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ABSTRACT

While state-of-the-art large language models (LLMs) demonstrate advanced reason-
ing capabilities—achieving remarkable performance on challenging competitive
math and coding benchmarks—they also frequently fail on tasks that are easy for
humans. This work studies the performance of frontier LLMs on a broad set of
such “easy” reasoning problems. By extending previous work in the literature,
we create a suite of procedurally generated simple reasoning tasks, including
counting, first-order logic, proof trees, and travel planning, with changeable pa-
rameters (such as document length. or the number of variables in a math problem)
that can arbitrarily increase the amount of computation required to produce the
answer while preserving the fundamental difficulty. While previous work showed
that traditional, non-thinking models can be made to fail on such problems, we
demonstrate that even state-of-the-art thinking models consistently fail on such
problems and for similar reasons (e.g., statistical shortcuts, errors in intermediate
steps, and difficulties in processing long contexts). To further understand the
behavior of the models, we introduce the UNPUZZLES dataset, a different “easy”
benchmark consisting of trivialized versions of well-known math and logic puzzles.
Interestingly, while modern LLMs excel at solving the original puzzles, they tend
to fail on the trivialized versions, exhibiting several systematic failure patterns
related to memorizing the originals. We show that this happens even if the models
are otherwise able to solve problems with different descriptions but requiring the
same logic. Our results highlight that out-of-distribution generalization is still prob-
lematic for frontier language models and the new generation of thinking models,
even for simple reasoning tasks, and making tasks easier does not necessarily imply
improved performance.

1 INTRODUCTION

Modern transformer-based large language models (LLMs) (Vaswani, 2017) trained using next-token
prediction have achieved significant success across a wide range of tasks, especially in reasoning.
For instance, OpenAI’s o1 model—one of the leading reasoning models to date—“ranks in the 89th
percentile on competitive programming questions (Codeforces), places among the top 500 students in
the US in a qualifier for the USA Math Olympiad (AIME), and exceeds human PhD-level accuracy
on a benchmark of physics, biology, and chemistry problems (GPQA)”.1

On the other hand, researchers continue to uncover surprisingly simple reasoning problems that
still confuse even the most advanced LLMs. These include tasks such as counting characters in
words, comparing numbers like 9.11 and 9.9 (Xie, 2024), making simple inferences about family
relationships (Nezhurina et al., 2024), and solving various classes of arithmetic and logic problems
(see, e.g., McLeish et al., 2024; Zhang et al., 2022). Many of these failures are identified in isolation,
making it difficult to find common underlying issues. Moreover, some studies focus on earlier model
generations, leaving it open whether these failures persist in state-of-the-art (SOTA) models.

In this work, we study the performance of several high-quality, open and closed-source language
models, both traditional (GPT-4o, Gemini 1.5 Pro 2.0 Flash, and 2.5 Pro, Gemma 3 27B, Claude 3.5
and 3.7 Sonnet) and thinking variants (OpenAI o1 and o3, Gemini 2.0 Flash Thinking and 2.5 Pro,

1https://openai.com/index/learning-to-reason-with-llms/
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Original Puzzle

13 purple, 15 yellow, and 17 maroon chameleons are found on an island. When two different-coloured
chameleons meet in a pair, they both turn into the third color. Is it possible that, after some pairwise
meetings, all the chameleons are the same color?
Answer: no (proof by contradiction related to a problem invariant)

Unpuzzle

15 purple, 15 yellow, and 17 maroon chameleons are found on an island. When two different-coloured
chameleons meet in a pair, they both turn into the third color. Is it possible that, after some pairwise
meetings, all the chameleons are the same color??
Answer: yes (purple and yellow chameleons all pair up)

Context-shifted Unpuzzle

There are 31 Spurs fans, 31 Arsenal fans, and 49 Chelsea fans. Every time fans of two different sports
teams meet, they realize they are both wrong and become fans of the third team. Is it possible that, after
a certain number of pairwise meetings, everyone is a fan of one team?
Answer: yes (Spurs fans and Arsenal fans all pair up)

Figure 1: Chameleons go on a date: a puzzle, corresponding unpuzzle, and a context-shifted unpuzzle

DeepSeek R1), across a broad range of “easy” reasoning problems. We begin by examining four
simple reasoning tasks: (1) character and word counting, (2) first-order logic evaluation and negation,
(3) math word problems based on proof trees, and (4) travel planning problems. Rather than using
fixed datasets, we generate problems randomly and procedurally, incorporating tunable parameters—
such as paragraph length in word counting and the number of cities in travel planning—that adjust
the amount of computation required to produce an answer while preserving the underlying reasoning
difficulty. With appropriately chosen parameters, these tasks may be tedious for humans but remain
straightforward. On the other hand, frontier LLMs consistently fail on such tasks, with underlying
causes including statistical shortcuts, errors in intermediate steps, and difficulties in dealing with
long contexts. While previous work showed that earlier SOTA models fail on similar tasks, here
we demonstrate that even the next generation of LLMs, the so-called thinking models fail when
the tasks become long enough. To our knowledge, no earlier papers demonstrated that thinking
models are similarly subject to such performance degradation; essentially, we provide evidence that
many of the claims in the literature of decreasing LLM performance with task difficulty will apply
to thinking models as well. Concurrently with our work, Shojaee et al. (2025) evaluate LLMs on
four puzzles with programmable complexity, and show that thinking LLMs completely fail beyond a
certain critical complexity threshold. However, the experiment design has been found lacking (Opus
and Lawsen, 2025; Chan, 2025).

In addition to the aforementioned tasks, we introduce a new dataset for evaluating language models
called UNPUZZLES. This is a small dataset in two parts: The first has 97 well-known logical
puzzles and brainteasers that are commonly found on the internet, as well as their trivialized versions
which we refer to as “unpuzzles”. Each unpuzzle is created manually by making minimal textual
edits to the original puzzle in order to remove the difficulty and render the answer obvious. We
demonstrate that while SOTA models all perform well on the original (difficult) puzzles, they exhibit
poor performance on the corresponding (easy) unpuzzles. The second part focuses on a subset of
64 unpuzzles (with numerical answers that can be machine-evaluated) and adds a “context-shifted”
version of the unpuzzle where the language, setting, or vocabulary is changed but the logical structure
is preserved. These context-shifted trivial problems can be used to test if a model has the ability of
solving the simpler problems, which in turn helps us examine the reasons behind failures to solve the
unpuzzle problems. Figure 1 for an example; the unpuzzle only differs by two characters, and the
solution logic of the unpuzzle and the context-shifted version are identical. 2

While many existing works evaluate LLM reasoning robustness by perturbing problems while
maintaining the same difficulty level (Mirzadeh et al., 2024; McCoy et al., 2024), our study instead

2All data will be released.
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shows that decreasing difficulty can also lead to much worse performance. A key failure mode we
observe is that LLMs tend to “overthink” easy problems, often erroneously reusing reasoning steps
corresponding to the more complex puzzle solutions — a phenomenon we term reasoning delirium.
Further, these failures are not because the models do not know how to reason about easy problems:
every model we tested performed better on the context-shifted unpuzzles than the original ones,
indicating that failure was at least in part due to memorization of the original puzzle.

In summary, we make the following contributions: (1) we conduct a comprehensive evaluation of
frontier LLMs across a wide range of simple reasoning problems; (2) we connect failure modes
to their potential causes; (3) we present a new set of procedurally generated reasoning tasks with
tunable parameters that are challenging for high-quality LLMs; (4) we introduce the UNPUZZLES
dataset that confuses frontier LLMs, exposing memorization artifacts. Our work demonstrates that
the qualitative trend of performance degradation still exists even for the latest thinking models, even
though quantitative results have improved. We hope the new benchmarks and our methodology for
identifying failures will improve the assessment of reasoning capabilities of future model generations.

2 RELATED WORK

There is a long line of research focused on identifying tasks that challenge modern LLMs and
developing new benchmarks. In this paper, we review the studies most relevant to the tasks we
investigate. Transformer-based LLMs are known to struggle with seemingly simple tasks such as
counting (Ouellette et al., 2023; Yehudai et al., 2024; Barbero et al., 2024) and copying (Liu et al.,
2024; Barbero et al., 2024), due to issues related to tokenization, architecture, and embeddings. They
also perform poorly on tasks requiring multi-step reasoning, such as arithmetic, logic puzzles, and
dynamic programming (Dziri et al., 2024). The difficulty of solving simple logic problems has
been explored in Yang et al. (2023); Parmar et al. (2024); Han et al. (2022), where these tasks are
often framed as translation problems from natural language to first-order logic. Other works, such
as Valmeekam et al. (2024a;b), construct planning benchmarks using Planning Domain Definition
Language (PDDL), while Xie et al. (2024) develops a travel planning benchmark in real-world
scenarios. These studies show that existing LLMs are far from saturating these datasets. Additionally,
reasoning benchmarks with large amounts of irrelevant content have been proposed (Shi et al.,
2023; Mirzadeh et al., 2024) to test models’ long-context generalization capabilities. Most of these
benchmarks are fixed and often combine the core challenge (e.g., logic or planning) with secondary
challenges, such as understanding PDDL or real-world commonsense reasoning for travel, making
it difficult to pinpoint the exact sources of failure. Furthermore, fixed benchmarks are difficult to
extend or generalize and are prone to saturation or overfitting as LLMs improve. In contrast, our work
takes a principled approach by simplifying problems to isolate failure causes. Our tasks are randomly
and procedurally generated, allowing for easy adjustments to their distribution and difficulty (at a
superficial level), ensuring they remain challenging for future LLMs. The work most relevant to
ours is that of Opedal et al. (2025), which evaluates the Out-of-Distribution (OOD) generalization
ability of LLMs through MathGAP, a framework that procedurally generates arithmetic problems by
representing them as sequences of logical forms, with solutions structured as proof trees. Compared
to Opedal et al. (2025), our work takes a broader perspective by examining a wider range of tasks and
identifying multiple critical failure modes beyond OOD generalization. In a concurrent work to ours,
Shojaee et al. (2025) evaluate LLMs on four puzzles with controllable "complexity" and show that
the accuracy of all models completely collapses beyond a certain complexity threshold. It has been
pointed out that their experiment design is somewhat flawed, including unsolvable problems and
potentially ignoring token limits (Opus and Lawsen, 2025; Chan, 2025).3. Nonetheless, we observe
qualitatively similar performance with accuracy decreasing as a function of the task tediousness.

The idea of perturbing existing benchmarks to test the robustness of LLM reasoning has been explored
in several prior works. Mirzadeh et al. (2024) introduce a variant of the GSM8K benchmark for
mathematical reasoning, modifying numerical values and adding irrelevant information, both of
which lead to a performance drop in common models. Similarly, Jiang et al. (2024) evaluate LLMs on
conjunction and syllogistic fallacies by perturbing well-known problems—changing names, inserting
celebrity references, adding irrelevant content, and replacing quantifiers with synonyms—revealing

3While the work of Opus and Lawsen (2025) was initially published as a joke, some of the flaws discussed
are legitimate concerns
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evidence of “token bias” in LLMs. The negative effect of adding irrelevant context to math word
problems was also shown recently by Xu et al. (2025). These studies primarily focus on perturbing
original problems while maintaining or increasing their difficulty. In contrast, our UNPUZZLES
benchmark takes the opposite approach: we make minimal edits to the wording but drastically reduce
problem difficulty. A related work by Williams and Huckle (2024) introduces a benchmark of 30
easy problems that LLMs fail on, 12 of which are logical puzzles. Our evaluation on puzzles is
considerably more comprehensive. Finally, the failure modes identified in UNPUZZLES also relate to
findings from McCoy et al. (2024), which demonstrate that LLM accuracy is heavily influenced by
the likelihood of task formulations, inputs, or outputs appearing in the training data.

3 PROCEDURALLY GENERATED REASONING TASKS

This section presents our collection of simple reasoning tasks, including several extensions of tasks
from existing literature. Each task is procedurally generated, allowing a near-infinite number of new
problems to be generated, and defined by parameters that control the difficulty or complexity. One
of our goals was to design tasks that are easy (albeit tedious) for humans, but become unsolvable
by frontier models when the difficulty parameters are large enough; all our results demonstrate this
feature. For brevity, each task is described informally; full descriptions, usually with pseudocode, are
in the appendix.

Throughout, we abbreviate Google’s Gemini 1.5 Pro, 2.0 Flash, 2.0 Flash Thinking, and 2.5 Pro
with G1.5, G2.0F, G2.0FT, and G2.5P, respectively. We also abbreviate Anthropic’s Claude 3.5 and
3.7-sonnet (run without thinking tokens), OpenAI’s o1 and GPT-4o, DeepSeek’s R1, and Gemma 3
27B by C3.5, C3.7, o1, 4o, R1, and Gm3, respectively; see the appendix for the specific versions.
Unless specified otherwise, for every task and every choice of parameters, we average the performance
of the models across 20 randomly sampled tasks.

3.1 TASKS

Character and word counting Until somewhat recently, many LLMs infamously could not count
the number of r’s in “strawberry.” This task extends this task to simultaneous word or character
counting. The WORD COUNTING task requires the model to simultaneously count the number of
occurrences of each word in a list of size k from a paragraph of length m. The task obviously becomes
more difficult as k and m increase. The CHARACTER COUNTING task only requires counting a
single character, which already proves difficult for the models. The paragraphs are extracted from the
WikiText-2 dataset and are either selected to have minimum size m = 50 (with maximum size 150)
or minimum size m = 150 (with maximum size 400).

First-order logic tasks We evaluate models on two fundamental logic tasks: evaluating propo-
sitional logical statements and negating first-order logical statements. A logic formula can be
represented with a tree with logic operators as nodes and propositions and predicates as leaves.
An atomic proposition is a simple, binary-valued variable, usually represented P or Q, whereas a
predicate represents a property about an individual: for example, P (x) indicates that individual x has
property P . We include the standard logical operators ∨, ∧,⇔,⇒, ¬, ∀x ∈ X , and ∃x ∈ X , (respec-
tively, or, and, equivalent, implies, negation, for all, and exists), where the last two are quantifying
operators that require a domain to be specified. Exploiting the tree structure, we can sample a logic
formula recursively. The complexity is controlled by the maximum depth d and the total number n of
predicates and atomic propositions to sample for leaves. We either choose n = 16 (16 predicates, 16
atomic propositions, and 8 domains) or n = 8 (8, 8, and 4, respectively). The final parameter is what
vocabulary we use for the leaves: we created three categories: random 20 character strings, capital
letters (reflecting the training data), and words that describe motion pictures. We consider the tasks
of (1) LOGIC EVALUATION - identifying which of four value assignments evaluates to true, and (2)
LOGIC NEGATION - identifying the negation of a logic formula from four options. See Appendix G.2
and G.3 for more details and examples.

