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ABSTRACT

Decentralized training of deep learning models enables on-device learning over
networks, as well as efficient scaling to large compute clusters. Experiments in
earlier works revealed that decentralized training often suffers from generalization
issues: the performance of models trained in a decentralized fashion is in general
worse than the performance of models trained in a centralized fashion, and this
generalization gap is impacted by parameters such as network size, communication
topology and data partitioning.
We identify the changing consensus distance between devices as a key parameter to
explain the gap between centralized and decentralized training. We show that when
the consensus distance does not grow too large, the performance of centralized
training can be reached and sometimes surpassed. We highlight the intimate
interplay between network topology and learning rate at the different training
phases and discuss the implications for communication efficient training schemes.
Our insights into the generalization gap in decentralized deep learning allow the
principled design of better training schemes that mitigate these effects.

1 INTRODUCTION

Highly over-parametrized deep neural networks show impressive results in machine learning tasks,
which also lead to a dramatic increase in the size, complexity, and computational power of the
training systems. In response to these challenges, distributed training algorithms (i.e. data-parallel
large mini-batch SGD) have been developed for use in data-center (Goyal et al., 2017; You et al., 2018;
Shallue et al., 2018). These SOTA training systems in general use the All-Reduce communication
primitive to perform exact averaging on the local mini-batch gradients computed on different subsets
of the data, for the later synchronized model update. However, exact averaging with All-Reduce is
sensitive to the communication hardware of the training systems, causing the bottleneck in efficient
deep learning training. To this end, decentralized training has become an indispensable training
paradigm for efficient large scale training in the data-center, alongside its orthogonal benefits on
preserving users’ privacy for edge AI (Bellet et al., 2018; Kairouz et al., 2019).

Complete Ring

n=16 92.91± 0.12 92.51± 0.19
n=32 92.82± 0.27 91.74± 0.15
n=64 92.71± 0.11 89.87± 0.12

Table 1: The generalization issues for
decentralized deep learning on two
topologies (ResNet-20 on CIFAR-10
with n ∈ {16, 32, 64} workers). The
test top-1 accuracies are over three
seeds with fine-tuned learning rates.

Several very recent papers aim to address the communication
overhead in data-center training by compressing the gradi-
ents (Koloskova et al., 2020a; Vogels et al., 2020) or designing
better a communication topology (Assran et al., 2019). How-
ever, decentralized training for deep learning models still often
results in a severe loss in generalization performance, even
after hyper-parameter fine-tuning (see our Table 1 as well as
Tables 1, 2, 3 in Assran et al., 2019). This phenomenon is
poorly understood even in relatively straightforward i.i.d. data
distribution scenarios (i.e. the data-center case), to which very
few works are dedicated (but none of them provide insights into
the generalization gap).

In this work, we theoretically identify the consensus distance, i.e. the average discrepancy between
the nodes, as the key parameter that captures the joint effect of decentralization. We show that there
exists a critical consensus distance: when the consensus distance is lower than this critical value,
the optimization is almost unhindered. With the insight derived from optimization convergence,
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we further question the existence of the critical consensus distance for deep learning in terms of
generalization, and identify the training phase when the critical consensus distance matters. We
believe that the answers to these questions are valuable in practice, as they offer the possibility to
design training strategies that strike appropriate trade-off between targeted generalization performance
and affordable communication resources.

• We show that tracking the consensus distance over the training phases can explain the generaliza-
tion gap between centralized and decentralized training.

• We show theoretically that when the consensus distance does not exceed a critical value, then
decentralization exerts negligible impact to the optimization. We argue how this critical value
depends crucially on the learning rate and the mixing matrix.

• Through the lens of consensus distance, we empirically investigate what is the desirable level
of consensus distance during different phases of training, in order to ensure high generaliza-
tion performance. Our extensive experiments on Computer Vision (CV) tasks (CIFAR-10 and
ImageNet-32) as well as Natural Language Processing (NLP) tasks (transformer models for ma-
chine translation) do confirm that a critical consensus distance indeed exists, and that consensus
distances higher than this critical value heavily penalize the final generalization performance.
Surprisingly, we find that large consensus distance might be beneficial in later training phases
after optimization has plateaued, leading to improved generalization, which is consistent with the
observations in centralized Post-Local SGD (Lin et al., 2020b).

• Based on our findings, we propose practical guidelines on how to achieve favorable generalization
performance with low communication expenses, on arbitrary communication networks.

While our numerical study mainly focuses on the data-center setting with homogeneous nodes, our
findings also apply to decentralized training over time-varying topologies and the more difficult
heterogeneous setting alike. Our findings not only explain previously proposed ad-hoc solutions (e.g.
using All-Reduce in the first training phase as in Assran et al., 2019) but our insights will allow the
principled design of better decentralized training systems in future work.

2 RELATED WORK

Gossip averaging (Kempe et al., 2003; Xiao & Boyd, 2004; Boyd et al., 2006) forms the backbone of
many decentralized learning algorithms. The convergence rate of gossip averaging towards consensus
among the nodes can be expressed in terms of the (expected) spectral gap of the mixing matrix. Lian
et al. (2017) combine SGD with gossip averaging for deep learning and show that the leading term
in the convergence rate O

(
1
nε2

)
is consistent with the convergence of the centralized mini-batch

SGD (Dekel et al., 2012) and the spectral gap only affects the asymptotically smaller terms. Similar
results have been observed very recently for related schemes (Scaman et al., 2017; 2018; Koloskova
et al., 2019; 2020a;b). As the communication topology also impacts the cost per round (number of
peer-to-peer communications), sparse topologies have been proposed and studied recently (Assran
et al., 2019; Wang et al., 2019; Nadiradze et al., 2020). Whilst a few recent works focus on the impact
of the topology on the optimization performance (Luo et al., 2019; Neglia et al., 2020), we here
identify the consensus distance as a more canonical parameter that can characterize the overall effect
of decentralized learning, beyond only the topology, through which we are able to provide deeper
understanding on the more fine-grained impact of the evolution of the actual consensus distance, on
the generalization performance of deep learning training.

Prior work identified the consensus distance as an important parameter that can affect optimization
performance and convergence, and provide approaches to increase consensus: for instance Scaman
et al. (2017); Sharma et al. (2019) perform multiple consensus steps per round, and Tsitsiklis (1984);
Nedić & Ozdaglar (2009); Duchi et al. (2012); Yuan et al. (2016) choose carefully tuned learning
rates. However, these work do not provide insights into how consensus distance at different training
phases impacts the decentralized training, which is the main target of this work.

3 THEORETICAL UNDERSTANDING

In this section we consider decentralized training with stochastic gradient descent (D-SGD) without
momentum, but we are using the momentum version in all our DL experiments.

