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ABSTRACT

Machine unlearning aims to remove knowledge derived from the specific training
data that are requested to be forgotten in a well-trained model while preserving
the knowledge learned from the remaining training data. Currently, machine
unlearning methods typically handle all forgetting data in a single batch, removing
the corresponding knowledge all at once upon request. However, in practical
scenarios, requests for data removal often arise in a streaming manner rather than in
a single batch, leading to reduced efficiency and effectiveness in existing methods.
Such challenges of streaming forgetting have not been the focus of much research.
In this paper, to address the challenges of performance maintenance, efficiency, and
data access brought about by streaming unlearning requests, we introduce an online
unlearning paradigm, formalizing the unlearning as a distribution shift problem.
We then estimate the altered distribution and propose a novel online unlearning
algorithm to achieve efficient streaming forgetting without requiring access to the
original training data. Theoretical analyses confirm an O(VT

√
T + ∆T ) error

bound on the streaming unlearning regret, where VT represents the cumulative total
variation in the optimal solution over T learning rounds and ∆T represents the
cumulative total divergence between remaining and forgetting data distributions.
This theoretical guarantee is achieved under mild conditions without the strong
restriction of convex loss function. Experiments across various models and datasets
validate the performance of our proposed method.

1 INTRODUCTION

Machine unlearning aims at safeguarding the privacy rights of individuals concerning sensitive and
private data (Voigt & Von dem Bussche, 2017; Bourtoule et al., 2021; de la Torre, 2018). The objective
of machine unlearning is to remove information associated with a selected group of data, referred
to as forgetting data, from a well-trained model while retaining the knowledge encapsulated in the
remaining data. (Bourtoule et al., 2021). Presently, research in this field has made some progress
in designing effective unlearning algorithms. Current unlearning methodologies typically consider
the forgetting data as a single batch and approach unlearning as a singular adjustment process. This
process removes all information from the forgetting data at once, then uses the remaining data to
repair and update the model, preserving its functionality (Kurmanji et al., 2023; Chen et al., 2023).

In practical scenarios, data removal requests from sensitive information owners are usually made
incrementally, rather than in predetermined batches. For example, social media users might request
the deletion of recommendations learned from their personal browsing history at any time, resulting in
a continuous stream of individual requests. This streaming nature means that requests are submitted
immediately as users identify their needs and often arise in a streaming manner rather than being
grouped and processed together. To address the streaming forgetting problem, where removal requests
occur incrementally or in streams, existing batch unlearning approaches often handle each request
from scratch, one by one. This method faces several issues, especially when requests are frequent.

The first issue is the accumulated performance drop. Although the performance degradation usually
happens in machine unlearning, previous methods have tried to reduce the degradation in the batch
unlearning (Bourtoule et al., 2021; Chundawat et al., 2023a; Chen et al., 2023; Graves et al., 2021;
Thudi et al., 2022; Shen et al., 2024b). However, this degradation can accumulate across multiple
rounds, leading to a significant decline in overall model performance over time. The second issue
is efficiency, which stems from the repeated performance repairs on the remaining data (Bourtoule
et al., 2021; Chundawat et al., 2023a; Chen et al., 2023; Shen et al., 2024b). Due to the high
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overlap of remaining data across different rounds, there are significant time and computational costs
associated with reprocessing the same data, making the unlearning process inefficient. In addition,
frequent access to the remaining data can be problematic due to data regularization policies Voigt
& Von dem Bussche (2017); de la Torre (2018). In many cases, parts of the training data may no
longer be accessible or may be subject to strict access controls (Sekhari et al., 2021; Chen et al., 2023;
Chundawat et al., 2023b), hindering the necessary updates and repairs to the model. These limitations
emphasize the need for a novel streaming forgetting method that can handle long sequences of data
removal requests without performance degradation (Shen et al., 2024a; Gupta et al., 2021). It should
optimize time and memory consumption (Nguyen et al., 2022; Tarun et al., 2023) with minimal
reliance on the training data. Although some prior works have explored stream forgetting in the
context of meta-learning tasks (Chen et al., 2022) and ensemble models (Liu et al., 2022), these
approaches predominantly focus on model forgetting rather than data forgetting. Only two studies
have directly tackled the problem of stream data forgetting (Zhao et al., 2024; Li et al., 2021), both
of which impose specific constraints on model structures to realize unlearning (Zhao et al., 2024;
Li et al., 2021). As a result, the problem of streaming unlearning for data instances from general
well-trained models remains an open research challenge.

In this paper, we propose a novel streaming unlearning method that addresses the accumulated drops
in both effectiveness and efficiency while reducing the need for frequent access to training data. To
estimate the unlearning risk without training data, we formalize unlearning as a distribution shift
problem. The shifted distribution caused by removing forgetting data serves as prior knowledge to
make the unlearning process more efficient and accurate. To incrementally update the model towards
unlearning, we propose a risk estimator to achieve the optimal model in each streaming round and
propose the corresponding streaming unlearning approach – SAFE (Stream-Aware Forgetting). Our
approach departs from traditional batch unlearning by incorporating dynamic regret risk and reducing
reliance on original training data. Furthermore, our theoretical analysis guarantees the effectiveness
of SAFE by providing the upper bound on the unlearning regret risk of O(VT

√
T + ∆T ), where

VT represents the cumulative total variation in the optimal solution over T learning rounds, and
∆T =

∑T
t=1 div(Dt, Ft) represents the cumulative divergence between the remaining and forgetting

data distributions. This result holds without assuming the convexity of the loss function. To evaluate
the practical performance of SAFE, we conduct empirical experiments on both basic machine learning
models and deep neural networks across various datasets.

The contributions of this paper can be summarised as follows:

• We introduce the online unlearning paradigm and the SAFE algorithm to address the stream-
ing unlearning problem. SAFE maintains high predictive performance on the remaining
data while ensuring high unlearning efficiency. Notably, it does not require repeated access
to the original training data during unlearning.

• We are the first to provide an O(VT

√
T + ∆T ) upper bound on the unlearning regret

risk of the proposed algorithms through theoretical analysis, showing that the unlearning
performances are proportion to the distribution divergence of remaining and forgetting data.

• Through empirical evaluations across multiple datasets and models, we demonstrate that
SAFE achieves higher or comparable performance more efficiently than other state-of-the-art
batch unlearning methods, especially on neural network-based models.

2 PRELIMINARIES AND BACKGROUND

2.1 PRELIMINARIES

Batch Machine Unlearning Objective We begin by introducing traditional batch unlearning. We
consider a supervised learning task, where an initial model f(·;w) is trained on a dataset D with the
loss function ℓ(f(·;w), ·). When a subset F ⊂ D is selected as the forgetting data, an unlearning
algorithm is applied to remove the knowledge associated with F from the model f . The updated
parameters w of the model after unlearning are obtained by solving the following optimization
problem:

min
w

(L(D − F,w) + λR(F,w)) , (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

whereR(F,w) is a regularizer, and λ is a trade-off weight hyperparameter for the regularizer. While
minimizing the training loss L(D− F,w) on the remaining data D− F ensures the unlearned classi-
fier’s performance on the retaining data, the regularizer is used to control the performance of forgetting
data. Specifically, in this paper, we define it asR(F,w) = 1/|F |

∑
(x,y)∈F dKL(f(x;w), f(x;w

∗))

where w∗ is the optimal model parameters for minimizing L(D−F,w) and dKL defines the Kullback-
Leibler (KL) Divergence. It constraints that the model after unlearning should achieve similar
performance as f(·;w∗). When λ is zero, the unlearning objective equals the classical retraining-
based one used in (Zhang et al., 2024; Thudi et al., 2022); when λ is set as other positive value, the
performance on forgetting data is specially incorporated into consideration, as shown in (Fan et al.,
2024; Kurmanji et al., 2023).

Online Learning with Dynamic Regret An online learning problem shares the same streaming
data nature as streaming unlearning but differs in how the provided data is used. In online learning,
the model is sequentially updated by incorporating new data. Specifically, in online learning, the
training set is augmented in the t-th round, denoted as Dt. The goal is to minimize the dynamic
regret, which is

L-RegretT =

T∑
t=1

(L(Dt, wt)− L(Dt, w
†
t )), (2)

where w†
t denotes the optimal parameters in the t-th round of online learning (Hoi et al., 2021;

Zinkevich, 2003a; Besbes et al., 2015). Here, the dynamic regret represents the cumulative risk
between the online models and the optimal models in each round. Such principle of regrets, which
defines the distance between the performances of the updated model and optimal model can also be
adapted into unlearning as an objective. We will give details on how to design a regression objective
for online unlearning and its difference from the regret in online learning in the following subsection

2.2 ONLINE UNLEARNING PARADIGM

In the streaming unlearning problem, the original training dataset D0 consists of data points (x, y) ∈
D0 is used to train an initial model f(·;w0) with parameters w0. After w0 was learned, a series of
unlearning requests are received by streaming unlearning, and the t-th request comes with a forgetting
data Ft ⊂ D0. Upon receiving each request, the model needs to unlearn the corresponding Ft,
resulting in an unlearned model f(·, wt). When the forgetting data is accumulated through the series
of forgetting data received, the size of the remaining data will decrease gradually. Upon receiving
the tth request, the remaining data will defined recursively as Dt = Dt−1 − Ft, and the t-th request
comes with a forgetting data Ft ⊂ Dt−1.

We consider a stream data removal request {Ft}Tt=1. To achieve the goal in Eq. 1 in the t-th round,
we need to minimize the following objective, formulated as

min
wt

(L(Dt, wt)− L(Dt, w
∗
t ) + λR(Ft, wt)) , (3)

where w∗
t denotes the optimal parameters for the t-th round of forgetting and L(Dt, w

∗
t ) is a fixed

value during unlearning. After all T rounds, we define the regularized unlearning dynamic regret
of the continuously updated model against the optimal models in terms of cumulative risks as the
objective for the online unlearning paradigm

U -RegretT =

T∑
t=1

(L(Dt, wt)− L(Dt, w
∗
t )+λR(Ft, wt)) . (4)

In online unlearning, the objective differs from that of online learning. Rather than acquiring new
knowledge from incoming data, the goal of online unlearning is to remove the knowledge associated
with this data, leading to a significant reduction in the model performance on these data. This
is why the unlearning regret, as shown in Eq. 5, includes an additional second term, λR(Ft, wt).
Furthermore, in online unlearning, Dt is gradually shrunk rather than expanded, as it would be in
online learning. Additionally, since online unlearning begins with a well-trained model, which is
often a deep model in modern practice, it is potentially risky to assume that the model will adhere to
the convexity or pseudo-convexity assumptions typically made in online learning.

3
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3 ONLINE UNLEARNING METHODOLOGY

To address the challenges in the online unlearning problem, we introduce the proposed SAFE
algorithm in this section. In Subsection 3.1, we first design a novel online unlearning risk estimator to
estimate the real risk in Eq. 4. The risk estimator includes the recorded training data risk, the recovered
forgetting data risk, and the distribution shift risk. Next, the calculation process of the distribution
shift is presented in Subsection 3.2. Then, we provide the SAFE algorithm in Subsection 3.4 with
theoretical analysis in Subsection 3.5

3.1 ONLINE UNLEARNING RISK ESTIMATOR

To achieve the online unlearning objective in all rounds in Eq. 4, we first need to estimate the online
unlearning risk in each round as shown in Eq. 5. Considering that the true risk in the (t-1)-th round of
request of the model f parameterized by w is:

w = argmin
wt

(L(Dt, wt)− L(Dt, w
∗
t ) + λR(Ft, wt)) , (5)

since L(Dt, w
∗
t ) is the optimized loss on the remaining data Dt in the retrained model and can be

discarded in the following optimizations since it is a fixed value. Then the risk in the t-th round can
be written as:

Rt(w) = L(Dt, w) + λR(Ft, w),

Rt(w) in the above equation is equivalent to the following risk when defining the regularizer to be
1/|Ft|

∑
(x,y)∈Ft

dKL(f(x;w), f(x;w
∗
t )):

Rt(w) =
|D0|
|Dt|

R0(w)︸ ︷︷ ︸
(a)

− 1

|Dt|

t∑
i=1

∑
(x,y)∈Fi

ℓ(f(x;w), y)

︸ ︷︷ ︸
(b)

+
λ

|Dt|

t∑
i=1

∑
(x,y)∈Fi

dKL(f(x;w), f(x;w
∗
t ))︸ ︷︷ ︸

(c)

,

(6)

where Eq. 6 (a) presents the training risk on all training data D0, Eq. 6 (b) denotes the training risk
on cumulative forgetting data through all t forgetting rounds, and Eq. 6 (c) stands for the regularizer
term, showing the discrepancy between forgetting data predictions on the unlearned and retrained
models.

