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Abstract
A common explanation for the failure of out-
of-distribution (OOD) generalization is that the
model trained with empirical risk minimization
(ERM) learns spurious features instead of invari-
ant features. However, several recent studies
challenged this explanation and found that deep
networks may have already learned sufficiently
good features for OOD generalization. Despite
the contradictions at first glance, we theoretically
show that ERM essentially learns both spurious
and invariant features, while ERM tends to learn
spurious features faster if the spurious correla-
tion is stronger. Moreover, when fed the ERM
learned features to the OOD objectives, the invari-
ant feature learning quality significantly affects
the final OOD performance, as OOD objectives
rarely learn new features. Therefore, ERM feature
learning can be a bottleneck to OOD generaliza-
tion. To alleviate the reliance, we propose Feature
Augmented Training (FAT), to enforce the model
to learn richer features ready for OOD generaliza-
tion. FAT iteratively augments the model to learn
new features while retaining the already learned
features. In each round, the retention and aug-
mentation operations are performed on different
subsets of the training data that capture distinct
features. Extensive experiments show that FAT
effectively learns richer features thus boosting the
performance of various OOD objectives.

1. Introduction
Understanding what features are learned by neural networks
is crucial to understanding how they generalize to differ-
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ent data distributions (Rosenblatt, 1957; Shwartz-Ziv and
Tishby, 2017; Shah et al., 2020; Allen-Zhu and Li, 2020).
Deep networks trained with empirical risk minimization
(ERM) learn highly predictive features that generalize sur-
prisingly well to in-distribution data (Vapnik, 1991; Good-
fellow et al., 2016). However, ERM also tends to learn
spurious features such as image backgrounds (Beery et al.,
2018; Geirhos et al., 2020) whose correlations with labels
do not hold in the out-of-distribution (OOD) data, and suf-
fers serious performance degeneration (Koh et al., 2021).
Therefore, it is widely believed that the reason for the OOD
failures of deep networks is that ERM fails to learn the de-
sired features that have invariant correlations with labels
across different distributions (Beery et al., 2018).

However, several recent works find that ERM-trained mod-
els have already learned sufficiently good features that are
able to generalize to OOD data (Rosenfeld et al., 2022;
Kirichenko et al., 2022; Izmailov et al., 2022). In addition,
when optimizing various OOD objectives (Rojas-Carulla
et al., 2018; Koyama and Yamaguchi, 2020; Parascandolo
et al., 2021; Krueger et al., 2021; Pezeshki et al., 2021;
Ahuja et al., 2021; Wald et al., 2021; Rame et al., 2021)
that aim to capture the invariant features, there also exists
an interesting phenomenon that the performance of OOD
objectives largely relies on the pre-training with ERM be-
fore applying the OOD objectives (Zhang et al., 2022; Chen
et al., 2022). As shown in Fig. 1(b), the number of ERM
pre-training epochs has a large influence on the final OOD
performance. These seemingly contradicting phenomena
raise a challenging research question:

What features are learned by ERM and OOD objectives,
respectively, and how do the learned features generalize to
in-distribution and out-of-distribution data?

To answer the question, we conduct a theoretical investi-
gation of feature learning in a two-layer CNN trained with
ERM and a widely used OOD objective, IRMv1 (Arjovsky
et al., 2019), respectively. We use a variation of the data
models proposed in (Allen-Zhu and Li, 2020) where features
can have various correlation degrees with the labels.

First, we find that ERM essentially learns both spurious
features and invariant features (Theorem 3.1). The degrees
of spurious and invariant feature learning are mostly con-
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Figure 1. (a) An illustration of FAT (top row) compared to ERM (bottom row). Different colors in samples denote the corresponding
dominant features. As the original data is dominated by spurious features (blue), ERM tends to learn more spurious features but
limited invariant features (orange). Thus the OOD training with IRMv1 can only leverage limited invariant features and achieve limited
performance. While FAT iteratively divides the training set into subsets containing distinct features by checking whether they are already
learned by the model. Then FAT augments the model with new features while keep retaining the already learned features, and thus FAT
learns richer features for OOD training and achieves better OOD performance. (b) OOD Performance vs. the number of ERM pre-training
epochs. The performance of various OOD objectives largely relies on the quality of ERM-learned features. When there exist underlying
useful features poorly learned by ERM, the OOD performance will be limited. FAT learns richer features and has better performance.

trolled by their correlation strengths with labels. Moreover,
merely training with IRMv1 cannot learn new features (The-
orem 3.2). Therefore, the quality of ERM feature learning
affects the final OOD performance significantly. Hence,
as the number of ERM pre-training epochs increases, the
model learns invariant features better and thus the OOD per-
formance will increase (Fig. 1). However, when ERM does
not capture all useful features for OOD generalization, i.e.,
there exist some useful features poorly learned by ERM, the
model can hardly learn these features during OOD training
and the OOD performance will be limited. Given a lim-
ited number of pre-training steps, it could often happen due
to low invariant correlation strength, the feature learning
biases of ERM (Shah et al., 2020), and the neural architec-
tures (Hermann and Lampinen, 2020). Consequently, ERM
feature learning can be a bottleneck to OOD generalization.

To remedy the issue, we propose Feature Augmented
Training (FAT), an iterative strategy to enforce the model to
learn richer features. As shown in Fig. 1(a), in each round k,
FAT separates the training data into two subsets according
to whether the underlying features are already learned (Re-
tention setDr

k) or not (Augmentation setDa
k), by examining

whether the model yields correct (Dr
k) or incorrect (Da

k)
predictions for samples from the subsets, respectively. Intu-
itively, the augmentation sets will contain distinct features
that are separated in different rounds. Then, FAT performs
distributionally robust optimization (DRO) (Namkoong and
Duchi, 2016; Zhang et al., 2022) on {Da

k ,Dr
k} to augment

the model to learn new features. Meanwhile, FAT also re-

tains the already learned features via ERM on {Dr
k}. FAT

terminates when the model cannot learn any new predictive
features from the augmentation subsets (Algorithm 1).

We conduct extensive experiments on both COLOREDM-
NIST and 6 datasets from the challenging benchmark,
WILDS to verify the effectiveness of FAT (Sec. G).

2. Preliminaries and Problem Definition
We leave the full introduction of background and notations
to Appendix B and C, due to space constraints.

Notations. We use bold-faced letters for vectors and ma-
trices otherwise for scalar. We use ∥ · ∥2 to denote the
Euclidean norm of a vector or the spectral norm of a matrix.
Id refers to the identity matrix with a dimension of Rd×d.
Our data model D = {xi, yi}ni=1 is adapted from (Allen-
Zhu and Li, 2020) and characterizes each data point xi as
invariant and spurious feature patches (Kamath et al., 2021).
Definition 2.1. D = {De}e∈Eall is composed of multiple
subsetsDe from different environments e ∈ Eall, where each
De = {(xe

i , y
e
i )}

ne
i=1 is composed of i.i.d. samples (xe

i , y
e
i ).

Each data (xe, ye) ∈ De with xe ∈ R2d and ye ∈ {−1, 1}
is generated as follows: (a) Sample ye ∈ {−1, 1} uniformly;
(b) Given ye, each input xe = [xe

1,x
e
2] contains a feature

patch x1 and a noise patch x2 sampled as:

x1 = y · Rad(α) · v1 + y · Rad(β) · v2 x2 = ξ

where Rad(δ) is a random variable taking value −1 with
probability δ and +1 with probability 1 − δ, v1 =
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[1, 0, . . . 0]⊤ and v2 = [0, 1, 0, . . . 0]⊤; (c) A noise vector ξ
is sampled from N (0, σ2

p · (Id − v1v
⊤
1 − v2v

⊤
2 ));

Definition 2.1 is inspired by image classification, where the
inputs consist of different patches. Each environment is
denoted as Eα={(α, βe)}, where v1 is the invariant feature
as α is fixed while v2 is the spurious as βe varies across e.

CNN model. We consider training a two-layer convo-
lutional neural network with a hidden layer width of m.
The filters are applied to x1, x2, respectively,1 and the
second layer parameters of the network are fixed as 1

m
and − 1

m , respectively. Then the network can be writ-
ten as f(W,x) = F+1(W+1,x) − F−1(W−1,x), where
F+1(W+1,x) and F−1(W−1,x) are defined as follows:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

j,rx1) + σ(w⊤
j,rx2)

]
, (1)

where σ(x) is the activation function. We focus on linear ac-
tivation σ(x) = x since it is sufficient to observe the desired
feature learning behaviors of ERM and OOD objectives.2

ERM objective. We train the CNN model by minimizing
the empirical cross-entropy loss function:

LS(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ(yei · f(W,xe
i )), (2)

where ℓ(z) = log(1 + exp(−z)) and {De}e∈Etr =
{{xe

i , y
e
i }

ne
i=1}e∈Etr is the trainset with

∑
e∈Etr

ne=n.

OOD objective. Since we are interested in cases where the
OOD objective succeeds in learning the invariant features.
In the discussion below, without loss of generality, we study
one of the most widely discussed OOD objective, IRMv1
objective (Arjovsky et al., 2019), and the data model where
IRMv1 succeeds. Given the convolutional neural network
(Eq. 1) and logistic loss (Eq. 2), IRMv1 can be written as

LIRMv1(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ (yei · f(W,xe
i ))+

∑
e∈Etr

λ

n2
e

(
ne∑
i=1

ℓ′i · yei · f(W,xe
i )

)2

,

(3)

where ℓ′
e
i = ℓ′(yei · f(W,xe

i )) = − exp(−ye
i ·f(W,xe

i ))
1+exp(−ye

i ·f(W,xe
i ))

.
Due to the complexity of IRMv1, in the analysis below, we
introduce Ce

IRMv1 for the ease of expressions. Specifically,

Ce
IRMv1 ≜

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei ,

1When e is not explicitly considered, we will omit it for clarity.
2It is also due to the complexity of IRMv1 dynamics. To the

best of our knowledge, we are the first to study IRMv1 dynamics.

where ŷei ≜ f(W,xe
i ). The convergence of CIRMv1 in-

dicates the convergence of IRMv1 penalty. Furthermore,
γj,r,1 ≈ ⟨wj,r,v1⟩ and γj,r,2 ≈ ⟨wj,r,v2⟩ respectively de-
note the degrees of invariant and spurious feature learning.
For ease of understanding, in the discussion below, we will
denote γj,r,1 and γj,r,2 as γinv

j,r and γspu
j,r , respectively.

3. Feature Learning in OOD Generalization
ERM Feature Learning. We first study the feature learning
process of ERM objective. We consider a two training en-
vironments setup Etr = {(α, β1), (α, β2)} where the signal
of invariant feature is weaker than the average of spurious
signals (i.e., α > β1+β2

2 ), which corresponds to Figure 2.

Theorem 3.1. (Informal) For ρ > 0, let n ≜ mine∈Etr
ne.

Suppose that we run T iterations of GD for the ERM objec-
tive. With sufficiently large n, assuming that (i) α, β1, β2 <
1
2 , and (ii) α > β1+β2

2 , with properly chosen σ2
0 and σ2

p,
there exists a constant η, such that with probability at least
1− 2ρ, both invariant and spurious features are converging
and the increment of the spurious feature is larger than that
of the invariant feature at any iteration t ∈ {0, . . . , T − 1}.

The formal statement of this theorem and its proof are given
in Appendix D.2. Corresponding to Figure 2(b), Theo-
rem 3.1 explains the seemingly contradicting observations
of ERM feature learning. On the one hand, ERM fails since
it learns the spurious features at a higher speed, when spu-
rious correlations are stronger than invariant correlations.
Although spurious feature learning effectively reduces the
empirical risk, the learned features cannot generalize to
OOD data where the correlations between spurious features
and labels no longer hold (Beery et al., 2018). On the other
hand, the invariant feature learning also happens, even when
the spurious correlations are strong, so long as the invariant
feature has a non-trivial correlation strength with the labels.
Therefore, simply re-training a classifier based on a sub-
set of unbiased data on top of the ERM-trained featurizer
achieves impressive OOD performance (Rosenfeld et al.,
2022; Kirichenko et al., 2022; Izmailov et al., 2022).

IRM Feature Learning. We then study IRMv1 training
from scratch (w/o pre-training).
Theorem 3.2. (Informal) Consider training a CNN model
with the same data as in Theorem 3.1, define c(t) ≜[
C1

IRMv1(W, t), C2
IRMv1(W, t), · · · , C|Etr|

IRMv1(W, t)
]
. Under

certain conditions, with probability at least 1 − δ, after
training time T = Ω

(
log(1/ϵ)
ηλλ0

)
, we have ∥c(T )∥2 ≤

ϵ, γj,r,1(T ) = od(1), γj,r,2(T ) = od(1).

The formal statement of this theorem proof are given in
Appendix D.3. Intuitively, Theorem 3.2 implies that, when a
heavy regularization of IRMv1 is applied, the model will not
learn any features, corresponding to Figure 2(d). Then, what
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Figure 2. The convergences of CIRMv1 and feature learning coefficients (FL) with or without ERM pre-training (PT). The training
environments are Etr = {(0.25, 0.1), (0.25, 0.2)}. The black dashed line indicates the end of pre-training. Details are in Appendix D.1.

would happen when given a properly pre-trained network?
Proposition 3.3. Given the same setting as Theorem 3.1,
ERM pre-training converges at t1, δ > 0, and n >
C log(1/δ), with C being a positive constant, then with a
high probability at least 1− δ, we have

∑
e C

e
IRMv1(t1) = 0,

γinv
j,r (t1 + 1) > γinv

j,r (t1), and γspu
j,r (t1 + 1) < γspu

j,r (t1).

The proof is given in Appendix D.4. Proposition 3.3 demon-
strates that with sufficient ERM pre-training, IRMv1 can
enhance the learning of invariant features while suppress-
ing the learning of spurious features, which is verified in
Figure 2(b) and 2(a). Thus, when given the initialization
with better learned invariant features, i.e., longer ERM pre-
training epochs, IRMv1 improves the invariant feature better.
Proposition 3.3 explains why the OOD performance highly
depends on the ERM pre-training (Chen et al., 2022).

Limitations of ERM Feature Learning. The remaining
curious question is, given a poorly learned invariant fea-
ture, will IRMv1 still improve it? In practice, there often
exist some invariant features that are not properly learned
by ERM. For example, in Def. 2.1 when the invariant corre-
lation is much weaker than the spurious correlation, given a
limited number of training steps, the spurious feature learn-
ing can dominate the invariant feature learning. Besides,
when considering other factors such as the inductive biases
of ERM (Shah et al., 2020) or neural architecture (Hermann
and Lampinen, 2020), it is more likely that there exist in-
variant features not properly learned. Then:
Corollary 3.4. Consider training the CNN with the data
generated from Def. 2.1, suppose that γinv

j,r (t1) = o(1) and
γspu
j,r (t1) = Θ(1) at the end of ERM pre-training t1. Sup-

pose that δ > 0, and n > C log(1/δ), with C being a
positive constant, then with a high probability at least 1− δ,
we have γinv

j,r (t1 + 1) < γinv
j,r (t1).

