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Abstract:
Communication is often necessary for robot teams to collaborate and complete
a decentralized task. Multi-agent reinforcement learning (MARL) systems allow
agents to learn how to collaborate and communicate to complete a task. These
domains are ubiquitous and include safety-critical domains such as wildfire fight-
ing, traffic control, or search and rescue missions. However, critical vulnerabil-
ities may arise in communication systems as jamming the signals can interrupt
the robot team. This work presents a framework for applying black-box adver-
sarial attacks to learned MARL policies by manipulating only the communication
signals between agents. Our system only requires observations of MARL poli-
cies after training is complete, as this is more realistic than attacking the training
process. To this end, we imitate a learned policy of the targeted agents without
direct interaction with the environment or ground truth rewards. Instead, we infer
the rewards by only observing the behavior of the targeted agents. Our frame-
work reduces reward by 201% compared to an equivalent baseline method and
also shows favorable results when deployed in real swarm robots. Our novel at-
tack methodology within MARL systems contributes to the field by enhancing our
understanding on the reliability of multi-agent systems.
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1 Introduction

Effective communication among robots is essential for information exchange, collaboration, and
collective decision-making. It plays a vital role in various robotics domains, including collaborative
manipulation [1] and multi-robot navigation [2]. Ensuring reliable and secure communication is
crucial for maintaining the overall system’s performance, safety, and integrity.

Multi-agent reinforcement learning (MARL) has been a powerful tool to train agents in complex
domains but the literature is lacking in studies about the vulnerabilities and defenses of these sys-
tems. MARL techniques that utilize communication have been widely applied to scenarios where
multiple agents need to collaborate for a shared goal in robotics tasks such as autonomous driving
[3, 4, 5] and path planning [2, 6, 7]. Researchers examined various aspects of communication in
MARL, including when to communicate [8], who to communicate with [9], and different types of
graph-structured communication [10, 11]. Some of these frameworks use binarized communication
to pursue Low-Size, -Weight, and -Power (Low-SWAP) systems [11] which causes agents to com-
municate in a highly efficient manner. Malicious actors can compromise these systems and endanger
the lives of many [12].

There are only a few works that assume the communication channel can be imperfect [13] or can
be attacked [14] paralleling with its computer vision counterpart [15, 16, 17, 18, 19], which makes
it crucial to understand these weaknesses such that we can create appropriate defense mechanisms.
In this work, we learn to attack the communication signals within a multi-robot team discretely
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Figure 1: Adversarial Communication Pipeline: Multi-agent team (left) communicates information
for decentralized coordination; an adversarial system (middle) learns a model of the teams’ activities
and communication patterns and (right) broadcasts counterfeit team messages to trick team members
towards pursuing low-priority activities.

without any trace of the training process on the target robots. First, we learn surrogate policies from
the observation, messages, and actions of the target robots which are accessible from malware or
insecure networks [20, 21, 22, 23, 24]. Second, we estimate the agent rewards from their behaviors
instead of using rewards from the environment. Finally, we use an actor-critic framework completely
offline to learn how to hijack the targeted system without environment interactions. Our method
requires the least prior knowledge as compared to prior work and results in robots traversing to the
wrong location and drastically hindering team performance.

Contributions:

1. We propose an actor-critic framework that enables our adversarial policy to learn without
direct interaction with the target agents or the environment nor the ground truth agent re-
ward. Our framework manipulates the behaviors of target robots with the communication
attacking strategy learned through surrogate target policies and transferable to real ones.
Additionally, we introduce a differentiable framework for training adversarial communica-
tion policies that can modify digital communication signals [10, 11].

2. We demonstrate the effectiveness of our algorithm in three distinct multi-agent domains:
predator-capture-prey, partially observable predator-prey, and speaker-listener. Across
these domains, our method surpasses the baseline approach by reducing the reward of the
target agents by 465% compared to a baseline approach.

3. We validate the applicability of our algorithm on physical swarm robots in the Robotarium
[25]. By acting as a strong adversary, our method reduces the reward achieved by the
target agents by an average of 201% across all three environments compared to a baseline
strategy, which employs an equivalent random flipping approach.

2 Related Work

In this section, we describe how multi-agent reinforcement learning can be used to control robots in a
Dec-POMDP setting. We also provide an overview of the role of communication in a MARL frame-
work and highlight the vulnerability of communication to adversarial attacks, leading to potential
system failures and safety risks.