In the unlearning procedure, we first need to estimate the forgetting data prediction f(x;w∗
t ), where

w∗
t = argminw L(Dt, w). However, w∗

t cannot be obtained during unlearning, considering the
remaining data Dt cannot be frequently accessed in the reach round. Instead of estimating w∗

t , we
estimate f(x;w∗

t ) directly in order to further optimize Eq.6(c). The estimation of f(x;w∗
t ), denoted

as f̃i(x;w0), will be obtained through a distribution shift approach by analysing the distribution shift
between Dt−1 and Dt. In the following subsection, we will introduce especially this distribution
shift approach.

3.2 DISTRIBUTION SHIFT RISK

In the unlearning process, the optimal models in each unlearning round are those retrained on the
remaining data {Dt}Tt=1, which has removed the information of forgetting data {Ft}Tt=1 in each
unlearning round. Since the data in Dt evolves with the ongoing unlearning of Ft, the corresponding
distribution of Dt will also shift in each round.

After t rounds of the unlearning requests, the shifted prediction probability of x on each class y (i.e.
Qt(y|x)) from the initial prediction Q0(y|x) can be denoted as:

Qt(y|x) =
Q0(x)

Qt(x)

Qt(y)

Q0(y)

Qt(x|y)
Q0(x|y)

Q0(y|x) ∝
Qt(y)

Q0(y)

Qt(x|y)
Q0(x|y)

Q0(y|x). (7)

In the above equations, We assume that the feature marginal distributions Qt(x) remain unchanged
in the same t-th round, and therefore, Qt(x)/Q0(x) will be constant. Qt(y)/Q0(y) is the ratio of
the proportions of the data belonging to class y in D0 and Dt, which are denoted as D[y]

0 and D
[y]
t

4
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where the superscript [y] stands for the data belonging to the class y. Then, Qt(x|y) and Q0(x|y)
represent the data distribution conditioned on each class y.

To effectively estimate Qt(x|y) and Q0(x|y), we can approximate the conditional distribution as a
Gaussian, i.e., zt(x|y) = N(µ

[y]
t ,Σ

[y]
t ) where µ[y]

t and Σ
[y]
t stand for the mean vector and covariance

of the low-dimensional vectors of the Dt of class y in the t-th round. Note that approximating data
as a Gaussian Distribution is a common approximation used in many learning methods, such as in
Variational Autoencoders (VAEs) (Kingma & Welling, 2014) and Bayesian Neural Networks (Neal,
2012). At the beginning of the unlearning process, the original data x is projected into another space
through a series of linear transformations, which standardize the data to ensure that the projected
vector v[y](x) follows a normalized Gaussian distribution conditioned on y. In each round, the
distribution of Dt will be influenced by the removal of the forgetting data. Given that the size of
the forgetting data is relatively small compared to the remaining data, the Gaussian distribution can
still be approximately maintained, though the mean and covariance may undergo slight adjustments.
Specifically, the mean vector can be derived by:

µ
[y]
t =

|D[y]
t−1|
|D[y]

t |
µ
[y]
t−1 − µ̃

[y]
t , (8)

and

Σ
[y]
t =

|D[y]
t | − 1

|D[y]
t−1| − 1

Σ
[y]
t−1 − Σ̃

[y]
t + c(µ

[y]
t , µ

[y]
t−1). (9)

In the above equations, µ̃[y]
t = 1/|F [y]

t |
∑

x∈F
[y]
t

v[y](x) and Σ̃
[y]
t = 1

|D[y]
t |−1

[
∑

x∈F
[y]
t
(v[y](x) −

µ̃
[y]
t )(v[y](x)− µ̃

[y]
t )T ] are the mean and covariance of the Gaussian vectors of the forgetting data

F
[y]
t that belongs to class y. Then c(µ

[y]
t , µ

[y]
t−1) = |D

[y]
t−1|(µ

[y]
t−1−µ

[y]
t )(µ

[y]
t−1−µ

[y]
t )T −|F [y]

t |(µ̃
[y]
t −

µ
[y]
t )(µ̃

[y]
t − µ

[y]
t )T ].

In the unlearning process, the updating in Eqs. 8 and 9 can be done incrementally. We only need
to calculate the corresponding zt(x|y) for the forgetting data through the recorded projection to
update µ

[y]
t and Σ

[y]
t . Apart from the initial statistics of training data to get µ[y]

0 and Σ
[y]
0 , we do

not require any access to the original training data. After obtaining the Gaussian Class-conditional
probability zt(x|y) = N(x;µt+1,Σt+1), we can incorporate zt(x|y) into Eq. 7 to get the shifted
feature-conditioned distribution:

Qt(y|x) = q
[y]
t (x)Q0(y|x) ∝

Qt(y)

Q0(y)

zt(x|y)
z0(x|y)

Q0(y|x), (10)

where we use softmax to normalize the values of Qt(y|x) for all y to control that
∑

y Qt(y|x) = 1

and qt(x) is an vector with the same dimension of output f(x;w0) and q
[y]
t (x) ∝ Qt(y)

Q0(y)
zt(x|y)
z0(x|y) .

Qt(x|y) can also be approximated by other distributions, such as the χ2 and t distributions. However,
when using these alternative distributions, estimating the distribution parameters incrementally, as
we do for µt and Σt in Eqs.8 and 9, becomes significantly more challenging. For this reason, we
adopt the Gaussian distribution in our method. We also empirically test the deviation of Q(x|y) from
the Gaussian distribution, and results in Appendix C suggest that the transformed vectors satisfy the
Gaussian distributions under Mardia’s test (Mardia, 1970).

3.3 ONLINE UNLEARNING OPTIMIZATION

After obtaining the shifted distribution for each round, we derive the reference probability for the
predictions of the forgetting data:f̃t(x;w∗

0) = qt(x)f(x;w0) and the forgetting data prediction
f(x;w∗

t ) can be estimated by f̃t(x;w
∗
0). The estimated risk for the online unlearning problem is:

R̂t(w) =
|D0|
|Dt|

R0(w)−
1

|Dt|

t∑
i=1

∑
(x,y)∈Fi

(ℓ(f(x;w), y)− λdKL(f(x;w), qt(x)f(x;w0))) . (11)

5
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The risk estimator of Eq. 11 can be proved to be equivalent to the population risk of Eq. 6 in each
round of the unlearning. The detailed proof is provided in Appendix A.3, and the correctness of the
condition in Theorem 1 has been proved in Lemma 1 in (Yu et al., 2018).

Theorem 1. If
√
|Dt| ≫

∑t
i=1 |Fi| and f(x;w0) = Q0(y|x), then R̂t(w) is equivalent to Rt(w).

To calculate the estimated risk incrementally, we first record the initial gradient ∇R0(w0) on
D0. Then, during unlearning, we do not require D0 anymore for R̂t(w) and we calculate
the distribution shift risk 1

|Dt|
∑t

i=1

∑
(x,y)∈Fi

(ℓ(f(x;w0), qt(x)f(x;w0))) and population risk
1

|Dt|
∑t

i=1

∑
(x,y)∈Fi

ℓ(f(x;w0), y) through the accumulated forgetting data. Then, we can obtain

R̂t(w0) and get the corresponding gradients. Next, we update the model by first-order optimization

wt = w0 − γ
∇R̂t(w0)

||∇R̂t(w0)||
= wt−1 − γ∇step

t , (12)

where γ is the learning rate and ∇step
t = ( ∇R̂t(w0)

||∇R̂t(w0)||
− ∇R̂t−1(w0)

||∇R̂t−1(w0)||
) and || · || stands for the L2

norm.

Algorithm 1 SAFE Algorithm
Input D0, {Ft}Tt=1, w0, ∇R0(·), γ;
Output {wt}Tt=1;

1: procedure SAFE:
2: Initial w0 as model parameters before unlearning;
3: Calculate low-dimension projectors and initial Gaussian parameters µ0 and Σ0;
4: Calculate the initial risk R0(w0) on D0; // D0 will be dropped out.
5: for t = 1, . . . , T do:
6: Estimate µt and Σt;
7: Calculate the shift distribution risk and population risk for forgetting data;
8: Calculate∇R̂t(w

0);
9: wt ← wt−1 − γ∇step

t ;
10: end for
11: end procedure

3.4 SAFE ALGORITHM

We provide the pseudo-code of the overall SAFE in Algorithm 1. Before unlearning starts, SAFE
calculates the initial mean vector µ[y]

0 and covariance matrix Σ
[y]
0 , and the initial risk R0(w0) on the

original training data. Then, in the unlearning procedure, we only need the specified forgetting data
{Ft}Tt=1 without any requirements on the remaining data {Dt}Tt=0.1

We begin by calculating the distribution shift risk and the true risk of forgetting data on the initial
model weights w0. From this, we derive the estimated risk R̂t(w0) and the corresponding gradients
∇R̂t(w0). By recording the model weights wt−1 and gradients∇R̂t−1(w0) in the previous unlearn-
ing round, the model weights are updated by Eq. 12. Consequently, SAFE outputs a series of updated
models with weights {wt}Tt=1, fulfilling the unlearning requests {Ft}Tt=1.

In each unlearning round, the primary algorithmic time consumption occurs during distribution shift
inference and the gradient update for R̂t(w0). Since the computational load for these stages remains
constant regardless of the number of unlearning rounds, the time consumption per round is constant,
resulting in a linear increase in total time consumption with the number of rounds. Regarding memory
consumption, the storage requirements for distribution shift inference variables and model gradients
remain unchanged in each unlearning round, leading to a constant total memory consumption across
all unlearning requests.

1The implemented code will be made publicly available after the notification is released.
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3.5 THEORETICAL GUARANTEE

In this section, we provide theoretical guarantees for the SAFE algorithm on the error bound between
the performances of the unlearned and retrained models for the single round and cumulative rounds.
The error bounds guarantee the performance closeness of the unlearned and retrained model on both
remaining data and forgetting data.
Theorem 2. If the risk Rt(w) satisfies the upper-bounded gradient assumption with upper bound
U , and the model weights satisfy the gradient assumption with upper bound W (i.e. |w| ≤ W
||∇Rt(w)|| ≤ U ). For any sequence of unlearning requests {F t}T1 with the rounds to be T , we set
γ =

√
W

4
√
T

. Then, by applying the first-order optimization algorithm:
(i) the error in the t-th rounds of unlearning compared with the optimal model state w∗

t is bounded:

E [Rt(wt)−Rt(w
∗
t )] ≤ O(

√
T ).

(ii) the accumulated unlearning regret across all requests is bounded:

E
[
U -RegretT ({wt}T1 )

]
≤ O(VT

√
T +∆T ),

where VT = 1 +
∑T

t=1 ||w∗
t − w∗

t−1||, ∆T = 2
∑T

t=1 div(Dt, Ft), and div(Dt, Ft) denotes the
divergence between the distribution of remaining data Dt and forgetting data Ft in the t-th round of
unlearning as defined in (Ben-David et al., 2006).

Based on the above theorem, the upper bound error between the retrained model and unlearned model
and the total unlearning regret consists of both the dynamic regret part O(VT

√
T ) and distribution

shift part ∆T . When the forgetting data are uniformly sampled from the training dataset, ∆T makes
a minor influence on the unlearning performance, and SAFE can reach a lower unlearning regret.
However, when the forgetting data and the remaining data have two separate distributions, like the
data in different classes, ∆T will lead to a higher upper bound error and then lead to the unlearning
regret.