2



Under review as a conference paper at ICLR 2021

3.1 NOTATION AND SETTING

The agents are tasked to solve a sum-structured optimization problem f : Rd → R of the form
f? := minx∈Rd

[
f(x) := 1

n

∑n
i=1 fi(x)

]
, (1)

where the components fi : Rd → R are distributed among the n nodes and are given in stochastic
form: fi(x) := Eξ∼Di [Fi(x, ξ)], where Di denotes the local data distribution on node i ∈ [n].
For data-center settings, where data is re-shuffled periodically among nodes, these distributions are
identical, but in other scenarios there can be differences between nodes. In D-SGD, each agent i ∈ [n]
maintains local parameters x(t)

i ∈ Rd, and updates them as:

x
(t+1)
i =

∑n
j=1 wij

(
x
(t)
j − η∇Fj(x

(t)
j , ξ

(t)
j )
)
, (D-SGD)

that is, by a stochastic gradient step based on a sample ξ(i)i ∼ Di, followed by gossip averaging with
neighboring nodes in the network encoded by the mixing weightswij . As parameters can differ across
nodes, we define x̄ := 1

n

∑n
i=1 xi and X := [x1, . . . ,xn] ∈ Rd×n, and X̄ := [x̄, . . . , x̄] ≡ X 1

n11
>.

Assumption 1 (Mixing matrix). Every sample of the (possibly randomized) mixing matrix W =
{wij} ∈ Rn×n is doubly stochastic and there exists a parameter p > 0 such that

EW

∥∥XW − X̄
∥∥2
F
≤ (1− p)

∥∥X− X̄
∥∥2
F
,∀X ∈ Rd×n. (2)

This assumption covers a broad variety of settings (see e.g. Koloskova et al., 2020b), such as D-SGD
with fixed (constant) mixing matrix with spectral gap ρ, with parameter p = 1− (1− ρ)2 = Θ(ρ),
but also for randomly chosen mixing matrices, for instance random matchings.
Assumption 2 (L-smoothness). Each function fi(x) : Rd → R, i ∈ [n] is differentiable and there
exists a constant L ≥ 0 such that for each x,y ∈ Rd: ‖∇fi(y)−∇fi(x)‖ ≤ L ‖x− y‖ .
Assumption 3 (Bounded noise σ and diversity ζ). There exists constants σ2, ζ2 s.t. ∀x1, . . .xn ∈ Rd

1
n

∑n
i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖

2
2 ≤ σ2 , 1

n

∑n
i=1 ‖∇fi(xi)−∇f(xi)‖22 ≤ ζ2 . (3)

3.2 DECENTRALIZED CONSENSUS OPTIMIZATION

Under the above assumptions, which are standard in decentralized optimization, the convergence rate
of (D-SGD) has been shown to be:
Theorem 1 (Koloskova et al. (2020b)). Let fi be L-smooth and stepsize γ ≤ γmax = O

(
p
L

)
. Then

there exists an optimal stepsize γ ≤ γmax such that 1
T

∑T−1
t=0 E

∥∥∇f(x̄(t))
∥∥2
2
≤ ε for

T = O
(
σ2

nε2
+

√
pσ + ζ

pε3/2
+
p

ε

)
· L(f(x0)− f?) .

In comparison, for centralized mini-batch SGD (C-SGD) we are allowed to choose a potentially
much larger stepsize γ ≤ O

(
1
L

)
, and can bound the number of iterations by O

(
σ2

nε2 + 1
ε

)
. While

asymptotically both these rates are equivalent, they differ in low accuracy setting when ε is not too
small. That is, especially in the first phase of optimization where the lower order terms matter.

To measure differences between agents, we use the consensus distance Ξ2
t := 1

n

∑n
i=1

∥∥x̄(t)−x
(t)
i

∥∥2.
Remark 2 (Critical Consensus Distance (CCD)). If the consensus distance is bounded by

Ξ2
t ≤

(
1

Ln
γσ2 +

1

8L2

∥∥∥∇f(x̄(t))
∥∥∥2 =: Γ2

t

)
(4)

for all t, then in D-SGD we may choose larger stepsizes γ ≤ γ′max = O
(
1
L

)
and recover the

convergence rate of C-SGD, that is O
(
σ2

nε2 + 1
ε

)
(Dekel et al., 2012; Bottou et al., 2018). We denote

Γ2
t as critical consensus distance (CCD).

The proof can be found in the Appendix A.1. Note that the CCD does not depend on the graph
topology and that Γ2

t > 0, which means that we do not need perfect consensus between agents to
recover the C-SGD rate, but we allow consensus distance Ξ2

t ≥ 0 (i.e. the Ξ2
t = 0 ∀t, as we have for

centralized optimization is sufficient, but not necessary).

We now estimate the magnitude of the consensus distance in D-SGD and compare it to CCD.
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Proposition 3 (Typical consensus distance). Let φ2t := 1
n

∑n
i=1

∥∥∇fi(x(t)
i )
∥∥2. Then under the

assumption that γ, p are constant, and the φt do not change too fast between iterations, i.e. not
decreasing faster than exponentially: φ2t ≤ (1+p/4)φ2t+1, the consensus distance in D-SGD satisfies

Ξ2
t = (1− p)γ2 · O

(
φ2t
p2

+
σ2

p

)
. (5)

We give the proof in the Appendix A.2. While these assumptions do not hold in epochs with learning
rate decay, we observed in practice that when the learning rate is constant indeed the gradients do not
change too fast and found it to be a reasonable approximation to capture the practical behavior (see
Figure 5(b)).

3.3 CONTROLLING THE CONSENSUS DISTANCE

In this section we investigate scenarios where the typical consensus distance derived in Proposition 3
can be smaller than its critical value (CCD). This reveals two orthogonal strategies to control the
consensus distance in D-SGD. We here assume diversity ζ = 0 as with iid training data, and that the
stepsize γ ≤ O

(
1
L

)
as for C-SGD, and give a more refined discussion in the appendix.

Learning rate decay (changing γ). We observe that when γ = O
(
p
nL

)
then Ξ2

t ≤ Γ2
t (if the

noise σ is small, especially for σ = 0, then the weaker assumption γ = O
(
p
L

)
is sufficient). However,

choosing the stepsize too small can impact performance in practice. In C-SGD the constraint on the
stepsize is loose (γ ≤ 1

L ). Yet, our observations show that after sufficient learning rate decay, the
desired CCD can be reached.

More gossip iterations (changing p). We observe that when 1
1−p = O(1 + γLn), then Ξ2

t ≤ Γ2
t

(again, when the noise σ is small, especially when σ2 = 0, a weaker condition 1
1−p = O(1 + γL)

is sufficient). Whilst designing new mixing topologies to control p might not be possible due to
practical constraints (fixed network, denser graphs increase latency, etc.) a simple and commonly
used strategy is to use repeated gossip steps in every round.

Lemma 4 (Repeated gossip). Suppose W = Wk . . .W1, for k (possibly randomized) mixing
matrices with parameter p each. Then the mixing parameter for W is at least pW ≥ 1− (1− p)k.

From this, we see that the mixing parameter can be improved exponentially when applying more
gossip steps. To ensure pW ≥ 1− 1

1+γLn , at most k ≤ ln(1+γLn)
p = Õ

(
1
p

)
repetitions are required.

These arguments show, that we can—at least in theory—recover the convergence behavior of C-SGD
by controlling the consensus distance. We will now present numerical evidence, that corroborates
these findings for deep learning tasks.