Math word problems based on proof trees We extend the MATHGAP task of Opedal et al. (2025),
which uses a tree-based representation of proofs to generate mathematical word problems. Each
problem is represented as a sequence of logical forms under the formalism from Opedal et al. (2024).

4
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Word Counting: Given a
text paragraph, count the oc-
currences of every word in
a k-long list.
Parameters: number of
words to count k, minimum
paragraph size m.

k m o1 4o R1 Gm3 C3.7 G2.0F G2.0FT G2.5P

1 50 1.00 1.00 0.95 0.95 1.00 0.95 0.95 1.00
150 1.00 1.00 0.90 0.65 0.80 0.90 0.90 1.00

3 50 1.00 0.85 0.90 0.70 0.70 0.90 0.55 1.00
150 0.95 0.50 0.55 0.15 0.50 0.65 0.05 1.00

6 50 1.00 0.75 0.95 0.45 0.80 0.70 0.50 1.00
150 0.95 0.30 0.35 0.05 0.40 0.25 0.00 0.90

m o1 4o R1 Gm3 C3.7 G2.0F G2.0FT G2.5P

50 1.00 0.15 0.05 0.10 0.30 0.15 0.15 0.60
150 1.00 0.15 0.00 0.05 0.25 0.15 0.10 0.45

Figure 2: Top: The pass@5 performance on the word counting task vs. the number of words to count k
and minimum paragraph size m. Bottom: The pass@5 performance for the single character counting task
vs minimum paragraph size m. While o1 performs well on word counting for the parameters in the table, it
eventually fails with a sub 40% accuracy with k ≥ 3 and m ≥ 2000.

A logical form is a truth statement about the world, typically describing an arithmetic relationship,
such as “Alice has 3 more apples than Bob." Inference rules can be used to prove new logical forms
from existing ones. Problems are constructed by sampling a Proof Tree with logical forms as nodes,
leaves as axioms, and a question as the root, before programmatically converting nodes to natural
language. See Appendix H.4 for details. MATHGAP includes only four logical forms with one being
non-commutative (transfer, e.g. “Alice gave Bob 5 apples"). We extend MATHGAP in two ways:

• Diversity: We increase the diversity of logical forms and inference rules by adding nine statement
types, six of which are non-commutative. Examples include “A eats 5 apples", “A and B switch
the apples they have". Such statements make it more difficult for the model to keep track of the
intermediate states before computing the final answer. See Appendix H.1 and H.5 for the full list
and an example. Problem parameters are tree depth d and inclusion of diverse logical forms.

• Irrelevant statements: We generate additional statements involving people irrelevant to the
original problem and shuffle them into the original statements, such as “A is very generous
and enjoys sharing food with others”. See Appendix H.3 for the complete list. The problem
parameters are the number of additional people and the number of additional sentences.

Travel Planning This task presents the model with a list of cities and various connecting modes of
transit and asks the model to design a travel itinerary satisfying multiple constraints. This work is
similar to that of Xie et al. (2024). For each task, we randomly generated a directed graph where
the S nodes represent cities and the edges represent connections. Each edge carries a subset of A
transportation modes, each with a randomly sampled cost. Based on this graph, we construct our
travel planning problem, which consists of a word-based graph description and the constraints. The
constraints include the starting and ending cities, a limit on the total travel cost, and N , the number
of unique cities the traveler must visit. The problem parameters are S, A, and N . See Appendix I for
further details.

3.2 RESULTS AND FAILURE ANALYSIS

Shortened problem descriptions, parameters, and evaluation results are shown in Figures 2, 3, 4, and
5. In most cases, increasing the "tediousness" of each task through the available parameters leads to a
drop in performance. We summarize some of the common failure patterns here and refer the reader
to the appendix for examples:

• Accumulation of errors. In general, if each computational step has a small probability of
error, increasing the number of steps exponentially increases the probability of overall failure,
even if the model follows the correct approach to calculating the solution. Examples of such
failures are evident in the Counting task when increasing paragraph length, Logic and ProofTree
problems when increasing tree depth, and Travel Planning when increasing the number of unique
cities to visit. We emphasize that the tasks do not become more difficult, just more tedious, and
hypothesize that models fail due to missing a piece of information, or making an error in one

5
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Logic Evaluation: Given a
propositional logic formula
and four value assignments,
identify which assignment
evaluates to true.
Parameters: formula tree
depth d, number of unique
atomic propositions n.

d n o1 4o R1 Gm3 C3.7 G2.0F G2.0FT G2.5P

4 16 1.00 0.75 1.00 0.95 0.98 0.90 0.70 1.00
8 0.98 0.68 0.98 0.93 0.97 0.97 0.75 1.00

8 16 0.73 0.50 0.77 0.30 0.27 0.27 0.45 0.78
8 0.80 0.45 0.78 0.38 0.28 0.37 0.42 0.85

12 16 0.35 0.17 0.35 0.33 0.35 0.32 0.38 0.52
8 0.43 0.35 0.38 0.25 0.38 0.33 0.30 0.55

Logic Negation: Given
a propositional logic
formula, identify its
negation from four
options.
Parameters: formula
tree depth d, vocabu-
lary for propositions,
predicates, and do-
mains.

d names o1 4o R1 Gm3 C3.7 G2.0F G2.0FT G2.5P

4 letters 0.95 0.82 0.15 0.85 0.95 0.85 0.97 1.00
movies 1.00 0.72 0.15 0.75 0.97 0.95 1.00 0.97
random 20 1.00 0.80 0.15 0.70 1.00 0.95 0.95 0.95

8 letters 0.97 0.68 0.17 0.60 0.93 0.88 0.80 1.00
movies 0.95 0.47 0.88 0.57 0.88 0.90 0.72 1.00
random 20 0.90 0.55 0.90 0.47 0.82 0.95 0.53 0.95

12 letters 0.75 0.40 0.82 0.45 0.80 0.82 0.57 0.93
movies 0.80 0.23 0.82 0.35 0.82 0.68 0.55 0.88
random 20 0.62 0.38 0.68 0.30 0.62 0.82 0.55 0.90

Figure 3: Top: Accuracy for the logic evaluation task vs. tree depth d and number of possible unique predicates
n. Bottom: Accuracy for the logic negation task vs. depth d and the vocabulary used for propositions, predicates,
and domains (random 20 denotes random character strings of length 20).

ProofTree with diverse state-
ments: Given a diverse set of log-
ical statements, answer questions
that require deduction sampled
from a proof tree with a bounded
depth and number of leaves.
Parameters: max tree depth d,
whether to include diverse logical
forms, ℓ ∈ {True, False}

ProofTree with irrelevant infor-
mation: Answer proof tree ques-
tions that include irrelevant infor-
mation. Parameters: max tree
depth d, number of irrelevant peo-
ple P , number of irrelevant sen-
tences S.

d ℓ o1 4o R1 Gm3 C3.7 G2.0F G2.0FT G2.5P

3 F 1.00 0.85 1.00 0.95 0.90 1.00 0.85 1.00
T 0.90 0.95 0.90 0.65 0.95 0.65 0.70 0.80

6 F 0.60 0.35 0.95 0.30 0.60 0.30 0.20 0.50
T 0.70 0.25 0.65 0.15 0.55 0.30 0.20 0.45

9 F 0.35 0.05 0.55 0.15 0.20 0.30 0.10 0.25
T 0.55 0.15 0.55 0.15 0.15 0.35 0.15 0.35

P S o1 4o R1 Gm3 C3.7 G2.0F G2.0FT G2.5P

1 0 0.50 0.58 0.75 0.35 0.50 0.25 0.40 0.60
60 0.45 0.40 0.50 0.25 0.20 0.10 0.50 0.50

2 0 0.50 0.38 0.75 0.20 0.55 0.20 0.50 0.50
60 0.45 0.26 0.45 0.15 0.15 0.20 0.30 0.40

4 0 0.40 0.16 0.65 0.15 0.20 0.35 0.35 0.35
60 0.25 0.16 0.25 0.00 0.10 0.10 0.10 0.35

6 0 0.40 0.00 0.55 0.00 0.15 0.20 0.15 0.30
60 0.30 0.00 0.35 0.05 0.00 0.05 0.20 0.35

Figure 4: Pass@5 scores for the proof tree tasks. Top: results for the diverse logic rules task, where we vary
the depth d and whether the diverse rules are included. Bottom: results for the irrelevant sentences task, where
we vary P , the number of irrelevant people, and S, the number of irrelevant sentences.

or more reasoning steps along the way. See Appendix H.7 for an example of o1 failing on a
ProofTree problem due to an error in a reasoning step.

• Long context. Given a long context, models may struggle to sharply attend to relevant quantities,
resulting in higher error rates. We observe this phenomenon most clearly in the case of ProofTree
problems with irrelevant sentences, where models may overlook essential statements surrounded
by irrelevant ones. Similarly, in word counting, models may overlook word instances in long
paragraphs. Note that context length typically increases jointly with the parameters controlling
the amount of computation.
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Travel Planning: Create a
travel itinerary using a city
connection graph that ad-
heres to a list of constraints.
Parameters: num. cities S,
num. transportation modes
A, num. unique cities N

S N o1 4o R1 Gm3 C3.7 G2.0F G2.0FT G2.5P

10 5 1.00 0.34 0.90 0.05 0.70 0.00 0.10 0.60
8 1.00 0.00 0.45 0.00 0.35 0.00 0.00 0.35

20 5 1.00 0.06 0.55 0.00 0.45 0.00 0.05 0.30
8 0.75 0.00 0.05 0.00 0.10 0.00 0.00 0.15

Figure 5: Travel planning: pass@5 performance results. We always have A = 4.

• Statistical shortcuts and educated guesses. Rather than executing computation, models some-
times prefer to exploit simplifications or take educated guesses. This often happens on logic tasks:
models look for quick ways to eliminate choices, which is only effective for smaller problems.
See Appendix G.4 for examples of simplifications and guesses on logic questions. We observe
similar guessing behavior for all models in the Travel Planning task, where the models typically
fail by (1) randomly sampling a few solutions and concluding that the problem is infeasible, or (2)
proposing a solution with hallucinated parameters that satisfy constraints (see Appendix I.6 for
examples). In all cases, increasing the problem size makes it more difficult for models to succeed
through educated guessing.

• Poor state tracking. Some of our tasks require the models to track an increasingly complicated
state, and we find that models fail as the size of that state increases. For example, while models
can reliably count a single word, their performance drops considerably when simultaneously
counting multiple words. Similarly, in ProofTree problems, introducing more complicated state
changes and irrelevant agents (that are nonetheless tracked by the models) degrades performanc .

• Poor out-of-distribution (OOD) generalization. Changing the vocabulary in the logic tasks
highlights errors due to poor OOD generalization. Universally, the performance is the best when
the problem variables are single letters (which is likely the format of logical problems in the
training data), and worst for random 20-character strings. We also attribute some of the ProofTree
failures to poor OOD generalization, as some of the introduced statements (such as “A and B
switch their apples") are not common in math word problems.

• Copying errors. We observe that logical reasoning can suffer from copying errors, which come
in two flavors. First, when the formulas involve a smaller number of atomic propositions (n = 8),
the same atomic propositions appear in more subformulas, making those subformulas more
easily confusable. Second, for formulas involving random 20-character variables, models will
abbreviate those strings to single letters. This is related to OOD generalization, as the random
token sequences are not likely to appear in training data.

• Tokenization. The character counting performance of all models is significantly lower than word
counting, which suggests that tokenization is an issue for this task. Additionally, using random
20-character strings as variable names in logic tasks likely results in multi-token variables, which
may be more difficult for models to copy correctly in reasoning traces.

Overall, we show that LLM performance scales poorly in problem parameters related to the amount
of computation and storage, even on problems which are self-contained and quite easy for humans.

4 UNPUZZLES

We introduce the UNPUZZLES dataset, which consists of 97 well-known logical puzzles that are
commonly found on the internet,and their trivialized versions, manually constructed by formulating
textually similar questions that remove difficulty. While the puzzles typically require reasoning and
background math knowledge, the answers to the unpuzzles are intended to be immediately obvious
by common sense. See Appendix C for more details and dataset creation instructions and some
examples. As we will show, all language models perform much better on the puzzles than on the
unpuzzles, suggesting that they rely on memorized input patterns to generate answers rather than
performing true logical reasoning.
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Model G1.5 G2.0F G2.5P Gm3 C3.5 C3.7 4o o1 o3 R1
Puzzle 79.4 78.4 93.8 68.0 63.9 77.3 75.3 86.7 87.6 87.6
Unpuzzle 17.5 38.1 62.9 34.0 27.8 48.5 19.6 59.8 74.2 59.8

Table 1: Percentage of correct answers on puzzles and unpuzzles.

Model G1.5 G2.0F G2.5P Gm3 C3.5 C3.7 4o o1
Context corruption (CC) 80 59 34 56 63 41 76 38
CC, correct 7 6 4 2 12 4 13 6
CC, incorrect with delirium 40 36 20 25 26 14 31 22
CC, incorrect (other) 33 16 10 29 25 23 32 10

Table 2: Number of unpuzzle solutions (out of 97) containing “context corruption.” We further subcategorize
corrupt solutions as (i) correct: leading to a correct final answer; (ii) incorrect with delirium: leading to an
incorrect final answer with a solution that corresponds nearly exactly to the solution of the original puzzle; (iii)
incorrect (other): leading to an incorrect final answer for other reasons. R1 and o3 are omitted since the answers
we obtained often did not include full reasoning.

To provide further evidence of memorization, we created a dataset of context-shifted (CS) unpuzzles.
Each CS unpuzzle is textually different from the corresponding unpuzzle but retains the same logical
structure; that is, its answer is equally obvious. Performing poorly on an unpuzzle and well on a
corresponding CS unpuzzle would suggest that the failure is due to the memorization of the puzzle
text and solution, rather than inherent inability to reason about the problem. We generated CS
unpuzzles automatically for a subset of 64 unpuzzles with simple numerical or categorical answers
(as opposed to, e.g., puzzles asking for a strategy). We prompted models (o1 and Gemini 2.0 Flash)
to rewrite each unpuzzle and change the language and setting, but keep the same logical structure and
answer. We then verified and optionally edited the results. See Appendix C.2 for details. Figure 1
shows an example of a puzzle, unpuzzle, and CS unpuzzle.