For the dynamic regret part O(VT

√
T ), to the best of our knowledge, the proved error bound is the first

error bound of dynamic regret for the streaming unlearning problem. However, we acknowledge that
there is room for improvement in the current bound of O(VT

√
T ). Previous works in online learning

have achieved better dynamic regret bounds of O(
√
VTT ) (Gao et al., 2018) and O(T

2
3 ) (Ghai et al.,

2022) under similar conditions without the restriction of convexity. This difference may inspire future
works to establish a better bound for online unlearning. In addition, the previous batch machine
unlearning algorithm Sekhari et al. (2021) achieves an upper bound of O(m2), where m stands for
the size of the forgetting data in the single batch unlearning. m usually increases linearly to the size
of the unlearning request T in the whole stream unlearning settings. Therefore, it can achieve an
upper bound of O(T 2) in the stream manner. In comparison, the error bound O(VT

√
T +∆T ) of

SAFE is much smaller.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets and Models: To validate the effectiveness of LAF, we conduct experiments on four datasets:
CIFAR10 Features, DIGITS (MNIST) (LeCun, 1998), FASHION (Fashion MNIST) (Xiao et al.,
2017), and raw CIFAR10 (Krizhevsky et al., 2009). On CIFAR10 Features dataset, we choose a
ResNet-18 to extract features and use a logistic regression model (LR) for binary classifications. On
the two MNIST datasets, we use a two-layer convolutional neural network (CNN) (LeCun et al., 1995),
while on the CIFAR10 dataset, we choose a ResNet-18 backbone (He et al., 2016). In Appendix B.1,
we show the details about data pre-processing and model structures. For the hyperparameters, we set
λ = 2000 and tune γ for better unlearning results, which is shown in Appendix B.6.

Baselines: We compare the performance of the SAFE algorithm with Retrain which represents the
standard results from the retraining models, two other unlearning work to handle streaming unlearning
requests without remaining data: LCODEC (Mehta et al., 2022) and Descent (Neel et al., 2021),
and two other methods requiring remaining data: Unrolling (Thudi et al., 2022), and CaMU (Shen
et al., 2024a). All the experiments on these baselines are conducted under 10 random seeds.
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Evaluations: For effectiveness evaluations, we assess the unlearning algorithm using five metrics:
RA(Remaining Accuracy), UA(Unlearning Accuracy), and TA(Test Accuracy), which denote the
prediction accuracy of the post-unlearning model on the remaining data, forgetting data, and test data.
The closer value to the retrained model indicates better unlearning performance for these metrics. We
also compare JS(Jensen–Shannon Divergence), which stands for the Jensen–Shannon divergence. It
measures the divergence between the outputs of the model after unlearning and the model retrained on
the remaining data. A lower JS indicates smaller differences between the two models and, therefore,
better performance of the unlearning method. Remain JS, Forget JS, and Text JS stand for the JS
comparisons on remaining, forgetting, and test data, respectively. We also check the ASR, the attack
accuracy of the MIA (Shokri et al., 2017; Chen et al., 2021) and we use the same MIA evaluations
as (Fan et al., 2024; Jia et al., 2023).

·Table 1: Complete comparison results in 20 rounds of unlearning, which remove 400 data points
(avg%±std%). The bold record indicates the best, and the underlined record indicates the second-
best.

Method RA UA TA Remain JS Forget JS Test JS ASR
MNIST

Retrain 99.68±0.05 98.89±0.09 99.00±0.05 0.00±0.00 0.00±0.00 0.00±0.00 79.25±1.14
Unroll (Thudi et al., 2022) 99.24±0.22 98.91±0.15 98.61±0.19 0.59±0.11 0.88±0.11 0.89±0.10 79.27±1.15
CaMU (Shen et al., 2024a) 98.94±0.36 98.72±0.79 98.54±0.42 12.12±2.29 13.43±1.56 11.98±2.22 79.05±1.13

LCODEC (Mehta et al., 2022) 96.26±1.95 96.27±1.88 95.60±1.94 2.61±1.13 2.87±1.25 2.93±1.25 78.79±2.22
Descent (Neel et al., 2021) 98.78±0.53 98.72±0.53 98.27±0.46 0.89±0.32 1.05±0.31 1.13±0.28 79.24±1.14

SAFE 99.74±0.03 99.63±0.05 99.04±0.02 0.34±0.03 0.61±0.06 0.65±0.03 79.26±1.15

MNIST Fashion

Retrain 96.44±0.15 90.76±0.33 90.40±0.15 0.00±0.00 0.00±0.00 0.00±0.00 79.57±0.51
Unroll (Thudi et al., 2022) 90.61±0.91 89.08±0.94 87.99±0.85 4.21±0.52 4.75±0.56 4.82±0.53 79.14±0.65
CaMU (Shen et al., 2024a) 91.32±0.36 90.45±0.83 89.00±0.40 10.40±0.45 11.53±0.43 10.51±0.41 78.07±0.53

LCODEC (Mehta et al., 2022) 86.21±4.27 86.26±4.15 82.28±3.89 7.81±2.57 8.60±2.38 8.94±2.45 77.41±1.75
Descent (Neel et al., 2021) 89.52±1.38 89.27±1.54 87.40±1.10 4.81±0.75 4.99±0.73 5.19±0.67 78.28±0.77

SAFE 91.73±0.25 90.60±0.43 89.04±0.30 3.62±0.15 4.09±0.25 4.20±0.17 77.96±0.49

CIFAR10 Feature

Retrain 85.61±0.13 84.16±0.57 85.01±0.16 0.00±0.00 0.00±0.00 0.00±0.00 48.72±1.95
Unrolling (Thudi et al., 2022) 86.25±0.06 84.97±0.27 85.51±0.03 0.06±0.02 0.07±0.02 0.06±0.02 49.32±1.92

CaMU (Shen et al., 2024a) 85.77±0.12 83.40±0.62 84.99±0.15 0.12±0.03 0.12±0.03 0.13±0.03 51.50±1.62
LCODEC (Mehta et al., 2022) 85.98±0.06 84.91±0.27 85.34±0.03 0.05±0.02 0.06±0.02 0.06±0.02 48.82±1.88

Descent (Neel et al., 2021) 86.24±0.07 84.94±0.30 85.50±0.01 0.07±0.02 0.07±0.02 0.07±0.02 49.45±1.91
SAFE 85.74±0.13 84.10±1.15 84.94±0.14 0.13±0.03 0.14±0.04 0.13±0.04 49.38±2.38

CIFAR10

Retrain 97.61±0.25 91.78±0.49 91.19±0.34 0.00±0.00 0.00±0.00 0.00±0.00 64.38±1.34
Unroll (Thudi et al., 2022) 93.59±2.57 90.46±1.92 86.97±2.12 4.02±1.38 5.96±1.09 5.82±1.27 74.96±2.95
CaMU (Shen et al., 2024a) 95.71±1.09 93.13±3.32 89.58±1.09 4.96±0.82 7.38±2.95 6.14±0.85 74.54±2.95

LCODEC (Mehta et al., 2022) 23.95±3.71 24.08±4.18 23.33±3.54 49.21±2.62 48.93±8.42 48.81±2.85 54.47±8.42
Descent (Neel et al., 2021) 74.01±27.50 74.24±27.58 70.01±25.34 17.63±17.06 17.66±16.63 17.66±16.46 71.95±7.67

SAFE 94.22±0.85 92.30±0.45 87.74±0.84 3.46±0.46 5.67±0.28 5.37±0.28 74.18±3.31

4.2 PERFORMANCE COMPARISON

First, we evaluate the unlearning performance of long sequential requests of the proposed SAFE
algorithm. Table 1 shows the average performance comparisons over 20 rounds of requests, each
requiring the removal of 400 randomly selected data points. The results demonstrate that the SAFE
algorithm can achieve the closest average results to the retrained model on the two MNIST and
CIFAR10 datasets and the second closest average results on the CIFAR10 Feature, as shown in the
GAP column. Specifically, in terms of accuracy, SAFE achieves nearly all the best results on the two
MNIST datasets. Although SAFE shows higher forgetting data accuracy on MNIST compared to
others, it achieves the smallest JS Divergence on the forgetting data, indicating that SAFE can produce
output performances for each instance that are closest to those of the retrained model. Among all the
methods, Descent and SAFE realize the requests in the stream unlearning manner, while the other
four baselines conduct the batch unlearning on the accumulated forgetting data. For the CIFAR10
Feature dataset, where a simple logistic regression model with convex loss is used, the advantage
of online unlearning is not that significant due to the lack of reliance on any convexity assumption.
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However, SAFE still achieves nearly all the top results. On the CIFAR10 dataset, where a more
complex ResNet model is used, preserving performance after unlearning is challenging. Even so,
SAFE achieves the second-highest results in maintaining remaining data accuracy and test accuracy
while also achieving the best unlearning performance.

We also conducted statistical testing on all the experimental results presented in Table 1. We compare
our proposed method with the other methods based on a two-tailed t-test with a 90% confidence
level. The results of RA, UA, TA, Remaining JS, and Test JS on the CIFAR-10 are significantly
better than other baselines. Additionally, the results of RA, TA, and all JS metrics on the MNIST and
FMNIST datasets are also significantly better than the other methods. These results demonstrate that
the proposed method performs significantly better than the other methods.

Apart from the performance analysis on accuracy and JS divergence evaluation, we provide the
analysis of MIA in the following. Then, our proposed method achieves the best performance on the
MNIST dataset and the second-best results on CIFAR-10, demonstrating its effectiveness on complex
datasets. For the other two datasets, Fashion and CIFAR-10 Feature, our method achieves middle-tier
performance but remains comparable to other baselines. Compared with CAMU and Unroll, the
gradient ascent methods LCODEC, Descent, and SAFE achieve a relatively lower MIA compared
with the retrained model due to the fewer update steps on the model during unlearning. It will have
less impact on the model parameters and prediction results.

Then Figure 1 demonstrates the performance changes with the increasing of unlearning rounds. The
results of SAFE are in blue lines, and the results of the retrained model are in red lines. Although
in Figure 1(a), the remaining data accuracy of SAFE is lower than that of the retrained model, it is
still the closest among all methods. Additionally, in Figure 1(c), SAFE maintains high prediction
performance in all 20 rounds of test accuracy. This performance is comparable to CaMU, which
requires remaining data to preserve performance, whereas SAFE does not require unrelated training
data. For the forgetting data performance, Figure 1(b) demonstrates the effectiveness of removing
forgetting data information. Both the group-level accuracy and instance-level divergence show that
SAFE can achieve results closest to those of the retrained model on forgetting data. To further
evaluate the SAFE algorithm, we present experimental results under different request settings in
Appendix B.5, an analysis of the effect of learning rate in Appendix B.6, and ablation studies in
Appendix B.7.

(a) Remaining data accuracy (b) Forgetting data accuracy (c) Test data accuracy

Figure 1: Model performance against unlearning rounds on MNIST Fashion. The red line stands
for the performance changes of the retrained model and the blue line stands for the model after
unlearning via SAFE

4.3 EFFICIENCY ANALYSIS

In the efficiency comparisons, we recorded the average time cost for 20 rounds of unlearning, with
the results presented in Figure 2. SAFE achieved average time costs of 0.59 and 0.55 seconds on
the two MNIST datasets, while the second-fastest algorithm, L-CODEC, required 1.66 and 1.14
seconds, more than twice the time of SAFE. On the CIFAR10 dataset, the advantage of SAFE is
even more pronounced. SAFE required only 1.57 seconds per request, whereas the second-fastest
algorithm, Descent, required 12.90 seconds, which is nearly nine times slower than SAFE. On the
CIFAR10 Feature dataset, L-CODEC achieved the highest efficiency at 0.31 seconds due to the
simpler model structure, with SAFE achieving the second-highest efficiency at 0.44 seconds. These
time efficiency results highlight the leading advantage of SAFE in handling sequential requests,
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especially for complex models such as CNNs and ResNet. As for the memory cost, we provide an
analysis in Appendix B.8,

(a) Time cost in MNIST (b) Time cost in MNIST
Fashion

(c) Time cost in CIFAR10
Feature

(d) Time cost in CIFAR10

Figure 2: Time cost comparisons for stream instance unlearning. The x-axis stands for the time
(seconds) used to realize each round of unlearning in the stream settings

Table 2: Ablation results for stream instance unlearning(avg%±std%).

