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Abstract
Structured Kernel Interpolation (SKI) (Wilson &
Nickisch, 2015) scales Gaussian Processes (GPs)
by approximating the kernel matrix via induc-
ing point interpolation, achieving linear compu-
tational complexity. However, it lacks rigorous
theoretical error analysis. This paper bridges this
gap by proving error bounds for the SKI Gram ma-
trix and examining their effect on hyperparameter
estimation and posterior inference. We further
provide a practical guide to selecting the num-
ber of inducing points under convolutional cubic
interpolation: they should grow as nd/3 for spec-
tral norm error control. Crucially, we identify
two dimensionality regimes for the SKI Gram ma-
trix spectral norm error vs. complexity trade-off.
For d < 3, any error tolerance can achieve lin-
ear time for sufficiently large sample size. For
d ≥ 3, the error must increase with sample size
for our guarantees to hold. Our analysis provides
key insights into SKI’s scalability-accuracy trade-
offs, establishing precise conditions for achieving
linear-time GP inference with controlled error.

1. Introduction
Gaussian Processes (GPs) (Rasmussen & Williams, 2006)
are vital stochastic processes in machine learning and statis-
tics, with applications including spatial data analysis (Liu &
Onnela, 2021), time series forecasting (Girard et al., 2002),
bioinformatics (Huang et al., 2023), and Bayesian optimiza-
tion (Frazier, 2018). GPs provide a non-parametric frame-
work for modeling distributions over functions, offering
flexibility and uncertainty quantification. Their ability to
incorporate prior knowledge via kernel choice makes GPs
effective for regression and classification.

However, GPs face substantial O(n3) (sample size n) com-
putational and O(n2) memory bottlenecks, as training and
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inference require inverse Gram matrix computations and log-
determinant calculations. These issues necessitate scalable
approximations for larger datasets.

Structured Kernel Interpolation (SKI) (Wilson & Nickisch,
2015) scales GPs by approximating the kernel matrix via
inducing point interpolation. For stationary kernels, it
achieves O(n + m logm) (m inducing points) complex-
ity by expressing the kernel via interpolation functions and
an inducing point kernel matrix. Despite its effectiveness
and popularity (> 600 citations; (Gardner et al., 2018) has
3.5k GitHub stars), SKI lacks theoretical analysis. Key ques-
tions include: for a fixed SKI Gram matrix error using cubic
convolutional interpolation, how many inducing points are
needed? If m is a function of n, when does O(n+m logm)
complexity remain linear? What are the implications for
hyperparameter estimation and posterior inference?

This paper bridges SKI’s practice-theory gap with: 1) The
first error analysis for the SKI kernel, Gram matrix (spec-
tral norm), and related quantities, yielding guidelines for
selecting inducing points (m ∝ nd/3 for spectral norm error
control). 2) SKI hyperparameter estimation analysis. 3) SKI
inference analysis. Key findings are: a) Two dimension-
ality regimes link SKI Gram matrix error and complexity:
for d < 3, any fixed spectral error is achievable in lin-
ear time (sufficient n); for d ≥ 3, the error must increase
with n for our linear time guarantee. b) For µ-smooth log-
likelihoods, SKI-based gradient ascent approaches a true
stationary point’s neighborhood at an O(1/K) rate; neigh-
borhood size depends on SKI score function error (ignoring
responses, it scales linearly with n if m ∝ nd/3). This lever-
ages Stonyakin et al. (2023)’s results on inexact gradient
descent (d’Aspremont, 2008; Devolder et al., 2014).

Sec. 2 reviews related work and Sec. 3 gives SKI back-
ground. Sec. 4 bounds key SKI errors (kernel, Gram, cross-
kernel matrices). Sec. 5 analyzes SKI MLE and posterior
errors. Sec. 6 presents empirical validation. Sec. 7 con-
cludes with results, limitations, and future work.

2. Related Work
Related works fall into three main groups: theoretical analy-
ses of Gaussian process regression or kernel methods using
approximate kernels, SKI and its extensions, and papers
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Quantity Bound
SKI kernel error O( c2d

m3/d )

SKI Gram matrix error O( nc2d

m3/d )

SKI cross-kernel matrix error O(max(n,T )c2d

m3/d )

SKI score function error ∥y∥2O(
√
pn2c4d

m3/d )

SKI posterior mean error ∥y∥2O(c2dmax(T,n)+
√
Tnn

m3/d )

SKI posterior covariance error O(Tn2mc4d+
√
Tnmc4d max(T,n)
m3/d )

Table 1. Summary of SKI error bounds with convolutional cubic interpolation. Variables: n, T (train/test sizes), d (dimensionality), m
(inducing points), p (hyperparameters), c > 0 (constant). Key: Gram matrix error is O(nc2dm−3/d).

developing techniques we leverage. In the first group, Burt
et al. (2019; 2020) analyzed the sparse variational GP frame-
work (Titsias, 2009; Hensman et al., 2013), deriving KL
divergence bounds between true and variational approxi-
mate posteriors. Moreno et al. (2023) gave bounds on SKI
Gram matrix approximation error for univariate features,
comparing to Nyström, but did not analyze downstream ef-
fects on approximate MLE or GP posteriors. Also, Wynne &
Wild (2022); Wild et al. (2021) respectively gave a Banach
space view of sparse variational GPs and Nyström connec-
tions. Finally, Modell provide entry-wise error bounds for
low-rank kernel matrix approximations; our approach also
uses entry-wise bounds, but theirs target the best low-rank
approximation, while ours are for the SKI Gram matrix.
Only Moreno et al. (2023) treated SKI specifically, and only
in a very special case setting. Our work gives an end-to-
end theory of SKI from elementwise to spectral error to
estimation and posterior inference.

In the second group, Wilson & Nickisch (2015)’s founda-
tional work, which we analyze, introduced SKI for scalable
large-scale GP inference. Kapoor et al. (2021) extended
SKI to high dimensions via the permutohedral lattice. Ya-
dav et al. (2022) developed a sparse grid kernel interpolation
approach to address dimensionality. Most recently, Ban et al.
(2024) proposed flexible SKI adjusting grid points based on
kernel hyperparameters. We focus our analysis on the orig-
inal (Wilson & Nickisch, 2015) technique, though future
work could extend to these latter papers’ settings.

Relevant too are papers whose results or proof techniques
we leverage or extend. We derive a required multivariate
extension to Keys (1981)’s error analysis for convolutional
cubic interpolation. We also use a recent result from the
inexact gradient descent literature (Stonyakin et al., 2023)
to analyze gradient ascent on the SKI log-likelihood versus
the true log-likelihood. Finally, we adapt a proof technique
(Bach, 2013; Musco & Musco, 2017), common for approxi-
mate kernel ridge regression in-sample error, to bound test
SKI mean function error.

3. Gaussian Processes, Structured Kernel
Interpolation and Convolutional Cubic
Interpolation

This section provides background on Gaussian Processes
(GPs) and two key techniques for enabling scalable infer-
ence: Structured Kernel Interpolation (SKI) and Convolu-
tional Cubic Interpolation. SKI (Wilson & Nickisch, 2015)
addresses GPs scalability issue by approximating the kernel
matrix through interpolation on a set of inducing points,
leveraging the efficiency of convolutional kernels. In partic-
ular, cubic convolutional kernels, as detailed in Keys (1981),
provide a smooth and accurate interpolation scheme that
forms the foundation of the SKI framework. In this paper,
we focus on this cubic case as it is used by SKI. Future
work may extend this to study higher-order interpolation
methods. Here, we formally define these concepts and lay
the groundwork for the subsequent error analysis.

3.1. Gaussian Processes

A Gaussian process ξ ∼ GP(ν, kθ) is a stochastic process
{ξ(x)}x∈X such that any finite subcollection {ξ(xi)}ni=1 is
multivariate Gaussian distributed. We assume that we have
index locations xi ∈ Rd and observations yi ∈ R for a set
of training points i = 1, . . . , n such that

yi = ξ(xi) + ϵi, ϵi ∼ N (0, σ2).

where ν : X → R, kθ : X × X → R are the prior mean
and covariance functions, respectively, with k a positive
semi-definite (PSD) kernel with hyperparameters θ. Given
{xi, yi}ni=1 or alternatively X ∈ Rn×d, y ∈ Rn, we wish
to: 1) estimate hyperparameters θ ∈ Θ ⊆ Rp of kernel kθ
(e.g. RBF kernel) 2) do Bayesian inference for the posterior
mean µ(·) ∈ RT and covariance Σ(·) ∈ RT×T at a set
of test points {xt}Tt=1. Assuming ν ≡ 0 (a mean-zero GP
prior), for 1), one maximizes the log-likelihood

L(θ;X) = −1

2
y⊤(K + σ2I)−1y

− 1

2
log |K + σ2I| − n

2
log(2π) (1)
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to find θ ∈ D ⊆ Θ where K ∈ Rn×n with entries Kij =
kθ(xi, xj) is the Gram matrix for the training dataset. For 2),
given the kernel function, known observation variance σ2 >
0 and matrix of kernel evaluations between test and training
points K·,X ∈ RT×n, the posterior mean and covariance are

µ(·) = K·,X
(
K+ σ2I

)−1
y (2)

Σ(·) = K·,· + σ2I − K·,X(K + σ2I)−1KX,·. (3)

Intuitively, the GP prior represents our belief about all pos-
sible functions before seeing any data. When we observe
data points, the posterior represents our updated belief - it
gives higher probability to functions that fit our observations
while maintaining the smoothness properties encoded in the
kernel. The posterior mean can be viewed as a weighted
average of these functions, where the weights depend on
how well each function fits the data and satisfies the prior
assumptions. The posterior variance indicates our remaining
uncertainty - it is smaller near observed points where we
have more confidence, and larger in regions far from our
data.

A challenge is that, between the log-likelihood and the pos-
teriors, one first needs to compute the inverse regularized
Gram matrix times the response vector, (K + σ2I)−1y. Sec-
ond, one needs to compute the log-determinant log |K+σ2I|.
These are both O(n3) computationally and O(n2) memory.

3.2. Structured Kernel Interpolation

Structured kernel interpolation (Wilson & Nickisch, 2015)
or (SKI) addresses these computational and memory bot-
tlenecks by approximating the original kernel function
kθ : X × X → R,X ⊆ Rd by interpolating kernel val-
ues at a chosen set of inducing points

U =

 u⊤
1
...

u⊤
m

 ∈ Rm×d.

The approximate kernel k̃ : X × X → R is then:

k̃(x,x′) = w(x)⊤KUw(x′)

where KU ∈ Rm×m is the inducing point kernel matrix,
and w(x),w(x′) ∈ Rm are vectors of interpolation weights
using (usually cubic) convolutional kernel u : R → R for
the points x and x′, respectively. One then forms the SKI
Gram matrix K̃ = WKUW⊤ with W a sparse matrix of L
interpolation weights per row for a polynomial of degree
L− 1. By exploiting the sparsity of each row, for stationary
kernels this leads to a computational complexity of O(nL+
m logm) and a memory complexity of O(nL+m).