Corollary 3.4 shows that IRMv1 requires sufficiently well-
learned features for OOD generalization. It is also consistent
with the results in Fig. 2(b), 2(c), and Fig. 1, where all the
OOD objectives perform comparably to random guesses.

Improving Feature Learning for OOD Generalization.
Previous results imply that the model is expected to learn all
potentially useful features during the pre-training in order
to achieve the optimal OOD performance. To this end, we

propose Feature Augmented Training (FAT), that adopts an
iterative data-centric strategy to enforce the model to learn
all useful features directly. We briefly introduce FAT below
and leave more details in Appendix E.

Intuitively, the potentially useful features presented in the
training data are features that have non-trivial correlations
with labels. Moreover, the invariance principle assumes that
the training data comes from different environments (Ar-
jovsky et al., 2019), where each set of features can only
dominate the correlations with labels in a subset of data.
Therefore, it is possible to differentiate the distinct sets of
useful features entangled in the trainset into distinct subsets.

The intuition motivates an iterative feature learning algo-
rithm, i.e., FAT, that identifies the subsets and explores new
features by multiple rounds. In round k, FAT first identifies
the subset that contains the already learned features by col-
lecting the data points where f yields the correct prediction,
denoted as Gr

k, and the subset that contains the other sam-
ples as Ga

k. Given a grouped datasets G = {Gr, Ga} with
2k − 1 groups, where Ga = {Da

i }
k−1
i=0 and Gr = {Dr

i }
k−1
i=1

(notice that Dr
0 is the empty set), FAT performs distribu-

tionally robust optimization (DRO) (Namkoong and Duchi,
2016) on Ga to explore new features that have not been
learned in previous rounds. Meanwhile, FAT also needs to
retain the already learned features by ERM at Gr, as

ℓFAT = max
Da

i ∈Ga
ℓDa

i
(wk◦φ)+λ·

∑
Dr

i ∈Gr
ℓDr

i
(wi◦φ), (4)

where ℓDi
(w◦φ) is the empirical risk of w◦φ at Di, and

{wi|1≤ i≤k−1} are the historical classifiers.

Empirical verification. We verified the effectiveness of
FAT in Fig. 1 and also in COLOREDMNIST and challenging
benchmark WILDS as shown in Appendix G.

4. Conclusions
In this paper, we found that ERM learns both invariant and
spurious features when OOD objectives rarely learn new
features. Thus, the features learned in the ERM pre-training
can greatly influence the final OOD performance. Having
learned the limitations of ERM pre-training, we proposed
FAT to learn all potentially useful features. Extensive exper-
imental results verified the superiority of FAT.
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A. Limitations and Future Directions
As a pioneering work that studies feature learning of ERM and OOD objectives and their interactions in OOD generalization,
our theoretical settings are limited to studying the influence of spurious and invariant correlation strengths on spurious and
invariant feature learning, based on a two-layer CNN network. In fact, the feature learning of a network can be influenced by
several other factors, such as the difficulty of learning a feature and the capacity of features that a model can learn (Hermann
and Lampinen, 2020; Elhage et al., 2022). Future works can be built by extending our framework to consider the influence
of a broad of factors on feature learning in OOD generalization.

Moreover, as there could exist cases where certain features should not be learned, it is also promising to explore how to
prevent the feature learning of undesirable features during the early stages of OOD generalization and to further relieve the
optimization dilemma in OOD generalization (Chen et al., 2022).

B. Related Work
On Feature Learning and Generalization. Understanding feature learning in deep networks is crucial to understanding
their generalization (Rosenblatt, 1957; Shwartz-Ziv and Tishby, 2017; Brutzkus et al., 2018; Frei et al., 2021; Allen-Zhu and
Li, 2020; Cao et al., 2022). Earlier attempts are mostly about empirical probing (Samek et al., 2019; Gupta et al., 2022;
Hermann and Lampinen, 2020; Elhage et al., 2022). Hermann and Lampinen (2020); Elhage et al. (2022); Shah et al. (2020)
find that the feature learning of a network can be influenced by several other factors, such as the difficulty of learning a
feature and the capacity of features that a model can learn. Although our data model focuses on the correlation perspective,
different correlation strengths in fact can simulate the difficulty or the simplicity of learning a feature.

Beyond the empirical probing, Allen-Zhu and Li (2020) proposed a new theoretical framework that characterizes the feature
learning process of deep networks, which has been widely adopted to analyze behaviors of deep networks (Wen and Li,
2021; Zou et al., 2021; Cao et al., 2022) However, how the learned features from ID data can generalize to OOD data
remains elusive. The only exceptions are (Shen et al., 2022) and (Kumar et al., 2022a). Kumar et al. (2022a) find fine-tuning
can distort the pre-trained features while fine-tuning can be considered as a special case in our framework. Shen et al.
(2022) focus on how data augmentation helps promote good but hard-to-learn features and improve OOD generalization. In
contrast, we study the direct effects of ERM and OOD objectives to feature learning and provide a theoretical explanation to
the phenomenon that ERM may have already learned good features (Rosenfeld et al., 2022; Izmailov et al., 2022).

On the correlation between ID and OOD performances. The debate about feature learning and generalization under
distribution shifts also extends to the ID and OOD performance correlations along with training or fine-tuning neural
nets across a variety of OOD generalization tasks. Andreassen et al. (2021); Miller et al. (2021); Wenzel et al. (2022)
found that there often exists a linear dependency between ID and OOD performance under a wide range of models and
distribution shifts. While Kumar et al. (2022a); Wortsman et al. (2022) found that fine-tuning pre-trained models often lead
to an increased in-distribution but decreased OOD performance. Teney et al. (2022) observed cases where ID and OOD
performance are inversely correlated. Chen et al. (2022); Naganuma et al. (2022) studied the ID and OOD performance
trade-offs from the optimization perspective.

Our work provides theoretical explanations for different correlation behaviors of ID and OOD performance, as well as
provides a solution for mitigating the trade-offs in optimization. Theorem 3.1 implies that, in cases where invariant features
are more informative than spurious features, the higher ID performance indicates a better fit to invariant features, thus
promising a higher OOD performance, aligned with observations in (Andreassen et al., 2021; Miller et al., 2021; Wenzel
et al., 2022). While in cases where invariant features are less informative than spurious features, the higher ID performance
implies a better fit to spurious features, thus bringing a lower OOD performance (Teney et al., 2022). The discussion
also generalizes to fine-tuning pre-trained models, where ERM can lead to a better fit for spurious features and distort the
previously learned invariant features (Kumar et al., 2022a; Wortsman et al., 2022).

Rich Feature Learning. Recently many OOD objectives have been proposed to regularize ERM such that the model can
focus on learning invariant features (Arjovsky et al., 2019; Krueger et al., 2021; Pezeshki et al., 2021; Wald et al., 2021; Rame
et al., 2021). However, due to the intrinsic conflicts of ERM and OOD objectives, it often requires exhaustive hyperparameter
tuning of ERM pre-training epochs and regularization weights (Zhang et al., 2022; Chen et al., 2022). Especially, the final
OOD performance has a large dependence on the number of pre-training epochs. To remedy the issue, Zhang et al. (2022)
proposed Bonsai to construct rich feature representations with plentiful potentially useful features as network initialization.
Although both Bonsai and FAT perform DRO on grouped subsets, Bonsai rely on multiple initializations of the whole
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network to capture diverse features from the subsets, and complicated ensembling of the features, which requires much more
training epochs for the convergence. In contrast, FAT relieves the requirements by performing direct augmentation-retention
on the grouped subsets, and thus obtains better performance. More crucially, although Bonsai and other rich feature learning
algorithms such as weight averaging (Rame et al., 2022; Arpit et al., 2022; Zhang and Bottou, 2022) have gained impressive
successes in mitigating the dilemma, explanations about the reliance on ERM pre-training and why rich feature learning
mitigates the dilemma remain elusive. Our work provides novel theoretical explanations for the success of rich feature
learning algorithms for OOD generalization. Complementary to the empirical observations made by existing works, our
work provides the first theoretical explanation for the feature learning of ERM and OOD objectives for OOD generalization.

C. Preliminaries and Problem Definition
Notations. We use bold-faced letters for vectors and matrices otherwise for scalar. We use ∥ · ∥2 to denote the Euclidean

norm of a vector or the spectral norm of a matrix, while denoting ∥ · ∥F as the Frobenius norm of a matrix. Id refers to the
identity matrix with a dimension of Rd×d.

Our data model D = {xi, yi}ni=1 is adapted from (Allen-Zhu and Li, 2020) and further characterizes each data point xi as
invariant and spurious feature patches from the two-bit model (Kamath et al., 2021; Chen et al., 2022).

Definition C.1. D = {De}e∈Eall is composed of multiple subsets De from different environments e ∈ Eall, where each
De = {(xe

i , y
e
i )}

ne
i=1 is composed of i.i.d. samples (xe

i , y
e
i ) ∼ Pe. Each data (xe, ye) ∈ De with xe ∈ R2d and ye ∈ {−1, 1}

is generated as follows:

(a) Sample ye ∈ {−1, 1} uniformly;

(b) Given ye, each input xe = [xe
1,x

e
2] contains a feature patch x1 and a noise patch x2, that are sampled as:

x1 = y · Rad(α) · v1 + y · Rad(β) · v2 x2 = ξ

where Rad(δ) is a random variable taking value−1 with probability δ and +1 with probability 1−δ, v1 = [1, 0, . . . 0]⊤

and v2 = [0, 1, 0, . . . 0]⊤.

(c) A noise vector ξ is generated from the Gaussian distribution N (0, σ2
p · (Id − v1v

⊤
1 − v2v

⊤
2 ))

Definition 2.1 is inspired by the structure of image data in image classification with CNN (Allen-Zhu and Li, 2020), where
the inputs consist of different patches, some of the patches consist of features that are related to the class label of the image,
and the others are noises that are irrelevant to the label. In particular, v1 and v2 are feature vectors that simulate the invariant
and spurious features, respectively. Although our data model focuses on two feature vectors, the discussion and results
can be further generalized to multiple invariant and spurious features with fine-grained characteristics (Shen et al., 2022).
Following previous works (Cao et al., 2022), we assume that the noise patch is generated from the Gaussian distribution
such that the noise vector is orthogonal to the signal vector v. Each environment is denoted as Eα={(α, βe) : 0 < βe < 1},
where v1 is the invariant feature as α is fixed while v2 is the spurious feature as βe varies across e.

CNN model. We consider training a two-layer convolutional neural network with a hidden layer width of m. The filters
are applied to x1, x2, respectively,3 and the second layer parameters of the network are fixed as 1

m and − 1
m , respectively.

Then the network can be written as f(W,x)=F+1(W+1,x)− F−1(W−1,x), where F+1(W+1,x) and F−1(W−1,x)
are defined as follows:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

j,rx1) + σ(w⊤
j,rx2)

]
, (5)

where σ(x) is the activation function. We assume that all network weights are initialized as N (0, σ2
0). In this work, we

focus on linear activation σ(x) = x since it is sufficient to observe the desired feature learning behaviors of ERM and
OOD objectives (i.e., the reliance to ERM pre-training).4 Nevertheless, our framework can also be extended to non-linear
activation functions, such as q-ReLU (Zou et al., 2021; Cao et al., 2022).

3When the environment e is not explicitly considered, we will omit it for clarity.
4It is also partially due to the complexity of IRMv1 dynamics, though to the best of our knowledge, we are the first to directly study

the IRMv1 dynamics.



Towards Understanding Feature Learning in Out-of-Distribution Generalization

ERM objective. We train the CNN model by minimizing the empirical cross-entropy loss function:

LS(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ(yei · f(W,xe
i )), (6)

where ℓ(z)=log(1+exp(−z)) and {De}e∈Etr ={{xe
i , y

e
i }

ne
i=1}e∈Etr is the trainset with

∑
e∈Etr

ne=n.

OOD objective. The goal of OOD generalization is, given the data from training environments {De}e∈Etr , to find a predictor
f : X → Y that generalizes well to all (unseen) environments, or minimizes maxe∈Eall Le(f), where Le is the empirical risk
under environment e. The predictor f = w ◦ φ is usually composed of a featurizer φ : X → Z that learns to extract useful
features, and a classifier w : Z → Y that makes predictions from the extracted features.

Since we are interested in cases where the OOD objective succeeds in learning the invariant features. In the discussion
below, without loss of generality, we study one of the most widely discussed OOD objective, IRMv1 objective, from
IRM framework(Arjovsky et al., 2019), and the data model where IRMv1 succeeds. Specifically, the IRM framework
approaches OOD generalization by finding an invariant representation φ, such that there exists a classifier acting on φ that is
simultaneously optimal in Etr. Hence, IRM leads to a challenging bi-level optimization problem as

min
w,φ

∑
e∈Etr

Le(w ◦ φ), s.t. w ∈ argmin
w̄:Z→Y

Le(w̄ ◦ φ), ∀e ∈ Etr. (7)

Due to the optimization difficulty of Eq. (7), Arjovsky et al. (2019) relax Eq. (7) into IRMv1 as follows:

min
φ

∑
e∈Etr

Le(φ) + λ|∇w|w=1Le(w · φ)|2. (8)

Given the convolutional neural network (Eq. 5) and logistic loss (Eq. 6), IRMv1 can be written as

LIRMv1(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ (yei · f(W,xe
i )) +

∑
e∈Etr

λ

n2
e

(
ne∑
i=1

ℓ′i · yei · f(W,xe
i )

)2

, (9)

where ℓ′
e
i = ℓ′(yei · f(W,xe

i )) = −
exp(−ye

i ·f(W,xe
i ))

1+exp(−ye
i ·f(W,xe

i ))
. Following (Arjovsky et al., 2019), we define the featurizer φ as

the whole CNN model and the classifier w as the scalar 1. Due to the complexity of IRMv1, in the analysis below, we
introduce Ce

IRMv1 for the ease of expressions. Specifically, we define Ce
IRMv1 as

Ce
IRMv1 ≜

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei ,

where ŷei ≜ f(W,xe
i ) is the logit of sample xi from environment e. The convergence of CIRMv1 indicates the convergence

of IRMv1 penalty. The following lemma will be useful in our analysis.