Method RA UA TA JS GAP RA UA TA JS GAP
MNIST MNIST-Fashion

Retrain 99.68±0.05 98.89±0.09 99.00±0.05 0.00±0.00 0.00 96.44±0.15 90.76±0.33 90.40±0.15 0.00±0.00 0.00
w/o DSR 99.81±0.01 99.78±0.02 99.06±0.01 0.57±0.05 0.41 92.23±0.01 92.00±0.32 89.58±0.01 3.65±0.16 2.48
w/o FR 99.75±0.02 99.65±0.05 99.05±0.02 0.61±0.05 0.37 91.85±0.21 90.80±0.38 89.16±0.24 4.00±0.22 2.47
w/o TR 99.54±0.01 99.39±0.07 98.88±0.01 0.71±0.04 0.37 89.38±0.32 87.47±0.60 86.86±0.30 5.48±0.19 4.84
SAFE 99.74±0.03 99.63±0.05 99.04±0.02 0.61±0.12 0.36 91.73±0.25 90.60±0.43 89.04±0.30 4.09±0.25 2.58

CIFAR10 Feature CIFAR10

Retrain 85.61±0.13 84.16±0.57 85.01±0.16 0.00±0.00 0.00 97.61±0.25 91.78±0.49 91.19±0.34 0.00±0.00 0.00
w/o DSR 85.89±0.03 85.87±0.41 85.10±0.03 0.15±0.05 0.38 97.35±0.01 97.44±0.10 90.84±0.01 3.96±0.19 2.56
w/o FR 85.88±0.03 85.38±0.82 85.07±0.08 0.13±0.03 0.43 94.42±0.76 92.59±0.39 87.92±0.76 5.55±0.24 2.71
w/o TR 85.31±1.08 82.34±3.24 84.68±7.40 0.18±0.03 0.82 92.30±1.05 89.36±0.66 86.03±1.04 6.85±0.38 4.94
SAFE 85.74±0.13 84.10±1.15 84.94±0.14 0.14±0.04 0.30 94.22±0.85 92.30±0.45 87.74±0.84 5.67±0.28 3.26

4.4 ABLATION STUDY

Table 2 presents the results of the ablation study for the proposed algorithm, where we sequentially
remove the distribution shift loss (DSR), the forgetting data gradient (FR), and the initial training
data gradient (TR). First, when the distribution shift loss is removed, the forgetting data accuracies on
all four datasets are similar to the original forgetting data accuracies, implying that the information of
the streaming forgetting data has not been effectively removed from the model. Second, when only
the forgetting data gradient is removed, the forgetting data accuracies approach those of the retrained
models. However, the results of the complete SAFE still outperform those without the forgetting
data gradient. Lastly, when the initial training data gradient is removed, there is a significant drop in
accuracies across all datasets.

These experimental results indicate that the distribution shift loss and the forgetting data gradient
contribute significantly to the unlearning process. The distribution shift loss is the dominant factor,
while the forgetting data gradient also provides a substantial contribution. Additionally, the initial
training data gradient is crucial in maintaining overall performance.

5 CONCLUSION

In this paper, we address the practical requirements of long sequential unlearning by introducing an
online unlearning paradigm. This paradigm is designed to realize sequential unlearning requests with
high forgetting accuracy and efficiency. We first conceptualize unlearning as the distribution shift
problem and estimate the Multivariate Gaussian distribution of low-dimensional vectors of the training
data of each class. Then, we propose a novel SAFE (Stream-Aware Forgetting) algorithm alongside
a first-order optimization that can reach a low regret bound. We conducted extensive experiments
and the results show that SAFE consistently achieves top or near-top performances across various
evaluations, including more than double the time efficiency compared with the second-most efficient
algorithm, demonstrating its clear advantages over other baseline methodologies.
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A APPENDIX

A.1 RELATED WORK

A.1.1 MACHINE UNLEARNING

Machine unlearning requires the removal of information of forgetting data from the original model
while preserving the knowledge contained in the remaining data (Bourtoule et al., 2021; Xu et al.,
2024). Current research on machine unlearning can be categorized into two primary branches based
on unlearning requests: batch unlearning and streaming unlearning. Batch data unlearning focuses
on removing a specific data group within the same batch (Bourtoule et al., 2021; Thudi et al., 2022;
Chundawat et al., 2023a; Chen et al., 2023; Kurmanji et al., 2023; Shen et al., 2024a;b). This approach
typically requires access to the original training data and fine-tuning it to maintain high prediction
performance. For instance, (Bourtoule et al., 2021) proposes retraining the model using small data
shards from the remaining dataset and ensembling the final results for increased efficiency. Similarly,
(Thudi et al., 2022) performs incremental training with the forgotten data in the first batch, recording
gradients during the initial batch and adding these recorded gradients to the weights after incremental
training. In contrast, streaming unlearning addresses continuous data removal requests (Gupta et al.,
2021; Li et al., 2021; Neel et al., 2021; Chien et al., 2024). For example, (Gupta et al., 2021) extends
(Bourtoule et al., 2021) to be more adaptive to incremental and decremental learning requests in
a streaming context. (Neel et al., 2021) proposes a perturbed gradient-descent algorithm on data
partitions to update models for stream unlearning requests. (Chien et al., 2024) fine-tunes the model
with noisy gradients for unlearning, which can be extended to streaming unlearning with limited
error increase. However, these approaches still face limitations. Some are restricted to convex
loss functions (Neel et al., 2021), while others still rely on full training data access and retraining
throughout the unlearning process (Bourtoule et al., 2021; Chien et al., 2024). These divergent
methodologies underscore the challenges of efficiently applying machine unlearning across various
data types and model structures (Gupta et al., 2021; Li et al., 2021; Neel et al., 2021; Chien et al.,
2024).

A.1.2 ONLINE LEARNING

Online learning focuses on the learning task of a continuous data stream, which regards the mini-
mization of regret risk as the objective (Hoi et al., 2021). With the increasing size of the incoming
data, the training data distribution will face a significant shift. Therefore, adapting to the shifted
distribution effectively and efficiently becomes one of the main tasks of online learning. Among
these works, the extensions of the regret risk become a requisite research. The basic regret compares
the cumulative risks among models in each unlearning step with the global optimal model after
learning all data in the stream (Zinkevich, 2003b); the adaptive regret reduces the time length of
the whole stream into smaller time windows and compares the cumulative risks with the optimal
models in different time windows (Hazan et al., 2006); the dynamic regret directly compares the
updated models with the optimal ones for each learning request (Zinkevich, 2003a; Besbes et al.,
2015; Zhang et al., 2018). In addition, optimizing the regret risks determines the effectiveness and
efficiency of the online learning algorithm. Specifically, the optimization methods include Online
Gradient Descent (OGD) (Zinkevich, 2003b) for the first-order optimization and Online Newton Step
(ONS) (Hazan et al., 2007) for the second-order optimization. In addition, Online Mirror Descent
(OMD) (Duchi et al., 2010) is also a common approach, which generalizes OGD to perform updates
in the dual space, which can be transformed through a regularize. Noticed that under different types
of regret, different optimization methods can reach different rigorous error bounds. Last but not
least, in practical problems like label shift problems, several online learning algorithms have been
proposed (Wu et al., 2021; Bai et al., 2022; Baby et al., 2023), which connect the label shift with
online learning via continuously updated classification margins. All the algorithm algorithms focus
on the learning tasks with data stream while there is still a research gap in exploring online algorithms
for the streaming unlearning request.

Online unlearning differs from online learning in the following aspects: Firstly, in machine unlearning,
the initial model already has comprehensive knowledge about all the training data, including the data
to be forgotten. Online unlearning aims to remove the information about the forgotten data, whereas
online learning focuses on learning from newly incoming data. This makes the unlearning process
inherently more challenging than the learning process. Secondly, the availability of training data in
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online learning and online unlearning differs. In online unlearning, the size of the remaining data
progressively decreases, and the models must adapt to new optimal states based on this remaining
data. However, online unlearning does not provide access to the remaining data and must be addressed
based on the provided forgetting data. Thirdly, from a practical standpoint, our online unlearning
method, SAFE, does not assume any convexity or pseudo-convexity for the training loss. We only
assume bounded weights and gradients on the training data. These assumptions are more practical
as the initial model in unlearning problems has been well-trained, and the gradients on the current
training data have stabilized.

A.2 NOTATION

We provide a table of all notations of the main paper in Table 3.

Table 3: Table of Notation
Notation Explanation

A Learning algorithm
U Unlearning algorithm
t Round number of unlearning request
T Total length of unlearning request
D0 Original training data
Dt Remaining data in the t-th round of request
Ft Forgetting data in the t-th request
f(·; ·) Prediction model
L(·, ·) Training loss
R(·, ·) Regularizer
ℓ(·, ·) Classification loss function
dKL(·, ·) KL divergence loss
wt Updated parameters in the t-th round of request
w∗

t Optimal parameters in the t-th round of request
µ
[y]
t ,Σ

[y]
t Mean and covariance matrix estimated Gaussian distribution of

remaining data for class y in the t-th round of request
µ̃
[y]
t , Σ̃

[y]
t Mean and covariance matrix estimated Gaussian distribution of

forgetting data for class y in the t-th round of request
z(x|y) Estimated Gaussian distribution in the t-th round of request
Rt(·) True risk in the t-th round of request
R̂t(·) Risk estimator in the t-th round of request
∇(·) Gradient of the function
|| · || L2 norm
γ Learning rate in each update
W Upper bound of the norm of model parameters
U Upper bound of the norm of gradients

A.3 THEORITICAL PROOF

Lemma 1. (Berry-Esseen theorem) Let X1,X2, . . . ,Xn be independent and identically distributed
random vectors in Rd with mean vector µ and covariance matrix Σ. The Berry-Esseen theorem
in the multivariate case states that the upper bound of the error between the real distribution and
normalized Gaussian distribution is:

sup
z∈Rd

|P (Sn ≤ z)− ΦΣ(z)| ≤ O(
1√
n
), , (13)

where Sn = 1√
n

∑n
i=1(Xi − µ) is the normalized sum of the random variables, ΦΣ(z) is the

cumulative distribution function of the multivariate normal distribution with mean vector 0 and
covariance matrix Σ, and ∥X1 − µ∥ denotes the Euclidean norm.

Theorem 1. If
√
|Dt| ≫

∑t
i=1 |Fi| and f(x;w0) = Q0(y|x), then R̂t(w) is equivalent to Rt(w).
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Proof. The estimated predictions of data (x, y) for both the remaining data and forgetting data in the
t-th round of request is:

f̃t(x, w0) = Qt(y|x) = g
[y]
t (x)z(x|y)Q0(y|x),

where g
[y]
t (x) ∝ Qt(y)

Q0(y)ϕ
[y]
0 (z(x))

. In the above equation, z(x|y) involves bias because the low-

dimensional vectors cannot always fit the multivariate Gaussian distribution perfectly. Therefore,
based on the Berry-Esseen theorem, we estimate the error between the real distribution and the
approximate Gaussian distribution:

sup
(x,y)∈Dt

|z(x|y)− Φ(n(x))| ≤ O(
1√
|Dt|

),

where |Dt| is the size of Dt. Therefore, for all the estimated predictions of data (x, y) through
distribution shift, one error term exists between the estimated predictions and the optimal predictions:

sup
(x,y)∈Dt

|f̃t(x, w0)− f(x, w∗
t )| ≤ O(

1√
|Dt|

).

Therefore, for any historical sequential unlearning requests {Ft}, the estimated risk of R̂t(w) after
removing F can be represented by:

|R̂t(w)−Rt(w)| =
1

|Dt|

t∑
i=1

∑
(x,y)∈Fi

|dKL(f(x;wt), qt(x)f(x;w0))− dKL(f(x;wt), f(x;w
∗
t ))|

=
1

|Dt|

t∑
i=1

∑
(x,y)∈Fi

(f(x;wt)| log(qt(x)f(x;w0))− log(f(x;w∗
t )))|

≤ 1

|Dt|

t∑
i=1

∑
(x,y)∈Fi

(f(x;wt)|
1

qt(x)f(x;w0)
− 1

f(x;w∗
t )
)|

=
1

|Dt|

t∑
i=1

∑
(x,y)∈Fi

(
f(x;wt)

qt(x)f(x;w0)f(x;w∗
t )
|qt(x)f(x;w0)− f(x;w∗

t ))|

≤O(

∑t
i=1 |Fi|√
|Dt|

),

where the total size of forgetting data
∑t

i=1 |Fi| is always less than the size of remaining data |Dt| and
K is the size of remaining data and

√
|Dt| ≫

∑t
i=1 |Fi|, and it demonstrates that |R̂t(w)−Rt(w)| ≈

0 and R̂t(w) is equivalent to Rt(w).