To learn kernel hyperparameters, one maximizes the SKI
log-likelihood approximation (henceforth the SKI log-
likelihood)

L̃(θ;X) = −1

2
y⊤(K̃ + σ2I)−1y

− 1

2
log |K̃ + σ2I| − n

2
log(2π)

Given the SKI kernel k̃ : X × X → R with learned hy-
perparameters, one can do posterior inference of the SKI
approximations to the mean µ̃(·) and covariance Σ̃(·) at a
set of T test points · as

µ̃(·) = K̃·,X

(
K̃+ σ2I

)−1

y

Σ̃(·) = K̃·,· + σ2I − K̃·,X(K̃ + σ2I)−1K̃X,·

where K̃·,X ∈ RT×n is the matrix of SKI kernels between
test points and training points and K̃·,· ∈ RT×T is the SKI
Gram matrix for the test points. Going forward, we may
write L(θ) and L̃(θ), dropping the explicit dependence on
the data but implying it.

3.3. Convolutional Cubic Interpolation

Convolutional cubic interpolation (Keys, 1981) gives a con-
tinuously differentiable interpolation of a function given its
values on a regular grid, where its cubic convolutional ker-
nel is a piecewise polynomial function designed to ensure
continuous differentiability. We formalize this using the def-
initions of the cubic convolutional interpolation kernel and
the tensor-product cubic convolutional function below. We
also define an upper bound for the sum of weights for each
dimension, which will be a useful constant going forward.
Such a bound will exist for all continuous stationary kernels
vanishing at infinity.

Definition 3.1. The cubic convolutional interpolation kernel
u : R → R is given by

u(s) ≡


1, s = 0
3
2 |s|

3 − 5
2 |s|

2 + 1, 0 < |s| < 1

− 1
2 |s|

3 + 5
2 |s|

2 − 4|s|+ 2, 1 < |s| < 2

0, otherwise

Definition 3.2. Let x = (x1, x2, ..., xd) ∈ Rd be a d-
dimensional point and f : Rd → R a function defined
on a regular grid with spacing h in each dimension. Let cx
denote the grid point closest to x. The tensor-product cubic
convolutional interpolation function g : Rd → R is:

g(x) ≡
∑

k∈{−1,0,1,2}d
f(cx + hk)

d∏
j=1

u

(
xj − (cx)j − hkj

h

)

where u is the cubic convolutional interpolation kernel and
k = (k1, . . . , kd) is a vector of integer indices.
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Definition 3.3. Given an interpolation kernel u : R → R
and a fixed n ∈ N, let c > 0 be an upper bound such that,
for any x ∈ R and a set of data points {xi}ni=1 ⊂ R,

n∑
i=1

∣∣∣∣u(x− xi

h

)∣∣∣∣ ≤ c,

Going forward, we always assume that we use convolutional
cubic polynomial interpolation, so that L = 4 as in (Wilson
& Nickisch, 2015), but that we may vary the number of
inducing points m. In particular, we will analyze how the
number of inducing points affects error for different terms of
interest, and how to choose the number of inducing points.

4. Important Quantities
This section derives bounds for key quantities in Structured
Kernel Interpolation (SKI). Section 4.1.1 provides a bound
on the elementwise error between the true kernel and its
SKI approximation. In Section 4.1.2, we extend this to
the spectral norm error of the SKI approximation for the
training Gram matrix and train-test kernel matrix. Finally, in
section 4.2 we present conditions on the number of inducing
points for achieving specific error tolerance ϵ > 0 and error
needed to guarantee linear time complexity, noting linear
time always holds for d < 3 with sufficiently large samples.

4.1. Error Bounds for the SKI Kernel

This subsection analyzes the error introduced by the SKI
approximation of any symmetric kernel function. We start
by extending the analysis of Keys (1981) to the multivariate
setting, deriving error bounds for multivariate cubic convolu-
tional polynomial interpolation. We then use these to derive
the elementwise error for the SKI approximation k̃(x, x′)
to a symmetric kernel, which may not be positive (semi)-
definite. We next apply these elementwise bounds to derive
spectral norm error bounds for SKI kernel matrices, which
will be crucial for understanding the downstream effects of
the SKI approximation on Gaussian process hyperparameter
estimation and posterior inference.

4.1.1. ELEMENTWISE

Our first lemma shows that multivariate tensor-product cubic
convolutional interpolation retains error cubic in the grid
spacing of Keys (1981), which is equivalent to m−3/d decay
with the number of inducing points m, but may exhibit
exponential error growth with increasing dimensions.

Its proof proceeds by induction on the dimension d. The
base case for d = 1 relies on the known univariate cubic
convolution interpolation error bound from Keys (1981).
The inductive step then demonstrates how this error bound
accumulates, approximately multiplicatively with the con-

stant c for each added dimension, when extending to the
tensor-product case.

Lemma 4.1. The uniform error bound over a compact do-
main X ⊆ Rd for tensor-product cubic convolutional in-
terpolation of a thrice continuously differentiable function
f : Rd → R by its interpolant g : Rd → R is

sup
x∈X

|f(x)− g(x)| = O(cdh3)

or equivalently O
(

cd

m3/d

)
.

Proof. See Appendix B.1.1.

The following Lemma allows us to bound the absolute dif-
ference between the true and SKI kernels uniformly with the
same big-O error as for the underlying interpolation itself.
The proof uses the the triangle inequality to decompose the
error into two parts: the first is from a single interpolation,
while the second from nested interpolations.

Lemma 4.2. Let δm,L denote the uniform error bound of
tensor-product cubic convolutional interpolation (Lemma
4.1) for m inducing points and interpolation degree L −
1 (hence L = 4 for cubic interpolation, as used in SKI).
The SKI kernel k̃ : X × X → R approximating a thrice
continuously differentiable (not necessarily PSD) kernel
k : X → X with uniform grid spacing h in each dimension
has error

|k(x, x′)− k̃(x, x′)| ≤ δm,L +
√
Lcdδm,L

= O

(
c2d

m3/d

)
.

Proof. See Appendix B.1.3

4.1.2. SPECTRAL NORM ERROR

We now transition from elementwise error bounds to spec-
tral norm bounds for the SKI gram matrix’s approximation
error, finding that it grows linearly with the sample size, ex-
ponentially with the dimension, and decays as m−3/d with
the number of inducing points. This is not only of indepen-
dent interest but also important for nearly all downstream
estimation and inference analysis. We also provide a bound
on the spectral norms of the SKI train/test kernel matrix’s
approximation error. This is useful when analyzing the GP
posterior parameter error.

For this next lemma we will express it both in the general
interpolation setting and again give the specific big-O for
convolutional cubic interpolation, but going forward we
sometimes only show the latter setting in the main paper
and derive the general settings in the proof. In particular,
whenever we use big O-notation we are assuming convolu-
tional cubic interpolation.
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Proposition 4.3. For the SKI approximation K̃ of the true
Gram matrix K, we have

∥K − K̃∥2 ≤ n
(
δm,L +

√
Lcdδm,L

)
≡ γn,m,L

= O

(
nc2d

m3/d

)
Proof. See Appendix B.1.4

Its proof leverages the previous elementwise error bounds.
Since the error K − K̃ is symmetric, its spectral norm is
bounded by its maximum absolute row sum (|| · ||∞ norm).
Each row sum involves n terms, each bounded by the ele-
mentwise error: this gives n · (elementwise error) structure.
The next bound uses the property ∥A∥2 ≤

√
∥A∥1∥A∥∞,

which simplifies to ∥A∥2 ≤ max(∥A∥1, ∥A∥∞) for poten-
tially non-square matrices. The maximum absolute col-
umn sum (∥ · ∥1) and row sum (∥ · ∥∞) of the error matrix
K·,X − K̃·,X are bounded using the elementwise error from
Lemma 4.2, scaled by T and n respectively.

Lemma 4.4. Let K·,X ∈ RT×n be the matrix of kernel
evaluations between T test points and n training points, and
let K̃·,X ∈ RT×n be the corresponding SKI approximation.
Then

∥K·,X − K̃·,X∥2 = O

(
max(n, T )c2d

m3/d

)
Proof. See Appendix B.1.5.

4.2. Achieving Errors in Linear Time

Here, we show how many inducing points m are sufficient
to achieve a desired error tolerance ϵ > 0 for the SKI Gram
matrix when using cubic convolutional interpolation. Based
on the Theorem, we should grow the number of inducing
points at an nd/3 rate. We then show corollaries describing
1) how ϵ and m must grow to maintain linear time 2) how
the dimension affects whether the error must grow with the
sample size to ensure linear time SKI.

The following theorem shows the number of inducing points
that will control Gram matrix error. It says that the number
of inducing points should grow as nd/3 to achieve a fixed
error. The proof starts by lower bounding the desired spec-
tral norm error with the upper bound on the actual spectral
norm error derived in Proposition 4.3: this is a sufficient
condition for the desired spectral norm error to hold. It then
relates the number of inducing points to the grid spacing in
the SKI approximation, assuming a regular grid with equal
spacing in each dimension. By substituting this relationship
into the sufficient condition, the proof derives the sufficient
number of inducing points to control error.

Theorem 4.5. If the domain is [−D,D]d, then to achieve
a spectral norm error of ∥K − K̃∥2 ≤ ϵ, it is sufficient to
choose the number of inducing points m such that:

m =
(n
ϵ
(1 + 2cd)K ′(8c2dD3)

)d/3
for some constant K ′ that depends only on the kernel func-
tion and the interpolation scheme.

Proof. See Appendix B.2.1.

The number of inducing points should thus grow:

• Sub-linearly with the sample size and decrease in error
for d < 3, linearly for d = 3 and super-linearly for
d > 3. Thus, as we want a tighter error tolerance
or have more observations we need more inducing
points, but at very different rates depending on the
dimensionality.

• Linearly with the volume of the domain (2D)d. Thus,
if our observations are concentrated in a small region
and we select an appropriately sized domain to cover
it we need fewer inducing points.

• Doubly exponentially with the dimension d, as we
have a c2d term taken to the power d/3. However, our
empirical results suggest that this is quite pessimistic.

The next Corollary establishes a condition on the spectral
norm error, ϵ, that ensures linear-time O(n) computational
complexity for SKI. The core idea is that ϵ should be such
that if we choose m based on the previous Theorem, m =
O(n/ log n) and thus m logm = O(n).