4 INSPECTING CONSENSUS DISTANCE FOR DECENTRALIZED TRAINING

Motivated by theoretical analysis in Section 3, we empirically investigate to what extent our theory
holds and how consensus distance interacts with deep learning training. First we introduce and
justify our experimental design in Section 4.1. We describe the implementation in Section 4.2. In
Section 4.3, we present our findings on image classification benchmark with standard SGD optimizer,
which is the main focus of this work; a preliminary study on Transformer with Adam optimizer and
inverse square root learning rate schedule can be found in Section 4.4.

4.1 EXPERIMENT DESIGN: CONTROLLED DECENTRALIZED TRAINING PHASES.

Phase-wise training. As consensus distance evolves throughout training, identifying its impact
at every training step is infeasible. Also, since consensus distance and critical consensus distance
(CCD) have different but significant dependencies on learning rate (Remark 2 and Proposition 3),
we would expect observations to be distinct over different learning rate phases but rather consistent
within each phase. On CV tasks, stage-wise learning rate schedule is the common practice for SOTA
training as described in Section 4.2: thus the training can be naturally divided into phases with the
corresponding learning rate, in each of which key training dynamics are significantly different from
the others, such as Ξt (Figure 1), φt (Figure 5(b)) and L-smoothness (Figure 5(c)). The transformer
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(NLP task) has no well-defined training phases due to the conventional inverse square root learning
rate, thus for the sake of simplicity, we consider the entire transformer training as one phase as a
preliminary study.

Individual phase investigation. In order to eliminate the coupling of effects from other phases, in
each experiment we place only one phase under consensus distance control, while performing exact
averaging (All-Reduce)1 on model parameters for the other unstudied phases. For the ease of presen-
tation, the term “phase-x” refers to a training phase between x−1-th and x-th learning rate decay.
The notation “dec-phase-x” indicates that only in “phase-x” the model is trained with a decentralized
communication topology, while for other phases we perform All-Reduce on model parameters. We
compare the result of individual decentralized investigation with that of All-Reduce centralized
training (on all training phases), so as to identify when (which phase) and how decentralized training
influences final generalization performance2.

4.2 EXPERIMENTAL SETUP

Datasets and models. We empirically study the decentralized training behavior on the following
two tasks, on CNN and transformer architectures: (1) Image Classification for CIFAR-10 (Krizhevsky
& Hinton, 2009) and ImageNet-32 (i.e. image resolution of 32) (Chrabaszcz et al., 2017), with the
standard data augmentation and preprocessing scheme (He et al., 2016); and (2) Neural Machine
Translation for the Multi30k dataset (Elliott et al., 2016). For Image Classification, ResNet-20 (He
et al., 2016) with different widths are used on CIFAR (default width of 1) and ImageNet-32 (width
factor of 3). For Neural Machine Translation, a down-scaled transformer architecture (by 2× w.r.t.
the base model in Vaswani et al. (2017)) is used. Weight initialization schemes follow Goyal et al.
(2017); He et al. (2015) and Vaswani et al. (2017) respectively. Unless mentioned otherwise, our
experiments are repeated over three random seeds.

Training schemes. We use mini-batch SGD with a Nesterov momentum of 0.9 without dampening
for image classification task, and Adam for neural machine translation task. Unless mentioned
otherwise we use the optimal learning rate (lr) for centralized training3 in order to observe the impact
of decentralization on normal centralized training.

• For image classification experiments, unless mentioned otherwise the models are trained for 300
and 90 epochs for CIFAR-10 and ImageNet-32 respectively; the local mini-batch size are set to 32
and 64. By default, all experiments use learning rate scaling and warmup scheme (Goyal et al.,
2017). The learning rate is always gradually warmed up from a relatively small value (i.e. 0.1) for
the first 5 epochs. Besides, the learning rate will be divided by 10 when the model has accessed
specified fractions of the total number of training samples (He et al., 2016); we use { 12 ,

3
4} and

{ 13 ,
2
3 ,

8
9} for CIFAR and ImageNet respectively. All results in tables are test top-1 accuracy.

• For experiments on neural machine translation, we use standard inverse square root learning rate
schedule (Vaswani et al., 2017) with local mini-batch size 64. The warmup step is set to 4000 for
the mini-batch size of 64 and is linearly scaled down by the global mini-batch size.

Consensus distance control. For consensus control, we adopt the “more gossip iterations” strategy
introduced in Section 3.3. That is, we perform multiple gossip steps (if needed) until reaching the
desired target consensus distance value. Two metrics are considered to set the consensus distance
target value during the specified training phase:

• constant consensus distance (main approach4): the target consensus distance Ξ for a phase is the
maximum consensus distance Ξmax of the current phase in normal (uncontrolled) decentralized
training, multiplied by a factor. For a given topology, the smaller the factor, the tighter consensus.

1 All-Reduce is used for all nodes to reach an exact consensus on model parameters.
2 We demonstrate in Table 4 of Section 4.3 that the decentralization impacts on different phases are rather

orthogonal, which justifies our design of examining one phase at a time.
3 We do tune the learning rate, but its choice does not change the conclusion. E.g., no significant difference

can be found for the curves at phase-1 for “ring (fine-tuned lr)” and “dec-phase-1 (Ξmax)” in Figure 2(a) and 2(b).
We have similar observations in Table 11 after the sufficient learning rate tuning on phase-1.

4 We use this one primarily since we can regulate the consensus distance in absolute values. We abuse the
notation a bit by using Ξmax alone to indicate the decentralized training w/o consensus distance control.
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(b) Training top-1 accuracy.

0 50 100 150 200 250 300
Epoch

75

80

85

90

Te
st

 to
p-

1 
ac

cu
ra

cy

All-Reduce (fine-tuned lr)
ring (fine-tuned lr)
dec-phase-1 (1/4 max)
dec-phase-1 (1/2 max)
dec-phase-1 ( max)

(c) Test top-1 accuracy.

Figure 2: Learning curves for ResNet-20 on CIFAR-10 (n=32). We compare tuned decentralized training (i.e.
“ring”) with dec-phase-1 on different target consensus distances.

Table 2: The impact of consensus distance of different phases on generalization performance (test top-1
accuracy) of training ResNet-20 on CIFAR-10. The All-Reduce performance for n = 32 and n = 64 are
92.82± 0.27 and 92.71± 0.11 respectively. The tuned decentralized performance (all phases on a fixed ring
and w/o consensus distance control) for n=32 and n=64 are 91.74± 0.15 and 89.87± 0.12 respectively.

# nodes
target Ξ dec-phase-1 dec-phase-2 dec-phase-3

Ξmax 1/2 Ξmax 1/4 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax

n=32 91.78± 0.35 92.36± 0.21 92.74± 0.10 93.04± 0.01 92.99± 0.30 92.87± 0.11 92.60± 0.00 92.82± 0.21 92.85± 0.24
n=64 90.31± 0.12 92.18± 0.07 92.45± 0.17 93.14± 0.04 92.94± 0.10 92.79± 0.07 92.23± 0.12 92.50± 0.09 92.60± 0.10

• adaptive consensus distance (in Appendix C.3.1): the target consensus distance Ξ for the cur-
rent step is the averaged local gradient norm φavg

t scaled by a factor. For stability, we use the
exponentially moving averaged value φema

t of φavg
t (accumulated during the corresponding phase).

