and the depth dh is constant, we get our desired result.

B.7. Computing Kernel in Convolution SSMs is in TC0

In this section, we show the computation of Kernel in TC0.
Lemma B.7 (Convolution Kernel in TC0). Let A ∈ Fn×n

p , B ∈ Fn×D
p , and C ∈ FD′×n

p , where
p, n,D,D′,M ≤ poly(n). The convolution kernel K ∈ FD′×D×M

p , as defined in Definition A.7, can
be computed by a threshold circuit with size poly(n) and constant depth dk.

Proof. From Definition A.7, the convolution kernel computation is given by:

K[d′, d, k] =

n∑
i=1

n∑
j=1

Cd′,i · (A
k
)i,j ·Bj,n,

We can compute in the following steps

1. Since A is a diagonal matrix, each entry (A
k
)i,i can be computed as (Ai,i)

k. By part 2 of
Lemma 3.12, iterated multiplication can be computed by a threshold circuit with constant
depth d⊗. The computations of (Ai,i)

k for all i are independent, so A
k can be computed in

depth d⊗.

2. To compute (Ak ·B), we perform matrix multiplication. By Lemma 3.16, we can compute it
using a threshold circuit where its depth is dstd + d⊕.

3. To computeK[d′, d, k], it performs another matrix multiplicationC · (Ak ·B). By Lemma 3.16,
we can compute it using a threshold circuit where its depth is dstd + d⊕.

Finally, we can show that
dk = d⊗ + 2dstd + 2d⊕,

so we get the desired result.

B.8. Convolution Indexing in TC0

In this section, we prove the indexing operation in 1-D Convolution is in TC0.
Lemma B.8 (Convolution Indexing in TC0). Let X ∈ FL×D

p denote the input sequence, where L is the
sequence length, and D is the feature dimension. Let t ∈ [L] and k ∈ [K] denote indices for time steps and
kernel offsets. L,D,K ≤ poly(n). Retrieving the value Xt−k,d for b ∈ [B] and d ∈ [D], with zero-padding
applied for t− k < 0, can be computed by a uniform threshold circuit with size poly(n) and constant depth
dstd.
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Proof. The indexing operation has two primary operations: checking the boundary and retrieving
the value.
To compute boundary checking for each time step t ∈ [L], kernel offset k ∈ [K], and feature d ∈ [D],
we need to check if t−k < 0 for the zero-padding. We define BoundaryCheck(t, k) function as follows:

BoundaryCheck(t, k) =

{
1 if t− k < 0,

0 otherwise.

To computeBoundaryCheck(t, k), we perform subtraction and comparison. By Part 1 from lemma 3.12,
they can be computed in dstd.
To compute value retrieval, we can establish the following:

Xt−k,d = (1− BoundaryCheck(t, k)) ·Xt−k,d

where if BoundaryCheck(t, k) = 1, Xt−k,d will be evaluated to 0 so we apply zero padding.
To compute Xt−k,d, we perform subtraction and multiplication. By Part 1 from Lemma 3.12, they
can be computed in dstd.
Therefore, we get the desired result.

B.9. 1-D Convolution in TC0

In this section, we show the 1-D convolution layer in Mamba is in TC0.
Lemma B.9 (1-D Convolution in TC0). Let W ∈ FK×D′×N

p and X ∈ FL×D′

p , where p,K,L,D′, N ≤
poly(n). We can use the threshold circuit, where its size is poly(n) and its depth is d1dconv to compute the
1-D convolution function C : FL×D′

p → FL×N
p (see Definition 3.18).