Lemma 2. (Ben-David et al., 2006) LetR be a fixed representation function from X to Z andH be
a hypothesis space of VC-dimension d. If a random labeled sample of size m is generated by applying
R to a DS-i.i.d. sample labeled according to f , then with probability at least 1− δ, for every h ∈ H:

ϵT (h) ≤ ϵ̂S(h) +

√
4

m

(
d log

2em

d
+ log

4

δ

)
+ div(DS ,DT )

where e is the base of the natural logarithm, and div(D̃S , D̃T ) is the distance between source domain
data DS and target domain data DT .

The proof can be found in the proof of theorem 1 in (Ben-David et al., 2006)

Theorem 2. If the risk Rt(w) satisfies the upper-bounded gradient assumption with upper bound
U , and the model weights satisfy the gradient assumption with upper bound W (i.e. |w| ≤ W ,
||∇Rt(w)|| ≤ U ). For any sequence of unlearning requests {Ft}T1 with the rounds to be T , we set
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γ =
√
W

4
√
T

. Then, by applying the first-order optimization algorithm:
(i) the error in the t-th rounds of unlearning compared with the optimal model state w∗

t is bounded:

E [Rt(wt)−Rt(w
∗
t )] ≤ O(

√
T ).

where VT = 1 +
∑T

t=1 ||w∗
t − w∗

t−1||.

Proof. Let w∗
t denote the optimal model parameters in the t-th round of removal request. Then the

difference between wt and w∗
t is:

||wt − w∗
t ||2 =||wt − w∗

t − w∗
t−1 + w∗

t−1||2

=||wt − w∗
t−1||2 + ||w∗

t − w∗
t−1||2 + 2(wt − w∗

t−1)
⊤(w∗

t − w∗
t−1). (14)

After incorporating wt into the first item of eq 14 as shown in the following:

||wt − w∗
t−1||2 =||wt−1 − γ(

∇R̂t(w0)

||∇R̂t(w0)||
+
∇R̂t−1(w0)

||∇R̂t−1(w0)||
)− w∗

t−1||2

=||wt−1 − w∗
t−1||2 + ||γ(

∇R̂t(w0)

||∇R̂t(w0)||
− ∇R̂t−1(w0)

||∇R̂t−1(w0)||
)||2−

2γ(
∇R̂t(w0)

||∇R̂t(w0)||
− ∇R̂t−1(w0)

||∇R̂t−1(w0)||
)⊤(wt−1 − w∗

t−1). (15)

We can incoperate Eq. 15 into Eq. 14:

||wt − w∗
t ||2 ≤||w∗

t − w∗
t−1||2 + ||wt−1 − w∗

t−1||2 + ||γ(
∇R̂t(w0)

||∇R̂t(w0)||
− ∇R̂t−1(w0)

||∇R̂t−1(w0)||
)||2−

2γ(
∇R̂t(w0)

||∇R̂t(w0)||
− ∇R̂t−1(w0)

||∇R̂t−1(w0)||
)⊤(wt−1 − w∗

t−1)+

2(wt − w∗
t )

⊤(w∗
t − w∗

t−1). (16)

By rearranging terms and multiplying 1
2γ on both sides we have:

2γ(
∇R̂t(w0)

||∇R̂t(w0)||
− ∇R̂t−1(w0)

||∇R̂t−1(w0)||
)⊤(wt−1 − w∗

t−1)

≤ 1

2γ
[||w∗

t − w∗
t−1||2 + ||wt−1 − w∗

t−1||2 − ||wt − w∗
t ||2

+ ||γ( ∇R̂t(w0)

||∇R̂t(w0)||
− ∇R̂t−1(w0)

||∇R̂t−1(w0)||
)||2 + 2(wt − w∗

t−1)
⊤(w∗

t − w∗
t−1)]

≤ 1

2γ
[2W ||w∗

t − w∗
t−1||+ ||wt−1 − w∗

t−1||2 − ||wt − w∗
t ||2

+ 4γ2 + 4W ||w∗
t − w∗

t−1||].

Therefore the estimated error of training loss f in the t round on the remaining data Dt is:
EDt
|Rt(wt)−Rt(w

∗
t )| ≤||UE [wt − w∗

t ] ||

=UE

[
|∇( ∇R̂t+1(w0)

||∇R̂t+1(w0)||
− ∇R̂t(w0)

||∇R̂t(w0)||
)⊤(wt − w∗

t )

]

≤ U

2γ

[
6W ||w∗

t+1 − w∗
t ||+ ||wt − w∗

t ||2 − ||wt+1 − w∗
t+1||2 + 4γ2

]
≤ U

2γ
(16W 2 + 4γ2) = 32UW

3
2

√
T + 8U

√
W√
T

= O(
√
T ).
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Then, for the regularizer term, i.e. the prediction error on the forgetting data between the models after
unlearning and after retraining, we have:

E|R(Ft, wt)| = E|L(Ft, wt))− L(Ft, w
∗
t ))− L(Dt, wt)) + L(Dt, w

∗
t ) + L(Dt, wt)− L(Dt, w

∗
t )|

≤ E|L(Ft, wt))− L(Dt, wt))|+ E|L(Ft, w
∗
t ))− L(Dt, w

∗
t )|+ E|L(Dt, wt)− L(Dt, w

∗
t )|

≤ E|Rt
Dt

(wt)−Rt
Dt

(w∗
t )|+O(

√
log |Dt|
|Dt|

) + 2div(Dt, Ft)

≤ O(
√
T ) + 2div(Dt, Ft)

Combining the estimated errors in the training loss and the regularizer, we can get an error bound of
the online unlearning risk in the t round:

E|Rt(wt)−Rt(w∗
t )| ≤ O(

√
T ),

where div(Dt, Ft) denotes the divergence between the distribution of remaining data Dt and
div(Dt, Ft) ∈ (0, 1).

Theorem 3. If the risk Rt(w) satisfies the upper-bounded gradient assumption with upper bound
U , and the model weights satisfy the gradient assumption with upper bound W (i.e. |w| ≤ W
||∇Rt(w)|| ≤ U ). For any sequence of unlearning requests {Ft}T1 with the rounds to be T , we set
γ =

√
W

4
√
T

. Then, by applying the first-order optimization algorithm:
(ii) the accumulated unlearning regret across all requests is bounded:

E
[
U -RegretT ({wt}T1 )

]
≤ O(VT

√
T +∆T ),

where VT = 1 +
∑T

t=1 ||w∗
t − w∗

t−1|| and ∆T = 2
∑T

t=1 div(Dt, Ft) and div(Dt, Ft) denotes the
divergence between the distribution of remaining data Dt and forgetting data Ft in the t-th round of
unlearning.

Proof. We can get the upper bound of the regret estimation by summing the upper bound of
L(Dt, wt)− L(Dt, w

∗
t ) for each t = 1, . . . ,K:

|E
T∑

t=1

(L(Dt, wt)− L(Dt, w
∗
t ))|

=

T−1∑
t=0

|E(L(Dt, wt)− L(Dt, w
∗
t ))|+ |E(L(DT , wT )− L(DT , w

∗
T ))| − |E(L(D0, w0)− L(D0, w

∗
0))|

≤
T−1∑
t=0

UE[|∇( ∇R̂t+1(w0)

||∇R̂t+1(w0)||
− ∇R̂t(w0)

||∇R̂t(w0)||
)⊤(wt − w∗

t )] +O(
√
T )

≤U
T−1∑
t=0

1

2γ

[
||w∗

t+1 − w∗
t ||+ ||wt − w∗

t ||2 − ||wt+1 − w∗
t+1||2 + 4γ2

]
+O(

√
T )

≤ U

2γ

[
||w0 − w∗

0 ||2 − ||wT − w∗
T ||2 + 4Tγ2 +

T−1∑
t=0

6W ||w∗
t+1 − w∗

t ||

]
+O(

√
T )

≤ U

2γ

[
4W 2 + 4Tγ2 + 6W (VT − 1)

]
+O(

√
T )

=
16UW

3
2 + UW

1
2 + 12UW

1
2 (VT − 1)

2

√
T +O(

√
T )

=O(VT

√
T ), (17)

where VT = 1 +
∑T

t=1 ||w∗
t − w∗

t−1||.
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E [U -RegretT ] ≤|E
T∑

t=1

(L(Dt, wt)− L(Dt, w
∗
t )|+ E

T∑
t=1

R(Ft, wt)

≤2|E
T∑

t=1

(L(Dt, wt)− L(Dt, w
∗
t )|2

T∑
t=1

div(Dt, Ft)

=O(VT

√
T ) + 2

T∑
t=1

div(Dt, Ft). (18)
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B EXPERIMENTS

In this section, we provide a detailed description of the datasets, models, baseline methods, and the
implementation details of the online unlearning algorithm. We then present further experimental
results to answer the following six research questions, which are crucial for evaluating the online
unlearning algorithm:

• RQ1: How does the performance of SAFE compare to other methods in terms of accuracy,
JS-Divergence, and Membership Inference Attack?

• RQ2: How does online unlearning perform under different settings of rounds and forgetting
data size compared to other methods?

• RQ3: How does the hyperparameter, specifically the learning rate, affect the unlearning
performance?

• RQ4: What impact do the distribution shift risk, the population risk of forgetting data, and
the gradient of the original model have on the unlearning performance?

• RQ5: How does SAFE perform in terms of memory computation efficiency?

Each of these questions is addressed through comprehensive experimental analyses to thoroughly
evaluate the capabilities and limitations of the SAFE algorithm.

B.1 DATASETS AND MODELS

In the experiments, we choose four datasets: DIGITS (MNIST) (LeCun, 1998), FASHION (Fashion
MNIST) (Xiao et al., 2017), CIFAR10 Features, and raw CIFAR10 (Krizhevsky et al., 2009). We
use the original DIGITS, FASHION, and CIFAR10 datasets from torchvision module. For CIFAR10
Features, we choose a well-trained ResNet-18 model to extract the 512-dimensional features.

For the experiment models, we choose the CNN(LeCun et al., 1995) with two convolutional layers
for the two MNIST datasets. The output channels for the two convolutional layers are 16 and 32,
respectively. Then, the other parts of the CNN consist of three linear layers with output dimensions
of 256, 128, and 10. Then for the CIFAR10 Feature dataset, we choose a binary linear regression
model with an input size of 512. Finally, for the CIFAR10 datasets, we choose an ResNet-18 (He
et al., 2016) with two linear layers with the output dimensions 256 and 10 and the ResNet does not
contain the pre-trained weights.

B.2 BASELINES

We compare the performance of the SAFE algorithm with Retrain which are the standard results
from the retraining models, and four other state-of-the-art unlearning works with high efficiency and
potential to handle sequential unlearning requests: L-CODEC (Mehta et al., 2022), Descent-U (Neel
et al., 2021), Unrolling (Thudi et al., 2022), and CaMU (Shen et al., 2024a). L-CODEC (Mehta
et al., 2022) first apply the pruning strategy to select the model parameters that are associated with the
selected forgetting data and then apply gradient ascent algorithm as shown in (Sekhari et al., 2021)
on the selected parameters for unlearning; Descent-U (Neel et al., 2021) calculate the gradients of
remaining data and use the perturbed gradient descent for unlearning; Unroll (Thudi et al., 2022)
records gradients when learning the first epoch and adds recorded gradients on weights after the
incremental training; CaMU construct the counterfactual samples for each forgetting sample and
implement unlearning on both representation and prediction levels.
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·Table 4: Complete comparison results in 20 rounds of unlearning, which remove 400 data points
(avg%±std%). The bold record indicates the best, and the underlined record indicates the second-
best.