Lemma C.2. (Cao et al. (2022)) Let wj,r(t)
5 for j ∈ {+1,−1} and r ∈ {1, 2, . . . ,m} be the convolution filters of the

CNN at t-th iteration of gradient descent. Then there exists unique coefficients γj,r,1(t), γj,r,2(t) ≥ 0 and ρj,r,i(t) such that,

wj,r(t) = wj,r(0) + j · γj,r,1(t) · v1 + j · γj,r,2(t) · v2 +

n∑
i=1

ρj,r,i(t) · ∥ξi∥−2
2 · ξi. (10)

We refer Eq. (10) as the signal-noise decomposition of wj,r(t) (Cao et al., 2022). We add normalization factor ∥ξi∥−2
2

in the definition so that ρ(t)j,r ≈ ⟨w
(t)
j,r, ξi⟩. Note that ∥v1∥2 = ∥v2∥2 = 1, the corresponding normalization factors are

thus neglected. Furthermore, γj,r,1 ≈ ⟨wj,r,v1⟩ and γj,r,2 ≈ ⟨wj,r,v2⟩ respectively denote the degrees of invariant and
spurious feature learning. For ease of understanding, in the discussion below, we will denote γj,r,1 and γj,r,2 as γinv

j,r and
γspu
j,r , respectively.

5We use wj,r(t), w
(t)
j,r and wt

j,r interchangeably.
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D. Proofs for theoretical results
Notations. We use bold-faced letters for vectors and matrices otherwise for scalar. We use ∥ · ∥2 to denote the Euclidean
norm of a vector or the spectral norm of a matrix, while denoting ∥ · ∥F as the Frobenius norm of a matrix. For a neural
network, we denote σ(x) as the activation function. Let Id be the identity matrix with a dimension of Rd×d. We denote
[n] = {1, 2, . . . , n}.

D.1. Implementation details of the synthetic CNN experiments

The logit ŷei (which is a function of W) of sample i in the environment e can be explicitly written as

ŷei = f(W,xe
i ) = F+1(W+1,x

e
i )− F−1(W−1,x

e
i ) =

∑
j∈{±1}

j

m

m∑
r=1

[
w⊤

j,r(x
e
i,1 + xe

i,2)
]
,

where W ≜ {W+1,W−1} and Wj ≜

w
⊤
j,1
...

w⊤
j,m

 for j ∈ {±1}. We initialized all the network weights as N (0, σ2
0) and we

set σ0 = 0.01.

The test dataset (x, y) is generated through

xi,1 = yi · v1 + yi · Rad(1− βe) · v2, xi,2 = ξ,

where half of the dataset uses Rad(1− β1) and the other half uses Rad(1− β2). Here ξ ∼ N (0, σ2
p · (Id − v1v

⊤
1 − v2v

⊤
2 ))

and we chose σp = 0.01.

From the definition of IRMv1, we take derivative wrt the scalar 1 of the logit 1 · ŷei . Thus, for environment e, the penalty is(
1

ne

ne∑
i=1

∇w|w=1ℓ
(
yei (w · ŷei )

))2

=

(
1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei

)2

.

Then, the IRMv1 objective is (we set n1 = n2 = 2500 in the simulation)

LIRMv1(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ
(
yei ŷ

e
i

)
+ λ

∑
e∈Etr

(
1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei

)2

.

We used constant stepsize GD to minimize LIRMv1(W), and we chose λ = 108 (heavy regularization setup).

Let Ce
IRMv1 ≜ 1

ne

∑ne

i=1 ℓ
′(yei ŷei ) · yei ŷei . The gradient of LIRMv1(W) with respect to each wj,r can be explicitly written as

∇wj,r
LIRMv1(W) =

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ·

j

m
(xe

i,1 + xe
i,2)

+ 2λ
∑
e∈Etr

Ce
IRMv1

ne

ne∑
i=1

(
ℓ′′
(
yei ŷ

e
i

)
· ŷei ·

j

m
(xe

i,1 + xe
i,2) + ℓ′

(
yei ŷ

e
i

)
· yei ·

j

m
(xe

i,1 + xe
i,2)
)

=
∑
e∈Etr

j

nem

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2) + 2λ

∑
e∈Etr

jCe
IRMv1

nem

ne∑
i=1

ℓ′′
(
yei ŷ

e
i

)
· ŷei · (xe

i,1 + xe
i,2)

+ 2λ
∑
e∈Etr

jCe
IRMv1

nem

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2)

=
∑
e∈Etr

j(1 + 2λCe
IRMv1)

nem

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2)

+ 2λ
∑
e∈Etr

jCe
IRMv1

nem

ne∑
i=1

ℓ′′
(
yei ŷ

e
i

)
· ŷei · (xe

i,1 + xe
i,2).
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Observe that Ce
IRMv1 is in fact the scalar gradient Ce

IRMv1 = ∇w|w=1L
e
ERM(W) that we want to force zero, whose effect can

be understood as a dynamic re-weighting of the ERM gradient. Due to its importance in the analysis and interpretation of
IRMv1, we tracked Ce

IRMv1 in our simulations.

The invariant and spurious feature learning terms that we tracked are the mean of ⟨wj,r, jv1⟩ and ⟨wj,r, jv2⟩ for j ∈
{±1}, r ∈ [m], respectively.

D.2. Proof for Theorem 3.1

Theorem D.1 (Formal statement of Theorem 3.1). For ρ > 0, denote n ≜ mine∈Etr
ne, n ≜

∑
e∈Etr

ne, ϵC ≜
√

2 log (16/ρ)
n

and δ ≜ exp{O(n−1)}−1. Define the feature learning terms Λt
j,r ≜ ⟨wt

j,r, jv1⟩ and Γt
j,r ≜ ⟨wt

j,r, jv2⟩ for j ∈ {±1}, r ∈
[m]. Suppose we run T iterations of GD for the ERM objective. With sufficiently large n, assuming that

α, β1, β2 <
1− ϵC − δ( 14 + ϵC

2 )

2
(α, β1, β2 are sufficiently smaller than

1

2
),

α >
β1 + β2

2
+ ϵC +

δ(1 + ϵC)

2
(α is sufficiently larger than

β1 + β2

2
),

and choosing

σ2
0 = O

(
n−2 log−1 (m/ρ)

)
,

σ2
p = O

(
min

{
d−1/2 log−1/2 (nm/ρ), T−1η−1m

(
d+ n

√
d log(n2/ρ)

)−1
})

,

there exists a constant η, such that for any j ∈ {±1}, r ∈ [m], with probability at least 1− 2ρ, Λt
j,r and Γt

j,r are converging
and the increment of the spurious feature Γt+1

j,r −Γt
j,r is larger than that of the invariant feature Λt+1

j,r −Λt
j,r at any iteration

t ∈ {0, . . . , T − 1}.

Proof of Theorem D.1. We begin with checking the feature learning terms in the ERM stage using constant stepsize GD:
Wt+1 = Wt − η · ∇WLIRMv1(W

t). Note that the update rule for each wj,r,∀j ∈ {+1,−1}, r ∈ [m] can be written as

wt+1
j,r = wt

j,r −
jη

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2)

= wt
j,r −

jη

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· (Rad(α)i · v1 + Rad(βe)i · v2 + yei ξ

e
i ).

Define the quantities of interest (the feature learning terms): Λt
j,r ≜ ⟨wt

j,r, jv1⟩,Γt
j,r ≜ ⟨wt

j,r, jv2⟩,Ξt,e
j,r,i ≜ ⟨wt

j,r, jξ
e
i ⟩.

From our data generating procedure (Definition 2.1), we know that the first two coordinates of ξei are zero. Thus, we can
write down the update rule for each feature learning term as follows.

Λt+1
j,r = Λt

j,r −
η

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· Rad(α)i,

Γt+1
j,r = Γt

j,r −
η

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· Rad(βe)i,

Ξt+1,e′

j,r,i′ = Ξt,e′

j,r,i′ −
η

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · ⟨ξei , ξe

′

i′ ⟩.
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More explicitly, we can write

Λt+1
j,r = Λt

j,r +
η

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(α)i
1 + exp{yei ŷei }

, (11)

Γt+1
j,r = Γt

j,r +
η

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(βe)i
1 + exp{yei ŷei }

, (12)

Ξt+1,e′

j,r,i′ = Ξt,e′

j,r,i′ +
η

m

∑
e∈Etr

1

ne

ne∑
i=1

yei · ⟨ξei , ξe
′

i′ ⟩
1 + exp{yei ŷei }

. (13)

Notice that the updates (11), (12) for Λj,r,Γj,r are independent of j, r. Denoting

∆t
Λ ≜

1

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(α)i
1 + exp{yei ŷei }

,

∆t
Γ ≜

1

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(βe)i
1 + exp{yei ŷei }

,

we can conclude that for any j ∈ {+1,−1}, r ∈ [m],

Λt+1
j,r = Λt

j,r + η ·∆t
Λ = η ·

t∑
k=0

∆k
Λ + Λ0

j,r,

Γt+1
j,r = Γt

j,r + η ·∆t
Γ = η ·

t∑
k=0

∆k
Γ + Γ0

j,r.

(14)

Then, we write the logit ŷei as

ŷei =
∑

j∈{±1}

j

m

m∑
r=1

[〈
wt

j,r, y
e
i · Rad(α)i · v1 + yei · Rad(βe)i · v2 + xe

i,2

〉]
=

∑
j∈{±1}

j

m

m∑
r=1

[
jyei · Rad(α)i · Λt

j,r + jyei · Rad(βe)i · Γt
j,r + j · Ξt,e

j,r,i

]
=

∑
j∈{±1}

1

m

m∑
r=1

[
yei · Rad(α)i · Λt

j,r + yei · Rad(βe)i · Γt
j,r + Ξt,e

j,r,i

]
= yei · Rad(α)i ·

∑
j∈{±1}

m∑
r=1

Λt
j,r

m
+ yei · Rad(βe)i ·

∑
j∈{±1}

m∑
r=1

Γt
j,r

m
+

∑
j∈{±1}

m∑
r=1

Ξt,e
j,r,i

m

= yei · Rad(α)i · 2η ·
t−1∑
k=0

∆k
Λ + yei · Rad(βe)i · 2η ·

t−1∑
k=0

∆k
Γ

+ yei · Rad(α)i ·
∑

j∈{±1}

m∑
r=1

Λ0
j,r

m
+ yei · Rad(βe)i ·

∑
j∈{±1}

m∑
r=1

Γ0
j,r

m
+

∑
j∈{±1}

m∑
r=1

Ξt,e
j,r,i

m
.

Denoting Qe
i ≜ Rad(α)i

∑
j∈{±1}

∑m
r=1

Λ0
j,r

m + Rad(βe)i
∑

j∈{±1}
∑m

r=1

Γ0
j,r

m + yei ·
∑

j∈{±1}
∑m

r=1

Ξt,e
j,r,i

m , we have

ŷei = yei ·

(
Rad(α)i · 2η ·

t−1∑
k=0

∆k
Λ + Rad(βe)i · 2η ·

t−1∑
k=0

∆k
Γ +Qe

i

)
,

We need the following concentration lemma to control the scale of Qe
i , whose proof is given in Appendix D.2.1.
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Lemma D.2. Denote n ≜ mine∈Etr
ne, n ≜

∑
e∈Etr

ne. For ρ > 0, if

σ2
0 = O

(
n−2 log−1 (m/ρ)

)
,

σ2
p = O

(
min

{
d−1/2 log−1/2 (nm/ρ), T−1η−1m

(
d+ n

√
d log(n2/ρ)

)−1
})

,

then with probability at least 1− ρ, for any e ∈ Etr, i ∈ [ne], it holds that |Qe
i | = O(n−1).

Then ∆t
Λ and ∆t

Γ can be explicitly written as

∆t
Λ =

∑
e∈Etr

1

nem

ne∑
i=1

Rad(α)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
,

∆t
Γ =

∑
e∈Etr

1

nem

ne∑
i=1

Rad(βe)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
.

We are going to analyze the convergences of two sequences {∆t
Γ +∆t

Λ} and {∆t
Γ −∆t

Λ}. Notice that

∆t
Γ +∆t

Λ =
∑
e∈Etr

1

nem

ne∑
i=1

Rad(βe)i + Rad(α)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
,

∆t
Γ −∆t

Λ =
∑
e∈Etr

1

nem

ne∑
i=1

Rad(βe)i − Rad(α)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
.

We can further write these two terms as

∆t
Γ +∆t

Λ =
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=+1
Rad(α)i=+1

1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {Qe

i}

−
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=−1
Rad(α)i=−1

1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {Qe

i}
,

∆t
Γ −∆t

Λ =
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=+1
Rad(α)i=−1

1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {Qe

i}

−
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=−1
Rad(α)i=+1

1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {Qe

i}
.

According to Lemma D.2, for all e ∈ Etr, i ∈ [ne], ρ > 0, letting δ ≜ exp{O(n−1)} − 1, we have 1 + δ ≥ exp {Qe
i} ≥

(1 + δ)−1 with probability at least 1 − ρ. Let Ce
jℓ ≜ |{i | Rad(α)i = j,Rad(βe)i = ℓ, i ∈ Ee}| for any j ∈ {±1}, ℓ ∈
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{±1}, e ∈ Etr, and then define Cjℓ ≜
∑

e∈Etr

Ce
jℓ

ne
. We can upper bound and formulate ∆t

Γ +∆t
Λ and ∆t

Γ −∆t
Λ as

∆t
Γ +∆t

Λ ≤
2

m

 C+1+1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)−1

− C−1−1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)


=

2

m
·
C+1+1(1 + δ)− C−1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}

1 + δ + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
} , (15)

∆t
Γ −∆t

Λ ≤
2

m

 C−1+1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)−1

− C+1−1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)


=

2

m
·
C−1+1(1 + δ)− C+1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}

1 + δ + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
} . (16)

Based on similar arguments, we can also establish lower bounds for these two terms,

∆t
Γ +∆t

Λ ≥
2

m
·
C+1+1 − C−1−1(1 + δ) · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)

, (17)

∆t
Γ −∆t

Λ ≥
2

m
·
C−1+1 − C+1−1(1 + δ) · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)

. (18)

The upper and lower bounds (15), (16), (17) and (18) imply that the convergences of {∆t
Γ + ∆t

Λ} and {∆t
Γ −∆t

Λ} are

determined by recursive equations of the form Qt =
C1−C2·exp {η

∑t−1
k=0 Qk}

1+C3·exp {η
∑t−1

k=0 Qk} . We first establish that with suitably chosen η,

the sequences {∆t
Γ +∆t

Λ} and {∆t
Γ −∆t

Λ} are guaranteed to be positive. Observed that for theQt-type recursive equation,
the sign of Q0 is independent of η, and only determined by the constants C1, C2, C3. At iteration 0, (17) and (18) give

∆0
Γ +∆0

Λ ≥
2

m
· C+1+1 − C−1−1(1 + δ)

2 + δ
, (19)

∆0
Γ −∆0

Λ ≥
2

m
· C−1+1 − C+1−1(1 + δ)

2 + δ
. (20)

To proceed, we need the following concentration lemma to control the deviations of the constants C+1+1, C+1−1, C−1+1

and C−1−1 from their expectations, whose proof is given in Appendix D.2.2.