Proof. The 1-d convolution from Definition 3.18 is the following:

C(X)t,n =

K−1∑
k=0

D′∑
d′=1

W [k, d′, n] ·Xt−k,d′ ,

this convolution has three primary operations: matrix indexing, entry-wise multiplications, and
summation.
We can compute C(X) as the following. To compute matrix indexing, from Lemma B.8, it can be
computedwith a threshold circuit in depth-dstd; to compute∑D′

d′=1 W [k, d′, n]·Xt−k,d′ for kernel index
k ∈ [K] and feature dimension d′ ∈ [D′], we perform matrix multiplication. By Lemma 3.16, it can be
computedwith a threshold circuit with depth-dstd+d⊕; to compute∑K−1

k=0

∑D′

d′=1 W [k, d′, n] ·Xt−k,d′ ,
we perform iterated addition. By Part 1 from Lemma 3.12, it can be computed with a threshold in
depth-d⊕.
Finally, we can show that

d1dconv = 2dstd + 2d⊕.

Therefore, we get the desired result.

B.10. Selection Functions in TC0

In this section, we show selective functions computation are in TC0.
Lemma B.10 (Selection Functions in TC0). Let X ∈ FL×D

p denote the input sequence. LetWB ∈ Fn×L
p ,

WC ∈ FD′×L
p , andW∆ ∈ F1×L

p denote learned selection weight matrices, and PB ∈ FD×N
p , PC ∈ FD×N

p ,
P∆ ∈ FD

p denote projection matrices. We can use the threshold circuit, where its size is poly(n) and its depth
is dselect to compute the selection function (see Definition 3.21).
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Proof. The selection mechanisms from Definition 3.21 are the following sB(X) = WBXPB , sC(X) =
WCXPC , s∆(X) = τ∆ · BroadcastD(W∆XP∆),.
These computations have threemain operations: matrix multiplications, broadcasting, and non-linear
activations.
We can compute selection functions as follows. To compute both sB(X) = WBXPB , sC(X) =
WCXPC , andW∆XP∆, we perform matrix multiplication. By Lemma 3.16, we compute it using
the threshold circuit (where the depth is dstd + d⊕); to compute Broadcast(W∆XP∆), we simply
copying the scalar value across D dimensions, which is a simple duplication operation in constant
depth-ddup; to compute τ∆ which is Softplus(w∆) in this case, by Lemma B.4, it can be computed by
a threshold circuit in depth-dsp; to compute τ∆ · BroadcastD(W∆XP∆), we perform multiplication.
By Part 1 from Lemma 3.12, it can be computed by a threshold circuit in depth-dstd.
Finally, we can show

dselect = 2dstd + d⊕ + ddup + dsp.

Therefore, we get our desired result.

C. Our Hardness Results
Wepresent the problems about the arithmetic formula in Section C.1. We analyze the Boolean formula
value problem in Section C.2. We introduce the permutation composition problem in Section C.3. In
Section C.4, we state our four hardness results.

C.1. The First Problem
Now, we show the following definition from [49].
Definition C.1 (Arithmetic formula, Definition in [49]). Let S be a semi-ring (which may also be a ring
or field). An arithmetic formula over S with indeterminates X1, X2, . . . , Xn is defined by:

• For i ∈ [n], Xi is an arithmetic formula.

• For every c ∈ S, c is an arithmetic formula.

• If α is an arithmetic formula and θ is a unary operation of S then (θα) is arithmetic formula.

• If α and β are arithmetic formulas and θ is a binary operator of S then (αθβ) is an arithmetic formula.

An arithmetic formula A with indeterminates X1, . . . , Xn is denoted by A(X1, . . . , Xn).

After defining the arithmetic formula, we then present its computational implications.
Definition C.2 (Arithmetic formula evaluation problem, Definition in [49]). Let S be a ring, field, or
semi-ring. The arithmetic formula evaluation problem is: Given an arithmetic formula A(X1, X2, . . . , Xn)
over S and constants c1, c2, . . . , cn ∈ S, what is A(c1, c2, . . . , cn)?
Remark C.3. In [49], they have shown that the problem defined in Definition C.2 belongs to NC1.