Corollary 4.6. If

ϵ ≥ (1 + 2cd)K ′8c2dD3

C3/d
· n(log n)

3/d

n3/d
(4)

for some constants K ′, C > 0 that depend on the kernel
function and the interpolation scheme and we choose m > 0
based on the previous theorem, then we have both ∥K −
K̃∥2 ≤ ϵ and SKI computational complexity of O(n).

Proof. See Appendix B.2.2.

Interestingly, the previous Theorem and Corollary im-
ply a fundamental difference between two dimensionality
regimes. For d < 3, the choice of m required for a fixed ϵ
grows more slowly than n/ log n. This means that for any
fixed ϵ > 0, SKI with cubic interpolation is guaranteed to
be a linear-time algorithm for sufficiently large n. In con-
trast, for d ≥ 3, the choice of m required for a fixed ϵ > 0
eventually grows faster than n/ log n. Thus, to maintain
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linear-time complexity for d ≥ 3 and the guarantees from
Theorem 4.5, we must allow the error ϵ to increase with n.
This demonstrates that the curse of dimensionality impacts
the scalability of SKI, making it challenging to guarantee
both high accuracy and linear-time complexity in higher
dimensions. The next corollary formalizes this.

Corollary 4.7. For d < 3, for any ϵ > 0, Corollary 4.6
holds for any n sufficiently large, so that choosing m based
on Theorem 4.5 is sufficient to achieve linear complexity.
For d ≥ 3, ϵ must grow with the sample size to guarantee
linear complexity using Theorem 4.5.

Proof. For d < 3, the RHS of Eqn. 4 decreases with n with
limit 0 and thus for sufficiently large sample size will be ≤ ϵ,
satisfying the conditions to guarantee small error and linear
time. For d ≥ 3, the RHS of Eqn. 4 grows with n, so that ϵ
must grow to satisfy the conditions for the guarantee.

5. Gaussian Processes Applications
In this section, we address how SKI affects Gaussian Pro-
cesses Applications. In Section 5.1 we address how using
the SKI kernel and log-likelihood affect hyperparameter
estimation, showing that gradient ascent on the SKI log-
likelihood approaches a ball around a stationary point of the
true log-likelihood. In section 5.2 we describe how using
SKI affects the accuracy of posterior inference.

5.1. Kernel Hyperparameter Estimation

Here we show that, for a µ-smooth log-likelihood, an iterate
of gradient ascent on the SKI log-likelihood approaches a
neighborhood of a stationary point of the true log-likelihood
at an O

(
1
K

)
rate, with k = 1, . . . ,K the iterations and

with the neighborhood size determined by the SKI score
function’s error. To show this, we leverage a recent result for
non-convex inexact gradient ascent (Stonyakin et al., 2023),
which requires an upper bound on the SKI score function’s
error. This requires bounding the spectral norm error of the
SKI Gram matrix’s partial derivatives. In order to obtain
this, we note that for many symmetric kernels, under weak
assumptions, the partial derivatives are also (not necessarily
PSD) symmetric kernels, and thus we can reuse the previous
results directly on the partial derivatives.

Note that Stonyakin et al. (2023) does not actually imply
convergence to a neighborhood of a critical point, only that
at least one iterate will approach it. Given the challenges
of non-concave optimization and the fact that we leverage a
fairly recent result, we leave stronger results to future work.

Let D ⊆ Θ be a compact subset that we wish to optimize
over. In the most precise setting we would analyze projected
gradient ascent, but for simplicity we analyze gradient as-
cent. Let k̃θ : X × X → R be the SKI approximation of

kθ : X ×X → R using m inducing points and interpolation
degree L− 1. We are interested in the convergence proper-
ties of inexact gradient ascent using the SKI log-likelihood,
e.g.

θk+1 = θk + η∇L̃(θk),

where η ∈ R is the learning rate and ∇L̃(θk) is the SKI
score function (gradient of its log-likelihood). We assume:
1) a µ-smooth log-likelihood. If we optimize on a bounded
domain, then for infinitely differentiable kernels (e.g. RBF)
this will immediately hold. 2) that the kernel’s partial deriva-
tives are themselves symmmetric (not necessarily PSD) ker-
nels.

Assumption 5.1 (µ-smooth-log-likelihood). The true log-
likelihood is µ-smooth over D. That is, for all θ,θ′ ∈ D,

∥∇L(θ)−∇L(θ′)∥ ≤ µ∥θ − θ′∥

Assumption 5.2. (Kernel Partials) For each l ∈ {1, ..., p},
the partial derivative of kθ with respect to a hyperparam-
eter θl ∈ R, denoted as k′θl(x, x

′) = ∂kθ(x,x
′)

∂θl
, is also a

symmetric (not necessarily positive semi-definite) kernel.

We next state results leading to our SKI score function error
bound. We argue that we can apply the same elementwise
error we derived previously to the SKI partial derivatives.

Lemma 5.3. [Bound on Derivative of SKI Kernel Error
using Kernel Property of Derivative] Let k̃′θl(x, x

′) be the
SKI approximation of k′θl(x, x

′), using the same inducing
points and interpolation scheme as k̃θ. Then, for all x, x′ ∈
X and all θ ∈ Θ, the following inequality holds:

∣∣∣∣∣∂kθ(x, x′)

∂θl
− ∂k̃θ(x, x

′)

∂θl

∣∣∣∣∣ = ∣∣∣k′θl(x, x′)− k̃′θ(x, x
′)
∣∣∣

≤ δ′m,L +
√
Lcdδ′m,L

= O

(
c2d

m3/d

)

where δ′m,L is an upper bound on the error of the SKI ap-
proximation of the kernel k′θl(x, x

′) with m inducing points
and interpolation degree L− 1, as defined in Lemma 4.2.

Proof. See Appendix C.1.1

We then use the elementwise bound to bound the spectral
norm of the SKI gram matrix’s partial derivative error. This
again leverages Proposition 4.3, noting these partial deriva-
tives of the Gram matrices are themselves Gram matrices.

Lemma 5.4. [Partial Derivative Gram Matrix Difference
Bound] For any l ∈ {1, . . . , p},

6
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∥∥∥∥∥∂K∂θl − ∂K̃

∂θl

∥∥∥∥∥
2

≤ γ′
n,m,L,l

= O

(
nc2d

m3/d

)

where γ′
n,m,L,l is the bound on the spectral norm difference

between the kernel matrices corresponding to k′θl and its
SKI approximation k̃′θl (analogous to Proposition 4.3, but
for the kernel k′θl ).

Proof. See Section C.1.2.

We now bound the SKI score function. The key insight
to the proof is that the partial derivatives of the difference
between regularized gram matrix inverses is in fact a differ-
ence between two quadratic forms. We can then use standard
techniques (Horn & Johnson, 2012) for bounding the dif-
ference between quadratic forms to obtain our result. The
result says that, aside from the response vector’s norm, the
error grows quadratically in the sample size, at a square root
rate in the number of hyperparameters and exponentially in
the dimensionality. It further decays at an m

3
d rate in the

number of inducing points. Noting that to maintain Gram
matrix error, m should grow at an nd/3 rate, we have that
if ∥y∥2 = O(

√
n), the 1

n normalized score function error
can grow sub-linearly with the sample size when choosing
the number of inducing points based on Theorem 4.5. To
control it, we actually want m = nd/2.

Lemma 5.5. [Score Function Bound] Let L(θ) be the true
log-likelihood and L̃(θ) be the SKI approximation of the
log-likelihood at θ. Let ∇L(θ) and ∇L̃(θ) denote their
respective gradients with respect to θ. Then, for any θ ∈ D,

∥∇L(θ)−∇L̃(θ)∥2

≤ 1

2σ4
∥y∥√p max

1≤l≤p

(
γ′
n,m,L,l + Cnγn,m,L

+γn,m,Lγ
′
n,m,L,l

)
+

γn,m,L

2σ4

= ∥y∥2O
(√

pn2c4d

m3/d

)
≡ ϵG

where C is a constant depending on the upper bound of the
derivatives of the kernel function over D.

Proof. See Section C.1.3.

We apply Stonyakin et al. (2023) below: the result is the
same as in their paper (and assumes µ-smoothness as we did

on L), but using gradient ascent instead of descent and using
the score function error above. It says that at an O

(
1
K

)
rate,

at least one iterate of gradient ascent has its squared gradient
norm approach a neighborhood proportional to the squared
SKI score function’s spectral norm error.
Theorem 5.6. (Stonyakin et al., 2023) For inexact gradient
ascent on L with additively inexact gradients satisfying
∥∇L(θ)−∇L̃(θ)∥ ≤ ϵg , we have:

max
k=0,...,N−1

∥∇L(θk)∥2 ≤ 2µ(L∗ − L(θ0))

K
+

ϵ2g
2µ

(5)

where L∗ is the value at a stationary point, L(θ0) is the
initial, function value, K is the number of iterations and ϵg
is the gradient error bound in the previous Lemma.

5.2. Posterior Inference

Finally, we treat posterior inference. As our hyperparameter
optimization results only say that some iterate approaches a
stationary point, we will focus on the error when the SKI and
true kernel hyperparameter match. We add an assumption
Assumption 5.7. (Bounded Kernel) Assume that the true
kernel satisfies the condition that |k(x,x′)| ≤ M for all
x,x′ ∈ X .

Now we bound the spectral error for the SKI mean function
evaluated at a set of test points. The proof follows a stan-
dard strategy commonly used for approximate kernel ridge
regression. See Bach (2013); Musco & Musco (2017) for
examples. The result says that the l2 error (aside from the
response vector) grows exponentially in the dimensionality,
super-linearly but sub-quadratically in the training sample
size and at worst linearly in the test sample size. It decays
at an m

3
d rate in the number of inducing points. Similarly

to the score function error, if we follow Theorem 4.5 for se-
lecting the number of inducing points and ∥y∥2 = O(

√
n),

the error in fact grows linearly with the training sample size.
For controlled error we want m = n2d/3.
Lemma 5.8. (SKI Posterior Mean Error) Let µ(·) be the
GP posterior mean at a set of test points · ∈ RT×d and µ̃(·)
be the SKI posterior mean at those points. Then the SKI
posterior mean l2 error is bounded by:

∥µ̃(·)− µ(·)∥2

≤
(
max(γT,m,L, γn,m,L)

σ2
+

√
TnMc2d

σ4
γn,m,L

)
∥y∥2

= ∥y∥2O
(
c2d

max(T, n) +
√
Tnn

m3/d

)
Proof. See Appendix C.2.1.