Method RA UA TA Remain JS Forget JS Test JS ASR
MNIST

Retrain 99.68±0.05 98.89±0.09 99.00±0.05 0.00±0.00 0.00±0.00 0.00±0.00 79.25±1.14
Unroll (Thudi et al., 2022) 99.24±0.22 98.91±0.15 98.61±0.19 0.59±0.11 0.88±0.11 0.89±0.10 79.27±1.15
CaMU (Shen et al., 2024a) 98.94±0.36 98.72±0.79 98.54±0.42 12.12±2.29 13.43±1.56 11.98±2.22 79.05±1.13

LCODEC (Mehta et al., 2022) 96.26±1.95 96.27±1.88 95.60±1.94 2.61±1.13 2.87±1.25 2.93±1.25 78.79±2.22
Descent-U (Neel et al., 2021) 98.78±0.53 98.72±0.53 98.27±0.46 0.89±0.32 1.05±0.31 1.13±0.28 79.24±1.14

SAFE 99.74±0.03 99.63±0.05 99.04±0.02 0.34±0.03 0.61±0.06 0.65±0.03 79.26±1.15

MNIST Fashion

Retrain 96.44±0.15 90.76±0.33 90.40±0.15 0.00±0.00 0.00±0.00 0.00±0.00 79.57±0.51
Unroll (Thudi et al., 2022) 90.61±0.91 89.08±0.94 87.99±0.85 4.21±0.52 4.75±0.56 4.82±0.53 79.14±0.65
CaMU (Shen et al., 2024a) 91.32±0.36 90.45±0.83 89.00±0.40 10.40±0.45 11.53±0.43 10.51±0.41 78.07±0.53

LCODEC (Mehta et al., 2022) 86.21±4.27 86.26±4.15 82.28±3.89 7.81±2.57 8.60±2.38 8.94±2.45 77.41±1.75
Descent-U (Neel et al., 2021) 89.52±1.38 89.27±1.54 87.40±1.10 4.81±0.75 4.99±0.73 5.19±0.67 78.28±0.77

SAFE 91.73±0.25 90.60±0.43 89.04±0.30 3.62±0.15 4.09±0.25 4.20±0.17 77.96±0.49

CIFAR10 Feature

Retrain 85.61±0.13 84.16±0.57 85.01±0.16 0.00±0.00 0.00±0.00 0.00±0.00 48.72±1.95
Unrolling (Thudi et al., 2022) 86.25±0.06 84.97±0.27 85.51±0.03 0.06±0.02 0.07±0.02 0.06±0.02 49.32±1.92

CaMU (Shen et al., 2024a) 85.77±0.12 83.40±0.62 84.99±0.15 0.12±0.03 0.12±0.03 0.13±0.03 51.50±1.62
LCODEC (Mehta et al., 2022) 85.98±0.06 84.91±0.27 85.34±0.03 0.05±0.02 0.06±0.02 0.06±0.02 48.82±1.88
Descent-U (Neel et al., 2021) 86.24±0.07 84.94±0.30 85.50±0.01 0.07±0.02 0.07±0.02 0.07±0.02 49.45±1.91

SAFE 85.74±0.13 84.10±1.15 84.94±0.14 0.13±0.03 0.14±0.04 0.13±0.04 49.38±2.38

CIFAR10

Retrain 97.61±0.25 91.78±0.49 91.19±0.34 0.00±0.00 0.00±0.00 0.00±0.00 64.38±1.34
Unroll (Thudi et al., 2022) 93.59±2.57 90.46±1.92 86.97±2.12 4.02±1.38 5.96±1.09 5.82±1.27 74.96±2.95
CaMU (Shen et al., 2024a) 95.71±1.09 93.13±3.32 89.58±1.09 4.96±0.82 7.38±2.95 6.14±0.85 74.54±2.95

LCODEC (Mehta et al., 2022) 23.95±3.71 24.08±4.18 23.33±3.54 49.21±2.62 48.93±8.42 48.81±2.85 54.47±8.42
Descent-U (Neel et al., 2021) 74.01±27.50 74.24±27.58 70.01±25.34 17.63±17.06 17.66±16.63 17.66±16.46 71.95±7.67

SAFE 94.22±0.85 92.30±0.45 87.74±0.84 3.46±0.46 5.67±0.28 5.37±0.28 74.18±3.31

B.3 IMPLEMENTATION DETAILS

All the experiments are conducted on one server with NVIDIA RTX A5000 GPUs (24GB GDDR6
Memory) and 12th Gen Intel Core i7-12700K CPUs (12 cores and 128GB Memory). The code of
SAFE was implemented in Python 3.9.16 and Cuda 11.6.1. The main Python packages’ versions are
the following: Numpy 1.23.5; Pandas 2.0.1; Pytorch 1.13.1; Torchvision 0.14.1.

All the experiments on these baselines are conducted under 10 random seeds based on the original
models trained in the four datasets. We train two CNN models on two MNIST datasets for 20 epochs
with a learning rate of 1e-3 and a weight decay of 1e-4. In contrast, we train the logistic regression
model on the CIFAR10 Feature dataset for 30 epochs using an Adam optimizer with a learning rate
0.05. We train another ResNet-18 model on the CIFAR10 dataset for 20 epochs, where the learning
rate is set as 0.1 and other hyperparameters are the same as the code2. For the two MNIST datasets,
the batch size is set as 32, and for the other two datasets, the batch size is 128. For the retrained
models, we adopt the same hyperparameters as the training process of the original model.

In real implementations, to save the GPU memory cost, we divide the risk estimator R̂t calculation
into two phases. First, we calculate and record the accumulated gradient R0(w0) on all training
data, and store all the gradients in a backup model. Then, we calculate the distribution shift loss and
population risk for forgetting data and record the gradient on the second backup model. Then we add
the gradients of each parameter together because the different parts in R̂t are linearly added.

Then, the hyperparameters used in the implementation of SAFE only include the amplification factor
of the distribution shift loss and the learning rate. For the amplification factor, we set it as 1000 for
two MNIST datasets and the CIFAR10 Feature dataset, and we set it as 120000 for the CIFAR10

2https://github.com/kuangliu/pytorch-cifar/tree/master
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dataset. Then for the two MNIST datasets and the CIFAR10 Feature dataset, which uses models
with simpler structures, we set the learning rate as

√
W

4
√
T

, where W is the maximal parameters of
the original model and T is the total unlearning rounds. Then for the CIFAR10 dataset, we set the
learning rate as 5

√
W

3
√
T

.

For the evaluations, we assess the unlearning algorithm using five metrics: RA, UA, and TA, which
denote the prediction accuracy of the post-unlearning model on the remaining data, forgetting data,
and test data. The closer value to the retrained model indicates better unlearning performance for
these metrics. We also compare JS of the instance predictions of the post-unlearning and retrained
models to evaluate the instance-level performance better. Lower JS stands for the better results.
We also check the ASR, the attack accuracy of the MIA (Shokri et al., 2017; Chen et al., 2021).
Specifically, we choose the same MIA evaluation as (Fan et al., 2024; Jia et al., 2023). Specifically,
we use the subset of remaining data with the size of 10000 as positive data and real test data with the
size of 10000 as negative data to construct the attacker model’s training set. Then, we train an SCV
with the Radial Basis Function Kernel model as the attacker. Then, the attacker was evaluated using
the forgetting data to measure attack success rates.

(a) Remaining data accu-
racy

(b) Forgetting data accu-
racy

(c) Test data accuracy (d) Forgetting data JS-
Divergency

Figure 3: Model performance against unlearning rounds on MNIST.

(a) Remaining data accu-
racy

(b) Forgetting data accu-
racy

(c) Test data accuracy (d) Forgetting data JS-
Divergency

Figure 4: Model performance against unlearning rounds on CIFAR10 Feature.

(a) Remaining data accu-
racy

(b) Forgetting data accu-
racy

(c) Test data accuracy (d) Forgetting data JS-
Divergency

Figure 5: Model performance against unlearning rounds on CIFAR10.

B.4 COMPLETE PERFORMANCE COMPARISON

First, we present the complete experimental results in Table 4, and we illustrate the online unlearning
process for the MNIST, CIFAR10 Feature, and CIFAR10 datasets in Figure 3, Figure 4, and Figure 5,
respectively.
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In Figure 3, the results for SAFE are depicted with blue lines, while the results for the retrained model
are shown with red lines. Figure 3(a) and Figure 3(b) demonstrate that the remaining data accuracy
and forgetting data accuracy of SAFE are the closest to those of the retrained model compared with
other methods. Additionally, in Figure 3(c), SAFE maintains high prediction performance in all 20
rounds. Figure 3(d) further demonstrates the effectiveness of removing forgetting data information,
as both the group-level accuracy and instance-level divergence indicate that SAFE achieves results
closest to those of the retrained model on forgetting data. In Figure 4(a) and Figure 4(b), the remaining
data accuracy and forgetting data accuracy of SAFE continue to be the closest to those of the retrained
model compared with other methods. Furthermore, in Figure 4(c), SAFE maintains the closest
test accuracy to the retrained model. However, in Figure 4(d), the divergence in forgetting data
accuracy is higher than in other methods, which can be mainly attributed to the larger adjustments
made to the model by SAFE. Although Figure 5(a) and Figure 5(c) show that SAFE can lead to
performance degradation in remaining data and test data accuracies, Figure 5(b) and Figure 5(d) still
demonstrate that SAFE achieves results closest to the retrained model on forgetting data, both in
terms of group-level accuracy and instance-level divergence.

Table 5: Effect analysis on size and rounds of forgetting requests on MNIST (avg%±std%).

Method RA UA TA JS GAP RA UA TA JS GAP
400 Samples for 10 Rounds 800 Samples for 10 Rounds

Retrain 99.69±0.04 98.94±0.08 98.99±0.05 0.00±0.00 0.00 99.70±0.03 98.78±0.05 98.99±0.05 0.00±0.00 0.00
Unroll 99.80±0.04 99.60±0.05 99.08±0.03 0.58±0.05 0.36 99.76±0.03 99.51±0.09 99.04±0.03 0.67±0.03 0.38
CaMU 98.90±0.52 98.50±1.12 98.38±0.57 12.31±1.30 3.54 98.94±0.15 98.55±0.35 98.55±0.21 14.25±1.20 3.92

LCODEC 29.34±5.34 29.31±5.13 29.54±5.36 43.85±2.87 63.32 27.82±3.64 27.90±3.23 28.02±3.72 44.56±1.80 64.57
Descent-U 99.64±0.04 99.62±0.04 98.98±0.04 0.60±0.06 0.33 99.64±0.04 99.59±0.04 98.98±0.04 0.69±0.03 0.39

SAFE 99.76±0.02 99.59±0.07 99.07±0.02 0.59±0.05 0.35 99.68±0.02 99.44±0.10 98.99±0.02 0.73±0.03 0.35

400 Samples for 40 Rounds 800 Samples for 20 Rounds

Retrain 99.69±0.04 98.84±0.09 98.97±0.06 0.00±0.00 0.00 99.69±0.03 98.79±0.05 98.97±0.06 0.00±0.00 0.00
Unroll 98.78±0.05 98.72±0.04 98.27±0.04 1.05±0.06 0.70 99.74±0.04 99.54±0.07 99.01±0.03 0.67±0.03 0.38
CaMU 98.72±0.36 98.50±0.66 98.47±0.32 15.75±2.72 4.39 98.69±0.33 98.34±0.37 98.44±0.24 16.29±2.40 4.57

LCODEC 28.78±4.24 28.84±4.15 28.92±4.27 44.27±2.45 63.81 29.49±4.48 29.98±4.51 29.77±4.50 43.59±2.29 62.95
Descent-U 99.40±0.18 99.37±0.18 98.79±0.15 0.76±0.12 0.44 99.56±0.09 99.53±0.07 98.92±0.07 0.72±0.05 0.41

SAFE 99.72±0.02 99.67±0.03 99.03±0.02 0.64±0.05 0.39 99.69±0.03 99.55±0.06 99.00±0.03 0.70±0.03 0.37

Table 6: Effect analysis on size and rounds of forgetting requests on MNIST Fashion (avg%±std%).