0 50 100 150 200 250 300
Epoch

0

5

10

15

t

Figure 1: The consensus distance Ξ for
ResNet-20 on CIFAR-10 (n=32) with ring.

We use a ring as our (main) decentralized communication
topology5 as it is a particular hard instance with large
spectral gap (cf. Table 7), allowing to study a wide range
of target consensus distances by modifying the number of
communication rounds.

4.3 FINDINGS ON COMPUTER VISION TASKS

In this section we present our empirical findings and pro-
vide insights into how consensus distance at different phases impacts the training generalization for
CV tasks (i.e. CIFAR-10, Imagenet-32).

Critical consensus distance exists in the initial training phase and ensures good optimization
and generalization. In the initial training phase, both training and generalization performance are
heavily influenced by the consensus distance6 (“dec-phase-1” in Figure 2 and Table 2). A smaller
consensus distance in the early phase results in considerably faster optimization (training loss) and
higher generalization performance (test accuracy) and these advantages persist over the entire training.

When the consensus is more loose (e.g. 1/2 Ξmax for CIFAR-10), although the optimization (training
performance) can eventually catch up with the centralized convergence (c.f. Figure 2(a) and 2(b)), a
considerable generalization gap still remains (92.36 v.s. 92.82 for the setup in Figure 2) as shown
in Table 2. This pattern is consistent7 in ImageNet-32 experiments, as shown in Table 3. These
observations to some extent are also consistent with the insights of the critical learning phase described
in Jastrzebski et al. (2020); Frankle et al. (2020); Golatkar et al. (2019) for traditional (centralized)
training, where it is argued that the initial learning phase is crucial for the final generalization.

Notably, perfect consensus distance is not required to recover the centralized training performance.
For instance, 1/4 Ξmax is sufficient in CIFAR-10 experiments to approach the optimal centralized
training performance in both optimization and generalization at the end. Smaller distances (e.g.
1/8 Ξmax, 1/16 Ξmax) do not bring significant gain (92.77 and 92.72 respectively in Table 9). The
performance saturates (c.f. 92.74 for 1/4 Ξmax) with significantly increased communication overhead
(e.g. Figure 9 of Appendix C.1). This confirms that our analysis and discovery in Section 3 are

5 We also study the effect of using different communication topologies as the base communication topology
in Table 17 and 16. The observations are consistent with those of our main experiments with a ring topology.

6 Equivalent results for SGD without momentum can be found in Table 12 in the appendix.
7 In the case of ImageNet-32 with n=32, 1/2 Ξmax has already been tight enough to recover the centralized

training performance. But a significant performance drop can be observed between Ξmax and 1/2 Ξmax.
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Table 3: The impact of different consensus distances on generalization for different phases of training
ResNet-20-3 on ImageNet-32. The centralized baseline performances for n=16 and n=32 are 51.74± 0.06
and 51.98 ± 0.37 respectively, while those of decentralized training (on a fixed ring) are 51.04 ± 0.06 and
50.17± 0.04. The reported test top-1 accuracies are over two seeds.

# nodes
target Ξ dec-phase-1 dec-phase-2 dec-phase-3 dec-phase-4

Ξmax 1/2 Ξmax 1/4 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax

n=16 51.22± 0.08 51.79± 0.10 51.71± 0.03 51.59± 0.02 51.67± 0.01 51.65± 0.13 51.80± 0.10 51.81± 0.13 51.81± 0.04 51.72± 0.02 51.76± 0.01 51.74± 0.06
n=32 50.76± 0.18 51.27± 0.07 51.60± 0.21 51.39± 0.07 51.59± 0.04 51.66± 0.12 51.79± 0.06 51.73± 0.10 51.77± 0.10 51.70± 0.02 51.71± 0.02 51.70± 0.02

Table 4: Quality propagation across training phases with different consensus distances on ResNet-20 for
CIFAR-10 (Ring with n=32). In phase-1 and phase-2, the model parameters reach inexact consensus controlled
by different target consensus distance Ξ, while phase-3 performs All-Reduce on model parameters.

phase-1
phase-2

Ξmax 1/2 Ξmax 1/4 Ξmax

1/2 Ξmax 92.48± 0.19 92.46± 0.11 92.31± 0.23
1/4 Ξmax 92.73± 0.11 92.66± 0.08 92.69± 0.19
1/8 Ξmax 93.10± 0.22 92.88± 0.15 92.91± 0.06

Table 5: The impact of different numbers of training epochs (at phase-1) on generalization, for training
ResNet-20 on CIFAR-10 (dec-phase-1 with n = 32). The number of epochs at phase-1 is chosen from
{150, 200, 250}, while the rest of the training reuses our default setup.

target Ξ
training epochs at phase-1

150 200 250

Ξmax 91.78± 0.35 91.91± 0.19 92.04± 0.14
1/2 Ξmax 92.36± 0.21 92.55± 0.07 92.67± 0.13
1/4 Ξmax 92.74± 0.10 92.91± 0.15 92.84± 0.20

sensible in the initial training phase: there exists a critical consensus distance for the training, beyond
which the impact of decentralization is negligible.

A non-negligible consensus distance at middle phases can improve generalization over central-
ized training. Surprisingly, it is not always the case that the generalization performance improves
with the shrinking consensus distance. We observe that at the phase right after initial training plateaus
(e.g. phase-2 for CIFAR-10, phase-3 for Imagenet-32), a non-negligible consensus distance8 actually
boosts the generalization performance over the centralized training which has been deemed optimal.
In CIFAR-10 dec-phase-2 experiments (Table 2), the generalization performance increases monoton-
ically with the evaluated consensus distance and is consistently superior to that of the centralized
training (e.g. 93.04, 92.99, 92.87 over 92.82 for n = 32). Analogous observation can be obtained in
Imagenet-32 dec-phase-3 experiments (Table 3).

It coincides with the observations firstly introduced in post-local SGD (Lin et al., 2020b), where for
better generalization, consensus distance is created among local machines by less frequent model
parameter synchronization (All-Reduce) in late training phases (e.g. phase-2, phase-3 for CIFAR).
Thus non-negligible consensus distance at middle phases can be viewed as a means of injecting
proper noise as argued in Lin et al. (2020b), which reduces communication cost and in the meanwhile
benefits generalization.

At the last phase of training, the consensus degree marginally impacts the generalization.
Similar to the initial training phase, the final convergence phase seems to favor small consen-
sus distances in CIFAR-10 experiments. However, its impact is less prominent in comparison: for
dec-phase-3, performance of a smaller consensus distance (1/4 Ξmax) is only 0.25% and 0.37% higher
than that of Ξmax for n= 32, 64 respectively (Table 2). In Imagenet-32 experiments, dec-phase-3
performance is not even affected by changes in consensus.

Quality propagation across phases. Our previous experiments only considered a single phase of
decentralized training. We now evaluate the continued impact of consensus across the sequence of
multiple phases. In Table 4, we control the consensus distance for both phase-1 and phase-2 when
training CIFAR-10. When one phase is held under every specific consensus control, our previous
findings for the other phase still hold. For instance, when we apply 1/2 Ξmax,1/4 Ξmax consensus
control to phase-2 (middle column in Table 4), we can still observe that a smaller consensus distance
in phase-1 results in a higher performance as in our previous finding. Hence our previous findings are
valid in more general cases of decentralized training.