We now derive the spectral error bound for the test SKI
covariance matrix. The proof involves noticing that a key

7
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term is a difference between two quadratic forms, and using
standard techniques for bounding such a difference. The
result shows that the error grows at worst super-linearly but
subquadratically in the number of test points, quadratically
in the training sample size and exponentially in the dimen-
sion. The error scales with the number of inducing points at
an m1−3/d rate, so that it decays if d < 3. If we select the
number of inducing points to be proportional to nd/3, then
the error grows at rate n1+d/3 for d < 3, so that we do not
have error control for the covariance, despite having it for
the Gram matrix. A future question is whether this bound
can be improved.
Lemma 5.9. [SKI Posterior Covariance Error] Let Σ(·) be
the GP posterior covariance matrix at a set of test points
· ∈ RT×d and Σ̃(·) be its SKI approximation. Then

∥Σ(·)− Σ̃(·)∥2

≤ γT,m,L +

√
TnM

σ2
max(γT,m,L, γn,m,L)

+
γn,m,L

σ4
Tnmc2dM2

+

√
Tnmc2dM

σ2
max(γT,m,L, γn,m,L).

= O

(
Tn2mc4d +

√
Tnmc4d max(T, n)

m3/d

)
.

where γT,m,L is defined as in Proposition 4.3.

Proof. See Appendix C.2.2

6. Empirical Analysis
To empirically investigate derived theoretical error bounds
for the Structured Kernel Interpolation (SKI) Gram ma-
trix approximation, we conducted numerical experiments.
Experiments focused on spectral norm error ||K − K̃||2 be-
havior as a function of data points (n), total inducing points
(mtotal), and dimensionality (d).

6.1. Experimental Setup

Experiments used synthetic datasets with input points xi ∈
Rd drawn uniformly from [0, 1]d. We employed a stan-
dard Radial Basis Function (RBF) kernel for all tests. SKI
used cubic convolutional interpolation, consistent with our
theoretical focus. All computations were performed using
PyTorch and GPyTorch.

Two primary sets of experiments were run for dimensionali-
ties d ∈ {1, 2, 3}:

1. Error vs. mtotal (Fixed n): For fixed n (1000 for
d = 1, 500 for d = 2, 250 for d = 3), we varied total

inducing points mtotal (with mpd per dimension, so
mtotal = md

pd) and measured ||K − K̃||2.

2. Error vs. n (Scaled mtotal): We varied n (50 to
1000) and scaled mtotal ≈ k · nd/3 (k = 1.0), setting
mpd = max(4, round(k1/dn1/3)). We then measured
||K − K̃||2.

6.2. Results and Discussion

The results are presented in Figure 1.

6.2.1. ERROR SCALING WITH NUMBER OF INDUCING
POINTS (mtotal)

Figure 1(a) displays spectral norm error vs. mtotal (log-log
scale, fixed n).

• For d = 1, 2, 3, error shows clear power-law decay
with mtotal (linear trends in log-log plot).

• Observed decay rates (slopes) are consistently steeper
than the predicted O(m

−3/d
total ): for d = 1, slope

≈ −5.11 (expected −3.00); for d = 2, ≈ −2.83 (ex-
pected −1.50); for d = 3, ≈ −2.05 (expected −1.00).
This suggests the ||K − K̃||2 = O(nc2d/m

3/d
total)

bound, while holding, may be pessimistic for smooth
RBF kernels and uniform data, where actual error de-
cay is faster.

• Error magnitude clearly increases with d for fixed
mtotal (e.g., at mtotal ≈ 64, error d = 3 > d =
2 > d = 1). This aligns with the c2d term in the
bound, highlighting increased approximation challenge
in higher d for constant mtotal.

6.2.2. ERROR SCALING WITH SAMPLE SIZE (n) AND
mtotal ∝ nd/3

Figure 1(b) shows spectral norm error vs. n with mtotal ≈
nd/3.

• For d = 1, 2, 3, error consistently decreases with in-
creasing n when mtotal is scaled thusly—a favorable
finding. Theory (substituting m

3/d
total ∝ n into the

O(nc2d/m
3/d
total) bound) suggests error stabilization

around O(c2d) (constant w.r.t. n). The observed de-
crease indicates better practical performance of this
scaling.

• Though higher d (e.g., d = 3) show larger error for
smaller n, errors for d = 1, 2, 3 converge to similar low
values as n → 1000. This noteworthy convergence
implies the recommended mtotal scaling effectively
mitigates initial error penalties from higher d, enabling
comparable accuracy for larger datasets.

8
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(a) Error vs. mtotal (Fixed n) (b) Error vs. n (with mtotal ∝ nd/3)

Figure 1. Empirical SKI Gram matrix spectral norm error ||K − K̃||2. (a) Error vs. mtotal (Fixed n): Error decay as mtotal increases
(fixed n: 1000 for d = 1, 500 for d = 2, 250 for d = 3). Log-log slopes (e.g., ≈ −5.11 for d = 1, ≈ −2.83 for d = 2, ≈ −2.05 for
d = 3) are steeper than theoretical −3/d (−3.00,−1.50,−1.00 resp.), suggesting faster practical RBF error decay. Error magnitude
increases with d for given mtotal. (b) Error vs. n (mtotal ∝ nd/3): Error as n varies, with mtotal ≈ nd/3 (mpd ≈ n1/3, so
mtotal ≈ nd/3). For d = 1, 2, 3, error decreases as n increases. Error levels for different d converge for larger n (e.g., n ≈ 1000),
showing scaling effectiveness against dimensionality impact.

6.3. Summary of Empirical Findings

Empirical results largely support our theoretical framework.
SKI Gram matrix approximation error is consistent with
identified dependencies on n, mtotal, and d. Scaling induc-
ing points as mtotal ∝ nd/3 is highly effective, controlling
and actively reducing approximation error as n grows across
tested dimensions. Observed mtotal error decay rates for
RBF kernels (which are entire, the highest level of smooth-
ness) are faster than theoretical bounds suggest, indicat-
ing conservative bounds and SKI’s strong performance for
smooth kernels. Error level convergence across dimensions
for mtotal ∝ nd/3 scaling at larger n is particularly encour-
aging for practical SKI application.

7. Discussion
In this paper, we provided the first rigorous theoretical anal-
ysis for structured kernel interpolation. A key practical
takeaway is that to control the SKI Gram matrix’s spec-
tral norm error, the number of inducing points should grow
as nd/3. Additionally, we showed the spectral norm error
of the SKI gram and cross-kernel matrices, and how this
impacts achieving a specific error in linear time. We then
analyzed kernel hyperparameter estimation, showing that
gradient ascent has an iterate approach a ball around a sta-
tionary point, where the ball’s radius depends on the spectral
error of the SKI score function. We showed that m = nd/2

sufficies to control the 1
n normalized score function error.

We concluded with analysis of the error of the SKI posterior
mean and variance, where m = n2d/3 controls error for the
mean function. For practitioners, the takeaway is to use SKI

with d < 3 somewhat freely, but to use more care in the
accuracy/speed tradeoff for d ≥ 3.

This work could be extended by analyzing the error of SKI
with other interpolation schemes such as Lagrange inter-
polation (Stoer et al., 1980), using potentially higher order
polynomials. This would allow us to not only analyze how
to vary m for fixed L = 4, but how to vary them jointly. Fur-
ther, we could extend to the setting where hyperparameters
(e.g. lengthscale) vary with the sample size n. Additionally,
one could analyze the error of SKI in more complex settings,
such as when the inducing points are not placed on a regular
grid (Snelson & Ghahramani, 2006) or for non-stationary
kernel functions, in which case the computational complex-
ity would no longer be O(n+m logm). Further, we analyze
the optimization properties under gradient ascent: it would
be interesting to analyze it under stochastic gradient ascent,
analogous to Lin et al. (2024), but now using inexact noisy
SKI gradients. Finally, one could analyze the methods for
extending SKI to higher dimensions (Kapoor et al., 2021;
Yadav et al., 2022) and for faster SKI inference (Yadav et al.,
2021).

This paper heavily used reasoning LLMs, particularly Gem-
ini Pro 2.0. The authors contributed the paper idea and early
kernel and spectral norm error analysis. LLMs were used
to outline the statements to be made, turn initial rough de-
scriptions into more formal language, and attempt to prove
the results. In general, LLM proof attempts were wrong, but
could drive insights into a working proof strategy. We also
used versions with internet access to help bring up relevant
papers. While LLMs sometimes hallucinated papers, the
rates were quite low.
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Impact Statement
This work contributes to a deeper theoretical understanding
Structured Kernel Interpolation (SKI) (Wilson & Nickisch,
2015) for Gaussian Processes (GPs). By establishing error
bounds and analyzing the impact of SKI on hyperparameter
estimation and posterior inference, this research can lead
to more confident use of approximate Gaussian Processes.
These models have broad applications in various domains,
including those mentioned in the introduction as well as
robotics (Deisenroth et al., 2015), environmental model-
ing (Desai et al., 2023), and healthcare (Alaa & van der
Schaar, 2017). Improved Gaussian Process models can en-
hance prediction accuracy and decision-making, potentially
leading to advancements in robotics, more accurate envi-
ronmental predictions, and better healthcare outcomes. It is
important to acknowledge that the application of Gaussian
Process models also carries potential risks. For instance, in
healthcare, inaccurate predictions or biased models can lead
to misdiagnosis or inappropriate treatment (Morley et al.,
2020). Therefore, understanding potential sources of error
when using approximations can be crucial to understanding
how reliable we can expect them to be.
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A. Auxiliary Technical Results

Lemma A.1. Given a function f : Rd → R of the form f(x1, x2, ..., xd) =
∏d

j=1 fj(xj), where each fj : R → R. Let

G = G(1) ×G(2) × ...×G(d) be a fixed d-dimensional grid, where each G(j) = {p(j)1 , p
(j)
2 , ..., p

(j)
nj } is a finite set of nj

grid points along the j-th dimension for j = 1, 2, ..., d. Then the following equality holds:

n1∑
k1=1

n2∑
k2=1

...

nd∑
kd=1

d∏
j=1

fj(p
(j)
kj

) =

d∏
j=1

 nj∑
kj=1

fj(p
(j)
kj

)


Proof. This is essentially a repeated application of the distributive property.

By Induction on d (the number of dimensions):

Base Case (d = 1):

When d = 1, the statement becomes:

n1∑
k1=1

f1(p
(1)
k1

) =

n1∑
k1=1

f1(p
(1)
k1

)

This is trivially true.