2.1 Multi-Agent Reinforcement Learning

In recent years, communication has played a crucial role in enhancing coordination and collaboration
among robots in multi-agent reinforcement learning (MARL) frameworks [8, 9, 10, 26, 11, 27, 28].
Compared to previous works in learning policies [29, 30], recent MARL frameworks have enabled
learning in more complex environments and train multiple agents. These MARL communication
frameworks have been used in several robotics applications such as multi-robot path planning [2]
and cooperative driving [31]. Various approaches have been proposed, including trainable differen-
tiable communication channels [26, 27], partially observable environments [28], and soft-attention
networks for selective communication [8, 9]. However, the effectiveness of communication is threat-
ened by adversarial attacks, which can lead to system failures and safety risks, particularly in do-
mains like self-driving vehicles [32]. This paper aims to evaluate the robustness of communication
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in MARL systems, building upon prior advancements in communication techniques of the binarized
communication approach [11] that improves bandwidth efficiency. Key to note is that our adversar-
ial policy does not make any assumptions on targets other than inter-agent binarized communication.
Our adversarial attack can hypothetically be utilized in any framework as long as we can learn good
surrogate policies of target agents. We aim to show the generality of our approach in future work.

2.2 Adversarial Attacks in MARL and Communication

Adversarial attacks were first studied within the context of computer vision, where small perturba-
tions to the input could induce faulty outputs [18]. Adversarial attacks aim to deteriorate model
performance in tasks like classification [16, 17, 19], segmentation [33, 34, 35], or object detec-
tion [36, 37]. These ideas were later extended to reinforcement learning [38, 39], altering agent
actions through perturbations in environment observations [40].

In adversarial attacks, two common categories are white-box attacks, which assume knowledge of
neural network weights, and black-box attacks, which assume limited model parameter information.
White-box attacks typically optimize objectives using methods such as Fast Gradient Sign Method
(FGSM) [16, 17] or Projected Gradient Descent (PGD) [19]. Meanwhile, black-box attacks rely on
surrogate models that approximate decision boundaries such that the adversarial attacking targeting
on it could be transferred to the original models. Input-output pairs in black-box scenarios can
also be augmented by FGSM [18] or PGD [19] to generate a synthetic dataset that induces similar
decision boundaries. We utilize black box attacks with augmentation similar to FGSM for first-order
approximation of our surrogate models.

Prior work [41] has trained an adversarial communication protocol in a multi-agent setting by using
a reinforcement learning agent to optimize the adversarial policy. However, this approach requires
direct interaction with the environment and is impractical as the training process would be easily
detected by observers of the system. To address this limitation, we propose a black box setting and
employ transfer attacks [42], training a surrogate model to mimic the target model. Furthermore,
our work distinguishes itself by assuming a “man-in-the-middle” attack, where an interceptor subtly
flips the aggregated binarized communication vectors. This is in contrast to previous assumptions of
a single target victim agent with a limited number (≤ N−1

2 ) of potentially malicious messages [14].

3 Problem Formulation

We ground our problem in a Decentralized Partially Observable Markov Decision Process (Dec-
POMDP) formalism which is a 10-tuple of ⟨S,M,A, P,R,Υ, O,Π, N, γ⟩. S is the state set of the
environment and M is the message state set. For each agent i ∈ N := 1, ..., N , the agent chooses an
action ai ∈ A at state si ∈ S. The transition function is denoted by P (S′|S,A). Each agent has its
own reward based on global state-actions ri = Ri(S,A) and γ ∈ [0, 1) as the discount factor. Since
the environment is partially observable, each agent also has its own individual partial observation
vi ∈ Υ which is produced by the observation function Υ = O(S). Agents can have two policies: an
action policy πa

i (ai|τi) and a message policy πc
i (m

out
i |τi). These are both conditioned on their own

partial observations and the messages received from other communicative agents τi = {vi,M\mi}.

Figure 2: Adversarial Policy at Test-Time: Our adversarial attacking policy πadv changes the mes-
sages from the message policy πc such that the receiving agents are maximally disrupted.
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We model a single adversarial policy πadv(δ|Υ,Mout) that has access to the partial observations
Υ, message outputs Mout of all agents and produces adversarial signal δ. The partial observations
could be gathered by the adversary by shadowing the relevant targeted agents. We generate a mali-
cious revised communication, denoted as Madv , by combining the perturbation δ with the original
messages Mout sent to each agent, formulated as Madv = δ ⊙ Mout. Figure 2 shows how the
adversarial policy πadv influences the target policies. Here we consider the transition and policies
as deterministic ones: S′ = P (S,A), ai = πa

i (τi), m
out
i = πc

i (τi) and δ = πadv(Υ,Mout).