8 In Table 17 and 16 in Appendix C.3.1, we show that there exists optimal consensus distance at middle
phases, beyond which the gain in generalization (brought by noise injection) starts to diminish.
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Table 6: The importance of phase-1 for training ResNet-20 on CIFAR-10 (n = 32), in terms of (1) target
consensus distance and (2) the number of training epochs. In phase-2 and phase-3, we perform decentralized
training (w/o consensus distance control).

# of epochs
target Ξ

Ξmax 1/2 Ξmax 1/4 Ξmax 1/8 Ξmax 0 Ξmax

150 91.74± 0.15 92.31± 0.12 92.81± 0.22 92.91± 0.15 92.94± 0.07
200 91.81± 0.22 92.88± 0.20 93.00± 0.18 93.01± 0.10 92.90± 0.17
250 92.09± 0.23 92.74± 0.11 93.15± 0.26 92.99± 0.24 93.31± 0.06

Longer training cannot close the generalization gap caused by large consensus distances in
initial training phase. As discussed above, large consensus distances in the initial phase can result
in significant generalization loss due to the optimization difficulty. Table 5 investigates whether
a prolonged training on the initial phase can address this difficulty: we prolong the phase-1 for
CIFAR-10 with a range of consensus distances and leave the other training phases centralized. We
can observe that although longer training is beneficial for each consensus distance, it cannot recover
the generalization gap resulting from large consensus distance. For instance, the maximum gain
(among all evaluated cases) of increasing the epoch number from 150 to 250 is 0.31% at 1/2 Ξmax,
which is lower than the average gain (around 0.6%) of merely reducing the consensus distance from
Ξmax to 1/2 Ξmax. Table 13 evaluates cases where dec-phase-2 and dec-phase-3 are prolonged. We
find that longer training in these two phases bring about negligible performance gain.

Practical guidelines: prioritizing the initial training phase. Apart from effectiveness (general-
ization/test performance), efficiency (time) stands as the other crucial goal in deep learning, and thus
how to allocate communication resource over the training becomes a relevant question.

0 4 8 12 16 20 24 28 32
gossip steps

10 6

10 4

10 2

100
1 n

n

i=
1

x i
x

2 2

ring
exponential graph
random matching
bipartite exponential graph

Figure 3: Understanding the consensus av-
eraging problem for different communica-
tion topologies (n=32). Results on differ-
ent communication scales are deferred to
Appendix C.1.

As indicated by our first empirical finding (and theory in Sec-
tion 3), initial training phase bears the greatest importance
over all other training phases; therefore the communication
expenditure should be concentrated on the initial phase to
maintain a consensus distance lower than the CCD. A list
of communication topologies with superior spectral proper-
ties, e.g. exponential graph (Assran et al., 2019) and random
matching (Nadiradze et al., 2020), can be utilized9 to achieve
fast convergence in gossip averaging.

The late training phases should be less prioritized for com-
munication resources, due to the generalization benefits from
a reasonable consensus distance in the middle phases. Pro-
viding a rigorous way to quantify the optimal consensus
distance is non-trivial, and we leave it as future work.

In Table 6 we show that the above mentioned guideline is practically feasible: as long as the quality
of the initial phase is ensured, we can afford to slacken the consensus control for later phases, in
particular the middle phase. For instance, when the number of epochs is 150, a consensus control
of 1/4 Ξmax in the initial phase with uncontrolled middle and final phase is adequate to recover
the centralized training performance (92.81 v.s. 92.82). Note that here the noise injection from the
uncontrolled middle phase also contributes positively to the performance. Table 16 in Appendix C.3.1
additionally justifies the applicability of applying this guideline on exponential graph, and we leave
more complicated communication scheme design as future work.

4.4 PRELIMINARY STUDY ON TRAINING TRANSFORMER MODELS

The critical consensus distance also exists in NLP tasks. Figure 4(c) demonstrates that 1/4 Ξmax
target control on a ring is sufficient to recover the centralized training performance. Besides, the
target consensus distance in this case can be reached by exponential graph (and thus target test
performance, as shown in Figure 4(a) and 4(b)). These justify the importance of designing an efficient
communication topology/scheme in practice so as to effectively reach the critical consensus distance.

9 The definition of the communication topology is detailed in Appendix C.1.
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Figure 4: Learning curves for training Transformer on Multi30k (n=32).
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A THEORY

In this section, we prove the claims from Section 3.

A.1 PROOF OF REMARK 2, CRITICAL CONSENSUS DISTANCE

The proof of this claim follows by the following Lemma:

Lemma 5 (Koloskova et al. (2020b), Descent lemma for non-convex case). Under the given assump-
tions, and for any stepsize γ < 1

4L , the iterates of D-SGD satisfy

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− η

4

∥∥∥∇f(x̄(t))
∥∥∥2
2

+ γΞ2
t +

L

n
γ2σ̂2.

Proof. By replacing Ξt in the above inequality with (4), we simplify:

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− η

8

∥∥∥∇f(x̄(t))
∥∥∥2
2

+
2L

n
γ2σ̂2.

This inequality now matches (up to differences in the constants) the standard recursion that one can
derive for C-SGD (Dekel et al., 2012; Bottou et al., 2018; Stich & Karimireddy, 2019).

A.2 PROOF OF PROPOSITION 3, TYPICAL CONSENSUS DISTANCE

We need an auxiliary (but standard) lemma, to estimate the change of the consensus distance between
iterations.

Lemma 6 (Consensus distance). It holds

Ξ2
t+1 ≤ (1− p/2)Ξ2

t +
3(1− p)γ2

p

(
φ2t + pσ2

)
.

We give the proof of this statement shortly below. First, let us consider how this lemma allows the
proof of the claim. For this, we first consider a particular special case, and assume φt ≤ φ, for a
constant φ. In this case, we can easily verify by unrolling the recursion:

Ξ2
t ≤

t−1∑
i=0

(1− p/2)i
3(1− p)γ2(φ2 + pσ2)

p
≤ 6(1− p)γ2

(
φ2

p2
+
σ2

p

)
.

Now, for the claim in the main text, we use assumption that φt are changing slowly, that is, not
decreasing faster than exponentially: φ2t ≤ (1 + p/4)φ2t+1. With this assumption, and observing
(1− p/2)i(1 + p/4)i ≤ (1− p/4)i, we can unroll as before

Ξ2
t ≤

t−1∑
i=0

(1− p/2)i
3(1− p)γ2(φ2t−i−1 + pσ2)

p

≤
t−1∑
i=0

(1− p/4)i
3(1− p)γ2(φ2t−1 + pσ2)

p
≤ 12(1− p)γ2

(
φ2t−1
p2

+
σ2

p

)
.