Inductive Hypothesis:

Assume the statement holds for d = m, i.e.,

n1∑
k1=1

n2∑
k2=1

...

nm∑
km=1

m∏
j=1

fj(p
(j)
kj

) =

m∏
j=1

 nj∑
kj=1

fj(p
(j)
kj

)


Inductive Step:

We need to show that the statement holds for d = m+ 1. Consider the left-hand side for d = m+ 1:

n1∑
k1=1

n2∑
k2=1

...

nm+1∑
km+1=1

m+1∏
j=1

fj(p
(j)
kj

)

We can rewrite this as:

n1∑
k1=1

n2∑
k2=1

...

nm∑
km=1

 nm+1∑
km+1=1

 m∏
j=1

fj(p
(j)
kj

)

 fm+1(p
(m+1)
km+1

)


Notice that the inner sum (over km+1) does not depend on k1, k2, ..., km. Thus, for any fixed values of k1, k2, ..., km, we
can treat

∏m
j=1 fj(p

(j)
kj

) as a constant. Let C(k1, ..., km) =
∏m

j=1 fj(p
(j)
kj

). Then we have:

n1∑
k1=1

n2∑
k2=1

...

nm∑
km=1

C(k1, ..., km)

nm+1∑
km+1=1

fm+1(p
(m+1)
km+1

)


Now, the inner sum

∑nm+1

km+1=1 fm+1(p
(m+1)
km+1

) is a constant with respect to k1, ..., km. Let’s call this constant Sm+1. So we
have:
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n1∑
k1=1

n2∑
k2=1

...

nm∑
km=1

C(k1, ..., km)Sm+1 = Sm+1

n1∑
k1=1

n2∑
k2=1

...

nm∑
km=1

m∏
j=1

fj(p
(j)
kj

)

By the inductive hypothesis, we can replace the nested sums with a product:

Sm+1

m∏
j=1

 nj∑
kj=1

fj(p
(j)
kj

)

 =

 nm+1∑
km+1=1

fm+1(p
(m+1)
km+1

)

 m∏
j=1

 nj∑
kj=1

fj(p
(j)
kj

)


Rearranging the terms, we get:

m∏
j=1

 nj∑
kj=1

fj(p
(j)
kj

)

 nm+1∑
km+1=1

fm+1(p
(m+1)
km+1

)

 =

m+1∏
j=1

 nj∑
kj=1

fj(p
(j)
kj

)


This is the right-hand side of the statement for d = m+ 1. Thus, the statement holds for d = m+ 1.

Conclusion:

By induction, the statement holds for all d ≥ 1. Therefore,

n1∑
k1=1

n2∑
k2=1

...

nd∑
kd=1

d∏
j=1

fj(p
(j)
kj

) =

d∏
j=1

 nj∑
kj=1

fj(p
(j)
kj

)



Claim 1. Given a convex combination C = αA+ (1− α)B, where α ∈ [0, 1], and A and B are symmetric matrices, the
eigenvalues of C lie in the interval [min (λn(A), λn(B)) ,max (λ1(A), λ1(B))].

Proof. First, recall that for a symmetric matrix A, the Rayleigh quotient R(A,x) = x⊤Ax
x⊤x

is bounded by the smallest and
largest eigenvalues of A:

λn(A) ≤ R(A,x) ≤ λ1(A)

Consider the Rayleigh quotient for the matrix C:

R(C,x) =
x⊤(αA+ (1− α)B)x

x⊤x
= αR(A,x) + (1− α)R(B,x)

Since R(A,x) and R(B,x) are bounded by their respective eigenvalues, we have:

R(C,x) ≤ αλ1(A) + (1− α)λ1(B)

which implies:
R(C, x) ≤ max(λ1(A), λ1(B))

Similarly,
R(C, x) ≥ min(λn(A), λn(B))

Thus, the eigenvalues of C = αA + (1− α)B are bounded by:

min(λn(A), λn(B)) ≤ λ(C) ≤ max(λ1(A), λ1(B))
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B. Proofs Related to Important Quantities
B.1. Proofs Related to Ski Kernel Error Bounds

B.1.1. PROOF OF LEMMA 4.1

Lemma 4.1. The uniform error bound over a compact domain X ⊆ Rd for tensor-product cubic convolutional interpolation
of a thrice continuously differentiable function f : Rd → R by its interpolant g : Rd → R is

sup
x∈X

|f(x)− g(x)| = O(cdh3)

or equivalently O
(

cd

m3/d

)
.

Proof. We define a sequence of intermediate interpolation functions. Let g0(x) ≡ f(x) be the original function. For
i = 1, . . . , d, we recursively define gi(x) as the function obtained by interpolating gi−1 along the i-th dimension using the
cubic convolution kernel u:

gi(x) ≡
2∑

k=−1

gi−1 (x+ ((cx)i − xi + kh) ei)u

(
xi − (cx)i − kh

h

)
.

Here, cx is the grid point closest to x, and ei is the i-th standard basis vector. Thus, g1(x) interpolates f along the first
dimension, g2(x) interpolates g1 along the second dimension, and so on, until gd(x) = g(x) is the final tensor-product
interpolated function.

We analyze the error accumulation across multiple dimensions using induction. Using (Keys, 1981), the error introduced
by interpolating a thrice continuous differentiable function along a single dimension with the cubic convolution kernel is
uniformly bounded over the interval domain by Kh3 for some constant K > 0, provided the grid spacing h is sufficiently
small. This gives us the base case:

|g1(x)− g0(x)| ≤ Kh3.

For the inductive step, assume that for some i = k the error is uniformly bounded by

|gk(x)− gk−1(x)| ≤ ck−1Kh3.

14
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We want to show that this bound also holds for i = k + 1. We can express the difference gk+1(x)− gk(x) as follows:

gk+1(x)− gk(x) =

2∑
kk+1=−1

gk (x+ ((cx)k+1 − xk+1 + kk+1h)ek+1)u

(
xk+1 − (cx)k+1 − kk+1h

h

)
− gk(x)

=

2∑
kk+1=−1

[
2∑

kk=−1

gk−1 (x+ ((cx)k − xk + kkh)ek + ((cx)k+1 − xk+1 + kk+1h)ek+1)

u

(
xk − (cx)k − kkh

h

)]
u

(
xk+1 − (cx)k+1 − kk+1h

h

)
−

2∑
kk=−1

gk−1 (x+ ((cx)k − xk + kkh)ek)u

(
xk − (cx)k − kkh

h

)

=

2∑
kk=−1

u

(
xk − (cx)k − kkh

h

)

×

 2∑
kk+1=−1

gk−1 (x+ ((cx)k − xk + kkh)ek + ((cx)k+1 − xk+1 + kk+1h)ek+1)

u

(
xk+1 − (cx)k+1 − kk+1h

h

)
− gk−1 (x+ ((cx)k − xk + kkh)ek)

]
.

The inner term in the last expression represents the difference between interpolating gk−1 along the (k + 1)-th dimension
and gk−1 itself, evaluated at x+ ((cx)k − xk + kkh)ek. This can be written as:

2∑
kk+1=−1

gk−1 (x+ ((cx)k − xk + kkh)ek + ((cx)k+1 − xk+1 + kk+1h)ek+1)u

(
xk+1 − (cx)k+1 − kk+1h

h

)
− gk−1 (x+ ((cx)k − xk + kkh)ek)

= gk (x+ ((cx)k − xk + kkh)ek)− gk−1 (x+ ((cx)k − xk + kkh)ek) .

Therefore, we can bound the error as follows:

|gk+1(x)− gk(x)|

≤

∣∣∣∣∣
2∑

kk=−1

u

(
xk − (cx)k − kkh

h

)∣∣∣∣∣ · |gk (x+ ((cx)k − xk + kkh)ek)− gk−1 (x+ ((cx)k − xk + kkh)ek)| .

Let c > 0 be a uniform upper bound for
∑2

kk=−1

∣∣∣u(xk−(cx)k−kkh
h

)∣∣∣, which exists because u is bounded. By the inductive

hypothesis, we have |gk (x+ ((cx)k − xk + kkh)ek)− gk−1 (x+ ((cx)k − xk + kkh)ek)| ≤ ck−1Kh3. Thus,

|gk+1(x)− gk(x)| ≤ c · ck−1Kh3 = ckKh3.

This completes the inductive step.

Finally, we bound the total error |g(x)− f(x)| = |gd(x)− g0(x)| by summing the errors introduced at each interpolation
step:

15
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|g(x)− f(x)| ≤
d∑

i=1

|gi(x)− gi−1(x)| ≤
d∑

i=1

ci−1Kh3 = Kh3
d−1∑
i=0

ci.

The last sum is a geometric series, which evaluates to Kh3 1−cd

1−c . For a fixed c > 1 (independent of d), this expression is
O(cd) when d is large. Therefore, tensor-product cubic convolutional interpolation has O(cdh3) error. Finally, noticing that
h = O

(
1

m1/d

)
gives us the desired result.

B.1.2. CURSE OF DIMENSIONALITY FOR KERNEL REGRESSION

The next lemma shows that when using a product kernel for d-dimensional kernel regression (where cubic convolutional
interpolation is a special case), the sum of weights suffers from the curse of dimensionality. The proof strategy involves
expressing the multi-dimensional sum as a product of sums over each individual dimension, leveraging the initial condition
on the one-dimensional bound for each dimension, and taking advantage of the structure of the Cartesian grid.

Lemma B.1. Let u : R → R be a one-dimensional kernel function with constant c > 0 defined as in 3.3. Let ud : Rd → R
be a d-dimensional product kernel defined as:

ud

(
x− xi

h

)
=

d∏
j=1

u

(
x(j) − x

(j)
i

h

)
,

where x = (x(1), x(2), ..., x(d)) ∈ Rd and xi = (x
(1)
i , x

(2)
i , ..., x

(d)
i ) ∈ Rd are d-dimensional points. Assume the data points

{xi}ni=1 (n may differ from the univariate case) lie on a fixed d-dimensional grid G = G(1) × G(2) × ... × G(d), where
each G(j) = {p(j)1 , p

(j)
2 , ..., p

(j)
nj } is a finite set of nj grid points along the j-th dimension for j = 1, 2, ..., d. Then, for any

x ∈ Rd, the sum of weights in the d-dimensional kernel regression is bounded by cd:

n∑
i=1

∣∣∣∣ud

(
x− xi

h

)∣∣∣∣ ≤ cd.

Proof. Let the fixed d-dimensional grid be defined by the Cartesian product of d sets of 1-dimensional grid points:
G = G(1) ×G(2) × ...×G(d), where G(j) = {p(j)1 , p

(j)
2 , ..., p

(j)
nj } is the set of grid points along the j-th dimension.