Method RA UA TA JS GAP RA UA TA JS GAP
400 Samples for 10 Rounds 800 Samples for 10 Rounds

Retrain 96.40±0.18 90.82±0.44 90.48±0.14 0.00±0.00 0.00 96.43±0.15 91.15±0.53 90.36±0.14 0.00±0.00 0.00
Unroll 90.92±0.68 89.05±0.94 88.29±0.60 4.56±0.50 3.50 90.68±0.64 88.95±0.96 88.03±0.61 7.94±0.51 4.56
CaMU 91.44±0.34 90.39±0.84 88.99±0.44 11.82±0.39 4.68 91.30±0.25 90.63±5.27 89.03±2.23 11.83±0.56 4.70

LCODEC 25.65±4.35 25.47±4.79 25.38±4.29 44.18±3.16 61.34 24.49±3.08 24.50±3.80 24.14±2.99 45.63±2.46 62.61
Descent-

U
93.06±0.30 92.97±0.49 90.17±0.18 3.29±0.20 2.27 93.05±0.30 93.33±0.63 90.17±0.18 3.22±0.27 2.24

SAFE 93.02±0.10 92.18±0.30 90.13±0.09 3.42±0.20 2.13 91.96±0.48 90.67±0.90 89.14±0.49 4.10±0.43 2.57

400 Samples for 40 Rounds 800 Samples for 20 Rounds

Retrain 96.56±0.19 90.71±0.25 90.24±0.21 0.00±0.00 0.00 96.53±0.20 90.80±0.53 90.21±0.21 0.00±0.00 0.00
Unroll 90.54±0.81 89.31±0.96 87.89±0.74 4.73±0.47 3.62 90.79±0.72 89.28±0.94 88.08±0.68 4.63±0.48 3.50
CaMU 90.75±0.71 89.95±0.77 88.67±0.52 11.68±0.48 4.95 90.75±0.61 89.97±0.86 88.66±0.44 11.95±0.57 5.03

LCODEC 24.79±4.13 25.33±4.41 24.57±4.06 44.74±2.44 61.89 25.13±4.52 25.18±4.83 24.78±4.43 44.86±3.10 61.83
Descent-

U
92.22±0.60 92.12±0.60 89.60±0.42 3.66±2.62 2.51 92.69±0.46 92.75±0.76 89.93±0.32 3.46±0.33 2.38

SAFE 92.30±0.67 91.50±0.63 89.43±0.61 3.81±0.37 2.42 92.54±0.37 91.66±0.60 89.61±0.36 3.77±0.31 2.30
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Table 7: Effect analysis on size and rounds of forgetting requests on CIFAR10 Feature (avg%±std%).

Method RA UA TA JS GAP RA UA TA JS GAP
400 Samples for 10 Rounds 800 Samples for 10 Rounds

Retrain 84.69±0.65 83.28±1.43 84.34±0.70 0.00±0.00 0.00 84.45±0.92 83.06±1.87 84.04±1.08 0.00±0.00 0.00
Unroll 86.20±0.02 85.02±0.33 85.51±0.02 0.17±0.15 1.15 86.22±0.04 85.45±0.19 85.50±0.01 0.22±0.20 1.46
CaMU 85.76±0.13 83.43±0.57 85.06±0.14 0.20±0.13 0.54 85.81±0.10 84.31±0.52 85.07±0.13 0.24±0.18 0.97

LCODEC 85.93±0.03 84.95±0.36 85.34±0.03 0.14±0.15 1.01 85.97±0.05 85.38±0.22 85.35±0.03 0.20±0.21 1.34
Descent-U 86.18±0.03 84.97±0.41 85.51±0.75 0.17±0.15 1.13 86.19±0.05 85.46±0.20 85.51±0.75 0.22±0.20 1.46

SAFE 85.23±0.15 84.67±1.24 84.75±0.20 0.30±0.14 0.66 85.16±0.10 83.55±0.90 84.57±0.20 0.33±0.16 0.51

400 Samples for 40 Rounds 800 Samples for 20 Rounds

Retrain 83.09±2.27 79.28±5.02 82.03±3.09 0.00±0.00 0.00 84.44±0.85 82.89±1.66 83.91±1.05 0.00±0.00 0.00
Unroll 86.38±0.15 84.96±0.19 85.40±0.04 0.61±0.60 3.24 86.29±0.09 85.43±0.15 85.49±0.02 0.23±0.19 1.55
CaMU 85.81±0.11 83.09±0.59 84.83±0.22 0.57±0.50 2.47 85.82±0.11 84.17±0.37 84.97±0.13 0.25±0.17 0.99

LCODEC 86.09±0.14 84.91±0.20 85.34±0.04 0.59±0.61 3.13 86.03±0.08 85.34±0.17 85.35±0.03 0.20±0.19 1.42
Descent-U 86.36±0.15 84.98±0.22 85.50±0.01 0.61±0.60 3.26 86.27±0.09 85.44±0.15 85.50±0.01 0.23±0.19 1.55

SAFE 86.07±0.10 84.03±0.71 85.05±0.17 0.59±0.54 2.83 85.76±0.09 84.13±0.53 84.89±0.12 0.27±0.17 0.95

Table 8: Effect analysis on size and rounds of forgetting requests on CIFAR10 (avg%±std%).

Method RA UA TA JS GAP RA UA TA JS GAP
400 Samples for 10 Rounds 800 Samples for 10 Rounds

Retrain 97.75±0.15 92.15±0.39 91.44±0.22 0.00±0.00 0.00 97.57±0.25 91.48±0.50 91.11±0.41 0.00±0.00 0.00
LCODEC 24.17±4.37 24.43±4.97 23.55±4.17 48.69±3.21 64.47 22.06±1.48 22.16±1.62 22.51±1.44 50.19±1.82 65.91

Unroll 95.97±1.23 92.32±0.67 88.95±1.04 4.94±0.41 2.34 92.21±2.71 87.88±1.87 85.75±2.28 7.02±1.12 5.34
CaMU 95.10±1.31 91.46±4.34 89.02±1.30 8.27±2.72 3.51 95.62±0.48 93.16±1.72 89.52±0.46 7.57±0.76 3.20

LCODEC 24.17±4.37 24.43±4.97 23.55±4.17 48.69±3.21 64.47 22.06±1.48 22.16±1.62 22.51±1.44 50.19±1.82 65.91
Descent-U 94.07±1.89 94.42±2.09 88.23±1.64 5.39±1.80 3.64 94.04±1.92 93.00±2.12 88.19±1.58 5.52±1.81 3.37

SAFE 91.21±1.68 86.62±1.09 84.98±1.58 8.43±0.48 6.74 96.10±0.17 94.57±0.64 89.52±0.20 4.76±0.18 2.73

400 Samples for 40 Rounds 800 Samples for 20 Rounds

Retrain 97.10±0.64 90.97±0.96 90.45±0.87 0.00±0.00 0.00 97.06±0.68 90.65±1.03 90.35±0.93 0.00±0.00 0.00
LCODEC 23.55±3.19 23.47±3.53 22.90±3.04 49.16±2.44 64.44 22.70±2.11 22.72±1.98 22.12±1.95 49.54±1.77 65.02

Unroll 89.34±4.90 86.84±4.16 83.37±4.16 8.06±2.39 6.76 87.77±5.07 84.29±4.05 81.87±4.41 9.12±2.38 8.31
CaMU 96.03±0.84 93.95±2.68 89.84±0.82 7.35±1.56 3.00 95.73±0.43 93.63±1.37 89.56±0.44 7.01±0.80 3.03

LCODEC 23.55±3.19 23.47±3.53 22.90±3.04 49.16±2.44 64.44 22.70±2.11 22.72±1.98 22.12±1.95 49.54±1.77 65.02
Descent-U 90.75±9.54 90.95±9.59 85.43±8.40 6.85±5.18 4.56 72.98±28.94 72.86±28.88 69.00±26.72 18.06±17.02 20.32

SAFE 95.88±0.52 95.52±0.31 89.33±0.55 4.85±0.54 2.94 95.84±0.15 94.47±0.57 89.14±0.23 5.17±0.39 2.85

B.5 FURTHER COMPARISON UNDER DIFFERENT SETTINGS

In the following four tables: Table 5, Table 6, Table 7, and Table 8, we present additional experimental
results under different unlearning request settings. For each dataset, we conduct four groups of
experiments with varying configurations:

• Setting the unlearning round to 10 and removing 400 samples in each round.
• Setting the unlearning round to 40 and removing 400 samples in each round.
• Setting the unlearning round to 10 and removing 800 samples in each round.
• Setting the unlearning round to 20 and removing 800 samples in each round.

In these extended experiments, SAFE consistently achieves better results compared to other methods,
confirming the findings of our previous experiments.

B.6 EFFECT ANALYSIS OF LEARNING RATE

In this part, we show experiments on the hyperparameter tuning, where we choose different learning
rates γ =

√
W

K
√
T

in the online update algorithm. On the MNIST, MNIST-Fashion, and CIFAR10
Feature datasets, we choose K = 2, 4, 6, 8, 10, 12 to conduct experiments on the corresponding γ,
and on CIFAR10 dataset, we choose K = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 as conduct experiments on the
corresponding γ. The plots of model performances in different rounds is shown in Figure 6, Figure 7,
Figure 8, and Figure 9.
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In the first three figures, we can see the lower K, which implies the higher γ, can usually result in
more significant changes in the model parameters and then lead to larger degradation on the remaining
data, forgetting data, and test data accuracies while the lower K usually results in smaller drops on
all the three type of accuracies because it only makes minor differences on the model. Then, after
considering the balance of remaining data accuracy and forgetting data accuracy, we choose K = 4
on the MNIST, MNIST-Fashion, and CIFAR10 Feature datasets. When K = 4, the remaining data
accuracies are quite close to other results, and when K > 4, the forgetting data accuracies are much
lower. On the CIFAR10 dataset, we set K = 0.6, which can also result in reaching a better balance
between remaining data accuracy and forgetting data accuracy.

(a) Remaining data accu-
racy

(b) Forgetting data accu-
racy

(c) Test data accuracy (d) Forgetting data JS-
Divergency

Figure 6: Model performance against unlearning rounds on MNIST.

(a) Remaining data accu-
racy

(b) Forgetting data accu-
racy

(c) Test data accuracy (d) Forgetting data JS-
Divergency

Figure 7: Model performance against unlearning rounds on MNIST Fashion.

(a) Remaining data accu-
racy

(b) Forgetting data accu-
racy

(c) Test data accuracy (d) Forgetting data JS-
Divergency

Figure 8: Model performance against unlearning rounds on CIFAR10 Feature.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Remaining data accu-
racy

(b) Forgetting data accu-
racy

(c) Test data accuracy (d) Forgetting data JS-
Divergency

Figure 9: Model performance against unlearning rounds on CIFAR10.

Table 9: Abaltion study results (avg%±std%).