Proof of Lemma 6. We use the following matrix notation here

X(t) :=
[
x
(t)
1 , . . . ,x(t)

n

]
∈ Rd×n ,

X̄(t) :=
[
x̄(t), . . . , x̄(t)

]
= X(t) 1

n
11> ,

∇F (X(t), ξ(t)) :=
[
∇F1(x

(t)
1 , ξ

(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)n )
]
,

∇f(X(t)) :=
[
∇f1(x

(t)
1 ), . . . ,∇fn(x(t)

n )
]
.
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As a reminder, Ξ2
t := 1

n

∑n
i=1

∥∥∥x̄(t) − x
(t)
i

∥∥∥2, and φ2t := 1
n

∑n
i=1

∥∥∥∇fi(x(t)
i )
∥∥∥2.

nΞ2
t+1 =

∥∥∥X̄(t+1) −X(t+1)
∥∥∥2
F

=

∥∥∥∥(X(t) − γ∇F (X(t), ξ(t)))

(
1

n
11> −W

)∥∥∥∥2
F

=

∥∥∥∥(X(t) − γ∇F (X(t), ξ(t)))

(
1

n
11> − I

)(
1

n
11> −W

)∥∥∥∥2
F

≤ (1− p)
∥∥∥∥(X(t) − γ∇F (X(t), ξ(t)))

(
1

n
11> − I

)∥∥∥∥2
F

≤ (1− p)
∥∥∥∥(X(t) − γ∇f(X(t)))

(
1

n
11> − I

)∥∥∥∥2
F

+ (1− p)γ2
∥∥∥∇f(X(t))−∇F (X(t), ξ(t))

∥∥∥2
F

≤ (1− p)(1 + α)

∥∥∥∥X(t)

(
1

n
11> − I

)∥∥∥∥2
F

+ (1− p)(1 + α−1)γ2
∥∥∥∇f(X(t))

∥∥∥2
F

+ (1− p)γ2σ2n

α= p
2

≤
(

1− p

2

)
nΞ2

t +
3(1− p)

p
γ2
∥∥∥∇f(X(t))

∥∥∥2
F

+ (1− p)γ2σ2n

A.3 SUFFICIENT BOUNDS TO MEET CRITICAL CONSENSUS DISTANCE

In this section, we show that the claimed bounds in Section 3.3 are sufficient conditions to reach the
CCD.

According to Remark 3, there exists an absolute constant C, (w.l.o.g. C ≥ 2) such that

Ξ2
t ≤ C(1− p)γ2

(
φ2t
p2

+
σ2

p

)
By smoothness,

φ2t =
1

n

n∑
i=1

∥∥∥∇fi(x(t)
i )
∥∥∥2

≤ 3

n

n∑
i=1

∥∥∥∇fi(x(t)
i )−∇f(x

(t)
i )
∥∥∥2 +

3

n

n∑
i=1

∥∥∥∇f(x
(t)
i )−∇f(x̄(t))

∥∥∥2 +
3

n

n∑
i=1

∥∥∥∇f(x̄(t))
∥∥∥2

≤ 3ζ2 + 3L2Ξ2
t + 3

∥∥∥∇f(x̄(t))
∥∥∥2 .

Supposing (1− p)γ2 ≤ p2

6CL2 , we can therefore estimate

Ξ2
t ≤ C(1− p)γ2

(
3
∥∥∇f(x̄(t))

∥∥2 + 3L2Ξ2
t + 3ζ2

p2
+
σ2

p

)

≤ 3C(1− p)γ2
(∥∥∇f(x̄(t))

∥∥2 + ζ2

p2
+
σ2

p

)
+

1

2
Ξ2
t

and hence

Ξ2
t ≤ 6C(1− p)γ2

(∥∥∇f(x̄(t))
∥∥2

p2
+
ζ2

p2
+
σ2

p

)
(6)

The claimed bounds can now easily be verified, by plugging the provided values into (6). For
simplicity in the main text we assume that ζ = 0 (we are in the datacenter training scenario).

Small γ. By choosing γ ≤ p
4nLC , we check that our previous constraint γ2

C≥2
≤ p2

6CL2 is satisfied,
and

(6) ≤
∥∥∇f(x̄(t))

∥∥2
4n2CL2

+
γσ2

nL

C≥2
≤ (4)
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Small p. By choosing 1 − p ≤ 1
5C(1+γLn) , we note that p

C≥2
≥ 9

10 . Moreover, our previous

constraint (1− p)γ2 ≤ γ2

5C ≤
p2

6L2C is satisfied (note that γ ≤ 1
4L throughout). Hence

(6) ≤ 4γ2

5(1 + γLn)

(
100

∥∥∇f(x̄(t))
∥∥2

81
+

10σ2

9

)
γ≤1/(4L)
≤ (4)

In the above calculations we for the simplicity assumed that ζ = 0. For the general non-iid data case
when ζ > 0 we can calculate similar bounds on γ, p. These bounds would have similar dependence
on parameters, and would be stricter. Indeed, the typical consensus distance would be also influenced
by non-iidness of the data ζ and it is therefore harder to satisfy the CCD condition.

A.4 PROOF OF LEMMA 4, REPEATED GOSSIP

By the assumption stated in the lemma, it holds for each component Wi of the product W =
Wk . . .W1, i ∈ [1, k] that

EWi

∥∥XWi − X̄
∥∥2
F
≤ (1− p)

∥∥X− X̄
∥∥2
F
,∀X ∈ Rd×n.

Now lets estimate the parameter pW. Using that Wi are independent

EW

∥∥XW − X̄
∥∥2
F

= EW1...Wk

∥∥XWk . . .W1 − X̄
∥∥2
F

=

=EW2...Wk
EW1

∥∥YW1 − Ȳ
∥∥2
F
,

where we defined Y = XWk . . .W2 and used that Wi
1
n11

> = 1
n11

>, so

Ȳ = XWk . . .W2
1

n
11> = X

1

n
11> = X̄.

Therefore,

EW

∥∥XW − X̄
∥∥2
F
≤ (1− p)EW2...Wk

∥∥XWk . . .W2 − X̄
∥∥2
F
.

Applying the same calculations to the rest, we conclude that 1− pW = (1− p)k.
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B DETAILED EXPERIMENTAL SETUP

Comments on large-batch training. Coupling the quality loss issue of the decentralized training
with the large-batch training difficulty is non-trivial and is out of the scope of this paper. Instead, we
use reasonable local mini-batch sizes (together with the number of workers (denoted as n)), as well
as the well-developed large-batch training techniques (Goyal et al., 2017), to avoid the difficulty of
extreme large-batch training.

Multi-phase experiment justification. The averaged local gradient norm φt as well as the L-
smoothness of ResNet-20 on CIFAR-10 for a ring and a complete graph (n = 32) are shown in
Figure 5 and Figure 6 respectively.

The estimation procedure is analogous to that in Santurkar et al. (2018); Lin et al. (2020a): we
take 8 additional steps long the direction of current update, each with 0.2 of normal step size. This
is calculated at every 8 training steps. The smoothness is evaluated as the maximum value of L
satisfying Assumption 2.
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Figure 5: Justification for our multiple-phase experimental design choice (on ring graph). We run ResNet-20
on CIFAR-10 (n=32) with the ring topology. We can observe the three quantities most relevant to optimization
all naturally form three phases, dictated by the learning rate schedule.
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Figure 6: Justification for our multiple-phase experimental design choice (on complete graph). We run
ResNet-20 on CIFAR-10 (n=32) with the complete topology. We can again observe the three quantities most
relevant to optimization all naturally form three phases, dictated by the learning rate schedule.