Lemma D.3. For ρ > 0, considering two environments and denoting ϵC ≜
√

2 log (16/ρ)
n , with probability at least 1− ρ,

we have ∣∣C+1+1 − (1− α)(2− β1 − β2)
∣∣ ≤ ϵC ,∣∣C+1−1 − (1− α)(β1 + β2)
∣∣ ≤ ϵC ,∣∣C−1+1 − α(2− β1 − β2)
∣∣ ≤ ϵC ,∣∣C−1−1 − α(β1 + β2)
∣∣ ≤ ϵC .

(21)

Using Lemma D.3, with probability at least 1 − ρ, the constants C+1+1, C+1−1, C−1+1 and C−1−1 are close to their
expectations.

Based on our assumptions that

α, β1, β2 <
1− ϵC − δ( 14 + ϵC

2 )

2
(α, β1, β2 are sufficiently smaller than

1

2
),

α >
β1 + β2

2
+ ϵC +

δ(1 + ϵC)

2
(α is sufficiently larger than

β1 + β2

2
),
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it can be verified that with probability at least 1− 2ρ, ∆0
Γ +∆0

Λ > 0,∆0
Γ −∆0

Λ > 0.

Then, at iteration 1, from (17) and (18), we see that as long as we require

η < min

{
1

2(∆0
Γ +∆0

Λ)
log

C+1+1

C−1−1(1 + δ)
,

1

2(∆0
Γ −∆0

Λ)
log

C−1+1

C+1−1(1 + δ)

}
,

it holds that ∆1
Γ +∆1

Λ > 0,∆1
Γ −∆1

Λ > 0. By recursively applying this argument, we see the requirement for η to ensure
that ∆t

Γ +∆t
Λ > 0 and ∆t

Γ −∆t
Λ > 0 for any t ∈ {0, . . . , T} is

η < min

{
1

2
∑T−1

k=0 (∆k
Γ +∆k

Λ)
log

C+1+1

C−1−1(1 + δ)
,

1

2
∑T−1

k=0 (∆k
Γ −∆k

Λ)
log

C−1+1

C+1−1(1 + δ)

}
. (22)

In other words, for the Qt-type recursive equation, as long as Q0 ≥ 0, there always exists a sufficiently small η to guarantee
that the whole sequence {Qt} is positive. From now on, we will focus on the case where the two sequences {∆t

Γ +∆t
Λ}

and {∆t
Γ −∆t

Λ} decrease to an ϵ∆ > 0 error, i.e., mint∈{0,...,T} {∆t
Γ +∆t

Λ,∆
t
Γ −∆t

Λ} = ϵ∆.

Then, we show that the two sequences {∆t
Γ +∆t

Λ} and {∆t
Γ −∆t

Λ} decrease monotonically, which thus leads to a more
refined upper bound for η at (22). Inspect the upper bounds (15), (16) at iteration t+ 1, which can be written as

∆t+1
Γ +∆t+1

Λ ≤ 2

m
·
C+1+1 − C−1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {2η · (∆t

Γ +∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {2η · (∆t

Γ +∆t
Λ)}(1 + δ)−1

≜ ♠t+1,

∆t+1
Γ −∆t+1

Λ ≤ 2

m
·
C−1+1 − C+1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {2η · (∆t

Γ −∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {2η · (∆t

Γ −∆t
Λ)}(1 + δ)−1

≜ ♣t+1.

Requiring that η > max
{

1
∆t

Γ+∆t
Λ
log (1 + δ), 1

∆t
Γ−∆t

Λ
log (1 + δ)

}
,∀t ∈ {0, . . . , T} ⇒ η > ϵ−1

∆ log (1 + δ), we have

♠t+1 <
2

m
·
C+1+1 − C−1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {2η · (∆t

Γ +∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)

< ∆t
Γ +∆t

Λ,

♣t+1 <
2

m
·
C−1+1 − C+1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {2η · (∆t

Γ −∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)

< ∆t
Γ −∆t

Λ,

where the last inequalities use the lower bounds (17) and (18).

Based on the above discussion and (22), we can now clarify the requirements of η for the sequences {∆t
Γ + ∆t

Λ} and
{∆t

Γ −∆t
Λ} to be positive and monotonically decreasing:

ϵ−1
∆ log (1 + δ) < η < min

{
m(2 + δ)

4T (C+1+1(1 + δ)− C−1−1)
log

C+1+1

C−1−1(1 + δ)
,

m(2 + δ)

4T (C−1+1(1 + δ)− C+1−1)
log

C−1+1

C+1−1(1 + δ)

}
,

(23)

which uses the upper bounds (15) and (16) at iteration 0. The constants C+1+1, C+1−1, C−1+1 and C−1−1 can be
substituted using the concentration bounds at (21) to generate an upper bound for η that only involves α, β1, β2,m, δ, T, ϵC .
Here we omit the precise upper bound for clarity. Note that the left hand side of (23) approaches 0 if δ → 0, which means
that there exists a constant choice of η in (23) if n is sufficiently large in Lemma D.2 and D.3.

To conclude, in view of (14), the convergences of the sequences {∆t
Γ +∆t

Λ} and {∆t
Γ −∆t

Λ} imply that Λt
j,r and Γt

j,r are
converging, and the positive sequence {∆t

Γ −∆t
Λ} indicates that the increment of the spurious feature Γt+1

j,r − Γt
j,r is larger

than that of the invariant feature Λt+1
j,r − Λt

j,r at any iteration t ∈ {0, . . . , T − 1}.



Towards Understanding Feature Learning in Out-of-Distribution Generalization

D.2.1. PROOF OF LEMMA D.2

First, we recall some concentration inequalities for sub-Gaussian random variables. Since ξei ∼ N (0, σ2
p · (Id − v1v

⊤
1 −

v2v
⊤
2 )), for (i′, e′) ̸= (i, e), using Bernstein’s inequality for sub-exponential random variables, we have for sufficiently

small a ≥ 0,

Pr
{
|⟨ξei , ξe

′

i′ ⟩| ≥ a
}
≤ 2 exp

{
− a2

4σ4
p(d− 2)

}
,

Pr
{∣∣∥ξei ∥22 − σ2

p(d− 2)
∣∣ ≥ a

}
≤ 2 exp

{
− a2

512σ4
p(d− 2)

}
.

Moreover, for ξr ∼ N (0, σ2
0) (indicating the initial weights w0

j,r), the standard Gaussian tail gives

Pr

{∣∣∣∣∣ 1m
m∑
r=1

ξr

∣∣∣∣∣ ≥ a

}
≤ 2 exp

{
−ma2

2σ2
0

}
.

Denote n ≜
∑

e∈Etr
ne, n ≜ mine∈Etr ne, by properly choosing a for each tail bound and applying a union bound, we can

conclude that for ρ > 0, with probability at least 1− ρ, it holds that ∀i, e, i′, e′, r,

|⟨ξei , ξe
′

i′ ⟩| ≤ 2σ2
p

√
(d− 2) log

8n2

ρ
, ∥ξei ∥22 ≤ σ2

p(d− 2) + 16σ2
p

√
2(d− 2) log

8n

ρ
,∣∣∣∣∣ 1m

m∑
r=1

ξr

∣∣∣∣∣ ≤ σ0

√
2

m
log

32m

ρ
, |⟨ξr, ξe

′

i′ ⟩| ≤ 2σpσ0

√
(d− 2) log

16nm

ρ
.

We start with bound the growth of Ξt,e
j,r,i. By bounding the update rule (13), with probability at least 1− ρ, we have

∣∣∣Ξt+1,e′

j,r,i′

∣∣∣ ≤ ∣∣∣Ξt,e′

j,r,i′

∣∣∣+ η

m

∑
e∈Etr

1

ne

ne∑
i=1

1

1 + exp{yei ŷei }
· |⟨ξei , ξe

′

i′ ⟩|

≤
∣∣∣Ξt,e′

j,r,i′

∣∣∣+ η

m

∑
e∈Etr

1

ne

ne∑
i=1

|⟨ξei , ξe
′

i′ ⟩|

=
∣∣∣Ξ0,e′

j,r,i′

∣∣∣+ (t+ 1) · η
m

∑
e∈Etr

1

ne

ne∑
i=1

|⟨ξei , ξe
′

i′ ⟩|

= |⟨ξr, ξe
′

i′ ⟩|+ (t+ 1) ·

 η

mne′
∥ξe

′

i′ ∥22 +
∑

(i,e)̸=(i′,e′)

η

mne
|⟨ξei , ξe

′

i′ ⟩|


≤ 2σpσ0

√
(d− 2) log

16nm

ρ

+
Tησ2

p

mn

(
(d− 2) + 16

√
2(d− 2) log

8n

ρ
+ 2n

√
(d− 2) log

8n2

ρ

)
.

Then, we can bound |Qe
i | as

|Qe
i | ≤ 2 ·

∣∣∣∣∣ 1m
m∑
r=1

ξr

∣∣∣∣∣+ 2 ·

∣∣∣∣∣ 1m
m∑
r=1

ξr

∣∣∣∣∣+ 2

m

m∑
r=1

∣∣Ξt,e
j,r,i

∣∣
≤ 4σ0

√
2

m
log

32m

ρ
+ 4σpσ0

√
(d− 2) log

16nm

ρ

+
2Tησ2

p

mn

(
(d− 2) + 16

√
2(d− 2) log

8n

ρ
+ 2n

√
(d− 2) log

8n2

ρ

)
.
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Thus, with sufficient small σ0, σp, i.e.,

σ2
0 = O

(
n−2 log−1 (m/ρ)

)
,

σ2
p = O

(
min

{
d−1/2 log−1/2 (nm/ρ), T−1η−1m

(
d+ n

√
d log(n2/ρ)

)−1
})

,

we ensured that |Qe
i | = O(n−1).

D.2.2. PROOF OF LEMMA D.3

For e ∈ Etr, using Hoeffding’s inequality, it holds that

Pr

{∣∣∣∣∣ 1ne

ne∑
i=1

1{Rad(α)i=+1,Rad(βe)i=+1} − (1− α)(1− βe)

∣∣∣∣∣ ≥ a

}
≤ 2 exp {−2a2ne}.

Considering two environments, using a union bound, we can conclude that

Pr
{∣∣C+1+1 − (1− α)(2− β1 − β2)

∣∣ ≤ a
}
≥ 1− 4 exp

{
−a2n

2

}
.

Thus, for ρ > 0, with probability at least 1− ρ
4 , we can conclude that

∣∣C+1+1 − (1− α)(2− β1 − β2)
∣∣ ≤√2 log (16/ρ)

n
.

Using the above arguments for other constants C+1−1, C−1+1 and C−1−1, and applying a union bound, we obtain the
desired results.
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D.3. Proof for Theorem 3.2

Theorem D.4 (Restatement of Theorem 3.2). Consider training a CNN model with the same data as in Theorem 3.1, define

c(t) ≜
[
C1

IRMv1(W, t), C2
IRMv1(W, t), · · · , C|Etr|

IRMv1(W, t)
]
,

and λ0 = λmin(H
∞), where H∞

e,e′ ≜ 1
2mnene′

∑ne

i=1 x
e⊤
1,i

∑ne′
i′=1 x

e′

1,i. Suppose that dimension d = Ω(log(m/δ)),
network width m = Ω(1/δ), regularization factor λ ≥ 1/σ0, noise variance σp = O(d−2), weight initial scale

σ0 = O(min{ λ2
0m

2

log(1/ϵ) ,
λ0m√

d log(1/ϵ)
}), then with probability at least 1 − δ, after training time T = Ω

(
log(1/ϵ)
ηλλ0

)
, we

have:

∥c(T )∥2 ≤ ϵ, γj,r,1(T ) = od(1), γj,r,2(T ) = od(1).

Before proving Theorem D.4, we first provide some useful lemmas as follows:

Lemma D.5. Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with probability at least 1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2

for all i, i′ ∈ [n].

Proof of Lemma D.5. By Bernstein’s inequality, with probability at least 1− δ/(2n) we have∣∣∥ξi∥22 − σ2
pd
∣∣ = O(σ2

p ·
√

d log(4n/δ)).

Therefore, as long as d = Ω(log(4n/δ)), we have

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2.

Lemma D.6. Suppose that d ≥ Ω(log(mn/δ)), m = Ω(log(1/δ)). Then with probability at least 1− δ,

|⟨w(0)
j,r ,v1⟩| ≤

√
2 log(8m/δ) · σ0∥v1∥2,

|⟨w(0)
j,r ,v2⟩| ≤

√
2 log(8m/δ) · σ0∥v2∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ) · σ0σp

√
d

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Proof of Lemma D.6. It is clear that for each r ∈ [m], j · ⟨w(0)
j,r ,v1⟩ is a Gaussian random variable with mean zero and

variance σ2
0∥v1∥22. Therefore, by Gaussian tail bound and union bound, with probability at least 1− δ,

j · ⟨w(0)
j,r ,v1⟩ ≤ |⟨w(0)

j,r ,v1⟩| ≤
√
2 log(8m/δ) · σ0∥v1∥2.

Similarly, we have

j · ⟨w(0)
j,r ,v2⟩ ≤ |⟨w(0)

j,r ,v2⟩| ≤
√

2 log(8m/δ) · σ0∥v2∥2.

By Lemma D.5, with probability at least 1− δ, σp

√
d/
√
2 ≤ ∥ξi∥2 ≤

√
3/2 · σp

√
d for all i ∈ [n]. Therefore, the result

for ⟨w(0)
j,r , ξi⟩ follows the same proof as j · ⟨w(0)

j,r ,v1⟩.
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Proof. The proof is by induction method. First we show the gradient flow of weights by IRMv1 objective function (3):

dwj,r(t)

dt
= −η · ∇wj,rLIRMv1(W(t))

= − η

nm
·
∑
e∈Etr

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i ) · jve

i −
η

nm
·
∑
e∈Etr

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi) · jyei ξi

− ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), y
e
i v

e
i ) · jyei vei −

ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), ξi) · jξi

− ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i ) · jve

i −
ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi) · jyei ξi

= − η

nm
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i ) · jve

i

− η

nm
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi) · jyei ξi

− ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), y
e
i v

e
i ) · jyei vei −

ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), ξi) · jξi,

where Ce
IRMv1 = 1

ne

∑ne

i=1 ℓ
′
iŷ

e
i y

e
i and ve

i = Rad(α)i · v1 + Rad(βe)i · v2. Note that ℓ′′ has the opposite sign to ℓ′.