We start with the sum of weights in the d-dimensional case:

n∑
i=1

ud

(
x− xi

h

)
=

n∑
i=1

d∏
j=1

u

(
x(j) − x

(j)
i

h

)

Since the data points lie on the fixed grid G, we can rewrite the outer sum as a nested sum over the grid points in each
dimension:

n∑
i=1

d∏
j=1

u

(
x(j) − x

(j)
i

h

)
=

n1∑
k1=1

n2∑
k2=1

...

nd∑
kd=1

d∏
j=1

u

x(j) − p
(j)
kj

h


Now we can change the order of summation and product, as proven in Lemma A.1:

n1∑
k1=1

n2∑
k2=1

...

nd∑
kd=1

d∏
j=1

u

x(j) − p
(j)
kj

h

 =

d∏
j=1

 nj∑
kj=1

u

x(j) − p
(j)
kj

h


By the assumption of the lemma, we know that for each dimension j, the sum of weights is bounded by c. Note that
{p(j)kj

}nj

kj=1 is simply a set of points in R, thus:
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nj∑
kj=1

∣∣∣∣∣∣u
x(j) − p

(j)
kj

h

∣∣∣∣∣∣ ≤ c

Therefore, we have:

d∏
j=1

∣∣∣∣∣∣
nj∑

kj=1

u

x(j) − p
(j)
kj

h

∣∣∣∣∣∣
 ≤

d∏
j=1

c = cd

Thus, we have shown that:

n∑
i=1

∣∣∣∣ud

(
x− xi

h

)∣∣∣∣ ≤ cd

B.1.3. PROOF OF LEMMA 4.2

Lemma 4.2. Let δm,L denote the uniform error bound of tensor-product cubic convolutional interpolation (Lemma 4.1) for
m inducing points and interpolation degree L− 1 (hence L = 4 for cubic interpolation, as used in SKI). The SKI kernel
k̃ : X × X → R approximating a thrice continuously differentiable (not necessarily PSD) kernel k : X → X with uniform
grid spacing h in each dimension has error

|k(x, x′)− k̃(x, x′)| ≤ δm,L +
√
Lcdδm,L

= O

(
c2d

m3/d

)
.

Proof. Recall that SKI approximates the kernel as

k(x,x′) ≈ k̃(x,x′)

= w(x)⊤KUw(x′),

Let KU,x′ ∈ Rm be the vector of kernels between the inducing points and the vector x′

|k(x,x′)− k̃(x,x′)| = |k(x,x′)−w(x)⊤KU,x′ +w(x)⊤KU,x′ −w(x)⊤KUw(x′)|
≤ |k(x,x′)−w(x)⊤KU,x′ |+ |w(x)⊤KU,x′ −w(x)⊤KUw(x′)|
≤ δm,L + |w(x)⊤KU,x′ −w(x)⊤KUw(x′)|

since |k(x,x′)−w(x)⊤KU,x′ | is a single polynomial interpolation (6)

Now note that w(x) ∈ Rm is a sparse matrix with at most L non-zero entries. Thus, letting w̃(x) ∈ RL be the non-zero
entries of w(x) and similarly K̃U,x′ ∈ RL be the entries of KU,x′ in the dimensions corresponding to non-zero entries of
w(x) ∈ Rm, while K̃U ∈ RL×m is the analogous matrix for KU, we have

|w(x)⊤KU,x′ −w(x)⊤KUw(x′)| = |w̃(x)⊤K̃U,x′ − w̃(x)⊤K̃Uw(x′)|
≤ ∥w̃(x)∥2∥K̃U,x′ − K̃Uw(x′)∥2
≤ cd

√
L∥K̃U,x′ − K̃Uw(x′)∥∞ Lemma B.1

≤
√
Lcdδm,L (7)

where the last line follows as each element of KUw(x′) is a polynomial interpolation approximating each element of KU,x′ .
Plugging Eqn. 7 into Eqn. 6 gives us the desired initial result of

|k(x, x′)− k̃(x, x′)| ≤ δm,L +
√
Lcdδm,L

and Lemma 4.1 gives us the result when the convolutional kernel is cubic.
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B.1.4. PROOF OF PROPOSITION 4.3

Proposition 4.3. For the SKI approximation K̃ of the true Gram matrix K, we have

∥K − K̃∥2 ≤ n
(
δm,L +

√
Lcdδm,L

)
≡ γn,m,L

= O

(
nc2d

m3/d

)

Proof. Recall that for any matrix A, ∥A∥2 ≤
√
∥A∥1∥A∥∞. Since K − K̃ is symmetric, we have

∥K − K̃∥2 ≤
√
∥K − K̃∥1∥K − K̃∥∞ = ∥K − K̃∥∞

Furthermore, ∥K − K̃∥∞ is the maximum absolute row sum of K − K̃. Since there are n rows and, by Lemma 4.2, each
element of K − K̃ is bounded by δm,L +

√
Lcdδm,L in absolute value, we have

∥K − K̃∥∞ ≤ n
(
δm,L +

√
Lcdδm,L

)
= γn,m,L.

Therefore, ∥K − K̃∥2 ≤ γn,m,L.

B.1.5. PROOF OF LEMMA 4.4

Lemma 4.4. Let K·,X ∈ RT×n be the matrix of kernel evaluations between T test points and n training points, and let
K̃·,X ∈ RT×n be the corresponding SKI approximation. Then

∥K·,X − K̃·,X∥2 = O

(
max(n, T )c2d

m3/d

)
Proof. Using the same reasoning as in Proposition 4.3, we have

∥K·,X − K̃·,X∥2 ≤
√
∥K·,X − K̃·,X∥1∥K·,X − K̃·,X∥∞

≤ max
(
∥K·,X − K̃·,X∥1, ∥K·,X − K̃·,X∥∞

)
.

Now, ∥K·,X − K̃·,X∥1 is the maximum absolute column sum, which is less than or equal to T (δm,L+
√
Lcdδm,L) = γT,m,L.

Similarly, ∥K·,X − K̃·,X∥∞ is the maximum absolute row sum, which is upper bounded by n(δm,L +
√
Lcdδm,L) = γn,m,L.

Therefore,
∥K·,X − K̃·,X∥2 ≤ max(γT,m,L, γn,m,L).

B.1.6. ADDITIONAL SPECTRAL NORM BOUNDS

Lemma B.2. Let K·,X ∈ RT×n be cross kernel matrix between T test points and n training points, where the SKI
approximation uses m inducing points. If the kernel function k is bounded such that |k(x, x′)| ≤ M for all x, x′ ∈ X , then:

∥K·,X∥2 ≤
√
TnM

Proof.

∥K·,X∥2 ≤
√

∥K·,X∥1∥K·,X∥∞

≤
√
TnM
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Lemma B.3. Let K̃·,X ∈ RT×n be the matrix of SKI kernel evaluations between T test points and n training points, where
the SKI approximation uses m inducing points. Let W(·) ∈ RT×m and W(X) ∈ Rn×m be the matrices of interpolation
weights for the test points and training points, respectively. Assume that the interpolation scheme is such that the sum of the
absolute values of the interpolation weights for any point is bounded by cd, where c > 0 is a constant. Let KU ∈ Rm×m

be the kernel matrix evaluated at the inducing points. If the kernel function k is bounded such that |k(x, x′)| ≤ M for all
x, x′ ∈ X , then:

∥K̃·,X∥2 ≤
√
Tnmc2dM

Proof. By the definition of the SKI approximation and the submultiplicativity of the spectral norm, we have:

∥K̃·,X∥2 = ∥W(·)KU(W(X))⊤∥2 ≤ ∥W(·)∥2∥KU∥2∥W(X)∥2

We now bound each term.

1. Bounding ∥W(·)∥2 and ∥W(X)∥2: Since the spectral norm is induced by the Euclidean norm, and using the assumption
that the sum of absolute values of interpolation weights for any point is bounded by cd, we have

∥W(·)∥2 ≤
√
∥W(·)∥1∥W(·)∥∞ ≤

√
Tcd · cd =

√
Tcd.

Similarly, ∥W(X)∥2 ≤
√
ncd.

2. Bounding ∥KU∥2: Since KU is symmetric, ∥KU∥2 ≤ ∥KU∥∞. Each entry of KU is bounded by M (by the boundedness
of k), and each row has m entries, so ∥KU∥∞ ≤ mM . Thus, ∥KU∥2 ≤ mM .

Combining these bounds, we get:

∥K̃·,X∥2 ≤ (
√
Tcd)(mM)(

√
ncd) =

√
Tnmc2dM

as required.

Lemma B.4. Let K̃ be the SKI approximation of the kernel matrix K, and σ2 > 0 be the observation variance. Assume
that K, K̃ are PSD. The spectral error of the regularized inverse can be bounded as follows:∥∥∥∥(K̃+ σ2I

)−1

−
(
K+ σ2I

)−1
∥∥∥∥
2

≤ γn,m,L

σ4

Proof. Note that (
K̃+ σ2I

)−1

−
(
K+ σ2I

)−1
=
(
K̃+ σ2I

)−1

(K− K̃)
(
K+ σ2I

)−1

Taking the spectral norm, we have∥∥∥∥(K̃+ σ2I
)−1

−
(
K+ σ2I

)−1
∥∥∥∥
2

≤
∥∥∥∥(K̃+ σ2I

)−1
∥∥∥∥
2

∥K− K̃∥2
∥∥∥(K+ σ2I

)−1
∥∥∥
2

≤ γn,m,L

∥∥∥∥(K̃+ σ2I
)−1

∥∥∥∥
2

∥∥∥(K+ σ2I
)−1
∥∥∥
2

by Proposition 4.3

≤ γn,m,L

σ4

B.2. Proofs Related to Linear Time Analysis

B.2.1. PROOF OF THEOREM 4.5

Theorem 4.5. If the domain is [−D,D]d, then to achieve a spectral norm error of ∥K − K̃∥2 ≤ ϵ, it is sufficient to choose
the number of inducing points m such that:

m =
(n
ϵ
(1 + 2cd)K ′(8c2dD3)

)d/3
for some constant K ′ that depends only on the kernel function and the interpolation scheme.
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Proof. We want to choose m such that the spectral norm error ∥K − K̃∥2 ≤ ϵ. From Proposition 4.3, we have:

∥K − K̃∥2 ≤ n(1 +
√
Lcd)δm,L

For cubic interpolation (L = 4), Lemma 4.1, combined with the analysis in Lemma 4.1, gives us:

δm,L ≤ K ′c2dh3

where K ′ is a constant that depends only on the kernel function (through its derivatives) and the interpolation scheme, but
not on n, m, h, or d.

Therefore, a sufficient condition to ensure ∥K − K̃∥2 ≤ ϵ is:

n(1 + 2cd)K ′c2dh3 ≤ ϵ (8)

Since the inducing points are placed on a regular grid with spacing h in each dimension, and the domain is [−D,D]d and
assuming that 2D mod h ≡ 0, the number of inducing points m satisfies:

m =

(
2D

h

)d

We can rearrange this to get:

h =
2D

m1/d

Substituting this into the sufficient condition (8), we get:

n(1 + 2cd)K ′c2d
(

2D

m1/d

)3

≤ ϵ

Rearranging to isolate m, we obtain:

m3/d ≥ n

ϵ
(1 + 2cd)K ′c2d(8D3)

m ≥
(n
ϵ
(1 + 2cd)K ′(8c2dD3)

)d/3

B.2.2. PROOF OF COROLLARY 4.6

Corollary 4.6. If

ϵ ≥ (1 + 2cd)K ′8c2dD3

C3/d
· n(log n)

3/d

n3/d
(4)

for some constants K ′, C > 0 that depend on the kernel function and the interpolation scheme and we choose m > 0 based
on the previous theorem, then we have both ∥K − K̃∥2 ≤ ϵ and SKI computational complexity of O(n).