C ADDITIONAL RESULTS

C.1 UNDERSTANDING ON CONSENSUS AVERAGING PROBLEM

We study a host of communication topologies: (1) deterministic topologies (ring, and complete graph)
and (2) undirected time-varying topologies (illustrated below).

• Random matching (Boyd et al., 2006). At each communication step, all nodes are divided into
non-overlapping pairs randomly. Each node connects all other nodes with equal probability.

• Exponential graph (Assran et al., 2019). Each is assigned a rank from 0 to n− 1. Each node i
periodically communicates with a list nodes with rank i+ 20, i+ 21, . . . , i+ 2blog2(n−1)c. In the
one-peer-per-node experiments, each node only communicates to one node by cycling through
its list. The formed graph is undirected, i.e., both transmission and reception take place in each
communication.
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• Bipartite exponential graph (Lian et al., 2018; Assran et al., 2019). In order to avert dead-
locks (Lian et al., 2018), the node with an odd rank i cycles through nodes with even ranks
i + 20 − 1, i + 21 − 1, . . . , i + 2blog2(n−1)c − 1 by transmitting a message and waiting for a
response. while the nodes with even ranks only await messages and reply upon reception.

Table 7 displays the spectral gap and node degree of studied topologies, and Figure 7 provides the
convergence curves for different communication topologies on graph scales. Figure 8 in addition
visualizes the spectral gap (in expectation) for different communication topologies.

Table 7: Spectral gap and node degree of studied topologies.
Topologies Spectral Gaps (in expectation) Node degrees (n nodes)

Complete 1 n
Fixed ring O( 1

n2 ) 2
Exponential graph O(1) 2

Bipartite exponential graph O(1) 1
Random matching O(1) 1
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Figure 7: The convergence curves for the consensus averaging problem on different communication topologies
and different scales (i.e., n=16, n=64 and n=128). This figure complements the Figure 3 in the main text.
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Figure 8: The spectral gap (in expectation) of different communication topologies on different graph scales.

Table 8 examines these topologies on a standard deep learning benchmark with different graph scales,
while Figure 9 visualizes the required communication rounds (per gradient update step) for a range
of consensus distance targets.

Complete Fixed ring Exponential graph Bipartite exponential graph Random matching

n=16 92.91± 0.12 92.51± 0.19 92.63± 0.30 92.76± 0.04 92.65± 0.15
n=32 92.82± 0.27 91.93± 0.05 92.64± 0.04 92.29± 0.15 92.27± 0.17

Table 8: The effect of communication topologies and scales (ResNet-20 on CIFAR-10 with n=32). The test
top-1 accuracies are over three seeds with fine-tuned learning rates.

C.2 UNDERSTANDING THE DECENTRALIZED DEEP LEARNING TRAINING FOR CV TASKS

We use ring as our underlying decentralized communication topology in this subsection.
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Figure 9: Target consensus distance v.s. the required communication rounds (per gradient update step),
for training ResNet-20 on CIFAR-10 with different communication topologies. We focus on the setup of
dec-phase-1 and vary the target consensus distance for different communication topologies. Due to the changing
consensus distance over the training (of the interested phase-1), we consider the averaged consensus distance.
The topologies of exponential graph and random matching, empower the capability of fast convergence in gossip
averaging and thus only a few steps are required to reach the target consensus distance.

Elaborated results on consensus distance control. Table 9 is the elaborated version of Table 2
with more evaluated consensus distances.

Table 9: The impact of consensus distance of different phases on generalization performance (test top-1
accuracy) of training ResNet-20 on CIFAR-10. The centralized baseline performance for n=32 and n=64 are
92.82± 0.27 and 92.71± 0.11 respectively. The performance of decentralized training (all phases on a fixed
ring and w/o consensus distance control) for n=32 and n=64 are 91.74± 0.15 and 89.87± 0.12 respectively.

dec-phase-1 dec-phase-2 dec-phase-3 dec-phase-2 + dec-phase-3
Ξmax 1/2 Ξmax 1/4 Ξmax 1/8 Ξmax 1/16 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax 1/40 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax

n=32 91.78± 0.35 92.36± 0.21 92.74± 0.10 92.77± 0.25 92.72± 0.05 93.04± 0.01 92.99± 0.30 92.87± 0.11 92.84± 0.27 92.60± 0.00 92.82± 0.21 92.85± 0.24 92.94± 0.07 93.03± 0.24 92.93± 0.15
n=64 90.31± 0.12 92.18± 0.07 92.45± 0.17 - - 93.14± 0.04 92.94± 0.10 92.79± 0.07 - 92.23± 0.12 92.50± 0.09 92.60± 0.10 92.95± 0.07 92.83± 0.12 92.66± 0.07

SlowMo cannot fully address the decentralized optimization/generalization difficulty. Ta-
ble 10 studies the effectiveness of using SlowMo for better decentralized training. We can witness
that even though the performance of decentralized training can be boosted to some extent, it cannot
fully address the quality loss issue brought by decentralized training.

Table 10: The effect of SlowMo for decentralized learning, for training ResNet20 on CIFAR-10 (n = 32).
The results (over three random seeds) use the tuned hyper-parameter of SlowMo mentioned in the original
paper (Wang et al., 2020). The centralized baseline performance is 92.82± 0.27.

topology w/o SlowMo w/ SlowMo

exponential graph 92.63± 0.22 92.42± 0.36
ring 91.74± 0.15 92.53± 0.10

On the ineffectiveness of tuning learning rate. Table 11 displays the results of training ResNet-
20 on CIFAR-10 (32 nodes), with fine-tuned learning rate on phase-1; learning rate tuning cannot
address the test quality loss issue caused by the large consensus distance (i.e. over the CCD).

Table 11: Phase-1 consensus distance control performance with fine-tuned learning rates of training
ResNet-20 on CIFAR-10 (n = 32). Setup in this table is identical to that of Table 2, except that we fine-
tune the learning rate for each case from a grid of linear scaling-up factors {30, 28, 26, 24, 22}. The results are
over three seeds.

Ξmax 1/2 Ξmax 1/4 Ξmax

w/ tuned lr from the search grid 91.95± 0.26 92.35± 0.24 92.54± 0.08
w/ default lr 91.78± 0.35 92.36± 0.21 92.74± 0.10

Distance control on SGD without momentum. Table 12 contains the consensus distance control
results for SGD without momentum. We can observe a consistent pattern as in Table 2.
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Table 12: The impact of consensus distance on generalization performance with vanilla SGD (without
momentum) (test top-1 accuracy) of training ResNet-20 on CIFAR-10. The All-Reduce performance for n=32
and n=64 are 90.64± 0.19 and 90.58± 0.26 respectively. The tuned decentralized performance (all phases
on a fixed ring and w/o consensus distance control) for n=32 and n=64 are 90.30± 0.14 and 88.92± 0.23
respectively. We repeat experiments for n=32 for 3 seeds and n=64 for 2 seeds.