Then we look at the dynamics of Ce
IRMv1(t) according to the gradient flow update rule:

dCe
IRMv1(W, t)

dt
=
∑
j=±1

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
dwj,r(t)

dt

〉

=
∑
e′

2λCe′

IRMv1(W, t)
∑
j

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
∂Ce′

IRMv1(W, t)

∂wj,r(t)

〉
+

∑
j=±1

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
∂Ls(W, t)

∂wj,r(t)

〉
= 2λ

∑
e′

Ce′

IRMv1(W, t) ·He,e′(t) + ge(t),

where we define He,e′(t) =
∑

j

∑m
r=1

〈
∂Ce

IRMv1(W,t)
∂wj,r(t)

,
∂Ce′

IRMv1(W,t)
∂wj,r(t)

〉
and ge(t) =

∑
j=±1

∑m
r=1

〈
∂Ce

IRMv1(W,t)
∂wj,r(t)

, ∂Ls(W,t)
∂wj,r(t)

〉
.

Thus H(t) is an |Etr|×|Etr|matrix. We can write the dynamics of c(t) =
[
C1

IRMv1(W, t), C2
IRMv1(W, t), · · · , C|Etr|

IRMv1(W, t)
]

in a compact way:

dc(t)

dt
= 2λ ·H(t)c(t) + g(t).

Our next step is to show H(t) is stable in terms of W(t). To proceed with the analysis, we write down the expression for
∂Ce

IRMv1(W,t)
∂wj,r(t)

∈ Rd:

∂Ce
IRMv1(W(t))

∂wj,r(t)
=

η

nem
·

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i ⟩) · jve

i +
η

nem

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi⟩) · jyei ξi

+
η

nem
·

ne∑
i=1

ℓ′′i y
e
i σ

′(⟨wj,r(t), y
e
i v

e
i ⟩) · jyei ve

i +
η

nem
·

ne∑
i=1

ℓ′′i y
e
i σ

′(⟨wj,r(t), ξi⟩) · jξi.
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When we consider linear activation function σ(x) = x, the entry of matrix H(t) reduces to:

He,e′(t) =
∑
j

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
∂Ce′

IRMv1(W, t)

∂wj,r(t)

〉

=
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ ne∑
i=1

ℓ′i(t) · jve⊤
i

ne′∑
i=1

ℓ′i(t) · jve
i +

ne∑
i=1

ℓ′′i (t)y
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′′i (t)y
e
i (t) · jyei ve

i

]

+
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ ne∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′i(t) · jve
i +

ne∑
i=1

ℓ′i(t) · jve⊤
i

ne′∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jve

i

]

+
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ ne∑
i=1

ℓ′i(t) · jyei ξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei +
ne∑
i=1

ℓ′′i (t)y
e
i (t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

]

+
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ ne∑
i=1

ℓ′′i (t) · jξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei +
ne∑
i=1

yei ℓ
′
i(t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

]
≜ H1

e,e′(t) +H2
e,e′(t) +H3

e,e′(t) +H4
e,e′(t) +H5

e,e′(t) +H6
e,e′(t) +H7

e,e′(t) +H8
e,e′(t).

Define

H1,∞
e,e′ =

∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ ne∑
i=1

−1

2
· jve⊤

i

ne′∑
i=1

−1

2
· jve

i

]

=
1

2mnene′

ne∑
i=1

ve⊤
i

ne′∑
i′=1

ve′

i .

Then we can show that

∣∣∣H1
e,e′(t)−H1,∞

e,e′

∣∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

ℓ′i(t)v
e′

i −
ne∑
i=1

1

2
ve⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
≤ 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

ℓ′i(t)v
e′

i −
ne∑
i=1

ℓ′iv
e⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
+

2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

1

2
ve′

i −
ne∑
i=1

1

2
ve⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
≤ 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

(
ℓ′i(t) +

1

2

)
ve′

i

∣∣∣∣∣+ 2

mnene′

∣∣∣∣∣
ne∑
i=1

(
ℓ′i(t) +

1

2

)
ve⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
≤ C

2γ

m
,

where C is an absolute constant, γ is defined as follows:

|ŷei (t)| = |f(xi, t)| =

∣∣∣∣∣∣ 1m
∑
j

m∑
r=1

[
σ(w⊤

j,r(t)x1) + σ(w⊤
j,r(t)x2)

]∣∣∣∣∣∣ ≤ γ,
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and we have used the bound for ℓ′i(t) +
1
2 :∣∣∣∣ℓ′i(t) + 1

2

∣∣∣∣ = ∣∣∣∣− exp(−yei · f(W,xi, t))

1 + exp(−yei · f(W,xi, t))
+

1

2

∣∣∣∣
=

∣∣∣∣12 − 1

1 + exp(yei · f(W,xi, t))

∣∣∣∣
≤ max

{∣∣∣∣12 − 1

1 + exp(γ)

∣∣∣∣ , ∣∣∣∣12 − 1

1 + exp(−γ)

∣∣∣∣}
≤ max

{∣∣∣∣12 − 1

2 + 7
4γ

∣∣∣∣ , ∣∣∣∣12 − 1

2− γ

∣∣∣∣} = Θ(γ).

and we provide the bound of ℓ′′i (t)− 1
4 :∣∣∣∣ℓ′′i (t)− 1

4

∣∣∣∣ = ∣∣∣∣ exp(−yei · f(W,xi, t))

(1 + exp(−yei · f(W,xi, t)))2
− 1

4

∣∣∣∣
=

∣∣∣∣ 1

exp(yei · f(W,xi, t)) + 2 + exp(−yei · f(W,xi, t))
− 1

4

∣∣∣∣
≤
∣∣∣∣14 − 1

2 + 2 exp(γ2/2)

∣∣∣∣ = Θ(γ2).

Similarly, we have:

∣∣H2
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve

i

∣∣∣∣∣ ≤ C
2γ2

m
,

∣∣H3
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′i(t) · jve
i

∣∣∣∣∣ ≤ C
2γ

m
,

∣∣H4
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣+
ne∑
i=1

ℓ′i(t) · jve⊤
i

ne′∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jve

i

∣∣∣∣∣ ≤ C
2γ

m
,

∣∣H5
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t) · jyei ξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei

∣∣∣∣∣ ≤ C
2

m
σ2
qd,

∣∣H6
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t)y
e
i (t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

∣∣∣∣∣ ≤ C
2

m
σ2
qdγ

2,

∣∣H7
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t) · jξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei

∣∣∣∣∣ ≤ C
2

m
σ2
qdγ,

∣∣H8
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

yei ℓ
′
i(t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

∣∣∣∣∣ ≤ C
2

m
σ2
qdγ.

To summarize, we have that, ∣∣He,e′(t)−H∞
e,e′

∣∣ ≤ C1
2

m
γ + C2

2

m
σ2
qγ.

Furthermore, we have that

|ge(t)| ≤ C
2

m
max{σ2

qd, γ}.

Finally, we have the dynamics for ∥c(t)∥22
d∥c(t)∥22

dt
= −2λc⊤(t)H(t)c(t)− c(t)g(t) ≤ −λ0λ∥c(t)∥22,



Towards Understanding Feature Learning in Out-of-Distribution Generalization

which requires that:

C1
2

m
γ < λ0; λ >

1

∥c(0)∥2
.

According to the gradient descent for IRMV1 objective function, the evolution of coefficients can be expressed as:

γj,r,1(t+ 1) = γj,r,1(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(α)i

− ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(α)i,

γj,r,2(t+ 1) = γj,r,2(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(βe)

− ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(βe)i.

Then we have,

|γj,r,1(t+ 1)| ≤ |γj,r,1(t)|+

∣∣∣∣∣ ηm · ∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(α)i

∣∣∣∣∣
+

∣∣∣∣∣ηλm · ∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(α)i

∣∣∣∣∣
≤ |γj,r,1(t)|+ C

ηλ

m
∥c(t)∥2.

Similarly, we have,

|γj,r,2(t+ 1)| ≤ |γj,r,2(t)|+ C
ηλ

m
∥c(t)∥2.

Taking the convergence time T = Ω
(

log(σ0/ϵ)
ηλλ0

)
we have that:

∥c(T )∥2 ≤ ϵ.

Besides, at the time step T , the feature learning satisfies that:

γj,r,1(T ) ≤ C
ηλT

m
∥c(0)∥2; γj,r,1(T ) ≤ C

ηλT

m
∥c(0)∥2.

To make sure that γj,r1,1(T ) = od(1) and γj,r1,2(T ) = od(1), we need the following condition:

C
ηλT

m
∥c(0)∥2 ≤ d−

1
2 ,

which results in σ0 ≤ mλ0

d−1/2 log(1/ϵ)
. Furthermore, we have that:

|f(xi, T )| ≤ γj,r,1(T ) + γj,r,2(T ) ≤ γ.

Combined with the condition that C 2γ
m < λ0, we obtain that:

σ0 ≤
λ2
0m

2

log(1/ϵ)
.
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D.4. Proof for Proposition 3.3

Proposition D.7 (Restatement of Proposition 3.3). Consider training the CNN model with the same data as Theorem 3.1,
suppose that γj,r,1(t1) = γj,r,1(t1 − 1) and γj,r,2(t1) = γj,r,2(t1 − 1) at the end of ERM pre-train t1 and Etr =
{(0.25, 0.1), (0.25, 0.2)}. Suppose that δ > 0, and n > C log(1/δ), with C being a positive constant, then with a high
probability at least 1− δ, we have

•
∑

e C
e
IRMv1(t1) = 0.

• γj,r,1(t1 + 1) > γj,r,1(t1).

• γj,r,2(t1 + 1) < γj,r,2(t1).

Proof of Proposition D.7. According to the gradient descent for IRMV1 objective function, the evolution of coefficients can
be expressed as:

γj,r,1(t+ 1) = γj,r,1(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(α)i

− ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(α)i,

γj,r,2(t+ 1) = γj,r,2(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(βe)

− ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(βe)i,

where ℓ′′(yei · f(W,xe
i )) =

exp(−ye
i ·f(W,xi))

(1+exp(−ye
i ·f(W,xi)))2

.

To simplify the notation, we further define

Ae
1 =

1

ne

ne∑
i=1

ℓ′iRad(α)i

and

Ae
2 =

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i y

e
iRad(α)i

. Similarly, we define

Be
1 =

1

ne

ne∑
i=1

ℓ′iRad(βe)i

and

Be
2 =

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i y

e
iRad(βe)i.
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In the limit of n→∞, we have:

lim
n→∞

A1
1(t1) = −1/(1 + e(γ1+γ2))(1− α)(1− β1)− 1/(1 + eγ1−γ2)(1− α)β1

+ 1/(1 + eγ2−γ1)α(1− β1) + 1/(1 + e−γ1−γ2)αβ1,

lim
n→∞

A2
1(t1) = −1/(1 + eγ1+γ2)(1− α)(1− β2)− 1/(1 + eγ1−γ2)(1− α)β2

+ 1/(1 + e−γ1+γ2)α(1− β2) + 1/(1 + e−γ1−γ2)αβ2,

lim
n→∞

B1
1(t1) = −1/(1 + eγ1+γ2)(1− α)(1− β1) + 1/(1 + eγ1−γ2)(1− α)β1

− 1/(1 + e−γ1+γ2)α(1− β1) + 1/(1 + e−γ1−γ2)αβ1,

lim
n→∞

B2
1(t1) = −1/(1 + eγ1+γ2)(1− α)(1− β2) + 1/(1 + eγ1−γ2)(1− α)β2

− 1/(1 + e−γ1+γ2)α(1− β2) + 1/(1 + e−γ1−γ2)αβ2.

and,

lim
n→∞

A1
2(t1) = eγ1+γ2/(1 + eγ1+γ2)2(1− α)(1− β1)(γ1 + γ2) + eγ1−γ2/(1 + eγ1−γ2)2(1− α)β1(γ1 − γ2)

+ e−γ1+γ2/(1 + e−γ1+γ2)2α(1− β1)(γ1 − γ2) + e−γ1−γ2/(1 + e−γ1−γ2)2αβ1(γ1 + γ2),

lim
n→∞

A2
2(t1) = eγ1+γ2/(1 + eγ1+γ2)2(1− α)(1− β2)(γ1 + γ2) + eγ1−γ2/(1 + eγ1−γ2)2(1− α)β2(γ1 − γ2)

+ e−γ1+γ2/(1 + e−γ1+γ2)2α(1− β2)(γ1 − γ2) + e−γ1−γ2/(1 + e−γ1−γ2)2αβ2(γ1 + γ2),

lim
n→∞

B1
2(t1) = eγ1+γ2/(1 + eγ1+γ2)2(1− α)(1− β1)(γ1 + γ2) + eγ1−γ2/(1 + eγ1−γ2)2(1− α)β1(−γ1 + γ2)

+ e−γ1+γ2/(1 + e−γ1+γ2)2α(1− β1)(−γ1 + γ2) + e−γ1−γ2/(1 + e−γ1−γ2)2αβ1(γ1 + γ2),

lim
n→∞

B2
2(t1) = eγ1+γ2/(1 + eγ1+γ2)2(1− α)(1− β2)(γ1 + γ2) + eγ1−γ2/(1 + eγ1−γ2)2(1− α)β2(−γ1 + γ2)

+ e−γ1+γ2/(1 + e−γ1+γ2)2α(1− β2)(−γ1 + γ2) + e−γ1−γ2/(1 + e−γ1−γ2)2αβ2(γ1 + γ2).

Because Rad(α)i and Rad(β)i are random variables, applying Hoeffding’s inequality, we have with probability at least
1− δ,

∣∣∣A1
1(t1)− lim

n→∞
A1

1(t1)
∣∣∣ ≤√4 log(1/δ)

n
.

Similarly, we can apply concentration bound to other quantities and obtain the same bound.