4.1 EVALUATION

Correctness We generated the solution to each puzzle and unpuzzle independently using each
model. We first verified whether the final answer to each is correct or not (regardless of whether the
solution leading to the answer is correct). The evaluation was performed manually by four human
annotators, since the answers to some puzzles are strategies rather than simple values. Each answer
was assessed by a single annotator, or by consensus of all annotators if marked ambiguous.

Context corruption Next, we characterize the extent to which the poor performance on the
unpuzzles is a consequence of memorization of the original puzzles. We define “context corruption”
in an unpuzzle solution as erroneous or superfluous content (e.g. assumptions or reasoning steps)
inappropriately recalled from the original puzzle or its solution. We evaluated each unpuzzle solution
according to whether it contains context corruption or not. The most extreme behavior is when
the models provided a solution that is nearly identical to the puzzle solution, sometimes without
acknowledging that the unpuzzle is different – we call this category “delirium.” We omit o3 and
R1 as they often just responded with the final answer, making the degree of context corruption
unclear, though their erroneous answers usually correspond to the answer to the original puzzle.
This evaluation was performed by four human annotators and summarized in Table 2. We observe
that memorization artifacts from the original puzzle and its solution are found in most cases, and
even thinking models simply output the solution to the original puzzle about a fifth of the time. See
Figure 6 for an example of context corruption in o1’s solution to “Chameleons Go on a Date.” See
Appendix D for more illustrative examples as well as some amusing answers.

Context-shifted evaluation We evaluated models on the size-64 subset with corresponding CS
unpuzzles. The results are shown in Table 3. We note that all models perform better on the
context-shifted version of the dataset, which offers further evidence that the poor performance on
the unpuzzles is due to the wording (and memorization of the original puzzles), rather than models’
inherent inability to reason about the problems.

8
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Model G2.0F G2.0FT G2.5P Gm3 C3.7 4o o1 o3 R1
Puzzle Score 67 66 72 52 67 58 77 73 80
Unpuzzle Score 53 36 55 41 55 33 50 75 67
Context-shifted Score 70 48 66 50 63 52 59 80 73

Table 3: Percentage accuracy of all tested models on the original puzzles, the unpuzzles, and the context-shifted
unpuzzles, for a subset of 64 problems with numerical or categorical answers. We see that every model performs
better on the context-shifted unpuzzles than the unpuzzles, indicating that similarity to the puzzles degrades
performance. In some cases, performance on the context-shifted unpuzzles is higher than for the original puzzles.

o1 solution to the Chameleons Go on a Date unpuzzle (excerpt)

A succinct way to see that they can all end up the same color (and in fact which color that must be) is
via the following “invariant” argument: [...]
Define the quantity S = P + 2Y (mod 3). [...]
Since the initial S = 0(mod 3), the only way to remain consistent with that invariant and end up with all
chameleons of one hue is if they all become Maroon (because only that final state also gives S = 0).
Conclusion: Yes. It is possible for all of the chameleons to end up the same color; specifically, they can
all turn Maroon.

Figure 6: Chameleons go on a date (Figure 1): solution by o1. The answer to the original puzzle is ’no’ through
a proof by contradiction. The answer to the unpuzzle is ’yes’. o1 provides the correct final answer, but an
incorrect solution; it finds that the contradiction does not hold and answers ’yes’ without a constructive proof.

The UNPUZZLES dataset complements the procedural evaluations by providing another benchmark
that is easy for humans and difficult for LLMs. It illustrates that the good performance of the models
on the original (difficult) puzzles is at least in part a consequence of memorization of internet data,
rather than true problem-solving abilities.

5 DISCUSSION

In a society that is increasingly utilizing frontier language models, understanding the capabilities and
weaknesses of these models is becoming more and more important.ressive results across a variety
of We have presented a comprehensive set of procedurally-generated parametric problems that are
inherently easy (if tedious) for humans, and designed to assess LLM failures due to statistical shortcut
learning, long context, long reasoning chains, and OOD generalization. As we demonstrate, these
problems can be made difficult enough to make all SOTA LLMs fail. One suggestion from our paper
is that LLMs should be evaluated not only by the most difficult problem they can solve, but also by
the simplest problem they struggle with.

In addition, we have provided a small human-curated UNPUZZLES dataset of trivialized versions
of math and logic puzzles commonly found on the internet. Our manual analysis shows that all
models perform significantly worse on the unpuzzles than on the original puzzles, in most cases due
to memorization of web data. Similarly to other recent works, our results suggest that LLMs mimic
training data rather than performing true reasoning, making it relatively easy to find out-of-distribution
problems where the models fail, and this problem is also present at the newest thinking models. This
suggests that users remain careful when relying on the output of LLMs.

The main limitation of our work is that most of the experiments were run on closed-source models,
which limits our ability to understand shortcomings beyond observing trends in the experiments and
inspecting reasoning traces when available. We hope that our benchmarks will be useful in assessing
and improving the reasoning capabilities of future generations of models.
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A LICENCES FOR EXISTING ASSETS

A.1 MODELS

Below, we’ve tabulated the specific models and licences we have used.

OpenAI The specific models we used from OpenAI are gpt-4o-2024-08-06,
o1-2024-12-17, and o3-2025-04-16, which were abbreviated by 4o, o1,
and o3 in the text. Terms of Use can be found at https://openai.com/policies/
row-terms-of-use/.

Anthropic We used claude-3-5-sonnet-20240620 and claude-3-7-sonnet-20250219,
which were abbreviated C3.5 and C3.7. Terms of Service can be
found at https://privacy.anthropic.com/en/articles/
9190861-terms-of-service-updates.

Gemma 3: We used the 27b-it model, which has open weights and permits responsible commercial use.
Terms of Service are given at https://gemma3.app/terms-of-service.

DeepSeek DeepSeek’s R1 model and weights are licenced under the MIT licence DeepSeek-AI (2025).
Gemini The Gemini 2.0 Flash, 2.0 Flash Thinking, and 2.5 Pro had API names

of gemini-2.0-flash-001, gemini-2.0-flash-thinking-exp
and gemini-2.5-pro-exp-03-25. Terms of service can be found at
https://ai.google.dev/gemini-api/terms.

A.2 DATA

We list the websites used to collect math and logic puzzles and their licences and terms of use below.
Please see the released dataset for per-puzzle attributions.

• Wikipedia (https://www.wikipedia.org/): CC BY-SA 4.0 Creative Com-
mons Attribution-ShareAlike 4.0 International https://creativecommons.org/
licenses/by-sa/4.0/

• www.mathisfun.com copyright Rod Pierce, cited as instructed on the website (Pierce)
• https://puzzles.nigelcoldwell.co.uk/ copyright Nigel Coldwell.
• https://geeksforgeeks.org/, Terms of Use https://www.
geeksforgeeks.org/legal/intellectual-property-rights-legal/

B PROCEDURAL LOGIC RESULTS WITH CONFIDENCE INTERVALS

We now include the procedural logic results including simple Gaussian error bars; these were omitted
from the main body due to space constrains. In particular, results for OpenAI’s o3 model are included.
You can find the results in Figures 7-13.

m o1 o3 4o R1 g3 C3.7 G2.0F G2.0FT

50 1.0±0.00 0.8±0.18 0.15±0.16 0.05±0.10 0.1±0.14 0.3±0.21 0.15±0.16 0.15±0.16
150 1.0±0.00 0.45±0.23 0.15±0.16 0.0±0.00 0.05±0.10 0.25±0.20 0.15±0.16 0.1±0.14

Figure 7: Full results, with confidence intervals, for the Character Count task

C UNPUZZLING

This section provides more detail about the UNPUZZLES and their auto-evaluation.

C.1 DATASET CREATION INSTRUCTIONS

The following are instructions given to humans to trivialize puzzles:
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k m o1 o3 4o R1 g3 C3.7 G2.0F G2.0FT

1 50 1.0±0.00 0.95±0.10 1.0±0.00 0.95±0.10 0.95±0.10 1.0±0.00 0.95±0.10 0.95±0.10
150 1.0±0.00 1.0±0.00 1.0±0.00 0.9±0.14 0.65±0.22 0.8±0.18 0.9±0.14 0.9±0.14

3 50 1.0±0.00 0.95±0.10 0.85±0.16 0.9±0.14 0.7±0.21 0.7±0.21 0.9±0.14 0.55±0.23
150 0.95±0.10 1.0±0.00 0.5±0.23 0.55±0.23 0.15±0.16 0.5±0.23 0.65±0.22 0.05±0.10

6 50 1.0±0.00 0.95±0.10 0.75±0.20 0.95±0.10 0.45±0.23 0.8±0.18 0.7±0.21 0.5±0.23
150 0.95±0.10 1.0±0.00 0.3±0.21 0.35±0.22 0.05±0.10 0.4±0.22 0.25±0.20 0.0±0.00

Figure 8: Full results, with confidence intervals, for the Word Count task

d n o1 o3 4o R1 g3 C3.7 G2.0F G2.0FT

4 medium 1.00±0.00 1.00±0.00 0.75±0.11 1.00±0.00 0.95±0.06 0.98±0.03 0.90±0.08 0.70±0.12
small 0.98±0.03 1.00±0.00 0.68±0.12 0.98±0.03 0.93±0.06 0.97±0.05 0.97±0.05 0.75±0.11

8 medium 0.73±0.12 0.93±0.06 0.50±0.13 0.77±0.11 0.30±0.12 0.27±0.12 0.27±0.12 0.45±0.13
small 0.80±0.10 0.98±0.03 0.45±0.13 0.78±0.11 0.38±0.13 0.28±0.12 0.37±0.13 0.42±0.13

12 medium 0.35±0.12 0.45±0.13 0.17±0.10 0.35±0.12 0.33±0.12 0.35±0.12 0.32±0.12 0.38±0.13
small 0.43±0.13 0.33±0.12 0.35±0.12 0.38±0.13 0.25±0.11 0.38±0.13 0.33±0.12 0.30±0.12

Figure 9: Full results, with confidence intervals, for the Logic Evaluation task

Task: Trivialize a puzzle Make a minimal edit to a well-known logical puzzle such that the
solution becomes trivial. Either choose a puzzle from the given list or add a new puzzle. Suitable
puzzles should be known to all language models, meaning that they readily provide you with the
solution. Prefer puzzles where the solution is simply stated or can be checked with a simple question,
for example one with a yes/no or an integer. Many famous puzzles can be modified to have simple
solutions. Create an unpuzzle: modify the puzzle such that there is a trivial solution and the original
solution is no longer necessary or even correct. Ideally, the simple question that verified the original
puzzle should have a different answer. Check that large models still use the original solution to
erroneously solve the modified puzzle or give the original (incorrect) answer. If not, repeat from step
3. Examples:

• Puzzle: There are 100 lockers in a row, all initially closed. A person walks down the row
and opens every locker. Then, another person walks down the row and closes every second
locker (starting from the second locker). Next, a third person walks down the row and
changes the state (opens it if it’s closed or closes it if it’s open) of every third locker (starting
from the third locker). This continues until 100 people have walked down the row. At the
end, how many lockers are open?

Unpuzzle: There are 100 lockers in a row, all initially closed. A person walks down the row
and opens every locker. Then, another person walks down the row and closes every second
locker (starting from the second locker). At the end, how many lockers are open?

Explanation: The original puzzle requires that one finds the number of times each locker
door’s state is changed, which in turn requires the number of prime factors. This puzzle can
be checked by asking a simple, integer-valued question. On the other hand, the unpuzzle
has an obvious solution, as every second door is closed. The reasoning steps needed for the
original puzzle are not required at all. (Gemini gives the same answer for both: 10)

• Puzzle: You have 12 coins, and one is counterfeit, being either heavier or lighter than the
others. You have a balance scale and can use it three times. How can you identify the
counterfeit coin and determine if it is heavier or lighter?

Unpuzzle: You have 12 coins, and they are all counterfeit. You have a balance scale and can
use it three times. How can you identify all the counterfeit coins?

Explanation: The original puzzle requires careful reasoning through all possible results
from the weighing. The unpuzzle has a laughably trivial solution. We could also modify
the puzzle to ask “how many weighings are required to determine which is the counterfeit
coin?”.
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d name o1 o3 4o R1 g3 C3.7 G2.0F G2.0FT

4 letters 0.95±0.07 1.00±0.00 0.82±0.12 0.15±0.11 0.85±0.11 0.95±0.07 0.85±0.11 0.97±0.05
movies 1.00±0.00 1.00±0.00 0.72±0.14 0.15±0.11 0.75±0.14 0.97±0.05 0.95±0.07 1.00±0.00

random 20 1.00±0.00 0.97±0.05 0.80±0.13 0.15±0.11 0.70±0.15 1.00±0.00 0.95±0.07 0.95±0.07
8 letters 0.97±0.05 1.00±0.00 0.68±0.15 0.17±0.12 0.60±0.16 0.93±0.08 0.88±0.11 0.80±0.13

movies 0.95±0.07 1.00±0.00 0.47±0.16 0.88±0.11 0.57±0.16 0.88±0.11 0.90±0.10 0.72±0.14
random 20 0.90±0.10 0.97±0.05 0.55±0.16 0.90±0.10 0.47±0.16 0.82±0.12 0.95±0.07 0.53±0.16

12 letters 0.75±0.14 0.88±0.11 0.40±0.16 0.82±0.12 0.45±0.16 0.80±0.13 0.82±0.12 0.57±0.16
movies 0.80±0.13 0.88±0.11 0.38±0.16 0.82±0.12 0.35±0.15 0.82±0.12 0.68±0.15 0.55±0.16

random 20 0.62±0.16 0.62±0.16 0.35±0.15 0.68±0.15 0.30±0.15 0.62±0.16 0.82±0.12 0.55±0.16

Figure 10: Full results, with confidence intervals, for the Logic Negation task

d diverse o1 o3 4o R1 g3 C3.7 G2.0F G2.0FT

3 False 1.00±0.00 0.70±0.21 0.85±0.16 1.00±0.00 0.95±0.10 0.90±0.14 1.00±0.00 0.85±0.16
True 0.90±0.14 0.60±0.22 0.95±0.10 0.90±0.14 0.65±0.22 0.95±0.10 0.65±0.22 0.70±0.21

6 False 0.60±0.22 0.55±0.23 0.35±0.22 0.95±0.10 0.30±0.21 0.60±0.22 0.30±0.21 0.20±0.18
True 0.70±0.21 0.90±0.14 0.25±0.20 0.65±0.22 0.15±0.16 0.55±0.23 0.30±0.21 0.20±0.18

9 False 0.35±0.22 0.75±0.20 0.05±0.10 0.55±0.23 0.15±0.16 0.20±0.18 0.30±0.21 0.10±0.14
True 0.55±0.23 0.55±0.23 0.15±0.16 0.55±0.23 0.15±0.16 0.15±0.16 0.35±0.22 0.15±0.16

Figure 11: Full results, with confidence intervals, for the MathGap Diverse task

C.2 CONTEXT-SHIFTED UNPUZZLES

We generated the context-shifted unpuzzles by first identifying a subset of 64 unpuzzles with simple
categorical or integer answers (e.g. asking "what is the minimum number of crossings?" instead of
"How can we move all items across the river?"). We used the following method for automatically
shifting the context for the unpuzzles

1. We prompt a strong model with “I will give you a puzzle and a solution. I would like you to
provide a single rewrite of the puzzle that changes the language and setting but keeps the
logical structure and the answer the same; think carefully, highlighting the logical structure
present in the puzzle,” followed by a templated response specifying the domain the answer
must lie in (the categories or an integer).