# nodes
target Ξ dec-phase-1 dec-phase-2

Ξmax 1/2Ξmax 1/4Ξmax Ξmax 1/2Ξmax 1/4Ξmax
n = 32 90.51± 0.05 90.74± 0.14 90.88± 0.37 90.64± 0.18 90.55± 0.19 90.57± 0.17
n = 64 88.8± 0.03 89.89± 0.03 90.43± 0.05 90.63± 0.37 90.46± 0.15 90.63± 0.25

Prolonged training for dec-phase-2 and dec-phase-3. Table 13 shows the results for prolonged
dec-phase-2 and dec-phase-3 on CIFAR-10 with ResNet20. We can observe although longer training
duration increases the performance, the improvement is rather small.

Table 13: The impact of different numbers of training epochs (at phase-2 and phase-3) on generalization,
for training ResNet-20 on CIFAR-10 (ring topology with n=32). The number of epochs at phase-1 is chosen
from {75, 100, 125}, while the rest of the training reuses our default setup. Experiments are run over 2 seeds.

# nodes
target Ξ dec-phase-2 dec-phase-3

Ξmax 1/2 Ξmax 1/4 Ξmax Ξmax 1/2 Ξmax 1/4 Ξmax

75 epochs 93.04± 0.01 92.99± 0.30 92.87± 0.11 92.60± 0.00 92.82± 0.21 92.85± 0.24
100 epochs 93.08± 0.08 93.05± 0.16 92.94± 0.03 92.86± 0.16 92.90± 0.18 92.93± 0.19
125 epochs 93.19± 0.16 93.11± 0.17 93.06± 0.07 92.87± 0.23 92.99± 0.25 92.97± 0.20

The impact of half cosine learning rate schedule. Table 14 examines the existence of the critical
consensus distance with half cosine learning schedule (this scheme is visited in He et al. (2019) as a
new paradigm for CNN training). We can witness from Table 14 that the effect of critical consensus
distance can be generalized to this learning rate schedule: there exists a critical consensus distance in
the initial training phase (as revealed in the inline Figure of Table 14) and ensures good optimization
and generalization.

Table 14: The impact of half cosine learning rate schedule on generalization, for training ResNet20 on
CIFAR-10 (ring topology with n=32). The inline figure depicts the uncontrolled consensus distance over the
whole training procedure through the half-cosine learning rate schedule. Only one training phase is considered
for the consensus distance control and the numerical results in the table are averaged over 3 seeds.
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92.10± 0.06 92.40± 0.10 92.83± 0.11 92.78± 0.05 92.84± 0.22
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C.2.1 ADAPTIVE CONSENSUS DISTANCE CONTROL

In Table 15, we apply the adaptive consensus distance control in the experiments. The observations
are consistent with those in constant consensus distance control experiments.

Table 15: The impact of different consensus distances on optimization and/or generalization, for different
phases of training ResNet-20 on CIFAR-10 (n = 32). The table is almost identical to Table 2, except the
consensus distance is controlled by the (runtime) averaged norm of the local gradients (i.e. adaptive consensus
distance).

Ξmax 4φema
t 2φema

t φema
t 0.5φema

t

Phase 1 91.78± 0.35 91.65± 0.31 92.47± 0.18 92.63± 0.04 92.80± 0.16
Phase 2 93.04± 0.01 93.05± 0.18 93.01± 0.03 93.03± 0.08 92.95± 0.10
Phase 3 92.94± 0.07 92.87± 0.18 92.83± 0.20 - -

C.3 CONSENSUS CONTROL WITH OTHER TOPOLOGIES

In Table 16, we exert consensus control with an exponential graph as the base communication
topology. We can observe that our findings from main experiments with a ring base topology are
valid.

Table 16: The impact of quality propagation across phases (in both phase 1 and phase 2) on an undirected
time-varying exponential graph (n=32), similar to Table 4.

phase 1
phase 2 local update step = 1 local update step = 2 local update step = 4

Ξmax 2φema
t φema

t 0.5φema
t Ξmax 2φema

t φema
t 0.5φema

t Ξmax 2φema
t φema

t 0.5φema
t

2φema
t 92.43± 0.16 92.44± 0.24 92.36± 0.06 92.45± 0.01 - - - - - - - -

1φema
t 92.58± 0.09 92.37± 0.14 92.63± 0.09 92.51± 0.16 - - - - - - - -

0.5φema
t 92.74± 0.17 92.56± 0.19 92.56± 0.21 92.75± 0.24 92.79± 0.13 92.68± 0.21 92.65± 0.07 92.68± 0.22 92.85± 0.09 92.76± 0.09 92.72± 0.21 92.75± 0.09

0.25φema
t 92.71± 0.13 92.72± 0.08 92.81± 0.20 92.76± 0.24 92.83± 0.21 92.86± 0.16 92.86± 0.13 92.81± 0.26 93.13± 0.09 92.88± 0.16 92.85± 0.26 92.77± 0.23

C.3.1 THE EXISTENCE OF THE OPTIMAL CONSENSUS DISTANCE FOR NOISE INJECTION.

Table 17 uses a different communication topology (i.e. time-varying exponential graph) for decentral-
ized optimization. Here exponential graph with large spectral gap is applied to CIFAR-10 dec-phase-2
training. We apply the adaptive consensus distance control in this set of experiments. We can observe
that increasing consensus distance further by taking local steps improves generalization, however, too
many local steps diminish the performance. For instance, for ratio=2, the performance peaks at local
update steps 2 and drops at local update 4. It points out that an optimal consensus distance is required
to inject proper stochastic noise for better generalization.

Table 17: The impact of different consensus distances at phase 2, for training ResNet-20 on CIFAR-10 with
time-varying exponential graph (n=32). The baseline performance of using exponential graph for the entire
decentralized training is 92.64± 0.04. The reported test top-1 accuracies are averaged over three seeds.

local update step = 1 local update step = 2 local update step = 4

Ξmax 2φema
t φema

t 0.5φema
t 2φema

t φema
t 0.5φema

t 2φema
t φema

t 0.5φema
t

92.83± 0.12 92.80± 0.09 92.74± 0.27 92.77± 0.19 93.04± 0.08 92.85± 0.17 92.80± 0.02 92.87± 0.10 92.90± 0.12 92.88± 0.19

C.4 RESULTS FOR TRAINING TRANSFORMER ON MULTI30K

We additionally report the decentralized training results, for a downsampled transformer models
(by the factor of 2 w.r.t. the base model in Vaswani et al. (2017)) on Multi30k (Elliott et al., 2016).
Figure 10 shows that the straightforward application of Adam in the decentralized manner does
encounter generalization problems, which are attributed to the fact that the different local moment
buffers (in addition to the weights) become too diverse. Tuning the learning rate schedule cannot
address the issue of decentralized Adam, as shown in the Figure 10(b).
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(a) The limitation of decentralized learning with Adam,
caused by the different local moment buffers.
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(b) Tuning the learning rate cannot alleviate the issue
of decentralized Adam.

Figure 10: Learning curves for training the transformer model on the Multi30k dataset (n = 32). In
Figure 10(b), we tune the the number of warmup steps as as way of tuning the learning rate, as the learning rate
used in transformer training (Vaswani et al., 2017) is deterministically controlled by the model’s dimensionality,
the current step index, and the number of warmup steps.
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