4 Methodology

In this section, we define the design choices for training our adversarial communication policy. The
goal of the policy is to minimize the reward of the victim agents while minimizing the difference
between the original and tampered communication vector. Algorithm 1 provides an overview of our
overall training procedure: 1) Learning a surrogate policy, 2) Learning an actor-critic for the ad-
versarial policy, and 3) Updating the actor with differentiable binary communication. We presume
access to the observations, messages, and actions of the target agents, assuming that we have suc-
cessfully intercepted the communication protocol of the multi-agent system. However, we do not
assume access to ground truth rewards. We also assume a binary communication channel of 16-bits
but further studies could extend our work to remove this assumption.

Algorithm 1: Adversarial Communication Pseudocode
Input: D(Υ(Observations),M(Messages), A(Actions))
for i = 0, 1, 2 ... do

for agent j=1 to N do
Sample batch of observation, message, actions: (υj , υ′

j) ∼ Υ, (mj ,m
′
j) ∼M,aj ∼ A

Update the surrogate policy πsurr
j (aj |υj ,mj)

end
Compute targets

Radv = − 1

N

∑
j

log(πsurr
j (aj |υj ,mj)) (1)

y = Radv + γQϕ,trgt(Υ
′, A′)|A′=Πa

trgt,surr(τ
′
i )

(2)

Update the adversarial critic with one step of gradient descent

ϕ← ϕ−∇ϕ(Qϕ(Υ, A)− y)2) (3)
Update the adversarial policy with one step of gradient descent

θ ← θ +∇θ(Qϕ(Υ, Aadv)− Cflip)|Aadv=Πa
surr(υj ,madv

j ),Madv=δ⊙Mout,δ=πadv
θ (Υ,Mout)

(4)
end

First, we train surrogate policies to imitate the real policies (Section 4.1). We can then learn a Q-
function for the adversarial policy by assigning rewards based upon the surrogate policies (Eq. 1)
and using the Bellman equation to update the critic (Eq. 2, 3). Details are described in Section 4.3.
Finally, the adversarial policy is updated with the differentiable binary flipping mechanism (Eq. 4)
and described in Section 4.2. We include hyperparameters in Appendix B.2 for more details.

4.1 Learning a Surrogate Policy

As our method is a black-box attack, we assume we do not have access to the ground truth policies
of the agents we are attacking. To this end, we learn a surrogate policy (πsurr) for each agent
we are attacking, where we assume access to a dataset D(Υ,M,A) consisting of observations,
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communication, action pairs from victim agents. The surrogate policies are used in two ways as
described in the next section: 1) as a reward signal to learn a critic and 2) as a mechanism to
simulate the adversarial output into real agent actions. To obtain a similar first-order approximation
of our surrogate policies to the real policies, we augment our dataset with neighboring data by
adding small Gaussian noise to each input to produce augmented input-output pairs. We find that this
augmentation is enough to obtain a useful surrogate policy and thus there is no need to achieve higher
precision using much more complicated methods like FSGM augmenting [18]. We use behavioral
cloning methods to minimize the log-likelihood between actions given the agent observations and
messages from other agents (log p(a|υ,m)).

4.2 Differentiable Targeting of Binary Communication Channels

In binary communication, each bit has two states: 0 and 1. Modifying a bit involves flipping it
to the other state. To make this process differentiable, we need to parameterize it similarly to its
continuous counterpart. We define the adversarial modified message Madv as the composition of
the original communication vector Mout and the parameterized modification δ [41].

Two methods are available to parameterize the adversarial policy. One method is to directly output
the adversarially revised communication vector as Madv = δ = πadv(Mout, υ), which we call the
“direct” form. The second method is called “flipping” whose adversarial policy output δ is used to
indicate which digit to flip such that we can write it in an XOR form using boolean algebra as in
Equation 5 where · means pointwise multiplication.