2. We verify that the new puzzle has the same solution as the original unpuzzle. If not, return
to step 1).

3. We query the same model with the new unpuzzle; if the correct answer is not returned,
return to step 1).

4. Verify that the context-shifted puzzle has the correct logical structure.

We found that models differed on the unpuzzles they could context-shift successfully, so we recom-
mend using a few models simultaneously (we used o1 and Gemini 2.5 Flash). Of the context-shifted
unpuzzles produced this way, 75% required minimal or no modification. One could use this method
to generate large numbers of context-shifted puzzles.

C.3 AUTO-EVALUATION

Prompting models to disambiguate between the different levels of delirium is difficult. However, we
had some success automatically evaluating correctness of the unpuzzle solution if we have access to
a ground-truth unpuzzle solution.

the first question: is the unpuzzle solution correct or not? Our approach involved asking the model
two questions. The first (following Miao et al. (2023)) asks a critic model whether correct solution
“supports,” “contradicts,” or ”is not directly related to” the model’s response. The second presents the
unpuzzle with the correct solution and asks whether the model’s response had different reasoning,
regardless of its correctness (we frequently saw that models would say that any reasoning not aligning
with the original puzzle’s solution was incorrect). We only conclude that the model’s response
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P S o1 o3 4o R1 g3 C3.7 G2.0F G2.0FT

1 0 0.50±0.23 0.60±0.22 0.30±0.21 0.75±0.20 0.35±0.22 0.50±0.23 0.25±0.20 0.40±0.22
60 0.45±0.23 0.45±0.23 0.10±0.14 0.50±0.23 0.25±0.20 0.20±0.18 0.10±0.14 0.50±0.23

2 0 0.50±0.23 0.55±0.23 0.20±0.18 0.75±0.20 0.20±0.18 0.55±0.23 0.20±0.18 0.50±0.23
60 0.45±0.23 0.40±0.22 0.05±0.10 0.45±0.23 0.15±0.16 0.15±0.16 0.20±0.18 0.30±0.21

4 0 0.40±0.22 0.60±0.22 0.05±0.10 0.65±0.22 0.15±0.16 0.20±0.18 0.35±0.22 0.35±0.22
60 0.25±0.20 0.40±0.22 0.05±0.10 0.25±0.20 0.00±0.00 0.10±0.14 0.10±0.14 0.10±0.14

6 0 0.40±0.22 0.60±0.22 0.10±0.14 0.55±0.23 0.00±0.00 0.15±0.16 0.20±0.18 0.15±0.16
60 0.30±0.21 0.30±0.21 0.05±0.10 0.35±0.22 0.05±0.10 0.00±0.00 0.05±0.10 0.20±0.18

Figure 12: Full results, with confidence intervals, for the MathGap Irrelevant task

S N o1 o3 4o R1 g3 C3.7 G2.0F G2.0FT

10 5 0.95±0.10 0.55±0.23 0.05±0.10 0.90±0.14 0.05±0.10 0.45±0.23 0.00±0.00 0.00±0.00
8 0.65±0.22 0.65±0.22 0.00±0.00 0.45±0.23 0.00±0.00 0.15±0.16 0.00±0.00 0.00±0.00

20 5 0.75±0.20 0.70±0.21 0.00±0.00 0.55±0.23 0.00±0.00 0.25±0.20 0.00±0.00 0.05±0.10
8 0.50±0.23 0.75±0.20 0.00±0.00 0.05±0.10 0.00±0.00 0.05±0.10 0.00±0.00 0.00±0.00

Figure 13: Full results, with confidence intervals, for the Travel task

is correct if the two questions were answered “supports” and “no;” the prompt details are in the
appendix.

Each row of figure 14 shows the performance of using the given model as a critic to evaluate the
responses from every model: each cell gives (false positive rate, false negative rate), where positive
means the unpuzzle solution is correct. In general, the false negative rates were significantly lower
than the false positive rates, so autoevaluation gives a conservative estimate of performance. Also
noteworthy is the complete lack of symmetry: o1 is much better at judging than being judged, though
overall Claude seems to make the best critic. We hope that the autoevals have enough fidelity to
allow the unpuzzles to be used for model improvement. Given the original unpuzzle, the correct
unpuzzle_solution, and the model’s response, we prompted the model twice with the following
question:

Autoevaluation prompt template 1

Here is a simple question:
{unpuzzle}

This simple question has the simple solution:
<correct solution>
{unpuzzle_solution}
</correct solution>

Is the reasoning in the following solution different,
regardless of it is correct or not?
<second solution>
{response}
</second solution>

Please answer with <answer>yes or no</answer>

The second question is the following:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Model

Critic G1.5 C3.5 4o o1
G1.5 (35.3, 2.4) (32.0, 4.1) (38.9, 1.2) (36.7, 7.7)
C3.5 (11.8, 0.0) (24.0, 8.1) (27.8, 3.7) (40.0, 5.1)
4o (64.7, 0.0) (80.0, 1.4) (72.2, 0.0) (78.3, 5.1)
o1 (23.5, 1.2) (28.0, 6.8) (22.2, 2.5) (43.3, 7.7)

Figure 14: (False positive, False Negative) percentages for autoevaluation. Each row corresponds to
using a different critic model for evaluation.

Autoevaluation prompt template 2

The following are 2 solutions to a simple puzzle.
Solution 1: {unpuzzle_solution}

Solution 2: {response}

Compare the key points from both solutions step by step and then check
whether Solution 1 ‘supports’,‘contradicts’ or ‘is not directly related
to’ the conclusion in Solution 2.

Please answer with <answer>’supports’, ’contradicts’, or
’is not directly related to’</answer>

We only declared the model response as correct if we received answers “no” and “supports.”

D UNPUZZLES: EXAMPLES OF CONTEXT CORRUPTION

We give examples of answers containing various degree of context corruption. As an example of
reasoning delirium, we show the solution of o1 to the Conjunctive Fallacy problem (Figure 15) in
Figure 16. As an example of context corruption leading to a correct final solution, we show o1’s full
solution to Chameleons Go on a Date (Figure 1) in Figure 17. As an example of context corruption
with an incorrect final solution, we show G1.5’s full solution to the same problem in Figure 18.

Conjunctive Fallacy (original puzzle)

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations. Which is more probable? A) Linda is a bank teller. B) Linda is a bank
teller and is active in the feminist movement. Answer: A (conjunctive fallacy)

Conjunctive Fallacy (unpuzzle)

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations. She is active in the feminist movement. Which is more probable? A)
Linda is a bank teller. B) Linda is active in the feminist movement. Answer: B (given)

Figure 15: Conjunctive fallacy: puzzle and corresponding unpuzzle.
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o1’s Solution to Conjunctive Fallacy

This question is a version of the well-known “Linda problem,” originally posed by Tversky
and Kahneman to illustrate the conjunction fallacy. In the classic form, the two options are:
A) Linda is a bank teller. B) Linda is a bank teller and is active in the feminist movement.
The correct answer is always option A (that she is simply a bank teller), because any single
event (being a bank teller) must be at least as probable as that same event combined with
another (being both a bank teller and a feminist). Adding more conditions (in this case, being
a feminist as well) can never make an event more likely, even if that extra detail sounds more
“representative” of Linda’s personality.
Why it feels counter-intuitive (the “conjunction fallacy”): • People often choose the more
“representative” description—bank teller plus feminist—because it fits Linda’s profile better.
• However, mathematically, P(A and B) <= P(A). Hence, it cannot be more probable to be
both a bank teller and a feminist than it is to be just a bank teller.
In short, the more probable statement is simply “Linda is a bank teller.”

Figure 16: o1 solution to the Conjunction Fallacy problem, illustrating complete context corruption,
or delirium. The model provides the solution to the original problem, acknowledging the difference
only by referring to the "classic form" of the problem.

o1’s solution to Chameleons Go on a Date

A succinct way to see that they can all end up the same color (and in fact which color that
must be) is via the following “invariant” argument:
1) Label the number of Purple, Yellow, and Maroon chameleons by P, Y, M, respectively. 2)
Notice that in any “meeting” of two different-colored chameleons, P, Y, M change according
to one of these three rules:
P + Y → 2M , so (P, Y,M) becomes (P − 1, Y − 1,M + 2).
Y +M → 2P , so (P, Y,M) becomes (P + 2, Y − 1,M − 1).
P +M → 2Y , so (P, Y,M) becomes (P − 1, Y + 2,M − 1).
3) Define the quantity S = P + 2Y (mod 3). One checks that under each of the above
transformations, S remains unchanged (that is, S is an invariant modulo 3).
4) At the start, we have P=15, Y=15, M=17. Then S = 15 + 2 * 15 = 15+30 = 45 = 0(mod 3).
5) If eventually all chameleons turn into a single color, say all Purple (P=47) or all Yellow
(Y=47) or all Maroon (M=47), then we can compute S in each scenario:
- All Purple: P = 47 =⇒ S = 47 + 2 · 0 = 47 = 2(mod3).
- All Yellow: Y = 47 =⇒ S = 0 + 2 · 47 = 94 = 1(mod3).
- All Maroon: M = 47 =⇒ S = 0 + 2 · 0 = 0 = 0(mod3).
Since the initial S = 0(mod 3), the only way to remain consistent with that invariant and end
up with all chameleons of one hue is if they all become Maroon (because only that final state
also gives S = 0).
Conclusion: Yes. It is possible for all of the chameleons to end up the same color; specifically,
they can all turn Maroon.

Figure 17: o1’s solution to Chameleons Go on a Date, illustrating context corruption with a correct
final answer

E UNPUZZLES MODEL RESPONSE HIGHLIGHTS

We saw many “creative” responses for the UNPUZZLES. Figures 19 and 20 show amusing examples
involving socks, ducks, and chickens.

Occasionally, a model will get delirious due to a different puzzle. Figure 21 shows an example of o1
copying a solution not from the original puzzle, but from an unrelated puzzle that also happens to
involve socks.
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Gemini 1.5’s Solution to Chameleons Go on a Date unpuzzle

Let p, y, and m be the number of purple, yellow, and maroon chameleons, respectively.
Initially, we have p = 15, y = 15, and m = 17.
When two different-colored chameleons meet, they both turn into the third color. This means
the changes in the numbers of chameleons are always in increments of 2. We look at the
remainders when the numbers are divided by 3.
Initially, we have p ≡ 0 (mod 3), y ≡ 0 (mod 3), and m ≡ 2 (mod 3).
Consider the remainders when dividing the number of each color by 3 at each step. Let p ≡ p′

(mod 3), y ≡ y′ (mod 3), and m ≡ m′ (mod 3). The possible values for (p′, y′,m′) are
(0, 0, 2).
If a purple and a yellow chameleon meet, we have (p−1, y−1,m+2). Then the remainders
are (2, 2, 1). If a purple and a maroon chameleon meet, we have (p − 1, y + 2,m − 1).
Then the remainders are (2, 2, 1). If a yellow and a maroon chameleon meet, we have
(p+ 2, y − 1,m− 1). Then the remainders are (2, 2, 1).
We can notice a pattern. The remainders after any interaction will always satisfy p′+y′+m′ ≡
2 (mod 3). The possible remainder sets are: (0, 0, 2), (0, 2, 0), (2, 0, 0), (1, 1, 0), (1, 0, 1),
(0, 1, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2). We need all chameleons to have the same color. This
means two of the colors must be zero. The only combinations with two zeros are (0, 0, 2),
(0, 2, 0), and (2, 0, 0). We start with (0, 0, 2). If all the chameleons are purple, we would
have (1, 0, 0), which has a remainder sum of 1, which is not possible. If all the chameleons
are yellow, we would have (0, 1, 0), which has a remainder sum of 1, which is not possible.
If all the chameleons are maroon, we would have (0, 0, 1), which has a remainder sum of 1,
which is not possible.
Since all final states are not achievable, it is not possible for all chameleons to have the same
hue.
My final is: no.

Figure 18: G1.5’s solution to Chameleons Go on a Date, illustrating context corruption leading to an
incorrect final answer.

Sometimes the models seem aware that the problem is different, but they seem pretty intent on
sticking to the training distribution and make up flimsy excuses to rehash the original solution, as in
the River Crossing puzzle shown in Figure 22.
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Matching Socks 2 (original puzzle)

You are about to leave for holiday, but you forgot socks! You race back to your room, but the power is off so you
can’t see sock colors. Never mind, because you remember that in your drawer there are ten pairs of identical
green socks, ten pairs of identical black socks, and eleven pairs of identical blue socks, but they are all mixed
up. How many of your socks do you need to take before you can be sure to have at least one pair matching in
color? Answer: 4 (by the pigeonhole principle)

Matching Socks 2 (unpuzzle)

You are about to leave for holiday, but you forgot socks! You race back to your room, but the power is off so
you can’t see sock colors. Never mind, because you remember that in your drawer there are ten pairs of green
socks, but they are all mixed up. All socks have an identical shape (there is no distinction between socks for left
and right feet). How many of your socks do you need to take before you can be sure to have at least one pair
matching in color? Answer: Since all socks are green, taking two clearly suffices.