By the assumption that γj,r,1(t1) = γj,r,1(t1−1) and γj,r,2(t1) = γj,r,2(t1−1), we have that
∑

e A
e
1(t1) =

∑
e B

e
1(t1) = 0:

lim
n→∞

(A1
1(t1) +A2

1(t1)) = −1/(1 + eγ1+γ2)(1− α)(2− β1 − β2)− 1/(1 + eγ1−γ2)(1− α)(β1 + β2)

+ 1/(1 + e−γ1+γ2)α(2− β1 − β2) + 1/(1 + e−γ1−γ2)α(β1 + β2) = 0

lim
n→∞

(B1
1(t1) +B2

1(t1)) = −1/(1 + eγ1+γ2)(1− α)(2− β1 − β2) + 1/(1 + eγ1−γ2)(1− α)(β1 + β2)

+ 1/(1 + e−γ1+γ2)α(2− β1 − β2) + 1/(1 + e−γ1−γ2)α(β1 + β2) = 0

Solving the above equations, we have,

γ∞
1 (t1) =

1

2
log(GmGb) γ∞

2 (t1) =
1

2
log(Gm/Gb)

where we denote γ∞
1 (t1) ≜ limn→∞ γ1(t1) and γ∞

2 (t1) ≜ limn→∞ γ1(t2), Gm = ((1− A) +
√
(A− 1)2 + 4A)/(2A)

and Gb = ((1 − B) +
√

(B − 1)2 + 4B)/(2B), with A = α(β1 + β2)/((1 − α)(2 − β1 − β2)) and B = α(2 − β1 −
β2)/((1− α) ∗ (β1 + β2)).
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By the convexity of function f(x) = ex, with a constant C, we have:

|γ1 − γ∞
1 | <

∣∣∣eγ1 − eγ
∞
1

∣∣∣ ≤ C
∣∣∣1/(1 + eγ1)− 1/(1 + eγ

∞
1 )
∣∣∣ ≤√4 log(1/δ)

n
,

|γ2 − γ∞
2 | <

∣∣∣eγ2 − eγ
∞
2

∣∣∣ ≤ C
∣∣∣1/(1 + eγ2)− 1/(1 + eγ

∞
2 )
∣∣∣ ≤√4 log(1/δ)

n
.

Then we know that,

C1
IRMv1 =

1

n1

n1∑
i=1

ℓ′iŷ
1
i y

1
i = γ1A

1
1 + γ2B

1
1

C2
IRMv1 =

1

n2

n2∑
i=1

ℓ′iŷ
2
i y

2
i = γ1A

2
1 + γ2B

2
1

Therefore, we have that:

C1
IRMv1 + C2

IRMv1 = 0

Then the evolution of coefficients reduces to

γj,r,1(t+ 1) = γj,r,1(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))A

e
1(t)−

ηλ

m
·
∑
e∈Etr

2Ce
IRMv1A

e
2(t)

γj,r,2(t+ 1) = γj,r,2(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))B

e
1(t)−

ηλ

m
·
∑
e∈Etr

2Ce
IRMv1B

e
2(t)

Taking the solution of γj,r,1(t1), γj,r,2(t1) and value of α, β1, β2, we arrive at the conclusion that with a high a probability
at least 1− δ and n > C1 log(1/δ) with C1 being a positive constant, we have:

γj,r,1(t1 + 1) > γj,r,1(t1),

γj,r,2(t1 + 1) < γj,r,2(t1).

D.5. Proof for Corollary 3.4

Corollary D.8 (Restatement of Corollary 3.4). Consider training the CNN model with the data generated from Def. 2.1,
suppose that γj,r,1(t1) = o(1) and γj,r,2(t1) = Θ(1) at the end of ERM pre-train t1 and Etr = {(0.25, 0.1), (0.25, 0.2)}.
Suppose that δ > 0, and n > C log(1/δ), with C being a positive constant, then with a high probability at least 1− δ, we
have

γj,r,1(t1 + 1) < γj,r,1(t1).

Proof of Corollary D.8. Recall that the feature learning update rule:

γj,r,1(t+ 1) = γj,r,1(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(α)i

− ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(α)i,

γj,r,2(t+ 1) = γj,r,2(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(βe)

− ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(βe)i,
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Taking the value of γj,r,1(t1), γj,r,2(t1) and, we can conclude that:

lim
n→∞

A1
1(t1) = −1/(1 + eγ2)(1− α)(1− β1)− 1/(1 + e−γ2)(1− α)β1+

1/(1 + eγ2)α(1− β1) + 1/(1 + e−γ2)αβ1

= 1/(1 + eγ2)(2α− 1)(1− β1) + 1/(1 + e−γ2)(2α− 1)(β1)

= (2α− 1)[1/(1 + eγ2)(1− β2) + 1/(1 + e−γ2)β1)]

lim
n→∞

A2
1(t1) = 1/(1 + eγ2)(2α− 1)(1− β2) + 1/(1 + e−γ2)(2α− 1)(β2)

= (2α− 1)[1/(1 + eγ2)(1− β2) + 1/(1 + e−γ2)β2)]

lim
n→∞

B1
1(t1) = −1/(1 + eγ2)(1− α)(1− β1) + 1/(1 + e−γ2)(1− α)β1−

1/(1 + eγ2)α(1− β1) + 1/(1 + e−γ2)αβ1

= −1/(1 + eγ2)(1− β1) + 1/(1 + e−γ2)β1

lim
n→∞

B2
1(t1) = −1/(1 + eγ2)(1− α)(1− β2) + 1/(1 + e−γ2)(1− α)β2−

1/(1 + eγ2)α(1− β2) + 1/(1 + e−γ2)αβ2

= −1/(1 + eγ2)(1− β2) + 1/(1 + e−γ2)β2

On the other hand,

lim
n→∞

A1
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β1)(γ2) + e−γ2/(1 + e−γ2)2(1− α)β1(−γ2)

+ e+γ2/(1 + eγ2)2α(1− β1)(−γ2) + e−γ2/(1 + e−γ2)2αβ1(γ2)

= eγ2/(1 + eγ2)2(1− 2α)(1− β1) + e−γ2/(1 + e−γ2)2(2α− 1)β1γ2

lim
n→∞

A2
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β2)(γ2) + e−γ2/(1 + e−γ2)2(1− α)β2(−γ2)

+ eγ2/(1 + eγ2)2α(1− β2)(−γ2) + e−γ2/(1 + e−γ2)2αβ2(γ2)

= eγ2/(1 + eγ2)2(1− 2α)(1− β2) + e−γ2/(1 + e−γ2)2(2α− 1)β2γ2

lim
n→∞

B1
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β1)(γ2) + e −γ2/(1 + e−γ2)2(1− α)β1(γ2)

+ eγ2/(1 + eγ2)2α(1− β1)(γ2) + e−γ2/(1 + e−γ2)2αβ1(γ2),

lim
n→∞

B2
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β2)(γ2) + e −γ2/(1 + e−γ2)2(1− α)β2(γ2)

+ eγ2/(1 + eγ2)2α(1− β2)(γ2) + e−γ2/(1 + e−γ2)2αβ2(γ2).

Finally, taking the value of environment of (α, β1, β2) = (0.25, 0.1, 0.2), we conclude that with a high a probability at least
1− δ and n > C1 log(1/δ) with C1 being a positive constant, we have:

γj,r,1(t1 + 1) < γj,r,1(t1).
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Algorithm 1 FAT: Feature Augmented Training
1: Input: Training data Dtr; the maximum augmentation rounds K; predictor f := w ◦ φ; length of inner training epochs

t; termination threshold p;
2: Initialize groups Ga ← Dtr, G

r ← {};
3: for k ∈ [1, . . . ,K] do
4: Randomly initialize wk;
5: for j ∈ [1, . . . , t] do
6: Obtain ℓFAT with G via Eq. 24;
7: Update wk, φ with ℓFAT;
8: end for
9: // Early Stop if fk = wk ◦ φ fails to find new features.

10: if Training accuracy of fk is smaller than p then
11: Set K = k − 1 and terminate the loop;
12: end if
13: Split Dtr into groups Da

k ,Dr
k according to whether fk classifies the examples in Dtr correctly or not;

14: Update groups Ga ← Ga ∪ {Da
k}, Gr ← Gr ∪ {Dr

k};
15: end for
16: Synthesize the final classifier w ← 1

K

∑K
i=1 wi;

17: return f = w ◦ φ;

E. Feature Augmentated Training
E.1. Rich Features for OOD Generalization

The results in Sec. 3 imply the necessity of learning all potentially useful features during the pre-training stage for OOD
generalization. Otherwise, the OOD training is less likely to enhance the poorly learned features. It also explains the success
of learning diverse and rich features by weight averaging (Rame et al., 2022; Arpit et al., 2022) and rich feature construction
(or Bonsai) (Zhang et al., 2022), and other approaches (Ye et al., 2022; Ramé et al., 2022).

Despite the empirical success, however, the learning of rich features in both Bonsai and weight averaging is unstable and
expensive. On the one hand, they may discard previously learned useful features or fail to explore all the desired features as it
is hard to evaluate the quality of the intermediate learned features. On the other hand, they also need multiple initializations
and training of the whole networks with different random seeds to encourage the diversity of feature learning, which brings
more instability and computational overhead, especially when applied to large and deep networks.

E.2. The FAT Algorithm

To overcome the limitations of previous rich feature learning algorithms, we propose Feature Augmented Training (FAT),
that directly augment the feature learning in an iterative manner.

Intuitively, the potentially useful features presented in the training data are features that have non-trivial correlations with
labels, or using the respective feature to predict the labels is able to achieve a non-trivial training performance. Moreover,
the invariance principle assumes that the training data comes from different environments (Arjovsky et al., 2019), which
implies that each set of features can only dominate the correlations with labels in a subset of data. Therefore, it is possible
to differentiate the distinct sets of useful features entangled in the training data into different subsets, where ERM can
effectively learn the dominant features presented in the corresponding subset as shown in Theorem 3.1.

The intuition naturally motivates an iterative rich feature learning algorithm, i.e., FAT, that identifies the subsets containing
distinct features and explores to learn new features in multiple rounds. The details of FAT are given in Algorithm 1, where
we are given a randomly initialized or pre-trained model f = w ◦ φ that consists of a featurizer φ and a classifier w. In
round k, FAT first identifies the subset that contains the already learned features by collecting the samples where f yields the
correct prediction, denoted as Gr

k, and the subset of samples that contains the features that have not been learned, denoted as
Ga

k.

At the k-th round, given the grouped subsets G = {Gr, Ga} with 2k − 1 groups, where Ga = {Da
i }

k−1
i=0 is the grouped

sets for new feature augmentation, and Gr = {Dr
i }

k−1
i=1 is the grouped sets for already learned feature retention (notice that
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Dr
0 is the empty set), FAT performs distributionally robust optimization (DRO) (Namkoong and Duchi, 2016; Zhang et al.,

2022) on Ga to explore new features that have not been learned in previous rounds. Meanwhile, FAT also needs to retain the
already learned features by minimizing the empirical risk at Gr. Then, the FAT objective at round k is

ℓFAT = max
Da

i ∈Ga
ℓDa

i
(wk ◦ φ) + λ ·

∑
Dr

i ∈Gr

ℓDr
i
(wi ◦ φ), (24)

where ℓDi(w ◦ φ) refers to the empirical risk of w ◦ φ evaluated at the subset Di, and {wi|1 ≤ i ≤ k − 1} are the historical
classifiers trained in round i.

Relations with previous rich feature learning algorithms. Compared with previous rich feature learning algorithms, FAT
directly trades off the exploration of new features and the retention of the already learned features. Although Bonsai also
adopts DRO to explore new features, the isolation of new feature exploration and already learned feature synthesis makes the
feature learning in Bonsai more unstable. In other words, Bonsai can not evaluate the intermediate feature learning results
due to the indirect feature exploration and synthesis. Consequently, Bonsai can not control when to stop the new feature
exploration, and thus may fail to explore all of the desired features or discard important features. Besides, the multiple
re-initializations and re-training of the whole network in Bonsai could also lead to suboptimal performance and meanwhile
require more computational overhead.

Practical implementations. Algorithm 1 requires to store 2K − 1 subsets and a larger memory cost in training the network,
which may cause additional storage burden when φ contains a massive amount of parameters (Koh et al., 2021). Hence,
we propose a lightweight variant of FAT (denoted as iFAT) which only retains the latest subsets and historical classifiers.
Throughout the whole experiments, we will use iFAT and find that iFAT already achieves state-of-the-art. More details are
given in Appendix F.

As iFAT stores only the latest augmentation and retention subsets, inspecting the training performance for termination check
(line 10 of Algorithm 1) may not be suitable. However, one can still inspect the performance in either an OOD validation set
to check the quality of the intermediate feature representations, or the retention set to check whether learning new features
leads to a severe contradiction of the already learned features (FAT should terminate if so).

F. More Details about iFAT
As mentioned in Sec. E.2 that, when the featurizer is implemented as a deep net that have a massive amount of parameters,
backpropagating through Algorithm 1 can allocate too much memory for propagating with 2K − 1 batches of data. It
is common for many realistic benchmarks such as Camelyon17 and FMoW in wilds benchmark (Koh et al., 2021) that
adopts a DenseNet (Huang et al., 2017) with 121 layers as the featurizer. To relieve the exceeding computational and
memory overhead, we propose a lightweight version of FAT, denoted as FAT. Instead of storing all of historical subsets and
classifiers, iFAT iteratively use the augmentation and retention sets and historical classifier from only the last round. In
contrast, previous rich feature learning algorithm (Zhang et al., 2022; Rame et al., 2022) incurs a high computational and
memory overhead as the round grows. For example, in RxRx1, we have to reduce the batch size of Bonsai to allow the
proceeding of rounds ≥ 3.

We elaborate the detailed algorithmic description of iFAT in Algorithm 2.

G. Empirical Study
We conduct extensive experiments on COLOREDMNIST (Chen et al., 2022) and WILDS (Koh et al., 2021) to verify the
effectiveness of FAT in learning richer features than ERM and the state-of-the-art algorithm Bonsai (Zhang et al., 2022).

Proof-of-concept study on COLOREDMNIST. We first conduct a proof-of-concept study using COLOREDMNIST (Chen
et al., 2022) and examine the feature learning performance of FAT under various conditions. We consider both the
original COLOREDMNIST with Etr = {(0.25, 0.1), (0.25, 0.2)} (denoted as COLOREDMNIST-025), where spurious
features are better correlated with labels, and the modified COLOREDMNIST (denoted as COLOREDMNIST-01) with
Etr = {(0.1, 0.2), (0.1, 0.25)}, where invariant features are better correlated with labels. We compare the OOD performance
of the features learned by FAT, with that of ERM and the state-of-the-art rich feature learning algorithm Bonsai (Zhang
et al., 2022). Based on the features learned by ERM, Bonsai, and FAT, we adopt various state-of-the-art OOD objectives
including IRMv1 (Arjovsky et al., 2019), VREx (Krueger et al., 2021), IRMX (Chen et al., 2022), IB-IRM (Ahuja et al.,
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Algorithm 2 FAT: Feature Augmented Training
1: Input: Training data Dtr; the maximum augmentation rounds K; predictor f := w ◦ φ; length of inner training epochs

e; termination threshold p;
2: Initialize groups Ga ← Dtr, G

r ← {};
3: for k ∈ [1, . . . ,K] do
4: Randomly initialize wk;
5: for j ∈ [1, . . . , e] do
6: Obtain ℓFAT with G via Eq. 24;
7: Update wk, φ with ℓFAT;
8: end for
9: // Early Stop if fk = wk ◦ φ fails to find new features.