Madv = δ ·Mout + δ ·Mout = δ · (1−Mout) + (1− δ) ·Mout (5)

4.3 Learning an Actor-Critic for Adversarial Communication

Our goal for the adversarial policy is to secretly train itself without any interaction with the en-
vironment in a black-box setting such that the adversarial training process does not induce any
abnormalities and cannot be detected. This requirement raises a higher standard than recent work
[41], where the adversarial policy is trained with reinforcement learning and requires environment
interactions of the adversarial policy’s actions. We adapt the actor-critic framework to learn 1) a
critic (Qϕ(Υ, A)) that is learned within the observation-action (Υ, A) space of the target agents and
2) an actor policy that distorts the communication messages. We use the actor-critic framework as it
allows us to utilize the original Dec-POMDP of the target agents for the critic rather than building
a new separate MDP within the space of the observations and messages as actions. We train our
Q-function Qϕ(Υ, A) to use the observation-actions of all agents in the environment based on the
Bellman equation and TD error as shown in Equation 6.
L(ϕ) = EΥ,A,Radv,Υ′ [(Qϕ(Υ, A)− y)2], y = Radv + γQϕ,targ(Υ

′, A′)|A′=Πa
trgt,surr(τ

′
i )
. (6)

A question naturally arises: how do we get the reward Radv to train this Q-function? Because we do
not assume access to ground-truth rewards as previous literature does, we cannot utilize the negative
mean of all agent reward Radv = − 1

N

∑N
i=1 ri to optimally degrade performance on their own

metrics. Instead, we assign the reward for a certain state-action pair of all agents to be the inverse of
the log probability of the optimal action from the surrogate policy (Eq. 7).

Radv = − 1

N

∑
j

log(πsurr
j (aj |υj ,mj)) (7)

Intuitively, we are driving the critic to punish state-action pairs visited by the target policies. Another
interpretation is that the probability of the samples’ appearance is proportional to the exponential of
the reward in inverse reinforcement learning (IRL) theory [43, 44].

Given a well-trained critic, we can learn the adversarial policy πadv(δ|Υ,Mout) to modify the com-
munication messages to maximize the Q-function minus a bit flipping penalty Cflip = L1(δ). We
utilize the surrogate policies again to produce hypothetical actions given the modified communica-
tion vectors.
δ = πadv(Υ,Mout), Madv = δ · (1−Mout) + (1− δ) ·Mout, Aadv = Πa

surr(υj ,m
adv
j ) (8)
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The adversarial policy can then be updated through automatic differentiation to produce messages
that disturb the surrogate policies. With our method, we can train the adversarial communication
policy completely offline with the only assumption being that we have intercepted some observation,
message, and action pairs from the target policies.

5 Results and Discussion

5.1 Environments

We utilize three domains originally proposed by the MADDPG [28] paper and modified for our use:
Predator-Capture-Prey, Partially Observable Predator-Prey, and Speaker-Listener. In all environ-
ments, the goal is to maximize the number of collisions between the agents and the target. Further
details of these environments are included in Appendix B.1.

Predator-Capture-Prey (PCP) In this environment, a team of agents must capture an adversary
prey opponent. To emphasize the role of communication in this domain, capture agents cannot see
any other agents and have to make decisions based on the received messages from all observing
agents.

Partially Observable Predator-Prey (PO-PP) We modify the predator-prey environment such that
all predator agents can only receive the location of the prey when they are within a distance d of the
prey. The agents must communicate with each other to locate the position of to the prey. We remove
the capture agents from this environment.

Speaker-Listener (SL) In speaker-listener, a team of two agents, consisting of a speaker and a
listener must work together for the listener to reach a target color destination. The speaker must
communicate the target color to the listener and the listener must then go to the color destination.

5.2 Adversarial Communication Validation

In this section, we validate our secret adversarial communication channel performance by com-
paring it with a random flipping method where we flip the same number of bits as the adversarial
communication. We ensure that these two methods are always flipping the same number of bits in
the communication and compare the results across various numbers of bits flipped. The random
flipping baseline has been used in prior work [14] and represents a non-adaptive black-box attacker.
Therefore, we modify the adversarial policy loss function to L = −Q(v, a,m) + α · 1/Nc · L1(δ),
which regularizes the policy loss by the average sum of bits flipped. The coefficient α is used to
balance the adversarial policy performance with the number of bits flipped and we control the regu-
larization speed by annealing α = α0 ·max(ne − β, 0)/ϵ (where ne is the training episode number,
β is the regularizer intercept, and ϵ is the regularizer slope) to fine-tune the bits flipped. We evaluate
the reward and collision statistics by running 50 episodes for each adversarial policy checkpoint.
Training curves with the regularized loss and hyperparameteres can be found in Appendix B.2.