Method RA UA TA Remain JS Forget JS Test JS ASR
MNIST

Retrain 99.68±0.05 98.89±0.09 99.00±0.05 0.00±0.00 0.00±0.00 0.00±0.00 79.25±1.14
w/o DSR 99.81±0.01 99.78±0.02 99.06±0.01 0.30±0.03 0.57±0.05 0.62±0.02 79.27±1.15
w/o FR 99.75±0.02 99.65±0.05 99.05±0.02 0.33±0.03 0.61±0.05 0.65±0.03 79.26±1.15
w/o TR 99.54±0.01 99.39±0.07 98.88±0.01 0.45±0.03 0.71±0.04 0.75±0.03 79.26±1.15
SAFE 99.74±0.03 99.63±0.05 99.04±0.02 0.32±0.03 0.61±0.04 0.65±0.03 79.26±1.15

MNIST Fashion

Retrain 96.44±0.15 90.76±0.33 90.40±0.15 0.00±0.00 0.00±0.00 0.00±0.00 79.57±0.51
w/o DSR 92.23±0.01 92.00±0.32 89.58±0.01 3.35±0.08 3.65±0.16 3.91±0.09 77.52±0.51
w/o FR 91.85±0.21 90.80±0.38 89.16±0.24 3.56±0.13 4.00±0.22 4.14±0.14 77.89±0.57
w/o TR 89.38±0.32 87.47±0.60 86.86±0.30 4.77±0.17 5.48±0.19 5.36±0.19 79.17±0.53
SAFE 91.73±0.25 90.60±0.43 89.04±0.30 3.62±0.15 4.09±0.25 4.20±0.17 77.96±0.49

CIFAR10 Feature

Retrain 85.61±0.13 84.16±0.57 85.01±0.16 0.00±0.00 0.00±0.00 0.00±0.00 48.72±1.95
w/o DSR 85.89±0.03 85.87±0.41 85.10±0.03 0.13±0.04 0.15±0.05 0.13±0.04 46.91±1.94
w/o FR 85.88±0.03 85.38±0.82 85.07±0.08 0.12±0.03 0.13±0.03 0.12±0.03 47.56±2.15
w/o TR 85.31±1.08 82.34±3.24 84.68±7.40 0.18±0.03 0.18±0.03 0.18±0.03 52.42±1.63
SAFE 85.74±0.13 84.10±1.15 84.94±0.14 0.13±0.03 0.14±0.04 0.13±0.04 49.38±2.38

CIFAR10

Retrain 97.61±0.25 91.78±0.49 91.19±0.34 0.00±0.00 0.00±0.00 0.00±0.00 64.38±1.34
w/o DSR 97.35±0.01 97.44±0.10 90.84±0.01 2.06±0.07 3.96±0.19 3.75±0.09 74.10±3.33
w/o FR 94.42±0.76 92.59±0.39 87.92±0.76 3.36±0.42 5.55±0.24 5.30±0.51 74.18±3.31
w/o TR 92.30±1.05 89.36±0.66 86.03±1.04 4.36±0.60 6.85±0.38 6.36±0.69 74.18±3.18
SAFE 94.22±0.85 92.30±0.45 87.74±0.84 3.46±0.46 5.67±0.28 5.37±0.28 74.18±3.31

B.7 ABLATION STUDY

Table 9 presents the results of the ablation study for the proposed algorithm, where we sequentially
remove the distribution shift loss (DSR), the forgetting data gradient (FR), and the initial training
data gradient (TR).

First, when the distribution shift loss is removed, the forgetting data accuracies on all four datasets
are similar to the original forgetting data accuracies, implying that the information of the streaming
forgetting data has not been effectively removed from the model. Second, when only the forgetting
data gradient is removed, the forgetting data accuracies approach those of the retrained models.
However, the results of the complete SAFE algorithm still outperform those without the forgetting
data gradient. Lastly, when the initial training data gradient is removed, there is a significant drop in
forgetting data accuracies, remaining data accuracies, and test accuracies across all datasets.

These experimental results indicate that the distribution shift loss and the forgetting data gradient
contribute significantly to the unlearning process. The distribution shift loss is the dominant factor,
while the forgetting data gradient also provides a substantial contribution. Additionally, the initial
training data gradient is crucial in maintaining overall performance.
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In addition, from the comparison of JS-Divergences, we observe that although experiments without
distribution shift loss and forgetting data gradient do not achieve perfect unlearning, they still result
in lower JS-Divergences compared to the retrained model. This phenomenon indicates that minor
adjustments to the original model can lead to lower JS-Divergences on all the remaining data, as well
as forgetting and test data. This implies that the unlearning algorithm can produce prediction results
similar to those of the retrained model. However, there remain differences in the model parameters
and soft prediction results compared to the retrained models.

B.8 MEMORY EFFICIENCY ANALYSIS

Figure 10 presents the comparison results of the maximal memory cost on both CPU and GPU during
unlearning. Although SAFE can reach the highest time efficiency, it does not require significant
memory cost as LCODEC (Mehta et al., 2022). On the two MNIST and CIFAR10_Feature datasets, it
only requires 20% extra GPU memory and 6% extra CPU memory than retraining during unlearning.
On the CIFAR10 dataset, SAFE requires 50% extra CPU memory, which ranks the medium position
among all methods and 40% extra GPU memory. Considering the significant improvement in time
efficiency, the insignificant increase in the memory requirement still shows the superiority of SAFE
on the algorithm efficiency.

(a) Memory cost in
MNIST

(b) Memory cost in
MNIST Fashion

(c) Memory cost in CI-
FAR10 Features

(d) Memory cost in CI-
FAR10

Figure 10: Maximal memory cost comparisons.

B.9 EXPERIMENTS ON LARGE DATASET

We also conduct experiments on a larger dataset, TinyImagenet, and we present the results in Table 10.
Compared to LCODEC and Descent-U, which do not require access to training data during unlearning,
SAFE significantly outperforms these methods in both effectiveness and efficiency. Importantly,
SAFE achieves the fastest computation time at just 7.30 seconds, demonstrating its high efficiency.
When compared to Unroll and CaMU (which require the original training data), SAFE’s performance
remains competitive while being much more efficient. Overall, SAFE strikes an excellent balance
between accuracy and efficiency, particularly when training data is unavailable.

Table 10: Complete comparison results in 20 rounds of unlearning, which remove 400 data points.

Method RA UA TA Remain JS Forget JS ASR Time
TinyImagenet

Retrain 75.57±0.51 42.71±0.57 42.50±0.54 0.00±0.00 0.00±0.00 29.69±3.31 762.00
Unroll (Thudi et al., 2022) 53.87±2.00 48.62±1.99 42.08±1.42 21.68±0.98 23.93±0.82 24.20±0.83 22.72
CaMU (Shen et al., 2024a) 38.60±2.14 36.17±3.78 35.06±1.98 41.94±4.11 40.16±3.27 39.07±3.87 16.21

LCODEC (Mehta et al., 2022) 9.34±5.19 9.17±5.21 6.84±3.29 54.67±5.81 53.88±3.62 54.67±3.62 13.04
Descent-U (Neel et al., 2021) 27.50±11.18 27.48±11.30 24.63±9.65 38.52±7.55 37.56±6.71 37.73±6.75 20.70

SAFE 48.69±5.28 46.35±4.05 36.28±3.97 25.80±1.41 28.06±1.03 33.42±2.17 7.30

C GAUSSIAN DISTRIBUTION VERIFICATION

Before unlearning, we standardize the low-dimensional vectors such that their mean vector is zero
and the covariance matrix is the identity matrix. As each unlearning round progresses, we update
the mean vector and covariance matrix. Although the low-dimensional vectors continue to follow
a Gaussian distribution, the exact distributions may not be identical across rounds because we
removed the vectors of different data in different classes. To verify the Gaussian nature of the
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vector distribution, we employ Mardia’s test, which is highly effective in examining multivariate
Gaussian distributions Mardia (1970). The table below presents the Skewness and Kurtosis p-values
of Mardia’s test [1] on the low-dimensional vectors for each class throughout the unlearning process.
The consistently high Skewness and Kurtosis p-values suggest that the low-dimensional vectors
maintain a Gaussian distribution across all unlearning rounds.

Dataset Mnist Fashion Cifar_feature Cifar
Skewness p_value 1.00 1.00 1.00 1.00
Kurtosis p_value 0.93 0.95 0.87 0.84

Table 11: P-values of skewness and kurtosis tests for different datasets

C.1 STREAM SETTING FOR SINGLE CLASS UNLEARNING

To further evaluate the effectiveness of the SAFE algorithm on single-class data unlearning tasks, we
designed experiments that combine stream unlearning with class-wise unlearning. In each round, the
unlearning request involves removing a subset of data belonging to the same class, continuing until
the entire class is removed. We refer to this process as stream-for-class unlearning. We conducted
experiments on the MNIST, CIFAR10, and TinyImagenet datasets to assess the feasibility of stream-
for-class unlearning. For the TinyImagenet dataset, we choose the ResNet-18 model as well. In these
experiments, we primarily evaluate four metrics: RA (training accuracy on the remaining classes),
UA (training accuracy on the forgotten class), TA(R) (test accuracy on the remaining classes), and
TA(U) (test accuracy on the forgetting class). Similar to our previous experiments, we performed 20
rounds of unlearning, where, by the 20th round, all data from the target class is removed, transitioning
the task to full-class unlearning.

Among the five baseline methods, Retrain, Unroll, and CaMU perform single-batch unlearning on all
accumulated data in each request, while LCODEC, Descent-U, and SAFE apply stream unlearning
for each request. Table 12 shows the results after completing the final round of unlearning. On the
TinyImagenet and CIFAR10 datasets, SAFE achieves the best average performance across the four
metrics, demonstrating the most balanced trade-off between target class unlearning and preserving
knowledge of other classes. Although SAFE does not outperform the batch unlearning methods
on the two MNIST datasets, it still delivers close and comparable results even if it achieves the
unlearning through a stream manner.

Table 12: Last round performance comparisons for stream unlearning on a single class(avg%±std%).

Method RA UA TA(R) TA(U) GAP RA UA TA(R) TA(U) GAP
MNIST MNIST-Fashion

Retrain 99.71±0.18 0.00±0.00 99.01±0.21 0.00±0.00 0.00 97.36±0.39 0.00±0.00 92.49±0.35 0.00±0.00 0.00
LCODEC 27.92±2.38 26.42±3.13 28.04±2.37 26.02±3.11 44.24 24.40±23.03 13.11±17.89 24.17±17.63 13.13±22.49 82.93

Unroll 97.36±0.33 0.00±0.00 97.70±0.28 0.00±0.00 0.73 87.30±4.86 0.00±0.00 85.61±4.72 0.00±0.00 3.39
CaMU 98.90±0.13 0.00±0.00 98.69±0.14 0.00±0.00 0.23 91.68±0.92 0.00±0.00 89.91±1.00 0.00±0.00 1.65

Descent-U 21.87±7.34 6.72±7.47 22.56±7.99 6.64±7.93 34.86 20.20±19.98 8.97±4.05 20.28±19.09 8.70±4.02 35.15
SAFE 96.53±0.51 1.19±0.24 95.96±0.46 0.95±0.10 1.86 93.66±0.16 7.86±0.48 93.02±0.43 6.34±1.00 4.95

TinyImageNet CIFAR10

Retrain 65.05±0.74 0.00±0.00 42.90±0.53 0.00±0.00 0.00 94.38±0.25 0.00±0.00 86.63±0.35 0.00±0.00 0.00
LCODEC 8.76±13.00 0.55±0.18 7.71±11.36 0.53±0.17 18.62 62.09±43.14 21.29±29.85 61.59±42.91 20.55±27.95 23.94

Unroll 35.36±2.51 0.00±0.00 27.39±1.60 0.00±0.00 9.04 87.05±2.21 0.00±0.00 82.34±1.84 0.00±0.00 2.32
CaMU 38.96±1.67 9.08±4.45 28.81±1.13 8.14±3.58 13.11 94.04±0.49 0.11±0.09 89.49±0.56 0.23±0.23 0.75

Descent-U 1.29±0.19 0.00±0.00 1.19±0.23 0.00±0.00 21.09 55.04±7.96 7.03±8.30 53.49±7.86 6.97±8.20 18.69
SAFE 52.88±0.10 5.40±0.15 36.39±0.06 7.21±0.21 7.70 94.30±0.17 0.29±0.08 88.75±0.15 0.10±0.04 0.54

D LIMITATIONS AND FUTURE WORK

As the first work to introduce online scenarios and dynamic regret into the unlearning problem, this
paper has some limitations.

First, in the theoretical part, we prove an upper bound of dynamic regret proportional to (1+ VT )
√
T .

However, this upper bound is suboptimal because we cannot determine the real value of VT in
experiments, making it difficult to obtain a tighter upper bound. Second, in the experimental part, we
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use the maximal weight of the original model as the upper bound of the model weight W . However,
the weight of the updated model may exceed W , which could affect the accuracy of our results. Third,
in practical applications, the size of the forgetting data at each time point of the streaming unlearning
requests may not be fixed. For experimental convenience, we fixed the size of the forgetting data in
this work, but this does not fully reflect real-world scenarios.

These limitations inspire several directions for future work. First, we aim to find better optimization
approaches and more effective learning rates to narrow the upper bound of dynamic regret, ensuring
both theoretical correctness and practical feasibility. Second, we plan to explore more extensions of
this work in practical unlearning applications, particularly focusing on irregular streaming unlearning
requests and the sample-to-class unlearning task.
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