C.2. The Second Problem
In this section, we show the second problem.
Definition C.4 (Definition in [50], page 1). We have Σ = {0, 1,∧,∨,¬, (, )}. We define the Boolean
formula by the following:

• We have 0 and 1 being the Boolean formulas.

• Suppose we have β, α being the Boolean formulas. Then, we can get that (α ∧ β), (¬α), and (α ∨ β)
being the Boolean formulas.
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Also, we define the following
Definition C.5 (Definition in [50]. page 1). We define |α| to be the amount of symbols from α (which is a
string).
Definition C.6 (Definition in [50]. page 1). We define the Boolean formula by the following:

• We have 0 and 1 being the Boolean formulas.

• Suppose we have β being the Boolean formulas. Then, we can get that (α¬) being the Boolean
formulas.

• Suppose we have β, α being the Boolean formulas. Suppose |α| is greater than or equal to |β|. Then,
we can get that αβ∧ and αβ∨ are the Boolean formulas.

We use 0 to denote False and 1 to denote True.
Lemma C.7 (Page 1 in [50]). Consider a problem that decides the Boolean formula’s true value. This problem
falls in NC1.

C.3. Permutation Composition Problem
In this section, we present the permutation composition problem as established in [51] and its
computational implications.
Definition C.8 (Permutation, based on [51]). A permutation is a bijection π : [n] → [n], where [n] =
{1, 2, . . . , n} . The set of all permutations on [n] forms a group Sn, called the symmetric group. A permutation
π ∈ Sn may be represented in standard forms such as cycle notation or pointwise mapping.
Definition C.9 (Permutation composition, based on [51]). The composition of two permutations π1, π2 ∈
Sn is the permutation π = π2 ◦ π1 , defined by π(x) = π2(π1(x)) for all x ∈ [n] . The composition of a
sequence of permutations π1, π2, . . . , πk ∈ Sn is given by:

Π = πk ◦ πk−1 ◦ · · · ◦ π1.

Definition C.10 (Permutation composition problem, based on [51]). The permutation composition
problem is defined as if there is a sequence of permutations π1, π2, . . . , πk ∈ Sn represented in a standard form,
then the result of the composition Pi = πk ◦ πk−1 ◦ · · · ◦ π1 is expressed in the same representation.
Definition C.11 (Word problem for permutations, based on [51]). A specific instance of the permutation
composition problem is the word problem for permutations. This problem is defined as if there is a sequence of
permutations π1, π2, . . . , πk ∈ Sn, then we need to determine whether Π = πk ◦ πk−1 ◦ · · · ◦ π1 equals the
identity permutation e, where e(x) = x for all x ∈ [n].

The following theorems highlight the significance of the permutation composition problem within
computational complexity:
Lemma C.12 (Theorem 1 in [51]). Any language recognized by a fan-in 2 Boolean circuit of depth
d = O(log n) can be recognized by a width-5 permutation branching program (PBP) of polynomial size.
Consequently, the class of languages recognized by polynomial-size PBPs of bounded width equals NC1.
Lemma C.13 (Word Problem Completeness, based on [51]). The word problem for the group S5, which
involves determining whether a composition of permutations equals the identity, is NC1-complete under AC0

reductions.

C.4. Results About Hardness
We introduce the hardness results for arithmetic formula evaluation problems.
Lemma C.14. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.2 cannot be solved by the SSM.

Proof. It is by Theorem 4.4, Lemma C.3, and Fact 3.8.
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Lemma C.15. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.2 cannot be solved by the Mamba.

Proof. It is by Theorem 4.5, Lemma C.3, and Fact 3.8.

We introduce the hardness results for the Boolean formula problem.
Lemma C.16. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.6 cannot be solved by the SSM.

Proof. It is by Theorem 4.4, Lemma C.7, and Fact 3.8.

Lemma C.17. if TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have that Definition C.6 cannot be solved by the Mamba.

Proof. It is by Theorem 4.5, Lemma C.7, and Fact 3.8.