Figure 3 shows the rewards and collisions versus the episodes from which we get our adversarial
policy in the three environments. Agents’ reward and collisions from the adversarial communication
increase as the number of bits flipped decreases but are always less than those from random flipping.
This result validates the adversary property of our method and distinguishes it from random noise
with the same magnitude. We also find that the gap between the two methods is lower when the
number of bits flipped is lower, which is reasonable since it is difficult for adversarial policy to
attack the critical combinations of the communication digits in such a limitation. Interestingly,
the random flipping curve nearly remains horizontal in the PO-PP environment, which means that
random attack does not work at all regardless of the number of bits flipped. This is because the
predators do not only rely on communication but also on their own observations to take actions,
therefore, irregularly changing the communication will not confuse agents much, compared to the
adversarial policy which flips crucial bits and guides the agents to low-reward regions.
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(a) Average Rewards in PCP, PO-PP and SL respectively

(b) Average Collisions in PCP, PO-PP and SL respectively

Figure 3: The figure illustrates the comparison between the adversarial policy (blue) and random
flipping (red) in terms of average reward and number of collisions. Consistently, the adversarial
communication policy degrades team performance more effectively than the random policy across
all bit flip counts, leading to lower rewards and a lower number of collisions for agents.

5.3 Comparison of Adversarial Message Parameterization

In this section, we compare our adversarial policy, between the “flipping” regularization strategy
(as described in Section 4.2), and the “direct” strategy in terms of the normalized adversarial policy
performance score (Sc) which denotes how much worse an agent performs per flipping a single
digit (Appendix B.3). The training and testing settings are the same as section 5.2 and we record the
maximum normalized score of the flipping method (ours) to the direct method (Table 1).

Table 1: Reward and Collision Normalized Scores
PCP PO-PP SL

Reward Sc Collision Sc Reward Sc Collision Sc Reward Sc Collision Sc
Adv[Ours] 0.11±0.05 4.58±2.23 0.04±0.02 1.45±0.55 0.13±0.06 31.38±6.51
Adv[Direct] 0.01±0.01 1.07±0.14 0.02±0.01 0.80±0.07 0.11±0.05 30.72±6.19

Random 0.01±0.01 0.96±0.29 0.00±0.01 0.30±0.88 0.04±0.02 13.68±3.19

In the PCP and PO-PP environments, the direct strategy exhibits significantly worse reward and
collision scores, performing at 90.9% and 76.64% lower, respectively, compared to our approach.
This discrepancy arises from the failure of the direct strategy to effectively balance lowering agent
performance and reducing flipped bits. In these environments, the direct strategy results in 38.7%
and 65% bits flipped, whereas our approach achieves 7.5% and 28.3% of bits flipped. Interest-
ingly, in the SL environment, where there is a single message sender, one receiver, and 16 bits of
communication, the direct strategy performs relatively better due to the simpler balancing of perfor-
mance and regularization terms. Nevertheless, our approach still outperforms the direct strategy by
18.18% and 2.15% in terms of reward and collision, with 8.15% and 8.29% of bits flipped, respec-
tively. These findings highlight the critical importance of the flipping representation in facilitating
backward gradient computation.

5.4 Robotarium Physical Robot Demonstration

We demonstrate our results on a physical swarm robotics system (details in Appendix A). We utilize
state-based position control to drive each robot according to their policies both with the adversarial
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communication intervention and random flipping intervention. We show that our adversarial com-
munication policy drastically reduces reward in all three environment settings (Table 2) with the
same number of bits flipped per episode and averaged over three episodes.

Table 2: Attacked Agents Reward and Collision
PCP PO-PP SL

Reward Collision Reward Collision Reward Collision
Adv[Ours] -0.71±0.34 0.05±0.23 -0.71±0.34 0.05±0.23 -0.43±0.14 0.00±0.00
Random -0.18±0.33 0.29±0.45 0.02±0.56 0.20±0.40 -0.21±0.15 0.34±0.47

Figure 4: PCP Demonstration: Adversarial Communication (top) vs Random Flipping (bottom)

6 Limitations and Future Work

Our work relies on the assumption that the surrogate policies can accurately model the behaviors
of the true policies and depends on using the agent policies to estimate the ground-truth reward
function. A limitation of this approach is the amount of training data required to imitate the surrogate
policy, where the target agents may detect that information is being collected. Additionally, IRL
methods [44] could be used to learn a reward function that better reflects the ground truth reward.