10: if Training accuracy of fk is smaller than p then
11: Set K = k − 1 and terminate the loop;
12: end if
13: if k > 1 then
14: // Hence it doesnot need to maintain all historical classifiers.
15: Update wk ← (wk−1, wk);
16: end if
17: Split Dtr into groups Da

k ,Dr
k according to fk;

18: // Hence it doesnot need to maintain all historical subsets.
19: Update groups Ga ← {Da

k}, Gr ← {Dr
k};

20: end for
21: return f = w ◦ φ;

Table 1. OOD performance on COLOREDMNIST datasets initialized with different representations.

COLOREDMNIST-025 COLOREDMNIST-01
ERM-NF ERM BONSAI FAT ERM-NF ERM BONSAI FAT

ERM 17.14 (±0.73) 12.40 (±0.32) 11.21 (±0.49) 17.27 (±2.55) 73.06 (±0.71) 73.75 (±0.49) 70.95 (±0.93) 76.05 (±1.45)
IRMV1 67.29 (±0.99) 59.81 (±4.46) 70.28 (±0.72) 70.57 (±0.68) 76.89 (±3.25) 73.84 (±0.56) 76.71 (±4.10) 82.33 (±1.77)
V-REX 68.62 (±0.73) 65.96 (±1.29) 70.31 (±0.66) 70.82 (±0.59) 83.52 (±2.52) 81.20 (±3.27) 82.61 (±1.76) 84.70 (±0.69)
IRMX 67.00 (±1.95) 64.05 (±0.88) 70.46 (±0.42) 70.78 (±0.61) 81.61 (±1.98) 75.97 (±0.88) 80.28 (±1.62) 84.34 (±0.97)
IB-IRM 56.09 (±2.04) 59.81 (±4.46) 70.28 (±0.72) 70.57 (±0.68) 75.81 (±0.63) 73.84 (±0.56) 76.71 (±4.10) 82.33 (±1.77)
CLOVE 58.67 (±7.69) 65.78 (±0.00) 65.57 (±3.02) 65.78 (±2.68) 75.66 (±10.6) 74.73 (±0.36) 72.73 (±1.18) 75.12 (±1.08)
IGA 51.22 (±3.67) 62.43 (±3.06) 70.17 (±0.89) 67.11 (±3.40) 74.20 (±2.45) 73.74 (±0.48) 74.72 (±3.60) 83.46 (±2.17)
FISHR 69.38 (±0.39) 67.74 (±0.90) 68.75 (±1.10) 70.56 (±0.97) 77.29 (±1.61) 82.23 (±1.35) 84.19 (±0.66) 84.26 (±0.93)
ORACLE 71.97 (±0.34) 86.55 (±0.27)

2021), CLOvE (Wald et al., 2021), IGA (Koyama and Yamaguchi, 2020) and Fishr (Rame et al., 2021) for OOD training, in
order to evaluate the practical quality of the learned features. The feature representations are frozen once initialized for
the OOD training as fine-tuning the featurizer can distort the pre-trained features (Kumar et al., 2022b). We also compare
FAT with the common training approach that uses unfrozen ERM features, denoted as ERM-NF. For Bonsai, we trained 2
rounds following Zhang et al. (2022), while for FAT the automatic termination stopped at round 2 in COLOREDMNIST-025
and round 3 in COLOREDMNIST-01. For ERM, we pre-trained the model with the same number of overall epochs as FAT
in COLOREDMNIST-01, while early stopping at the number of epochs of 1 round in COLOREDMNIST-025 to prevent
over-fitting. All methods adopted the same backbone and the same training protocol following previous works (Zhang et al.,
2022; Chen et al., 2022). More details are given in Appendix H.1.

The results are reported in Table 1. It can be found that ERM will learn insufficiently good features under both stronger
spurious correlations and invariant correlations, confirming our discussion in Sec. 3. Besides, Bonsai learns richer features
in COLOREDMNIST-025 and boosts OOD performance, but Bonsai sometimes leads to suboptimal performances in
COLOREDMNIST-01, which could be caused by the unstable feature learning in Bonsai. In contrast, FAT consistently
improves the OOD performance of all OOD objectives for all the COLOREDMNIST datasets, demonstrating the advances
of direct feature learning control in FAT than Bonsai and ERM.

Experiments on real-world benchmarks. We also compare FAT with ERM and Bonsai in 6 real-world OOD generalization



Towards Understanding Feature Learning in Out-of-Distribution Generalization

Table 2. OOD generalization performances on WILDS benchmark.

INIT. METHOD
CAMELYON17 CIVILCOMMENTS FMOW IWILDCAM AMAZON RXRX1

Avg. acc. (%) Worst acc. (%) Worst acc. (%) Macro F1 10-th per. acc. (%) Avg. acc. (%)

ERM DFR† 95.14 (±1.96) 77.34 (±0.50) 41.96 (±1.90) 23.15 (±0.24) 48.00 (±0.00) -
ERM DFR-s† - 82.24 (±0.13) 56.17 (±0.62) 52.44 (±0.34) - -

Bonsai DFR† 95.17 (±0.18) 77.07 (±0.85) 43.26 (±0.82) 21.36 (±0.41) 46.67 (±0.00) -
Bonsai DFR-s† - 81.26 (±1.86) 58.58 (±1.17) 50.85 (±0.18) - -

FAT DFR† 95.28 (±0.19) 77.34 (±0.59) 43.54 (±1.26) 23.54 (±0.52) 49.33 (±0.00) -
FAT DFR-s† - 79.56 (±0.38) 57.69 (±0.78) 52.31 (±0.38) - -

ERM ERM 74.30 (±5.96) 55.53 (±1.78) 33.58 (±1.02) 28.22 (±0.78) 51.11 (±0.63) 30.21 (±0.09)
ERM GroupDRO 76.09 (±6.46) 69.50 (±0.15) 33.03 (±0.52) 28.51 (±0.58) 52.00 (±0.00) 29.99 (±0.13)
ERM IRMv1 75.68 (±7.41) 68.84 (±0.95) 33.45 (±1.07) 28.76 (±0.45) 52.00 (±0.00) 30.10 (±0.05)
ERM V-REx 71.60 (±7.88) 69.03 (±1.08) 33.06 (±0.46) 28.82 (±0.47) 52.44 (±0.63) 29.88 (±0.35)
ERM IRMX 73.49 (±9.33) 68.91 (±1.19) 33.13 (±0.86) 28.82 (±0.47) 52.00 (±0.00) 30.10 (±0.05)

Bonsai ERM 73.98 (±5.30) 63.34 (±3.49) 31.91 (±0.51) 28.27 (±1.05) 48.58 (±0.56) 24.22 (±0.44)
Bonsai GroupDRO 72.82 (±5.37) 70.23 (±1.33) 33.12 (±1.20) 27.16 (±1.18) 42.67 (±1.09) 22.95 (±0.46)
Bonsai IRMv1 73.59 (±6.16) 68.39 (±2.01) 32.51 (±1.23) 27.60 (±1.57) 47.11 (±0.63) 23.35 (±0.43)
Bonsai V-REx 76.39 (±5.32) 68.67 (±1.29) 33.17 (±1.26) 25.81 (±0.42) 48.00 (±0.00) 23.34 (±0.42)
Bonsai IRMX 64.77 (±10.1) 69.56 (±0.95) 32.63 (±0.75) 27.62 (±0.66) 46.67 (±0.00) 23.34 (±0.40)

FAT ERM 77.80 (±2.48) 68.11 (±2.27) 33.13 (±0.78) 28.47 (±0.67) 52.89 (±0.63) 30.66 (±0.42)
FAT GroupDRO 80.41 (±3.30) 71.29 (±0.46) 33.55 (±1.67) 28.38 (±1.32) 52.58 (±0.56) 29.99 (±0.11)
FAT IRMv1 77.97 (±3.09) 70.33 (±1.14) 34.04 (±0.70) 29.66 (±1.52) 52.89 (±0.63) 29.99 (±0.19)
FAT V-REx 75.12 (±6.55) 70.97 (±1.06) 34.00 (±0.71) 29.48 (±1.94) 52.89 (±0.63) 30.57 (±0.53)
FAT IRMX 76.91 (±6.76) 71.18 (±1.10) 33.99 (±0.73) 29.04 (±2.96) 52.89 (±0.63) 29.92 (±0.16)
table†DFR/DFR-s use an additional OOD dataset to evaluate invariant and spurious feature learning, respectively.

datasets curated by Koh et al. (2021) that contain complicated features and distribution shifts. The learned features are
evaluated with several representative state-of-the-art OOD objectives in WILDS, including GroupDro (Sagawa* et al., 2020),
IRMv1 (Arjovsky et al., 2019), VREx (Krueger et al., 2021) as well as IRMX (Chen et al., 2022). By default, we train
ERM, Bonsai and FAT the same number of steps, and kept the rounds of Bonsai and FAT the same (though Bonsai still
requires one more round for feature synthesis). The only exception is in RXRX1 where both Bonsai and FAT required more
steps than ERM to converge. We use the same evaluation protocol following the practice in the literature (Koh et al., 2021;
Shi et al., 2022; Zhang et al., 2022; Chen et al., 2022) to ensure a fair comparison. More details are given in Appendix H.2.

In addition to OOD objectives, we evaluate the learned features with Deep Feature Reweighting (DFR) (Kirichenko et al.,
2022). DFR uses an additional OOD validation set where the spurious correlation does not hold, to perform logistic
regression based on the learned features. Intuitively, DFR can serve as a proper measure for the quality of learned invariant
features (Izmailov et al., 2022). When the original dataset does not provide a proper OOD validation set, e.g., CAMELYON17,
we use an alternative implementation based on a random split of the training and test data to perform the invariant feature
quality measure (Rosenfeld et al., 2022). Similarly, we also report DFR-s by regression with the environment labels (when
available) to evaluate the spurious feature learning of different methods. More details are given in Appendix H.2.2.

The results are presented in Table 2. Similarly, when the tasks grow more challenging and neural architectures be-
come more complicated, the ERM learned features can have a lower quality as discussed Sec. 3. For example, ERM
can not sufficiently learn all useful features in FMoW, while ERM can learn more spurious correlations in CivilCom-
ments. Moreover, it can also be observed the instability of Bonsai in learning richer features that Bonsai even under-
performs ERM in rich feature learning and OOD generalization in multiple datasets. In contrast, FAT consistently
achieves the best invariant feature learning performance across various challenging realistic datasets. Meanwhile, com-
pared to ERM and Bonsai, FAT also reduces over-fitting to the spurious feature learning led by spurious correlations.
As a result, FAT achieves consistent improvements when the learned features are applied to various OOD objectives.

Table 3. Performances in various sets at different FAT rounds.

COLOREDMNIST-025 ROUND-1 ROUND-2 ROUND-3

TRAINING ACC. 85.08± 0.14 71.87± 0.96 84.93± 1.26
RETENTION ACC. - 88.11± 4.28 43.82± 0.59
OOD ACC. 11.08± 0.30 70.64± 0.62 10.07± 0.26

The termination check in FAT. As elabo-
rated in Sec. E.2, a key difference between
FAT and previous rich feature learning al-
gorithms such as Bonsai is that FAT is able
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to access the intermediate feature represen-
tations and thus can perform the automatic
termination check and learn the desired features stably. To verify, we list the FAT performances in various subsets of
COLOREDMNIST-025 at different rounds in Table 3. By inspecting the retention accuracy, after FAT learns sufficiently
good features at Round 2, it is not necessary to proceed with Round 3 as it will destroy the already learned features and lead
to degenerated retention and OOD performance. More details and results are given in Appendix H.1.

H. More Details about the Experiments
In this section, we provide more details and the implementation, evaluation and hyperparameter setups in complementary to
the experiments in Sec. G.

H.1. More details about COLOREDMNIST experiments

Datasets. In the controlled experiments with COLOREDMNIST, we follow the evaluation settings as previous works (Ar-
jovsky et al., 2019; Zhang et al., 2022; Chen et al., 2022). In addition to the original COLOREDMNIST with
Etr = {(0.25, 0.1), (0.25, 0.2)} (denoted as COLOREDMNIST-025) where spurious features are better correlated with
labels, we also incorporate the modified one (denoted as COLOREDMNIST-01) with Etr = {(0.1, 0.2), (0.1, 0.25)} where
invariant features are better correlated with labels, since both cases can happen at real world.

Architecture and optimization. To ensure a fair comparison, we use 4-Layer MLP with a hidden dimension of 256 as
the backbone model for all methods, where we take the first 3 layers as the featurizer and the last layer as the classifier,
following the common practice (Gulrajani and Lopez-Paz, 2021; Koh et al., 2021). For the optimization of the models, we
use the Adam (Kingma and Ba, 2015) optimizer with a learning rate of 1e− 3 and a weight decay of 1e− 3. We report the
mean and standard deviation of the performances of different methods with each configuration of hyperparameters 10 times
with the random seeds from 1 to 10.

Implementation of ERM-NF and OOD objectives. For the common pre-training protocol with ERM, our implementation
follows the previous works (Zhang et al., 2022). Specifically, we first train the model with {0, 50, 100, 150, 200, 250}
epochs and then apply the OOD regularization of various objectives with a penalty weight of {1e1, 1e2, 1e3, 1e4, 1e5}.
We adopt the implementations from Zhang et al. (2022) for various OOD objectives, including IRMv1 (Arjovsky et al.,
2019),VREx (Krueger et al., 2021),IB-IRM (Ahuja et al., 2021),CLOvE (Wald et al., 2021),IGA (Koyama and Yamaguchi,
2020) and Fishr (Rame et al., 2021) Besides, we also incorporate the state-of-the-art OOD objective proposed by Chen et al.
(2022) that is able to resolve both COLOREDMNIST-025 and COLOREDMNIST-01.

Evaluation of feature learning methods. For the sake of fairness in comparison, by default, we train all feature learning
methods by the same number of epochs and rounds (if applicable). For the implementation Bonsai, we strictly follow
the recommended setups provided by Zhang et al. (2022), 6 where we train the model with Bonsai by 2 rounds with 50
epochs for round 1, 500 epochs for round 2, and 500 epochs for the synthesize round in COLOREDMNIST-025. While
in COLOREDMNIST-01, round 1 contains 150 epochs, round 2 contains 400 epochs and the synthesize round contains
500 epochs. For the implementation of FAT, we train the model with 2 rounds of FAT in COLOREDMNIST-025, and 3
rounds of FAT in COLOREDMNIST-01, where each round contains 150 epochs. While for the retain penalty, we find using
a fixed number of 0.01 already achieved sufficiently good performance. ERM only contains 1 round, for which we train
the model with 150 epochs in COLOREDMNIST-025 as we empirically find more epochs will incur severe performance
degeneration in COLOREDMNIST-025. While in COLOREDMNIST-01, we train the model with ERM by 500 epochs
to match up the overall training epochs of FAT and Bonsai. We provide a detailed distribution of the number of epochs in
each round in Table 4. It can be found that, although Bonsai costs 2− 3 times of training epochs more than ERM and FAT,
Bonsai does not necessarily find better feature representations for OOD training, as demonstrated in Table. 1. In contrast,
FAT significantly and consistently learns richer features given both COLOREDMNIST-025 and COLOREDMNIST-01 than
ERM, which shows the superiority of FAT.