We introduce the hardness results for permutation composition problems.
Here, we show SSM and Mamba cannot solve Width-5 PBPs from Lemma C.12.
Lemma C.18. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the SSM cannot solve the Width-5 PBPs.

Proof. It is by Theorem 4.4, Lemma C.12, and Fact 3.8.

Lemma C.19. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the Mamba cannot solve the Width-5 PBPs.

Proof. It is by Theorem 4.5, Lemma C.12, and Fact 3.8.

Here, we show SSM and Mamba cannot solve the word problem from Lemma C.13.
Lemma C.20. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the SSM cannot solve the word problem.

Proof. It is by Theorem 4.4, Lemma C.13, and Fact 3.8.

Lemma C.21. If TC0 ̸= NC1, float point number is poly(n)-bits precision, layers are constant-depth, and
hidden dimension is O(n) size, then we can have the Mamba cannot solve the word problem.

Proof. It is by Theorem 4.5, Lemma C.13, and Fact 3.8.

TheoremC.22 (Formal proof of Theorem 5.1). ifTC0 ̸= NC1, float point number is poly(n)-bits precision,
layers are constant-depth, and hidden dimension is O(n) size, then we can have the Selective SSM and Mamba
cannot solve the arithmetic formula evaluation problems, boolean formula value problem, and permutation
composition problems.

Proof. Based on Lemma C.14, C.15, C.16, C.17, C.18, C.19, C.20, and C.21.
We conclude the Selective SSM and Mamba cannot solve the Definition C.6 and Definition C.2, and
permutation composition problems.
Thus, we complete the proof.
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D. More Related Work
Theoretical Machine Learning. Our work also takes inspiration from the following Machine Learn-
ing Theory work. Some works analyze the expressiveness of a neural network using the theory of
complexity [52–58]. Some works optimize the algorithms that can accelerate the training of a neural
network [58–84]. Some works analyze neural networks via regressions [85–95]. Some works use
reinforcement learning to optimize the neural networks [96–102]. Some works optimize the attention
mechanisms [103, 104].
Accelerating Attention Mechanisms. The attention mechanism, with its quadratic computational
complexity concerning context length, encounters increasing challenges as sequence lengths grow
in modern large language models [11, 105–108]. To address this limitation, polynomial kernel ap-
proximation methods [109] have been introduced, leveraging low-rank approximations to efficiently
approximate the attention matrix. These methods significantly enhance computation speed, allowing
a single attention layer to perform both training and inference with nearly linear time complexity
[110, 111]. Moreover, these techniques can be extended to advanced attention mechanisms, such
as tensor attention, while retaining almost linear time complexity for both training and inference
[112]. [113] provides an almost linear time algorithm to accelerate the inference of VAR Transformer.
Other innovations include RoPE-based attention mechanisms [114, 115] and differentially private
cross-attention approaches [116]. Alternative strategies, such as the conv-basis method proposed in
[104], present additional opportunities to accelerate attention computations, offering complementary
solutions to this critical bottleneck. Additionally, various studies explore pruning-based methods to
expedite attention mechanisms [117–124].
Gradient Approximation. The low-rank approximation is a widely utilized approach for optimizing
transformer training by reducing computational complexity [111, 118, 125–128]. Building on the low-
rank framework introduced in [110], which initially focused on forward attention computation, [111]
extends this method to approximate attention gradients, effectively lowering the computational cost
of gradient calculations. The study in [125] further expands this low-rank gradient approximation
to multi-layer transformers, showing that backward computations in such architectures can achieve
nearly linear time complexity. Additionally, [126] generalizes the approach of [111] to tensor-based
attention models, utilizing forward computation results from [112] to enable efficient training of
tensorized attention mechanisms. Lastly, [127] applies low-rank approximation techniques during
the training of Diffusion Transformers (DiTs), demonstrating the adaptability of these methods
across various transformer-based architectures.
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