Our work has important ethical implications as it could be used to attack important systems but can
improve the community’s ability to help improve the robustness of these systems by characterizing
the vulnerabilities. This work does not assume any strategies for the target agents to defend against
adversarial attacks. A defender may include a parity bit indicating whether the total number of
1-bits is even or odd to defend against our attacks on the communication. Additionally, defenders
could learn a response strategy by adjusting its communication scheme if they had access to previous
experiences with the attackers. Finally, if the adversarial attack is conducted on a multi-agent system
with interpretable communication vectors, it may be easy to identify that messages have been altered.
We leave adversarial attacks in this setting for future work.

7 Conclusion

We introduce a practical adversarial communication policy that does not need direct environment in-
teraction, enhancing the feasibility of adversarial attacks. Our method also utilizes a robust approach
for estimating agent rewards from observing behaviors only, without reward information. Lastly, we
pioneer a differentiable method for adversarial communication in discrete binary channels, flipping
bits for improved attack efficacy. Our algorithm is validated on real swarm robots in the Robotarium
platform. This showcases the versatility and real-world applicability of our approach. Our frame-
work opens new avenues for enhanced security and robustness in multi-agent systems, with potential
implications across various domains.
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Appendix A Real-World Demonstrations: Robotarium

We use Robotarium [20], a free remotely accessible swarm robotics research platform, to do real-
world demonstrations. It is equipped with a group of miniature differential drive robots ‘GRITSBots’
on a testbed measuring 130×90×180 cm, with a projector and an automatic overhead tracking sys-
tem. The GRITSBot’s main board has WiFienabled 160 MHz ESP8266 chip as the controller and
communication (54 MBit/s WiFi) and the stepper motors droven by Atmega 168 microcontroller
[20]. The global position is tracked using an overhead camera and then used down-stream for safety
checking and feedback control. Features of the robot environment are displayed by the projector for
visualization.

First, we need to run our algorithm in the robotarium simulator before implementing it on the real
platform. However, physical collisions are strictly prohibited when using actual robots. To overcome
this limitation, we record the trajectories of each agent in the real environment and perform post-
analysis to determine if there are any instances where two robots collide. This analysis is based on
the relative distance between the robots, following our predefined criteria. A collision between two
robots is defined as when the circles centered on each robot intersect. The radius of each circle is
defined according to the environment specifications [23]. The reward for the environments is defined
as the L2 distance between the robot and its target destination. In PP and PCP, the target is the prey
robot. In SL, the target is the designated goal location. We show the trajectories we collected in
each environment Fig 5.

We also include the average reward and collision numbers of each robot in Tables 3-8. It shows
that our adversarial method universally outperforms the random flipping one for each agent since it
makes the attacked agents receive less reward and has fewer collisions with their targets. Moreover,
we find that our method is even more stable than the random flipping one, with standard deviation
only decreasing by 22.97%, 53.33%, and 40.89% on average in the three environments.

Table 3: PCP Reward
Capture Agent 1 Capture Agent 2 Average

Adv[Ours] -0.76±0.32 -0.66±0.36 -0.71±0.34
Random -0.27±0.29 -0.090±0.36 -0.18±0.33

Table 4: PCP Collisions
Capture Agent 1 Capture Agent 2 Average

Adv[Ours] 0.02±0.14 0.09±0.28 0.05±0.23
Random 0.17±0.37 0.40±0.49 0.29±0.45

Table 5: SL Reward
Listener

Adv[Ours] -0.43±0.14
Random -0.21±0.15

Table 6: SL Collisions
Listener

Adv[Ours] 0.00±0.00
Random 0.34±0.47

Table 7: PO-PP Reward
PO Agent 1 PO Agent 2 PO Agent 3 PO Agent 4 Average

Adv[Ours] -0.81±0.34 -0.80±0.27 -0.71±0.31 -0.80±0.30 -0.71±0.34
Random 0.01±0.56 -0.06±0.54 -0.00±0.60 -0.03±0.54 0.02±0.56

Table 8: PO-PP Collisions
PO Agent 1 PO Agent 2 PO Agent 3 PO Agent 4 Average

Adv[Ours] 0.00±0.06 0.00±0.00 0.00±0.00 0.00 ±0.05 0.05±0.23
Random 0.26±0.44 0.06±0.33 0.33±0.47 0.15±0.35 0.20±0.40
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(a) Predator Capture Prey

(b) Partially Observable PP

(c) Speaker Listener

Figure 5: Comparison of Environment Trajectories: All three environments are shown, where the
left images are the adversarial communication policy rollouts and the right images are the random
flipping rollouts.
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(a) Predator-Capture-Prey Adversarial Communication