Gemini 1.5’s Solution

The worst-case scenario is that you pick one sock from each of the ten pairs. This means you could
pick ten socks and still not have a matching pair. However, the very next sock you pick *must* create
a pair with one of the socks you already have.
So you need to pick 10 + 1 = 11 socks.
My final answer is: 11

Figure 19: Matching Socks 2: puzzle, unpuzzle, and an amusing answer by Gemini 1.5.

Counting Ducks (original puzzle)

There are two ducks in front of a duck, two ducks behind a duck and a duck in the middle. How many ducks are
there? Answer: 3

Matching Socks 2 (unpuzzle)

There are two ducks in front of the chicken, two ducks behind the chicken, and a duck to the left of the chicken.
How many ducks are there? Answer: 5

o1’s Solution

A classic way to see why the answer is three is to realize that “the chicken” named in the riddle is
actually just one of the three ducks (it has the nickname “Chicken”). Line the three ducks up:
• Duck 1 (sometimes called “Chicken”),
• Duck 2,
• Duck 3.
From the perspective of each duck, you can say there are “two ducks in front of it,” “two ducks
behind it,” and so on—yet you never actually need more than three ducks. The riddle’s wording
double-counts the same birds from different points of view. Hence, the total number of ducks is 3.

Figure 20: Counting ducks: puzzle, unpuzzle, and an answer by o1.

F DETAILS FOR COUNTING

The counting tasks both use data from the Salesforce/wikitext and wikitext-2-v1 dataset Merity et al.
(2016) hosted on Hugging Face. We will briefly describe each of them and provide task cards.
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More Socks (original puzzle)

A man has 53 socks in his drawer: 21 identical blue, 15 identical black and 17 identical red. The lights are out
and he is completely in the dark. How many socks must he take out to make 100 percent certain he has at least
one pair of black socks? Answer: 38

More Socks (unpuzzle)

A man has 53 socks in his drawer: 21 identical blue, 15 identical black and 17 identical red. There is no
distinction between left and right socks. The lights are out and he is completely in the dark. How many socks
must he take out to have one sock for each foot? Answer: 2

o1’s Solution

A straightforward way to see why the answer is 4 is to use the “worst-case” or pigeonhole principle
argument:
• There are three colors (blue, black, red).
• If you pick 3 socks, in the worst case you could have one of each color (1 blue, 1 black, 1 red) and
thus no matching pair.
• As soon as you pick a 4th sock, by the pigeonhole principle at least two of them must be the same
color.
Hence, you must take out 4 socks to guarantee having a matching pair for your two feet.

Figure 21: More Socks: puzzle, unpuzzle, and an answer by o1.

F.1 CHARACTER COUNTING

The character counting task is defined by paragraph bounds ml and mu. We randomly choose a
wikitext snippit from all paragraphs that adhere to the length limits. We then count all the characters
and randomly pick one in the top 10 most frequent.

Character counting prompt template

I will provide you a block of text. Please count the number of times
the character "{sampled_char}" appears in the text.
Give your answer using the format:

"The character appears #your answer# times."

Think step by step.
Here is the text.
{sampled_paragraph}
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River Crossing with a Weight Constraint (original puzzle)

Four people (Alex, Brook, Chris and Dusty) want to cross a river in a boat that can only carry 100kg. Alex
weighs 90kg, Brook weighs 80kg, Chris weighs 60kg and Dusty weighs 40kg, and they have 20kg of supplies.
What is the minimum number of river crossings they need to get across?

River Crossing with a Weight Constraint (unpuzzle)

Four people (Alex, Brook, Chris and Dusty) want to cross a river in a boat that can only carry 300kg. Alex
weighs 90kg, Brook weighs 80kg, Chris weighs 60kg and Dusty weighs 40kg, and they have 20kg of supplies.
What is the minimum number of river crossings they need to get across? Answer: 1

Claude 3.5’s Solution

Let’s approach this step-by-step:
1. First, we need to consider the total weight: 90 + 80 + 60 + 40 + 20 = 290kg This is within the
300kg limit, but they can’t all go at once because the boat can only carry 300kg.
2. The most efficient way to cross is to always have the boat full or nearly full on each trip across,
and to send the lightest person back with the boat.
3. Here’s an efficient crossing strategy: - Trip 1: Chris (60kg) and Dusty (40kg) cross (100kg total)
- Trip 2: Dusty returns alone - Trip 3: Alex (90kg) and Brook (80kg) cross (170kg total) - Trip 4:
Chris returns alone - Trip 5: Chris (60kg), Dusty (40kg), and supplies (20kg) cross (120kg total)
4. This strategy requires 5 crossings in total.
5. We can’t reduce this number because: - We need at least 2 trips to get everyone across (the boat
must return at least once) - We can’t fit everyone in just two trips because Alex and Brook together
are already 170kg, leaving only 130kg for Chris, Dusty, and the supplies, which isn’t enough
Therefore, 5 is the minimum number of crossings required.
My final answer is: 5

Figure 22: River Crossing with a Weight Constraint: puzzle, unpuzzle, and an answer by Claude 3.5.

F.2 WORD COUNTING

For the word counting task, we begin the same way by sampling a paragraph that obeys the length
restrictions. We then compute the word frequencies, always asking the model to find the top k most
frequent words. Because the wikitext data have white spaces around each word and all characters are
lower case, each word always has the same tokenization.

The prompt template is give below.

I will provide you a block of text. Please count the number of
times each word in the list [word 1, word 2,...,word k] appears
in the text.
Give your answer using the format:
"The words appear [ your answer for the first word ,
your answer for the second word , ... ] times."
Think step by step.
Here is the text
{text}

G DETAILS FOR THE LOGIC TASKS

This section provides pseudocode for generating tasks for logic evaluation and logic negation tasks.

A logic formula can be represented by a tree where nodes are logical operators and leaves are atomic
propositions. The nodes have a certain truth value depending on the value of their children. The
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standard nodes have three types: connective, unitary, and quantifying. Connective nodes have two
children (left and right), and unitary and quantifying nodes have one child. Throughout this section,
T and F denote True and False, respectively.

There are two types of leaves:

• Atomic propositions (often denoted by single capital letters, e.g., P , Q, etc.) are either true
or false.

• Predicates represent a property about an individual. For example, for predicate P , we have
P (x) = T if the individual x has the property P . We expect P (x) to have different values
as x changes.

There are seven operators, described in the following table (other logical primitives, e.g., the exclusive
or, may be derived from the ones below).

Name Symbol Type Description
and ∧ connective True if both children are True
or ∨ connective True if at least one child is True

implies → connective Only False if T → F
equals ⇔ connective True if the left and right child are equal

not ¬ unitary The opposite value of its child
universal quantification ∀x ∈ X quantifying True if the child evaluates to True for

every value x in domain X .
existential quantification ∃x ∈ X s.t. quantifying True if the child evaluates to True for

some value x in domain X .

Nodes of connective and unitary types are only defined by their symbol. A quantifying node is
defined by its symbol and the domain it operates on. For simplicity, we will simply number the
possible domains, e.g., D1, D2, . . ..

The first step in constructing a logic task is to sample a logic formula. We describe how in the next
section.

G.1 SAMPLING A LOGIC FORMULA

Including first-order logic requires a sampling procedure that ensures the domains have scopes that
make sense. In particular, the domain of a predicate must be from one of its ancestors. To enforce
this, we keep track of every used domain in each subtree and limit the domains of predicates to these
domains. Once we finish sampling a subtree with a root quantifying node, we then check if the
subtree actually used the domain of the root. If not, the quantifying node is removed.

The logic problems were also parameterized by the number of unique propositions, n. For n = 8, we
also chose the number of unique predicates and domains to be 8 and 4, respectively. For n = 16, the
number of unique predicates and domains were 16 and 8, respectively.

We use several different sets of names for the propositions, predicates, and domains. They include

• common letters;
• random 20 character-long lower case strings;
• words about movies.

For generating each prompt, a subset of the appropriate size was selected from larger sets. For
example, the “movie” vocabulary uses the following words:

• Propositions: dark, dramatic, intense, thrilling, suspenseful, romantic, comedic, tragic, epic,
inspiring, thought-provoking, emotional, powerful, beautiful, visually-stunning, artistic,
creative, imaginative, innovative, classic, mainstream, independent, foreign, animated,
biographical, historical, fictional, realistic, surreal, abstract

• Predicates: has_subtitles, is_streamable, is_theatrical_release, is_direct_to_video,
is_part_of_franchise, has_sequel, has_prequel, is_remake, is_based_on_book,
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is_based_on_true_story, is_animated, uses_cgi, uses_stop_motion, is_live_action,
is_musical, is_comedy, is_drama, is_horror, is_action, is_sci_fi, is_fantasy, is_romance,
is_thriller, is_documentary, is_historical_fiction, is_independent_film, is_big_budget,
won_awards, has_famous_actors, has_original_score„ is_award_winning,

• Domains: action_movies, comedies, period_pieces, science_fiction_films, fantasy_films,
horror_films, thrillers, dramas, romantic_comedies, romantic_dramas, musicals, west-
erns, crime_films, war_films, documentaries, biopics, animated_films, adventure_films,
mystery_films, superhero_films.

Algorithm 1: Sampling a First-order Logic Formula
Data: maximum depth dmax

probability of deepening tree pd
probability of sampling a connective node pc
probability of sampling a unitary node pu
probability of sampling a quantifying node pq
the number of unique atomic propositions Na

the number of unique domains Nd

Call the helper function Algorithm 3 with D = ∅, d = 0;

Algorithm 2: Sampling a node
Data: Probabilities pc, pu, pq of sampling a connective, unitary, or quantifying node

List of previously used domains D
Number of unique domains ND

if |D| = Nd then
Choose node from (connective, unitary) with probabilities proportional to (pc, pu);

else
Choose node from (connective, unitary, quantifying) with probabilities to (pc, pu, pq);

if node is connective then
Choose operator from (∧,∨,→,⇔) with probabilities (.3, .3, .3, .1);

else if node is unitary then
Set operator to be ¬.;

else
/* node is quantifying */
Choose operator from (∀,∃) with equal probability.;
Choose new domain uniformly from {1, . . . Nd} \D;

return operator, new domain

G.2 CONSTRUCTING THE LOGIC EVALUATION TASK

For every task, we first sample a logic formula with pq = 0, i.e. without quantifying nodes. We
use pd = .8, pc = .85 and pu = .15; that is, we only choose an atomic proposition 20% of the
time (unless we must to adhere to the maximum depth), and of the remaining 80%, we choose a
connective node 85% of the time and a ¬ operator 15%. After sampling the formula, the names for
all atomic propositions are chosen from a name set as described above. We then sample random
value assignments for all atomic propositions until we find one that evaluates to true and three that
evaluate to false. These are then presented in random order using the following prompt template.
Some models (notably o1) have restrictions on the language you can use to prompt the model. In that
case “think carefully step-by-step and” was removed from the last sentence.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 3: Sampling Helper function
Data: maximum depth dmax

current depth d
List of previously used domains D
Number of unique domains Nd

Probability of going deeper pd
List of atomic propositions Lprop

List of predicates Lpred

Sample U ∼ Uniform[0, 1];
if d = dmax or U ≥ pd then

if With probability 50% then
return An atomic predicate uniformly from Lprop

else
Sample a predicate uniformly from Lpred;
Sample a domain uniformly from D;
return the predicate over the domain

else
Chose node N , with domain Dnew if N is quantifying, using Algorithm 2;
For each child of N , sample using this algorithm with d = d+ 1, D = D ∪ {Dnew};
if N is quantifying and Dnew was not used by the descendants of N then

return the child of N
else

return N

Logic evaluation prompt template

You are a logic student. I will give you a logical formula, written in
propositional logic, as well as four options for values of every atomic
proposition in the formula.

Logical formula: {formula}

Which of the following choices makes the logical formula evaluate to
True?

A: {answer 1}
B: {answer 2}
C: {answer 3}
D: {answer 4}

Please think carefully step-by-step and provide your answer with
<answer>A, B, C, or D</answer>.

G.3 CONSTRUCTING THE LOGIC NEGATION TASK

Similar to the Logic Evaluation Task, the negation task samples a logic formula with pc = .6,
pu = pq = .2 and all other sampling parameters the same. We then compute the negation using the
standard rules for first-order logic, assign it to a random choice, then perturb the correct answer to
arrive at the three incorrect choices.

We perturb a logic formula by selecting, uniformly at random, a single node or leaf of the tree; the
perturb operation depends on node type.

• Proposition: we create a list of all propositions in the formula, append a new, unused
proposition (so long as the total number of propositions satisfies the constraints of the
problem), then replace the proposition from the list uniformly at random.
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• Predicate: We do an analogous procedure.

• Quantifying node: we changed it to the other type.

• Connective node: we replace with a connective node of a different type, selected uniformly
at random

• Unitary node: We simply remove this node.

We apply two perturbations to generate each incorrect answer, and repeat the perturbation process to
guarantee that all four choices are unique. Finally, we form a question using the following template.
Some models (notably o1) have restrictions on the language you can use to prompt the model. In that
case “think carefully step-by-step and” was removed from the last sentence.

Logic negation prompt template

You are a logic student. I will give you a statement in first-order
logic, and your task is to find it’s negation from a list of choices.

Logical formula: {formula}

Which of the following is its negation?

A: {answer 1}
B: {answer 2}
C: {answer 3}
D: {answer 4}

Please think carefully step-by-step and provide your answer with
<answer>A, B, C, or D</answer>.

G.4 EXAMPLES OF FAILURES

Here are some illuminating examples of incorrect responses.

Finding a shortcut but failing at simple logic Here is an example where the prompt is very long
but there is an obvious simplification. All models notice this simplification and try to exploit it to find
the answer, but all make very elementary mistakes after making the simplification. Given the model,s
scores for d = 4 trees, we know that they are able to perform the correct logical steps for a simple
formula, but fail when the formula is simple but with a large sub-tree in it.

Question

You are a logic student. I will give you a logical formula, written in
propositional logic, as well as four options for values of every atomic
proposition in the formula.