Proof. Assume that

ϵ ≥ (1 + 2cd)K ′8c2dD3

C3/d
· n(log n)

3/d

n3/d
.

Rearranging this we obtain (n
ϵ
(1 + 2cd)K ′(8c2dD3)

)d/3
≤ C

n

log n
.

= O

(
n

log n

)
.
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Now taking

m =
(n
ϵ
(1 + 2cd)K ′(8c2dD3)

)d/3
we have that m = O

(
n

logn

)
and by Theorem 4.5, ∥K − K̃∥2 ≤ ϵ. Now plugging in n

logn into m logm we obtain

O (m logm) = O

(
n

log n
log

n

log n

)
= O

(
n

log n
log n− n

log n
log log n

)
= O(n)

as desired.

C. Proofs Related to Gaussian Process Applications
C.1. Proofs Related to Hyperparameter Estimation

C.1.1. PROOF OF LEMMA 5.3

Lemma 5.3. [Bound on Derivative of SKI Kernel Error using Kernel Property of Derivative] Let k̃′θl(x, x
′) be the SKI

approximation of k′θl(x, x
′), using the same inducing points and interpolation scheme as k̃θ. Then, for all x, x′ ∈ X and all

θ ∈ Θ, the following inequality holds:

∣∣∣∣∣∂kθ(x, x′)

∂θl
− ∂k̃θ(x, x

′)

∂θl

∣∣∣∣∣ = ∣∣∣k′θl(x, x′)− k̃′θ(x, x
′)
∣∣∣

≤ δ′m,L +
√
Lcdδ′m,L

= O

(
c2d

m3/d

)

where δ′m,L is an upper bound on the error of the SKI approximation of the kernel k′θl(x, x
′) with m inducing points and

interpolation degree L− 1, as defined in Lemma 4.2.

Proof. By assumption, k′θi(x, x
′) = ∂kθ(x,x

′)
∂θi

is a symmetric kernel. The SKI approximation of k′θi(x, x
′) using the same

inducing points and interpolation scheme as k̃θ(x, x′) is given by k̃′θ(x, x
′). For the kernel k′θi(x, x

′), we have:

∣∣∣k′θi(x, x′)− k̃′θ(x, x
′)
∣∣∣ ≤ δ′m,L,

where δ′m,L is the upper bound on the error of the SKI approximation of k′θi(x, x
′) as defined in Lemma 4.2.

Now, we need to show that ∂k̃θ(x,x
′)

∂θi
= k̃′θ(x, x

′). Recall that the SKI approximation k̃θ(x, x
′) is a linear combination of

kernel evaluations at inducing points, with weights that depend on x and x′:

k̃θ(x, x
′) =

m∑
j=1

m∑
l=1

wjl(x, x
′)kθ(uj , ul)
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where wjl(x, x
′) are the interpolation weights. Taking the partial derivative with respect to θi, we get:

∂k̃θ(x, x
′)

∂θi
=

m∑
j=1

m∑
l=1

wjl(x, x
′)
∂kθ(uj , ul)

∂θi

=

m∑
j=1

m∑
l=1

wjl(x, x
′)k′θi(uj , ul).

This is precisely the SKI approximation of the kernel k′θi(x, x
′) using the same inducing points and weights:

k̃′θ(x, x
′) =

m∑
j=1

m∑
l=1

wjl(x, x
′)k′θi(uj , ul).

Therefore, ∂k̃θ(x,x
′)

∂θi
= k̃′θ(x, x

′).

Substituting this into our inequality, we get:∣∣∣∣∣∂kθ(x, x′)

∂θi
− ∂k̃θ(x, x

′)

∂θi

∣∣∣∣∣ = ∣∣∣k′θi(x, x′)− k̃′θ(x, x
′)
∣∣∣

≤ δ′m,L +
√
Lcdδ′m,L.

C.1.2. PROOF OF LEMMA 5.4

Lemma 5.4. [Partial Derivative Gram Matrix Difference Bound] For any l ∈ {1, . . . , p},

∥∥∥∥∥∂K∂θl − ∂K̃

∂θl

∥∥∥∥∥
2

≤ γ′
n,m,L,l

= O

(
nc2d

m3/d

)

where γ′
n,m,L,l is the bound on the spectral norm difference between the kernel matrices corresponding to k′θl and its SKI

approximation k̃′θl (analogous to Proposition 4.3, but for the kernel k′θl ).

Proof. Let K ′
θ,l be the kernel matrix corresponding to the kernel k′θ,l(x, x

′) = ∂kθ(x,x
′)

∂θl
, and let K̃ ′

θ,l be the kernel matrix
corresponding to its SKI approximation k̃′θ,l(x, x

′).

From Lemma 5.3, we have:

∂k̃θ(x, x
′)

∂θl
= k̃′θ,l(x, x

′) (9)

Therefore:
∂K

∂θl
− ∂K̃

∂θl
= K ′

θ,l − K̃ ′
θ,l (10)

By Proposition 4.3, we have a bound on the spectral norm difference between a kernel matrix and its SKI approximation.
Let γ′

n,m,L,l be the corresponding bound for the kernel k′θ,l and its SKI approximation k̃′θ,l. Then:
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∥K ′
θ,l − K̃ ′

θ,l∥2 ≤ γ′
n,m,L,l (11)

Thus,

∥∥∥∥∥∂K∂θl − ∂K̃

∂θl

∥∥∥∥∥
2

= ∥K ′
θ,l − K̃ ′

θ,l∥2 ≤ γ′
n,m,L,l

This completes the proof.

C.1.3. PROOF OF LEMMA 5.5

Lemma 5.5. [Score Function Bound] Let L(θ) be the true log-likelihood and L̃(θ) be the SKI approximation of the
log-likelihood at θ. Let ∇L(θ) and ∇L̃(θ) denote their respective gradients with respect to θ. Then, for any θ ∈ D,

∥∇L(θ)−∇L̃(θ)∥2

≤ 1

2σ4
∥y∥√p max

1≤l≤p

(
γ′
n,m,L,l + Cnγn,m,L

+γn,m,Lγ
′
n,m,L,l

)
+

γn,m,L

2σ4

= ∥y∥2O
(√

pn2c4d

m3/d

)
≡ ϵG

where C is a constant depending on the upper bound of the derivatives of the kernel function over D.

Proof. We start with the expressions for the gradients:

∇L(θ) = ∇
(
−1

2
y⊤(K+ σ2I)−1y − 1

2
log |K+ σ2I| − n

2
log(2π)

)
.

∇L̃(θ) = ∇
(
−1

2
y⊤(K̃+ σ2I)−1y − 1

2
log |K̃+ σ2I| − n

2
log(2π)

)
.

Thus, the difference is:

∥∇L(θ)−∇L̃(θ)∥2 =

∥∥∥∥∇(−1

2
y⊤(K+ σ2I)−1y − 1

2
log |K+ σ2I|

)
−∇

(
−1

2
y⊤(K̃+ σ2I)−1y − 1

2
log |K̃+ σ2I|

)∥∥∥∥
2

≤
∥∥∥∥∇(1

2
y⊤
(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)
y

)∥∥∥∥
2︸ ︷︷ ︸

T1

+

∥∥∥∥12∇(log |K+ σ2I| − log |K̃+ σ2I|
)∥∥∥∥

2︸ ︷︷ ︸
T2

.

We will bound T1 and T2 separately.
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Bounding T1:

T1 =
1

2

∥∥∥∇θ

(
y⊤
(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)
y
)∥∥∥

2

=
1

2

√√√√ p∑
l=1

(
∂

∂θl
y⊤
(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)
y

)2

≤ 1

2

√
p max
1≤l≤p

√(
∂

∂θl
y⊤
(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)
y

)2

=
1

2

√
p max
1≤l≤p

∣∣∣∣ ∂

∂θl
y⊤
(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)
y

∣∣∣∣
We will then bound

∣∣∣ ∂
∂θl

y⊤
(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)
y
∣∣∣. Using the following equality ∂

∂θl
X−1 = −X−1(∂X∂θl )X

−1,
we can express this derivative as a quadratic form as a difference between two quadratic forms and apply standard techniques
for bounding differences between quadratic forms.

∣∣∣∣ ∂

∂θl
y⊤
(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)
y

∣∣∣∣
≤ ∥y∥22

∥∥∥∥ ∂

∂θl

(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)∥∥∥∥
2

CS inequality

= ∥y∥22
∥∥∥∥ ∂

∂θl

(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)∥∥∥∥
2

= ∥y∥22
∥∥∥∥−(K̃+ σ2I)−1

(
∂

∂θl
K̃

)
(K̃+ σ2I)−1 + (K+ σ2I)−1

(
∂

∂θl
K

)
(K+ σ2I)−1

∥∥∥∥
2

= ∥y∥22
∥∥∥∥−(K̃+ σ2I)−1

(
∂

∂θl
K̃− ∂

∂θl
K+

∂

∂θl
K

)
(K̃+ σ2I)−1

+(K+ σ2I)−1 ∂

∂θl
K(K+ σ2I)−1

∥∥∥∥
2

= ∥y∥22
∥∥∥∥−(K̃+ σ2I)−1

(
∂

∂θl
K̃− ∂

∂θl
K

)
(K̃+ σ2I)−1

−(K̃+ σ2I)−1

(
∂

∂θl
K

)
(K̃+ σ2I)−1 + (K+ σ2I)−1

(
∂

∂θl
K

)
(K+ σ2I)−1

∥∥∥∥
2

≤ ∥y∥22


∥∥∥∥(K̃+ σ2I)−1

(
∂

∂θl
K̃− ∂

∂θl
K

)
(K̃+ σ2I)−1

∥∥∥∥
2︸ ︷︷ ︸

(a)

+

∥∥∥∥((K̃+ σ2I)−1 − (K+ σ2I)−1
)( ∂

∂θl
K

)
(K̃+ σ2I)−1

∥∥∥∥
2︸ ︷︷ ︸

(b)

+

∥∥∥∥(K+ σ2I)−1

(
∂

∂θl
K

)(
(K̃+ σ2I)−1 − (K+ σ2I)−1

)∥∥∥∥
2︸ ︷︷ ︸

(c)

 .
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We now explicitly bound (a), (b), and (c).