(b) Predator-Capture-Prey Random Flipping

(c) Partial Observability Predator-Prey Adversarial Communication

(d) Partial Observability Predator-Prey Random Flipping

(e) Speaker-Listener Adversarial Communication

(f) Speaker-Listener Random Flipping

Figure 6: These image series show the performance of agents when applying our adversarial com-
munication and random flipping strategy in three environment: Predator-Capture-Prey (a, b), Partial
Observability Predator-Prey (c, d) and Speaker-Listener (e, f).
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Appendix B Simulation Experiment Details

Appendix B.1 Domains

Here we show the hyperparameters used in each environment training (Table 9) and qualitative
results (Figure 6).

In the PCP environment (a, b), the predators (also called perception agents) are shown as red which
can observe all other agents, however, the yellow capture agent (also called action agents) are blind
and can only know where the prey (green) is by receiving the messages from the predators. There-
fore, communication is the only useful information based on which the capturers can make decisions.
Each capture agent will receive a 16-bit communication from each of the three predators so we in-
tercept 48 bits and modify them with our adversarial policy. Compare with Figure 6(a) and 6(b), we
find that our adversarial policy can successfully push the captures agents away from the prey but the
random flipping one cannot stop the capture agents from pursuing the prey with the same number of
bits flipped.

We observe similar behaviors in PO-PP when we compare Figure 6(c) and 6(d), in which the preda-
tors and prey are shown with red and green. The difference between PO-PP and PCP environments
is that we remove the capture agents but change the predators to be partially observable agents which
can only see the prey within a certain distance. Predators change color from red to grey if they ob-
serve the prey. If one predator observes the prey, it can broadcast this information to others with
its 16-bit communication so that the team can cooperate with each other to achieve higher rewards.
When we apply the adversarial policy (see Figure 6), we find that the predators just ignore the prey
even though they see it and never collaborate to collide with the prey compared with the random
flipping one in Figure 6.

In the speaker-listener environment (Figure 6(e, f)), the speaker knows the colored goal the listener
should go to but the listener does not. However, the listener knows the position of the three colored
goals. Therefore, the speaker needs to learn to communicate the correct color within its 16-bit
communication and the listener should learn which color it needs to go to from the message. Our
adversarial method (6) can make the listener go to a completely wrong colored destination, while
the random flipping method cannot because it cannot attack the crucial bits of the communication.

Appendix B.2 Training Details

We show the hyperparameters for all environments in Table 9.

Table 9: Hyperparameters for training and testing PCP, PO-PP and SL
Hyperparameter Environment Value
Buffer Length PCP, PO-PP, SL 1048576

Episode Number PCP, PO-PP, SL 50001
Episode Length PCP, PO-PP, SL 100

Batch Size PCP, PO-PP, SL 1024
Discount Factor γ PCP, PO-PP, SL 0.9

Learning Rate PCP, PO-PP, SL 0.0001
Regularizer Coefficient α0 PCP, SL 0.1
Regularizer Coefficient α0 PO-PP 0.004

Regularizer Intercept β PCP, PO-PP, SL 3000
Regularizer Slope ϵ PCP, PO-PP, SL 20000

Perception Threshold η PCP, PO-PP, SL 3

In Figure 7, we show the reward and collision numbers over the training procedure. We start the
training without the bit-flipping regularizer term Cflip. Then, at episode β (3000), we begin to regu-
larize the adversarial policy to flip fewer and fewer bits. As training procedes, the regularization term
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dominates the training process and the agents rewards increase as fewer bits are flipped. However,
we see that our adversarial agent policy outperforms the random policy at every training iteration.

Appendix B.3 Normalized Score

The normalized score is defined as:

S =
RCno adv −RCadv

max(Nf , η)
(9)

where RCadv and RCno adv represent the reward or the collision number with and without apply-
ing the adversarial policy and their difference represents how much the adversarial communication
channel degrades the agent performance. It is then normalized by the the number of bits flipped with
a perception threshold η which increases the numeric stability in case of extremely small flipping
number Nf . A higher score signifies that, for each bit flipped, the adversarial approach has a greater
detrimental impact on the team’s performance.