Logical formula:
thrilling and ((not thrilling or X....X )) or (dark or thrilling))

Which of the following choices makes the logical formula evaluate to
True?
A) dark: False, dramatic: True, intense: True, thrilling: False,
suspenseful: False, romantic: True, comedic: True, tragic: False.
B) dark: False, dramatic: True, intense: True, thrilling: False,
suspenseful: True, romantic: False, comedic: False, tragic: False.
C) dark: True, dramatic: False, intense: True, thrilling: False,
suspenseful: True, romantic: True, comedic: False, tragic: False.
D) dark: True, dramatic: True, intense: False, thrilling: True,
suspenseful: False, romantic: False, comedic: False, tragic: True.

Please provide your answer with <answer>A, B, C, or D</answer>.
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where the correct answer is D and X...X is a large sub-expression we have hidden.

o1’s Response

Step-by-step reasoning:

1) Observe the formula’s overall shape. Its outermost structure is of
the form (thrilling AND ...) OR (dark OR thrilling).

In more schematic form:
X or (dark or thrilling),

where X is a very large sub-formula involving all the propositions.

2) Recall how OR works in propositional logic:
• If (dark or thrilling) is true, then the whole formula is true
regardless of X.
• If (dark or thrilling) is false, then dark = false and
thrilling = false, and in that case we would need (thrilling AND ...)
to be true. But if thrilling = false, then

(thrilling AND ...) is automatically
false, making the entire formula false.

3) Check each choice’s (dark or thrilling):
A) dark = False, thrilling = False => dark or thrilling = False

Then the left part is “thrilling AND ...” = False AND ... = False.
Overall result = False or False = False.

B) dark = False, thrilling = False => exactly the same reasoning as
(A), yields False.
C) dark = True, thrilling = False => dark or thrilling = True,

so the whole formula = X or True = True (no need to check X).
D) dark = True, thrilling = True => dark or thrilling = True,

so again the whole formula = X or True = True.

Thus both (C) and (D) make (dark or thrilling) = True, and so make the
entire formula evaluate to True.

Since the question asks “Which of the following choices makes the
logical formula evaluate to True?” the correct answer (in standard
multiple-choice fashion) is whichever of (C) or (D) is offered as valid.
In fact, both of them do.

Therefore, a valid selection is:

<answer>C</answer>

The error results from eliminating all options except for C and D). This mistake causes the model to
focus on the wrong part of the clause.

Gemini makes a similar mistake.
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Gemini 2.0 Flash’s Response

The given statement is of the form $P \Leftrightarrow Q$. The negation of
$P \Leftrightarrow Q$ is $\neg (P \Leftrightarrow Q)$, which is equivalent
to $(P \land \neg Q) \lor (\neg P \land Q)$.

Let’s denote the left side of the main biconditional as $L$ and the right
side as $R$. So the given statement is $L \Leftrightarrow R$. Its negation
is
$\neg (L \Leftrightarrow R) \equiv (L \land \neg R) \lor (\neg L \land R)$.

Looking at the options, we can see that all of them are of the form
$(L \to \neg R) \lor (\neg L \to R)$, which is incorrect. The negation of
$P \Leftrightarrow Q$ is not equivalent to
$(P \to \neg Q) \lor (\neg P \to R)$.

...

The reasoning traces of Claude 3.7 often suggest that it is taking shortcuts rather than executing
computations, in that explicit computations are not present in the reasoning trace. Claude typically
tries to guess the best option based on the formula structure ("This is extremely complex, but I’ll
focus on the overall structure.")

Claude 3.7 Response

I need to find the negation of the given logical statement. Let me work
through this step by step.

The original statement has the form:
b or (...complex formula...) -> (...complex formula...) or (h and ...)

To negate this statement, I need to apply the negation rules:
- Negation of "p or q" is "not p and not q"
- Negation of "p -> q" is "p and not q"
- Negation of "p and q" is "not p or not q"

So the negation should have the form:
not b and ((...complex formula...) and not(...complex formula...)) and
(not h or ...)

Looking at the options, I notice they all start with "not b and...", which
is correct for the negation of "b or...".

Among the choices, I need to check which one correctly negates all parts of
the original statement. This is extremely complex, but I’ll focus on the
overall structure.

Since the original statement has the form:
b or X -> Y or (h and Z)

The negation should be:
not b and X and not Y and (not h or not Z)

Looking at options B and C, they appear to have the correct structure for
the negation of the original statement. Option B includes "not b and..."
followed by the same complex formula structure with appropriate negations
applied. The final part properly includes "not h or...".

After careful examination, I believe option B correctly represents the
negation of the original statement. It properly negates all components
while maintaining the correct logical structure.

<answer>B</answer>
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Nonsensical Logic When there is no simplifying tactic, the models will try to evaluate the expres-
sion by breaking it into sub expressions where errors creep in eventually

Gemini 2.0 Flash’s Response

Let the given statement be $S$. The statement $S$ has the form
$(P \land Q) \lor (R \land (\neg e)) \land T$, where
$P = \exists x \in X3 \text{ s.t. } ((E(x) \lor (g \to h)
\iff \neg(h \lor c)) \to (((\forall x \in X1 C(x)) \iff \neg A(x))
\iff \neg(f \lor b)))$
$Q = \neg(\forall x \in X1 \exists x \in X1 \text{ s.t. } H(x))$
$R = \neg((\exists x \in X1 \text{ s.t. } (h \iff b) \lor
(\forall x \in X1 E(x))) \lor b)$
$T = \forall x \in X3 ((((( \exists x \in X1
\text{ s.t. } C(x)) \lor g) \lor ((C(x) \iff f) \lor \neg f)) \land
(((b \iff E(x)) \land (E(x) \lor a)) \iff ((D(x) \to g) \to g)))
\to ((c \to b) \iff (C(x) \land C(x)))) \land ((\neg(E(x) \lor
(C(x) \land b \to ((h \to h) \land (\exists x \in X
\text{ s.t. } H(x)))))) \to g))$

We want to find the negation of $S$, which is
$\neg S = \neg((P \land Q) \lor (R \land (\neg e)) \land T)$.
Using De Morgan’s laws, we have:
$\neg S = \neg(P \land Q) \lor \neg(R \land (\neg e)) \lor \neg T$
$\neg S = (\neg P \lor \neg Q) \land (\neg R \lor \neg(\neg e)) \land \neg T$
$\neg S = (\neg P \lor \neg Q) \land (\neg R \lor e) \land \neg T$

Let’s negate each part:
$\neg P = \neg(\exists x \in X3 \text{ s.t. } ((E(x) \lor (g \to h)
\iff \neg(h \lor c)) \to (((\forall x \in X1 C(x)) \iff \neg A(x))
\iff \neg(f \lor b))))$ ...
...
Without a clear match, and given the high complexity, I cannot confidently
select an option. I suspect an error in the provided question or options.

Final Answer: (No answer can be confidently determined due to
structural mismatch)
<answer>A</answer>"

The logic used is hard to follow because it’s nonsensical. Gemini starts trying to evaluate the whole
phrase, but then essentially gives up and leaves large expressions in the (...).

Misreading the options Another common failure mode is that the model concludes that two options
are the same or that no correct answer exists when it erroneously assumes two options are the same.
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Gemini 2.0 Flash’s Response

"The given logical statement is:
not ((((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t. A(x)
or b <=> not m) or (not (p and g -> (e <=> i)))))
and ((((f -> l) -> j and f <=> (Exists x in X1 s.t. N(x) and H(x))) ->
((j or j -> not m) and (p and g -> h)))
<=> ((not j -> (d <=> m -> o)) <=> n and f))) or c)

We need to find the negation of this statement. Let’s represent the statement
inside the outermost ’not’ as P. So the given statement is ’not (P or c)’.

The negation of ’not (P or c)’ is ’(P or c)’.

Now let’s substitute P back with its original form:
(((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t. A(x) or b
<=> not m) or (not (p and g -> (e <=> i))))) and ((((f -> l) -> j and f <=>
(Exists x in X1 s.t. N(x) and H(x))) -> ((j or j -> not m) and
(p and g -> h)))
<=> ((not j -> (d <=> m -> o)) <=> n and f))) or c

Comparing this result with the given options:

Option A: (((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t.
A(x) or b <=> not m) or (not (p and g -> (e <=> i))))) and ((((f -> l) -> j
and f <=> (Exists x in X1 s.t. N(x) and H(x)))
-> ((j or j -> not m) and
(p and g -> h))) <=> ((not j -> (d <=> m -> o)) <=> n and f))) or c
This option is exactly the same as the expression we derived for the
negation.

Option B: (((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t.
A(x) or b <=> not m) or (not (p and g -> (e <=> i))))) and ((((f -> l) -> j and
f <=> (Exists x in X1 s.t. N(x) and H(x))) -> ((j or j -> not m) and (p and g
-> h))) <=> ((not j -> (d <=> m -> o)) <=> n and f))) or c
This option is also exactly the same as the expression we derived for the
negation.

Option C: (((Exists x in X5 s.t. not (l <=> M(x))) and ((Exists x in X5 s.t.
A(x) or k <=> not n) or (not (e and b -> (m <=> f))))) and ((((c -> p) -> o
and p <=> (Exists x in X1 s.t. N(x) and H(x))) -> ((d or d -> not o) and
(o and b -> p))) <=> ((not i -> (h <=> o -> b)) <=> e and i))) or d
This option is different from the derived negation.

Option D: (((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t.
A(x) or b -> not m) or (not (p and g -> (e <=> i))))) and (((f and l -> j
and f <=> (Exists x in X1 s.t. N(x) and H(x))) -> ((j or j -> not m) and
(p and g -> h))) <=> ((not j -> (d <=> m or o)) <=> n and f))) or c
This option is also different from the derived negation.

Since the negation of ’not (P or c)’ is ’(P or c)’, and both options A and
B are identical to P or c, both are correct negations. However, usually
there should be only one correct answer in a multiple-choice question.
Let’s re-examine the question and the options to ensure there isn’t a subtle
difference I missed.

There is no subtle difference. Options A and B are identical and represent
the negation of the given statement. Assuming there was a typo in the
question and only one option should be correct, and given that they are
identical, we can choose either one.

<answer>A</answer>"
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Missing Simple Rules Perhaps surprisingly, sometimes the models fail because they cannot apply
simple logical rules (De Morgan’s, in this case:)

o1’s Response

"First, note that the given statement is of the form
not ( Exists x in X_2 : ...)

in other words, it begins with “not (Exists x in X_2 s.t. ...).”

The standard logical negation of
not (Exists x : P(x))
is
Exists x : not P(x).
...

We truncated the output because the error is already present: the model negated the first term
incorrectly, clearly violating the rule it just wrote out.

H DETAILS FOR PROOF TREE

This section describes the Proof Tree construction, along with the inference rules we derived.

H.1 LOGICAL FORMS

These forms were included in the original paper:

• container (cont): “A has 5 apples."
• comparison (comp): “A has 3 more apples than B."
• transfer: “A gives B 3 apples."
• comp-eq: “The number of apples that C has more than D is equal to the difference between

the number of apples that A and B have."
• partwhole: “A and B combine the fruits that they have."

Our diverse rules task added the following additional rules.

• consume (cons): “A eats 5 apples."
• increase: “The number of apples that A has increases by 2 times."
• switch: “A and B switch the apples they have."
• redistribute: “A and B redistribute their apples to ensure each has an equal amount."
• split: “A splits all the apples she owns equally between B and C."
• conditional transfer (cond-transfer): “If B has more than 2 apples, B will transfer all their

apples to A."
• cumulative (cum): “The combined quantity of apples that A, B, and C have is 20."
• multi-agent comparison (multi-comp): “A has 10 more apples than B and C combined."
• sequential comparison (seq-comp): “A has 3 more apples than B and 5 less apples than C."

H.2 INFERENCE RULES

Each logical form requires inference rules that describe its implications on our knowledge of the
number of apples everyone has. The inference rules from the original paper include:

• ContCompInference: cont(a,q1,e) comp(b,a,q2,e)
cont(b,q1+q2,e)

– Example: "Alice has 3 apples. Bob has 2 more apples than Alice. ⊢ Bob has 5 apples."
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• ContTransferInference: cont(a,q1,e) transfer(a,b,q2,e)
cont(a,q1+q2,e)

– Example: "Alice has 3 apples. Bob gave 2 apples to Alice. ⊢ Alice has 5 apples."

• ContContInference: cont(a,q1,e) cont(b,q2,e)
comp(b,a,q2−q1,e)

– Example: "Alice has 3 apples. Bob has 5 apples. ⊢ Bob has 2 more apples than Alice."

• CompEqInference: cont(a,q1,e) comp(d,c,q2,e) comp-eq(b,a,d,c,e)
cont(b,q1+q2,e)

– Example: "Alice has 7 apples. David has 2 more apples than Charlie. The number of
apples that Bob has more than Alice is the same as the difference between the number
of apples that David and Charlie have. ⊢ Bob has 9 apples."

To be able to make correct inferences over our new rules, we also derived the following inference
rules.

• ContConsInference: cont(a,q1,e) cons(a,q2,e)
cont(a,q1−q2,e)

– Example: "A has 10 apples. A eats 3 apples. ⊢ A has 7 apples."

• ContIncreaseInference: cont(a,q1,e) increase(a,q2,e)
cont(a,q1×q2,e)

– Example: "A has 4 apples. The number of apples that A has increases by 3 times. ⊢ A
has 12 apples."

• ContSwitchInference: cont(a,q1,e) cont(b,q2,e) switch(a,b,e)
cont(a,q2,e) cont(b,q1,e)

– Example: "A has 5 apples. B has 8 apples. A and B switch the apples they have. ⊢ A
has 8 apples. B has 5 apples."

• ContRedistributeInference: cont(a,q1,e) cont(b,q2,e) redistribute(a,b,e)
cont(a, q1+q2

2 ,e) cont(b, q1+q2
2 ,e)

– Example: "A has 6 apples. B has 10 apples. A and B redistribute their apples to ensure
each has an equal amount. ⊢ A has 8 apples, and B has 8 apples."

• SplitInference: cont(a,q1,e) cont(b,q2,e) split(a,q4,{b,c},e)
cont(a,q1−q4,e) cont(b,q2+

q4
2 ,e)

– Example: "A has 12 apples. B has 4 apples. A splits all the apples she owns equally
between B and C. ⊢ A has 0 apples. B has 10 apples."