(a) ≤
∥∥∥(K̃+ σ2I)−1

∥∥∥
2

∥∥∥∥ ∂

∂θl
K̃− ∂

∂θl
K

∥∥∥∥
2

∥∥∥(K̃+ σ2I)−1
∥∥∥
2

≤
∥∥∥(K̃+ σ2I)−1

∥∥∥2
2

∥∥∥∥ ∂

∂θl
K̃− ∂

∂θl
K

∥∥∥∥
2

≤ 1

σ4

∥∥∥∥ ∂

∂θl
K− ∂

∂θl
K̃

∥∥∥∥
2

≤ 1

σ4
γ′
n,m,L,l (Using Lemma 5.4)

(b) ≤ ∥(K̃+ σ2I)−1 − (K+ σ2I)−1∥2
∥∥∥∥ ∂

∂θl
K

∥∥∥∥
2

∥(K̃+ σ2I)−1∥2

≤ 1

σ2
∥(K̃+ σ2I)−1 − (K+ σ2I)−1∥2

∥∥∥∥ ∂

∂θl
K

∥∥∥∥
2

≤ γn,m,L

σ4

∥∥∥∥ ∂

∂θl
K

∥∥∥∥
2

(Using Lemma B.4)

where we are able to apply the last line since K̃,K are GP kernels and thus PSD. Since the kernel is C1 wrt θ and D is
compact, we can bound the entries of ∂

∂θl
K uniformly over D and l with some constant, say C > 0. Then by Lemma B.2,

reusing the training points instead of using the test points,

(b) ≤ γn,m,L

σ4

∥∥∥∥ ∂

∂θl
K

∥∥∥∥
2

≤ Cn
γn,m,L

σ4

and finally

(c) ≤ ∥(K+ σ2I)−1∥2
∥∥∥∥ ∂

∂θl
K

∥∥∥∥
2

∥(K̃+ σ2I)−1 − (K+ σ2I)−1∥2

≤ 1

σ2
∥(K̃+ σ2I)−1 − (K+ σ2I)−1∥2

∥∥∥∥ ∂

∂θl
K

∥∥∥∥
2

≤ γn,m,L

σ4

∥∥∥∥ ∂

∂θl
K

∥∥∥∥
2

(Using Lemma B.4)

≤ γn,m,L

σ4
γ′
n,m,L,l (Using Lemma 5.4 )

Combining these, we obtain

T1 ≤ 1

2σ4
∥y∥√p max

1≤l≤p

(
γ′
n,m,L,l + Cnγn,m,L + γn,m,Lγ

′
n,m,L,l

)
Bounding T2:

Using the identity ∇ log |X| = (X−1)⊤, we have

T2 =
1

2

∥∥∥∇θ

(
log |K+ σ2I| − log |K̃+ σ2I|

)∥∥∥
2

=
1

2

∥∥∥(K+ σ2I)−1 − (K̃+ σ2I)−1
∥∥∥
2
.
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We can rewrite the difference as:

(K+ σ2I)−1 − (K̃+ σ2I)−1 = (K̃+ σ2I)−1(K̃−K)(K+ σ2I)−1

Then

T2 ≤ 1

2
∥(K̃+ σ2I)−1∥2∥K̃−K∥2∥(K+ σ2I)−1∥2

≤ γn,m,L

2σ4

Combining the Bounds:

Combining the bounds for T1 and T2, we have

∥∇L(θ)−∇L̃(θ)∥2 ≤ 1

2σ4
∥y∥√p max

1≤l≤p

(
γ′
n,m,L,l + Cnγn,m,L + γn,m,Lγ

′
n,m,L,l

)
+

γn,m,L

2σ4

C.2. Proofs Related to Posterior Inference

C.2.1. PROOF OF LEMMA 5.8

Lemma 5.8. (SKI Posterior Mean Error) Let µ(·) be the GP posterior mean at a set of test points · ∈ RT×d and µ̃(·) be
the SKI posterior mean at those points. Then the SKI posterior mean l2 error is bounded by:

∥µ̃(·)− µ(·)∥2

≤
(
max(γT,m,L, γn,m,L)

σ2
+

√
TnMc2d

σ4
γn,m,L

)
∥y∥2

= ∥y∥2O
(
c2d

max(T, n) +
√
Tnn

m3/d

)
Proof. We start by expressing the difference between the true and SKI posterior means:

∥∥∥∥K·,X
(
K+ σ2I

)−1
y − K̃·,X

(
K̃+ σ2I

)−1

y

∥∥∥∥
2

=

∥∥∥∥(K̃·,X −K·,X

)(
K̃+ σ2I

)−1

y +K·,X

[(
K̃+ σ2I

)−1

−
(
K+ σ2I

)−1
]
y

∥∥∥∥
2

Applying the triangle inequality and submultiplicative property gives:

≤ 1

σ2
∥y∥2∥K̃·,X −K·,X∥2 + ∥K·,X∥2

∥∥∥∥(K̃+ σ2I
)−1

−
(
K+ σ2I

)−1
∥∥∥∥
2

∥y∥2

≤ max (γT,m,L, γn,m,L)

σ2
∥y∥2 + ∥K·,X∥2

∥∥∥∥(K̃+ σ2I
)−1

−
(
K+ σ2I

)−1
∥∥∥∥
2

∥y∥2 Lemma 4.4

≤ max (γT,m,L, γn,m,L)

σ2
∥y∥2 +

√
TnM

∥∥∥∥(K̃+ σ2I
)−1

−
(
K+ σ2I

)−1
∥∥∥∥
2

∥y∥2 Lemma B.2

≤ max (γT,m,L, γn,m,L)

σ2
∥y∥2 +

√
TnM

σ4
γn,m,L∥y∥2 Lemma B.4

=
1

σ2
∥y∥2

(
max (γT,m,L, γn,m,L) +

√
TnM

σ4
γn,m,L

)

=
1

σ2
∥y∥2O

(
c2d

max(T, n) +
√
TnMn

m3/d

)
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C.2.2. PROOF OF LEMMA 5.9

Proof. First, note that

∥Σ(·)− Σ̃(·)∥2 ≤ ∥K·,· − K̃·,·∥2
+ ∥K·,X(K + σ2I)−1KX,· − K̃·,X(K̃ + σ2I)−1K̃X,·∥2
≤ γT,m,L + ∥K·,X(K + σ2I)−1KX,· − K̃·,X(K̃ + σ2I)−1K̃X,·∥2,

where we used Proposition 4.3 and the fact that ∥K·,· − K̃·,·∥2 ≤ γT,m,L.

Now, we bound the second term, which is a different between two quadratic forms:

∥K·,X(K + σ2I)−1KX,· − K̃·,X(K̃ + σ2I)−1K̃X,·∥2
≤ ∥K·,X(K + σ2I)−1KX,· − K·,X(K + σ2I)−1K̃X,·∥2
+ ∥K·,X(K + σ2I)−1K̃X,· − K̃·,X(K̃ + σ2I)−1K̃X,·∥2
≤ ∥K·,X(K + σ2I)−1(KX,· − K̃X,·)∥2 + ∥(K·,X(K + σ2I)−1 − K̃·,X(K̃ + σ2I)−1)K̃X,·∥2
≤ ∥K·,X∥2∥(K + σ2I)−1∥2∥KX,· − K̃X,·∥2 + ∥K·,X(K + σ2I)−1 − K̃·,X(K̃ + σ2I)−1∥2∥K̃X,·∥2

≤ 1

σ2
∥K·,X∥2∥KX,· − K̃X,·∥2 + ∥K·,X(K + σ2I)−1 − K̃·,X(K̃ + σ2I)−1∥2∥K̃X,·∥2,

where we used the fact that (K + σ2I)−1 ⪯ 1
σ2 I .

Next, we bound the term ∥K·,X(K + σ2I)−1 − K̃·,X(K̃ + σ2I)−1∥2:

∥K·,X(K + σ2I)−1 − K̃·,X(K̃ + σ2I)−1∥2
= ∥K·,X(K + σ2I)−1 − K·,X(K̃ + σ2I)−1 + K·,X(K̃ + σ2I)−1 − K̃·,X(K̃ + σ2I)−1∥2
≤ ∥K·,X(K + σ2I)−1 − K·,X(K̃ + σ2I)−1∥2 + ∥K·,X(K̃ + σ2I)−1 − K̃·,X(K̃ + σ2I)−1∥2
= ∥K·,X[(K + σ2I)−1 − (K̃ + σ2I)−1]∥2 + ∥(K·,X − K̃·,X)(K̃ + σ2I)−1∥2
≤ ∥K·,X∥2∥(K + σ2I)−1 − (K̃ + σ2I)−1∥2 + ∥K·,X − K̃·,X∥2∥(K̃ + σ2I)−1∥2

≤ ∥K·,X∥2
γn,m,L

σ4
+ ∥K·,X − K̃·,X∥2

1

σ2
,

where we used Lemma B.4 in the last inequality. Substituting this back into the main inequality, we get:

∥K·,X(K + σ2I)−1KX,· − K̃·,X(K̃ + σ2I)−1K̃X,·∥2

≤ 1

σ2
∥K·,X∥2∥KX,· − K̃X,·∥2 +

(
∥K·,X∥2

γn,m,L

σ4
+ ∥K·,X − K̃·,X∥2

1

σ2

)
∥K̃X,·∥2

=
1

σ2
∥K·,X∥2∥KX,· − K̃X,·∥2 +

γn,m,L

σ4
∥K·,X∥2∥K̃X,·∥2 +

1

σ2
∥K·,X − K̃·,X∥2∥K̃X,·∥2.

Using Lemma 4.4 and the fact that ∥KX,· − K̃X,·∥2 ≤ max(γT,m,L, γn,m,L) and that K·,X = K⊤
X,·, we have ∥K·,X∥2 =

∥KX,·∥2. Also, by assumption, ∥KX,·∥2 ≤
√
TnM . Using Lemma B.3, we have ∥K̃X,·∥2 ≤

√
Tnmc2dM . Substituting

these bounds, we get:

∥K·,X(K + σ2I)−1KX,· − K̃·,X(K̃ + σ2I)−1K̃X,·∥2

≤
√
TnM

σ2
max(γT,m,L, γn,m,L) +

γn,m,L

σ4
(
√
TnM)(

√
Tnmc2dM) +

1

σ2
max(γT,m,L, γn,m,L)(

√
Tnmc2dM)

=

√
TnM

σ2
max(γT,m,L, γn,m,L) +

γn,m,L

σ4
Tnmc2dM2 +

√
Tnmc2dM

σ2
max(γT,m,L, γn,m,L).
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Finally, substituting this back into the original inequality, we obtain the desired bound:

∥Σ(·)− Σ̃(·)∥2 ≤ γT,m,L +

√
TnM

σ2
max(γT,m,L, γn,m,L)

+
γn,m,L

σ4
Tnmc2dM2 +

√
Tnmc2dM

σ2
max(γT,m,L, γn,m,L).

= O

(
Tn2mc4dM2 +

√
Tnmc4dM max(T, n)

m3/d

)
.
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