(a) Average Rewards in PCP, PO-PP and SL respectively

(b) Average Collisions for PCP, PO-PP and SL respectively

Figure 7: The average reward and number of collisions during training are displayed for the ad-
versarial policy (blue) and random flipping (red), respectively (using left y-axis). The dotted-brown
line represents the episode where the bit-flipping regularization term begins. The regularization term
Cflip pushes the adversarial policy to flip fewer bits as training progresses such that adversarial ef-
fect becomes weaker. The resulting number of bits flipped is represented as the black curve (using
right y-axis). Our adversarial communication policy consistently outperforms the random policy.
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Appendix C Normalized Score Tables for Attacked Agents

We show detailed tables that quantify the reward and number of collisions for each individual agent
here for our adversarial communication with flipping mode, direct mode and the random flipping.
Our proposed method is uniformly better than all other strategies across all attacked agents.

Table 10: PCP Reward Scores
Capture Agent 1 Capture Agent 2 Average

Adv[Ours] 0.10±0.06 0.12±0.05 0.11±0.05
Adv[Direct] 0.01±0.01 0.01±0.01 0.01±0.01

Random 0.01±0.01 0.01±0.01 0.01±0.01

Table 11: PCP Collision Scores
Capture Agent 1 Capture Agent 2 Average

Adv[Ours] 4.53±2.23 4.63±2.23 4.58±2.23
Adv[Direct] 1.07±0.14 1.07±0.14 1.07±0.14

Random 0.93±0.29 0.99±0.29 0.96±0.29

Table 12: SL Reward Scores
Listener

Adv[Ours] 0.13±0.06
Adv[Direct] 0.11±0.05

Random 0.04±0.02

Table 13: SL Collision Scores
Listener

Adv[Ours] 31.38±6.51
Adv[Direct] 30.72±6.19

Random 13.68±3.19

Table 14: PO-PP Reward Scores
PO Agent 1 PO Agent 2 PO Agent 3 PO Agent 4 Average

Adv[Ours] 0.04±0.02 0.04±0.02 0.04±0.02 0.04±0.02 0.04±0.02
Adv[Direct] 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.01

Random 0.00±0.01 0.00±0.01 0.00±0.01 0.01±0.01 0.00±0.01

Table 15: PO-PP Collision Scores
PO Agent 1 PO Agent 2 PO Agent 3 PO Agent 4 Average

Adv[Ours] 1.41±0.55 1.44±0.51 1.52±0.51 1.42±0.65 1.45±0.55
Adv[Direct] 0.76±0.07 0.78±0.07 0.82±0.08 0.84±0.08 0.80±0.07

Random 0.10±0.87 0.34±0.86 0.33±0.92 0.43±0.88 0.30±0.88

Appendix D Whitebox Analysis

In this section, we compare our methods with a whitebox version of our algorithm (Table 16), where
we do not utilize surrogate policies and instead use the true agent policies and reward to learn the
adversarial policy. The results show that our adversarial policy achieves comparable collision and
reward scores across all domains. The performance between the whitebox method and our method
is similar in PCP and PO-PP but has a larger difference in SL. This shows that our surrogate policy
can successfully approximate the ground truth agent policies and aid training an adversarial policy.

Table 16: Reward and Collision Normalized Scores
PCP PO-PP SL

Reward Sc Collision Sc Reward Sc Collision Sc Reward Sc Collision Sc
Whitebox 0.12±0.05 4.60±2.30 0.04±0.02 1.37±0.43 0.17±0.09 41.56±4.98
Adv[Ours] 0.11±0.05 4.58±2.23 0.04±0.02 1.45±0.55 0.13±0.06 31.38±6.51
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Appendix E Surrogate Policy Losses

In this section, we show the surrogate policy loss curves. We see that the surrogate policy loss
converges relatively quickly before episode 5000. This indicates that while we train for up to 60,000
episodes, much less data could be used to train a stable surrogate policy that can be used for the
adversarial communication policy.

Figure 8: Surrogate Policy Loss in PCP, PO-PP and SL respectively

Appendix F Robustness of Analysis Adversarial Policy

We evaluate whether the adversarial policy maintains its performance under minor modifications to
the target agent policies. In our experiment, we extend the training of the target team agents by an ad-
ditional 10,000 episodes, subtly changing their policies. Every 1,000 episodes during this extended
training, we gauge the effectiveness of the adversarial attacking policy, where the adversarial policy
is frozen and acts without any further training. Our findings indicate that the adversarial policy’s
performance remains largely consistent, with only a slight decrease in effectiveness and increase in
variance (see Figure 9).

Figure 9: Robustness of Adversarial Policy: Reward Mean (left) and Standard Deviation (right)
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