• CondTransferInference: cont(a,q1,e) cont(b,q2,e) cond-transfer(b,a,q2,e,q2>q3)
cont(a,q1+q2,e) if q2>q3; cont(a,q1,e) otherwise

– Example: "A has 5 apples. B has 7 apples. If B has more than 6 apples, B will transfer
all their apples to A. ⊢ A has 12 apples."

• CumulativeToContInference: cont(a1,q1,e) ... cont(an−1,qn−1,e) cum(a1,...,an,q,e)

cont(an,q−Σn−1
i=1 qi,e)

– Example: "A has 5 apples. B has 3 apples. The combined quantity of apples that A, B,
and C have is 15. ⊢ C has 7 apples."

• MultiCompInference: cont(a,q1,e) cont(b,q2,e) multi-comp(a,b,c,q3,e)
cont(c,q1−q2−q3,e)

– Example: "A has 12 apples. B has 2 apples. A has 10 more apples than B and C
combined. ⊢ C has 0 apples."

• SeqCompInference: seq-comp(a,b,c,q1,q2,e) cont(b,q3,e)
cont(a,q3+q1,e) cont(c,q3+q1+q2,e)

– Example: "A has 3 more apples than B and 5 fewer apples than C. B has 7 apples. ⊢ A
has 10 apples. C has 15 apples."

H.3 DETAILS FOR PROOF TREE IRRELEVANT

The irrelevant sentences are samples from the following list:
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Irrelevant sentences template

"{} is very generous and enjoys
sharing food with others.",
"{} tends to be laid-back and prefers
staying in rather than going out.",
"{} is highly introverted and prefers
minimal communication with others.",
"{} is very outgoing and frequently
hosts parties at home.",
"{} and {} are good friends who often
go fruit or vegetable picking together
on weekends.",
"{} and {} have been married for {}
years.",
# Random years will be added
"{} is {} years old."
# Random age will be added

H.4 CONSTRUCTING BASIC PROOF TREE AND PROMPTS

A proof tree is generated by first picking a target conclusion predicate—a “cont” (container) that
states how many items a single agent possesses. Given this target, the system identifies all inference
rule classes that can yield such a conclusion. Each rule class is assigned a weight, determining its
likelihood of selection; higher weights correspond to a greater chance of being chosen. Specifically,
“ContCompInference” is weighted at 1, “ContTransferInference” at 5, “ContContInference” at 1,
and “CompEqInference” at 10. The system then randomly selects one inference rule among those
whose premises can produce the target conclusion, with the probability of each rule proportional to
its weight. The chosen rule provides the premises (new conclusion targets) required to derive the
original predicate. Each of these premises is then handled the same way: we attempt to produce them
(recursively) via suitable rules, or it marks them as leaves (facts) if no rules fit or the tree has reached
its maximum size constraints. This procedure yields a proof tree where each internal node applies a
randomly selected (but weighted) inference rule to derive the node’s conclusion from its premises,
while the leaves represent axiomatic statements used in the proof. See Algorithm 4 and Algorithm 5
for the pseudocode.

Algorithm 4: Pseudocode for Generating a Proof Tree
Function GenerateProofTree (max_depth,max_leaves, available_agents);

selected_agent ← randomly pick 1 from available_agents;
remove selected_agent from available_agents;
quantity ← random integer in [10, . . . , 30];
entity ← random pick an entity;
root_predicate ← Cont(selected_agent , quantity , entity);
return GenerateSubtree(root_predicate,max_depth,max_leaves, 0, 1, available_agents)

Once the proof tree is constructed, its leaves are traversed in order and converted into sentences using
natural language templates, forming the textual body of the problem. The question of the problem is
derived from the logical form at the root of the proof tree.
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Algorithm 5: Pseudocode for Generating a Subtree Tree
Data: node,max_depth,max_leaves, current_depth, current_leaves, available_agents
if current_depth ≥ max_depth then

return node /* do not expand further at max depth */

candidate_rules ← ∅;
for rule_class ∈
{ContCompInference,ContTransferInference,CompEqInference,ContContInference} do

if rule_class.can_yield(node.conclusion, available_agents) and
(rule_class.num_premises + current_leaves) ≤ max_leaves then

candidate_rules.add(rule_class);

if candidate_rules is empty then
return node /* no valid rules; node is leaf */

weights ← map each rule class in candidate_rules to its weight;
chosen_rule_class ← randomly select from candidate_rules using weights;
instantiated_rule ←
chosen_rule_class.make_rnd_instance(node.conclusion, available_agents);
node.rule ← instantiated_rule;
current_leaves ← current_leaves + instantiated_rule.num_premises − 1;
if current_depth < max_depth − 1 then

for premise ∈ instantiated_rule.premises do
child_node ← Generate Subtree with data premise, max_depth , max_leaves ,
current_depth + 1, current_leaves , available_agents , and
node.children.add(child_node;

current_leaves ← current_leaves + (child_node.num_leaves()− 1);
for agent ∈ premise.agents() do

if agent ∈ available_agents then
remove agent from available_agents

return node

Proof Tree Example with max depth 5 and max leaves 20

Lindsay has 13 apples.
Arleth has 4 more apples than Mathew.
Nellie has 17 apples.

Dian has 3 more apples than Amy.
Amy has 17 apples.

Courtney has 14 more apples than Peggie.
Ida has 31 apples.
The number of apples that Peggie has more than Courtney
is equal to the difference between the number of apples
that Amy and Ida have.

Dian has 20 apples.
Dian has 13 apples.
Prudence gives 7 apples to Dian.

Annabelle has 14 apples.
Lacie has 13 more apples than Federico.
Georgia has 27 apples.

Jose has 13 more apples than Agatha.
Wilson has 40 apples.
The number of apples that Agatha has more than Jose is
equal to the difference between the number of apples
that Georgia and Wilson have.

The number of apples that Federico has more than Lacie is
equal to the difference between the number of apples that
Annabelle and Georgia have.

The number of apples that Dian has more than Amy is equal to the
difference between the number of apples that Nellie and
Annabelle have.

The number of apples that Mathew has more than Arleth is equal to the
difference between the number of apples that Lindsay and Nellie have.33
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Prompt Example

Courtney has 14 more apples than Peggie. Ida has 31 apples. The number
of apples that Peggie has more than Courtney is equal to the difference
between the number of apples that Amy and Ida have. Dian has 13 apples.
Prudence gives 7 apples to Dian. Jose has 13 more apples than Agatha.
Wilson has 40 apples. The number of apples that Agatha has more than
Jose is equal to the difference between the number of apples that
Georgia and Wilson have. Lacie has 13 more apples than Federico. The
number of apples that Federico has more than Lacie is equal to the
difference between the number of apples that Annabelle and Georgia have.
The number of apples that Dian has more than Amy is equal to the
difference between the number of apples that Nellie and Annabelle have.
Arleth has 4 more apples than Mathew. The number of apples that Mathew
has more than Arleth is equal to the difference between the number of
apples that Lindsay and Nellie have. How many apples does Lindsay have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."

H.5 CONSTRUCTING PROOF TREES WITH DIVERSE STATEMENTS

In this task, given a diverse set of logical statements, the model must answer word-based questions that
require deduction, sampled from a tree with a bounded depth and number of leaves. The parameters
are the maximum tree depth d, and whether to include the additional logical forms.

Proof Tree with Diverse Statements example

Briana has 2 bananas. Tom has 0 bananas.
If Tom has more than 1 bananas, Tom will
transfer all their bananas to Briana....
Whitney and Freida redistribute their
bananas to ensure each has an equal
amount. Eula has 6 more bananas than
Dexter and 11 fewer bananas than
Bernardo.... How many bananas does
Amelia have?
Give your answer using the format:
The final answer is
$\boxed{#your answer}$.

The process of constructing a proof tree with diverse statements is similar to the basic proof tree
construction, with the key difference being the set of inference rules used and their assigned weights.
Specifically, the weights for the inference rules are as follows: “ContCompInference” is weighted at 1,
“ContTransferInference” at 1, “ContContInference” at 1, “CompEqInference” at 10, "ContConsInfer-
ence" at 1, "ContIncreaseInference" at 10, "ContSwitchInference" at 1, "ContRedistributeInference"
at 10, "SplitInference" at 10, "CondTransferInference" at 10, "CumulativeToContInference" at 1,
"MultiCompInference" at 10, "SeqCompInference" at 10.

In our experiments, we set the maximum number of leaves to 20. We then vary the maximum depth
and the inclusion of diverse statements to evaluate the model’s performance.
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H.6 CONSTRUCTING PROMPTS WITH IRRELEVANT INFORMATION

Proof Tree with Irrelevant information example

Veda is very generous and enjoys sharing food with others.
Sibyl has 14 more apples than Ashley. ...
The number of apples that Ali has more than Howell is equal to the difference
between the number of apples that Jacqueline and Vollie have....
Carlo tends to be laid-back and prefers staying in rather than going out....
How many apples does Destiny have?
Give your answer using the format:
The final answer is \$\textbackslash boxed\{\#\textbackslash text\{your answer\}\}\$.

In problems involving proof trees with irrelevant information, the problem parameters are the
maximum tree depth d, the number of irrelevant people P , and the number of irrelevant sentences
S. To construct prompts containing irrelevant information, we first generate the baseline proof tree
with a maximum depth of 5 and a maximum of 20 leaves. Irrelevant information is then introduced
through two main components: irrelevant agents and irrelevant sentences:

- Irrelevant agents: Irrelevant agents are created by dividing the pool of agent names into subsets
that are distinct from the key agents, ensuring no overlap. These subsets are then used to generate
irrelevant proof trees, employing a consistent randomization process (i.e., all the irrelevant proof
trees are identical to the key proof trees, differing only in the names of the agents involved). Each
irrelevant proof tree is converted into axioms and shuffled alongside the key axioms.

Irrelevant Proof Tree Example with max depth 5 and max leaves 20

Nora has 13 apples.
Hal has 4 more apples than Jean.
Aggie has 17 apples.

Theron has 3 more apples than Marjorie.
Marjorie has 17 apples.

Caryl has 14 more apples than Robert.
Philomena has 31 apples.
The number of apples that Robert has more than Caryl is
equal to the difference between the number of apples that
Marjorie and Philomena have.

Theron has 20 apples.
Theron has 13 apples.
Stefani gives 7 apples to Theron.

Genevieve has 14 apples.
Ida has 13 more apples than Angelique.
Doris has 27 apples.

Lorenzo has 13 more apples than Gussie.
Adrian has 40 apples.
The number of apples that Gussie has more than Lorenzo
is equal to the difference between the number of apples
that Doris and Adrian have.

The number of apples that Angelique has more than Ida is
equal to the difference between the number of apples that
Genevieve and Doris have.

The number of apples that Theron has more than Marjorie is equal
to the difference between the number of apples that Aggie and
Genevieve have.

The number of apples that Jean has more than Hal is equal to the
difference between the number of apples that Nora and Aggie have.

- Irrelevant sentences: Irrelevant sentences are generated using predefined templates (see Section
H.3). To integrate the irrelevant information with the context, these sentences are randomly inserted
into the shuffled list of axioms at arbitrary positions.
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Irrelevant Sentence Examples

Caryl is highly introverted and prefers minimal communication with others.
Courtney is very generous and enjoys sharing food with others.
Adella is 46 years old.
Newton tends to be laid-back and prefers staying in rather than going out.
Arleth is very generous and enjoys sharing food with others.
Nico is very outgoing and frequently hosts parties at home.
Dennis is very generous and enjoys sharing food with others.
Moe and Agatha have been married for 17 years.
Rubie and Angelique have been married for 16 years.
Jean tends to be laid-back and prefers staying in rather than going out.
Mathew is highly introverted and prefers minimal communication with others.
Dalton tends to be laid-back and prefers staying in rather than going out.
Joel is very generous and enjoys sharing food with others.
Adrian and Perla are good friends who often go fruit or vegetable picking
together on weekends.
Rosina is very generous and enjoys sharing food with others.
Mickie is very outgoing and frequently hosts parties at home.
Elijah is very generous and enjoys sharing food with others.
Bert is very generous and enjoys sharing food with others.
Robert is 32 years old.
Delma is highly introverted and prefers minimal communication with others.
Vallie and Miriam are good friends who often go fruit or vegetable picking
together on weekends.
Orma is highly introverted and prefers minimal communication with others.
Cornelius is very generous and enjoys sharing food with others.
Marylee is very outgoing and frequently hosts parties at home.
Mitchell and Doris have been married for 3 years.

In our experiments, we set the maximum depth to 5 and the maximum number of leaves to 20. We
then vary the number of irrelevant agents A and the number of irrelevant sentences S to evaluate the
model’s performance.
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H.7 EXAMPLE OF FAILURE DUE TO DIVERSE STATEMENTS

Question

Milo has 24 blueberries.
The number of blueberries that Milo has increases by 19/6 times.
Aubrey has 1 more blueberry than Larue.
Gregory has 3 blueberries.
The number of blueberries that Larue has more than Aubrey is equal
to the difference between the number of blueberries that
Thaddeus and Gregory have.
Zane has 7 blueberries.
The number of blueberries that Zane has increases by 9/7 times.
Odell has 21 blueberries.
Christian has 3 blueberries.
If Christian has more than 5 blueberries, Christian will transfer their
blueberries to Odell.
Milo splits all the blueberries she owns equally among Thaddeus and Della.
Zane and Odell redistribute their blueberries to ensure each has an
equal amount.
Thaddeus has 17 more blueberries than Zane and Artie combined.
Keegan has 7 more blueberries than Aliya and 7 fewer blueberries than
Everett.
Aliya has 0 blueberries.
Margarita has 1 blueberry.
If Margarita has more than 4 blueberries,
Margarita will transfer their blueberries to Artie.
The number of blueberries that Everett has increases by 17/14 times.
If Everett has more than 2 blueberries, Everett will transfer their
blueberries to Artie.
How many blueberries does Artie have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."
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o1’s Response

First, let us track each person’s blueberry count step by step
(in the order given), focusing on changes that actually affect Artie:
1) Milo starts with 24 blueberries.

The puzzle says Milo’s count "increases by 19/6 times,” so Milo now has
24 × (19/6) = 24 × 19 ÷ 6 = 76.

2) Aubrey has 1 more blueberry than Larue (Aubrey = Larue + 1), but no specific
numbers result yet.
3) Gregory has 3 blueberries.
4) Zane starts with 7 blueberries.