6https://github.com/TjuJianyu/RFC

https://github.com/TjuJianyu/RFC
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Table 4. Number of epochs in each round of various feature learning algorithms.
CMNIST-025 ROUND-1 ROUND-2 ROUND-3 SYN. ROUND

ERM 150 - - -
BONSAI 50 150 - 500
FAT 150 150 - -

CMNIST-01 ROUND-1 ROUND-2 ROUND-3 SYN. ROUND

ERM 500 - - -
BONSAI 150 400 - 500
FAT 150 150 150 -

The termination check in FAT. A key difference between FAT and previous rich feature learning algorithms is that FAT
is able to perform the automatic termination check and learn the desired features stably. As elaborated in Sec. E.2, FAT can
terminate automatically by inspecting the retention accuracy. To verify, we list the FAT performances in various subsets
of COLOREDMNIST-025 and COLOREDMNIST-01 at different rounds. We use a termination accuracy of 130%, which
trades off the exploration (i.e., training accuracy as 80%) and the retention (i.e., retention accuracy as 50%) properly. As
shown in Table 5, in COLOREDMNIST-025 (COLOREDMNIST-01), after FAT learns sufficiently good features at Round 2
(3), respectively, it is not necessary to proceed with Round 3 (4) as it will destroy the already learned features and lead to
degenerated retention performance (i.e., the sum of training and retention accuracies is worse than 130%.

Table 5. Performances in various sets at different FAT rounds.

COLOREDMNIST-025 ROUND-1 ROUND-2 ROUND-3

TRAINING ACC. 85.08± 0.14 71.87± 0.96 84.93± 1.26
RETENTION ACC. - 88.11± 4.28 43.82± 0.59
OOD ACC. 11.08± 0.30 70.64± 0.62 10.07± 0.26

COLOREDMNIST-01 ROUND-1 ROUND-2 ROUND-3 ROUND-4

TRAINING ACC. 88.63± 0.15 74.25± 1.23 86.07± 0.36 77.29± 0.24
RETENTION ACC. - 85.91± 1.78 48.05± 1.39 29.09± 1.15
OOD ACC. 73.50± 0.41 17.32± 2.69 85.40± 0.54 12.48± 2.85

H.2. More details about WILDS experiments

In this section, we provide more details about the WILDS datasets used in the experiments as well as the evaluation setups.

H.2.1. DATASET DESCRIPTION.

To evaluate the feature learning performance given data from realistic scenarios, we select 6 challenging datasets from
WILDS (Koh et al., 2021) benchmark. The datasets contain various realistic distribution shifts, ranging from domain
distribution shifts, subpopulation shifts and the their mixed. A summary of the basic information and statistics of the selected
WILDS datasets can be found in Table. 6, Table. 7, respectively. In the following, we will give a brief introduction to each of
the datasets. More details can be found in the WILDS paper (Koh et al., 2021).

Table 6. A summary of datasets information from WILDS.
Dataset Data (x) Class information Domains Metric Architecture

AMAZON Product reviews Star ratings (5 classes) 7,676 reviewers 10-eth percentile acc. DistillBERT
CAMELYON17 Tissue slides Tumor (2 classes) 5 hospitals Avg. acc. DenseNet-121
CIVILCOMMENTS Online comments Toxicity (2 classes) 8 demographic groups Wr. group acc. DistillBERT
FMOW Satellite images Land use (62 classes) 16 years x 5 regions Wr. group acc. DenseNet-121
IWILDCAM Photos Animal species (186 classes) 324 locations Macro F1 ResNet-50
RXRX1 Cell images Genetic treatments (1,139 classes) 51 experimental batches Avg. acc ResNet-50

Amazon. We follow the WILDS splits and data processing pipeline for the Amazon dataset (Ni et al., 2019). It provides 1.4
million comments collected from 7, 676 Amazon customers. The task is to predict the score (1-5 stars) for each review. The
domains d are defined according to the reviewer/customer who wrote the product reviews. The evaluation metric used for
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Table 7. A summary of datasets statistics from WILDS.

Dataset # Examples # Domains

train val test train val test

AMAZON 1,000,124 100,050 100,050 5,008 1,334 1,334
CAMELYON17 302,436 34,904 85,054 3 1 1
CIVILCOMMENTS 269,038 45,180 133,782 - - -
FMOW 76,863 19,915 22,108 11 3 2
IWILDCAM 129,809 14,961 42,791 243 32 48
RXRX1 40,612 9,854 34,432 33 4 14

the task is 10th percentile of per-user accuracies in the OOD test sets, and the backbone model is a DistilBert (Sanh et al.,
2019), following the WILDS protocol (Koh et al., 2021).

Camelyon17. We follow the WILDS splits and data processing pipeline for the Camelyon17 dataset (Bándi et al., 2019).
It provides 450, 000 lymph-node scans from 5 hospitals. The task in Camelyon17 is to take the input of 96× 96 medical
images to predict whether there exists a tumor tissue in the image. The domains d refers to the index of the hospital where
the image was taken. The training data are sampled from the first 3 hospitals where the OOD validation and test data are
sampled from the 4-th and 5-th hospital, respectively. We will use the average accuracy as the evaluation metric and a
DenseNet-121 (Huang et al., 2017) as the backbone for the featurizer.

CivilComments. We follow the WILDS splits and data processing pipeline for the CivilComments dataset (Borkan et al.,
2019). It provides 450, 000 comments collected from online articles. The task is to classify whether an online comment text
is toxic or non-toxic. The domains d are defined according to the demographic features, including male, female, LGBTQ,
Christian, Muslim, other religions, Black, and White. CivilComments is used to study the subpopulation shifts, here we
will use the worst group/domain accuracy as the evaluation metric. As for the backbone of the featurizer, we will use a
DistillBert (Sanh et al., 2019) following WILDS (Koh et al., 2021).

FMoW. We follow the WILDS splits and data processing pipeline for the FMoW dataset (Christie et al., 2018). It provides
satellite images from 16 years and 5 regions. The task in FMoW is to classify the images into 62 classes of building or land
use categories. The domain is split according to the year that the satellite image was collected, as well as the regions in the
image which could be Africa, America, Asia, Europe or Oceania. Distribution shifts could happen across different years and
regions. The training data contains data collected before 2013, while the validation data contains images collected within
2013 to 2015, and the test data contains images collected after 2015. The evaluation metric for FMoW is the worst region
accuracy and the backbone model for the featurizer is a DenseNet-121 (Huang et al., 2017).

iWildCam. We follow the WILDS splits and data processing pipeline for the iWildCam dataset (Beery et al., 2020). It is
consist of 203, 029 heat or motion-activated photos of animal specifies from 323 different camera traps across different
countries around the world. The task of iWildCam is to classify the corresponding animal specifies in the photos. The
domains is split according to the locations of the camera traps which could introduce the distribution shifts. We will use the
Macro F1 as the evaluation metric and a ResNet-50 (He et al., 2016) as the backbone for the featurizer.

RxRx1. We follow the WILDS splits and data processing pipeline for the RxRx1 dataset (Taylor et al., 2019). The input is
an image of cells taken by fluorescent microscopy. The cells can be genetically perturbed by siRNA and the task of RxRx1
is to predict the class of the corresponding siRNA that have treated the cells. There exists 1, 139 genetic treatments and
the domain shifts are introduced by the experimental batches. We will use the average accuracy of the OOD experimental
batches as the evaluation metric and a ResNet-50 (He et al., 2016) as the backbone for the featurizer.

H.2.2. TRAINING AND EVALUATION DETAILS.

We follow previous works to implement and evaluate different methods used in our experiments (Koh et al., 2021). The
information of the referred paper and code is listed as in Table. 8.

The general hyperparemter setting inherit from the referred codes and papers, and are as listed in Table 9. We use the same
backbone models to implement the featurizer (He et al., 2016; Huang et al., 2017; Sanh et al., 2019). By default, we repeat
the experiments by 3 runs with the random seeds of 0, 1, 2. While for Camelyon17, we follow the official guide to repeat 10
times with the random seeds from 0 to 9.
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Table 8. The information of the referred paper and code.
Paper Commit Code

WILDS (Koh et al., 2021) v2.0.0 https://wilds.stanford.edu/
Fish (Shi et al., 2022) 333efa24572d99da0a4107ab9cc4af93a915d2a9 https://github.com/YugeTen/fish
Bonsai (Zhang et al., 2022) 33b9ecad0ce8b3462793a2da7a9348d053c06ce0 https://github.com/TjuJianyu/RFC
DFR (Kirichenko et al., 2022; Izmailov et al., 2022) 6d098440c697a1175de6a24d7a46ddf91786804c https://github.com/izmailovpavel/spurious_feature_learning

Table 9. General hyperparameter settings for the experiments on WILDS.
Dataset AMAZON CAMELYON17 CIVILCOMMENTS FMOW IWILDCAM RXRX1

Num. of seeds 3 10 3 3 3 3
Learning rate 2e-6 1e-4 1e-5 1e-4 1e-4 1e-3
Weight decay 0 0 0.01 0 0 1e-5
Scheduler n/a n/a n/a n/a n/a Cosine Warmup
Batch size 64 32 16 32 16 72
Architecture DistilBert DenseNet121 DistilBert DenseNet121 ResNet50 ResNet50
Optimizer Adam SGD Adam Adam Adam Adam
Domains in minibatch 5 3 5 5 10 10
Group by Countries Hospitals Demographics× toxicity Times × regions Trap locations Experimental batches
Training epochs 200 10 5 12 9 90

OOD objective implementations. We choose 4 representative OOD objectives to evaluate the quality of learned features,
including GroupDRO (Sagawa* et al., 2020), IRMv1 (Arjovsky et al., 2019), VREx (Krueger et al., 2021) and IRMX (Chen
et al., 2022). We implement the OOD objectives based on the code provided by Shi et al. (2022). For each OOD objective,
by default, we follow the WILDS practice to sweep the penalty weights from the range of {1e− 2, 1e− 1, 1, 1e1, 1e2}, and
perform the model and hyperparameter selection via the performance in the provided OOD validation set of each dataset.
Due to the overwhelming computational overhead required by large datasets and resource constraints, we tune the penalty
weight in iWildCam according to the performance with seed 0, which we empirically find yields similar results as full
seed tunning. Besides in Amazon, we adopt the penalty weights tuned from CivilComments since the two datasets share a
relatively high similarity, which we empirically find yields similar results as full seed tunning, too. On the other hand, it
raises more challenges for feature learning algorithms in iWildCam and Amazon.

Deep Feature Reweighting (DFR) implementations. For the implementation of DFR (Kirichenko et al., 2022; Izmailov
et al., 2022), we use the code provided in Izmailov et al. (2022). By default, DFR considers the OOD validation as an
unbiased dataset and adopts the OOD validation set to learn a new classifier based on the frozen features from the pre-trained
featurizer. We follow the same implementation and evaluation protocol when evaluating feature learning quality in FMoW
and CivilComments. However, since Camelyon17 does not have the desired OOD validation set, we follow the “cheating”
protocol as in Rosenfeld et al. (2022) to perform the logistic regression based the train and test sets. Note that when
“cheating”, the model is not able to access the whole test sets. Instead, the logistic regression is conducted on a random split
of the concatenated train and test data. Moreover, for Amazon and iWildCam, we find the original implementation fails to
converge possibly due to the complexity of the task, and the relatively poor feature learning quality. Hence we implement a
new logistic regression based on PyTorch (Paszke et al., 2019) optimized with SGD, and perform DFR using “cheating”
protocol based on the OOD validation set and test set. Besides, we find neither the two aforementioned implementations or
dataset choices can lead to DFR convergence in RxRx, which we will leave for future investigations.

Feature learning algorithm implementations. We implement all the feature learning methods based on the Fish code
framework. For the fairness of comparison, we set all the methods to train the same number of steps or rounds (if applicable)
in WILDS datasets. The only exception is in RxRx1, where both Bonsai and FAT require more steps to converge, since the
initialized featurizer has a relatively large distance from the desired featurizer in the task. We did not train the model for
much too long epochs as Izmailov et al. (2022) find that it only requires 2− 5 epochs for deep nets to learn high-quality
invariant features. The final model is selected based on the OOD validation accuracy during the training. Besides, we tune
the retain penalty in FAT by searching over {1e− 2, 1e− 1, 0.5, 1, 2, 10}, and finalize the retain penalty according to the
OOD validation performance. We list the detailed training steps and rounds setups, as well as the used retain penalty in FAT
in Table 10.

For ERM, we train the model simply by the overall number of steps, except for RxRx1 where we train the model by 15, 000
steps following previous setups (Shi et al., 2022). Bonsai and FAT directly adopt the setting listed in the Table 10. Besides,

https://wilds.stanford.edu/
https://github.com/YugeTen/fish
https://github.com/TjuJianyu/RFC
https://github.com/izmailovpavel/spurious_feature_learning
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Table 10. Hyperparameter setups of feature learning algorithms for the experiments on WILDS.
Dataset AMAZON CAMELYON17 CIVILCOMMENTS FMOW IWILDCAM RXRX1

Overall steps 31,000 10,000 50,445 9,600 48,000 20,000
Approx. epochs 4 10,000 3 4 10 10
Num. of rounds 3 2 3 2 2 10
Steps per round 10,334 5,000 16,815 4,800 10 10
FAT Retain penalty 2.0 1e-2 1e-2 1.0 0.5 10

Bonsai will adopt one additional round for synthesizing the pre-trained models from different rounds. Although Zhang et al.
(2022) requires Bonsai to train the two rounds for synthesizing the learned features, we empirically find additional training
steps in synthesizing will incur overfitting and worse performance. Moreover, as Bonsai requires propagating 2K − 1
batches of the data that may exceed the memory limits, we use a smaller batch size when training Bonsai in iWildCam (8)
and RxRx1 (56).

H.3. Software and hardware

We implement our methods with PyTorch (Paszke et al., 2019). For the software and hardware configurations, we ensure the
consistent environments for each datasets. We run all the experiments on Linux servers with NVIDIA V100 graphics cards
with CUDA 10.2.