The puzzle says Zane’s count "increases by 9/7 times," so Zane now has
7 × (9/7) = 9.

5) Odell has 21 blueberries.
6) Christian has 3 blueberries.

The puzzle says that if Christian has more than 5, Christian would transfer
them to Odell; since Christian has only 3, no transfer happens.

7) Milo (who has 76) "splits all the blueberries she owns equally among Thaddeus
and Della.”

Each receives 76 ÷ 2 = 38.
Thus, Thaddeus = 38, Della = 38, and Milo goes to 0.

8) Zane (9) and Odell (21) "redistribute their blueberries to ensure each has
an equal amount.”

Together they have 9 + 21 = 30, so each ends up with 15.
Hence Zane = 15, Odell = 15.

9) "Thaddeus has 17 more blueberries than Zane and Artie combined.”
Thaddeus = 38 from above. Let Artie = x. Then
38 = (Zane’s 15) + x + 17
38 = 15 + x + 17 = 32 + x
x = 6.
So Artie = 6 at this point.

10) Keegan has 7 more blueberries than Aliya and 7 fewer than Everett.
Aliya = 0, so Keegan = 7 and Everett = 14.

11) Margarita has 1 blueberry. Because that is not "more than 4,” there is
no transfer to Artie.
12) Everett’s 14 blueberries "increase by 17/14 times,” so Everett becomes

14 × (17/14) = 17.
13) "If Everett has more than 2 blueberries, Everett will transfer their
blueberries to Artie.”

Since Everett has 17 (> 2), Everett transfers all 17 to Artie, leaving
Everett at 0 and raising Artie’s total to
Artie = 6 + 17 = 23.

No further steps change Artie’s count. Therefore, Artie finishes with 23
blueberries.

The final answer is $\boxed{23}$.

In 7), o1 claims that Thaddeus has 38 after the splitting, ignoring the fact that Thaddeus initially
had 2 (which can be inferred from previous information). This lack of understanding of the splitting
process leads to an incorrect solution by o1.

H.8 FAILURE PATTERNS WITH THE INCLUSION OF IRRELEVANT INFORMATION

1. The model successfully filters out irrelevant sentences and begins reasoning with the remain-
ing information, analyzing the provided sentences from both irrelevant and relevant agents
one by one.

(a) The model overlooks important relevant information, resulting in an incorrect solution.
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Question 1

Franco has 5 more oranges than Sergio. Alfred has 5 more oranges
than Parker. Angus and Danny have been married for 11 years.
Penelope has 15 oranges. The number of oranges that Sergio has more
than Franco is equal to the difference between the number of oranges
that Susan and Penelope have. Oran tends to be laid-back and prefers
staying in rather than going out.
...
Novella has 8 oranges. Susan is highly introverted and prefers
minimal communication with others. Leann is highly introverted and
prefers minimal communication with others. Hosea is very outgoing
and frequently hosts parties at home. Meredith is highly introverted
and prefers minimal communication with others. Novella gives 3
oranges to Angus. Collie and Gust have been married for 20 years.
Maxine has 2 more oranges than Celeste.
...
How many oranges does Cornelia have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."

o1’s Response for Question 1

First, note that several statements in the puzzle concern
personalities or marriages but do not affect the orange counts; we
will ignore those and track only statements that specify
relationships or transfers of oranges.
1) "Franco has 5 more oranges than Sergio."

Let S = Sergio’s oranges. Then Franco’s oranges F = S + 5.
2) "Penelope has 15 oranges."

Pn = 15.
...
10)"Novella has 8 oranges."

Nl = 8.
11) "Maxine has 2 more oranges than Celeste."

Let Ce = Celeste’s and Mx = Maxine’s -> Mx = Ce + 2.
12) "The number of oranges that Celeste has more than Maxine is equal
to the difference between the number of oranges that Johathan and
Novella have."

Ce - Mx = Jo - Nl, where Jo = Johathan’s oranges.
But Mx = Ce + 2 -> Ce - (Ce + 2) = -2.
So -2 = Jo - 8 -> Jo = 6 (Johathan has 6).

...
18) "The number of oranges that Florida has more than Aaron is equal
to the difference between the number of oranges that Cornelia and
Johathan have."

Florida has 13, Aaron has 10 -> 13 - 10 = 3.
Let Co’ = Cornelia’s oranges;
Johathan has 6 -> 3 = Co’ - 6 -> Co’ = 9.
So before any transfers to Cornelia, she has 9.

...
20) "Beaulah gives 17 oranges to Cornelia."

Cornelia had 9, then receives +17 -> Cornelia now has 26.
21) "Janet gives 17 oranges to Kattie" (irrelevant to Cornelia’s
total). No further changes to Cornelia’s total are stated.
Therefore, Cornelia ends up with 26 oranges.

The final answer is $\boxed{26}$.

o1 overlooks the critical information that "Novella gives 3 oranges to Angus," resulting
in an incorrect calculation of Novella’s oranges. The correct number should be 5
instead of 8, ultimately leading to an incorrect solution.
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(b) Redundant information confuses the model, resulting in either an incorrect solution, an
incomplete proof, or the model claiming that a proof is impossible.

Gemini 2.0 Flash’s Response

Let $S$ be the number of blueberries Sherman has, $T$ be the number of
blueberries Troy has.
$S = T + 7$ (1)
Let $N$ be the number of blueberries Ned has, $G$ be the number of
blueberries Garth has.
$N = G - 7$ or $G = N + 7$ (2)
Jarvis has $J = 20$ blueberries.
Hattie has $H = 20$ blueberries.
...
We are given insufficient information to uniquely determine the
value of Yesenia. There might be an error in the problem statement
or missing information.
...

2. The model successfully filters out irrelevant sentences but reasons using only partial relevant
information.

Question 2

Jarred is very outgoing and frequently hosts parties at home. Annie has 2
tomatoes. William has 5 tomatoes. Lavinia is very generous and enjoys
sharing food with others. Alyce has 19 tomatoes.
...
Alyssa has 7 more tomatoes than Jones.
...
Roslyn has 19 tomatoes.
...
The number of tomatoes that Jones has more than Alyssa is equal to the
difference between the number of tomatoes that Bonnie and Roslyn have.
...
Bonnie gives 3 tomatoes to Lavinia. Faith is 19 years old.
...
Alyce and Myles have been married for 17 years. Charlene gives 4 tomatoes
to Bonnie.
...
The number of tomatoes that Clara has more than Gracie is equal to the
difference between the number of tomatoes that Ryann and Bonnie have.
Fernando and Alton are good friends who often go fruit or vegetable
picking together on weekends. How many tomatoes does Ryann have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."
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o1’s Response for Question 2

First, note that several "difference” statements in the puzzle equate
one pair’s difference of tomato counts to another pair’s difference.
In particular, two key statements pin down Bonnie’s and then Ryann’s
counts.
1) From "Alyssa has 7 more tomatoes than Jones” and "The number of
tomatoes that Jones has more than Alyssa is equal to the difference
between the number of tomatoes that Bonnie and Roslyn have,” we get:

• Let J = Jones’s tomatoes, A = Alyssa’s, B = Bonnie’s,
and R = Roslyn’s (19).
• A = J + 7.
• J - A = B - 19.
Substituting A = J + 7 gives J - (J + 7) = B - 19 -> -7 = B - 19
-> B = 12
So Bonnie ends up with 12.

2) From "The number of tomatoes that Clara has more than Gracie is equal
to the difference between the number of tomatoes that Ryann and Bonnie
have,” we have:

• Clara = 20 and Gracie = 22 (found elsewhere in the puzzle),
• so (Clara - Gracie) = 20 - 22 = -2,
• and that equals (Ryann - Bonnie).
Hence -2 = Ryann - 12 -> Ryann = 10.

Accordingly, Ryann has 10 tomatoes.
The final answer is $\boxed{10}$.

o1 reasons based only on partial relevant information instead of tracking the dynamic
changes in Bonnie’s tomato count (e.g., "Bonnie gives 3 tomatoes to Lavinia"). This
oversight leads to an incorrect solution.

3. The model bases its reasoning on irrelevant sentences.

Question 3

Ollie has 5 more onions than Antonia. Wilford has 5 more onions than Ida.
...
Angel has 11 onions. Gregorio is 35 years old. Janelle has 9 onions.
...
The number of onions that Bailey has more than Stacey is equal to the
difference between the number of onions that Gregorio and Lorraine have.
The number of onions that Enrique has more than Reynold is equal to the
difference between the number of onions that Abner and Ivory have.
Alonzo gives 20 onions to Gregorio. Nora gives 20 onions to Abner.
Enrique tends to be laid-back and prefers staying in rather than going
out. How many onions does Gregorio have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."
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o1’s Response for Question 3

Here is the streamlined logical path:
1) Ollie has 5 more onions than Antonia.

- Denote Antonia’s initial onions by A, so Ollie = A + 5.
...
9) We read "The number of onions Bailey has more than Stacey is equal to
the difference between Gregorio and Lorraine."

- Bailey - Stacey = 22 - 15 = 7.
- The difference between Gregorio (call it G for short) and Lorraine (8)
must also be 7.
- So either G - 8 = 7 (giving G = 15) or 8 - G = 7 (giving G = 1).

10) Finally, Alonzo gives Gregorio 20 onions. Thus Gregorio’s final
total = (his initial) + 20.

- If Gregorio’s initial were 1, then final would be 21.
- If Gregorio’s initial were 15, then final would be 35.

Because the puzzle is set up so that Gregorio’s age is given as 35 (very
likely a hint that he ends up with 35 onions!), the consistent (and
usual) solution is that he started with 15 and, after receiving 20 onions,
finishes with 35.
The final answer is $\boxed{35}$.
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I DETAILS FOR TRAVEL PLANNING

This section outlines the methodology for generating travel planning problems, including the con-
struction of a city connection graph, the generation of feasible travel paths, and the formulation of
problem descriptions. The model is asked to create a travel itinerary using a city connection graph
that adheres to a list of constraints. The parameters include the number of cities in the graph S, the
number of transportation modes A, and the number of unique cities N .

Travel Planning example

You are a proficient planner. Based on the provided information and query, please give me your plan
as a sequence of trips in the format: [(city1, city2, transportation_method), ...]
You are planning a trip across 10 cities with up to 2 transportation methods. The cities are: [’Arling-
ton’,...]
The available transportation methods are: [’tram’, ’car’]
Here are the travel connections:

• From Arlington to New Orleans: car (cost: car=$53)
• ...
• From Arlington to Fresno: tram, car (cost: tram=$54, car=$14)

Constraints:
1. Start your trip at ’Philadelphia’ and end at ’Irvine’.
2. You cannot exceed a budget of $163.
3. Visit at least 5 unique cities, including the start and end cities.

I.1 CONSTRUCTING THE CITY CONNECTION GRAPH

The travel planning process begins with the creation of a graph representing city connections. The
steps are as follows:

1. Selection of Cities and Transportation Methods:
• Choose the 100 largest U.S. cities by population.
• Use a predefined list of transportation methods: [’bus’, ’train’, ’flight’,
’car’, ’taxi’, ’tram’, ’ferry’, ’railways’, ’motorhome’,
’hyperloop’].

• Randomly select a subset of S cities and A transportation methods for the problem.
2. Graph Construction:

• Create a directed graph where cities are nodes, and transportation connections are
edges.

• For any two distinct cities, include a directed edge with a probability defined by a
density parameter (a value between 0 and 1).

3. Edge Weights and Costs:
• For each established edge, select a random number of transportation modes (uniformly

between 1 and A) from the available list.
• For each mode:

– Generate a cost range by randomly selecting:
* lowest_cost from [10, 50].
* highest_cost from [60, 100].

– Assign an actual cost for traveling via the mode as a random integer between
lowest_cost and highest_cost.

I.2 BUILDING A FEASIBLE PATH AND COMPUTING THE BUDGET

The objective is to create a travel plan that visits at least a predefined number of distinct cities and to
calculate the required budget.
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1. Path Construction:

• Select a random starting city.
• Maintain a set of visited cities (visited_cities) to avoid revisiting.
• At each step:

– Identify adjacent cities from the current city, excluding already visited ones.
– If a “dead end” is reached (no unvisited adjacent cities), abandon the attempt and

retry with a different starting city.
– Among feasible next-city options, choose the city and transportation mode with the

lowest cost.
• Continue until the desired number of unique cities is visited, marking the final city as

the ending point.

2. Budget Calculation:

• Sum the costs of all steps in the feasible path to determine the total travel budget.
• This budget acts as a constraint for the solution.

I.3 GENERATING THE PROBLEM DESCRIPTION

The problem description includes all details required for solving the travel planning task:

• The number of selected cities and transportation modes.

• Lists of the specific cities and transportation methods.

• For each directed edge in the graph:

– Possible transportation modes and their associated costs.

• Problem constraints:

– Designated starting and ending cities.
– Computed budget.
– Minimum number of distinct cities to visit.

An example query and travel plan are provided to guide response formatting and ensure accurate
parsing of solutions.

I.4 RETURNING AND STORING RESULTS

The problem description, or “prompt,” is stored for further use. Alongside the prompt, additional data
is preserved, including:

• The full directed graph.

• The cost table.

• The feasible path.

• Metadata such as the chosen start and end cities and the budget.

This stored information aids in verifying the correctness of solutions generated by LLMs.

I.5 PARAMETERS

In our experiments, we set the number of unique cities to 5 and the graph density to 0.5. We then vary
the total number of cities (S) in the graph and the number of transportation methods (A) to evaluate
the model’s performance.

I.6 FAILURE PATTERNS

We outline some common failure patterns below:
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1. The model repeatedly samples travel options but ultimately concludes that the problem is
infeasible after several attempts.

4o response

To meet the constraints of starting at ’Greensboro’, ending at
’Minneapolis’, not exceeding a budget of $68, and visiting at least 5
unique cities, we need to carefully select travel options. Here’s a
potential travel plan using the provided travel connections:
‘‘‘python
[
(’Greensboro’, ’Boise’, ’flight’), # Cost: $22
(’Boise’, ’Louisville’, ’flight’), # Cost: $21
(’Louisville’, ’Mesa’, ’motorhome’), # Cost: $30
(’Mesa’, ’Minneapolis’, ’flight’), #Cost:$56
]
‘‘‘
Total cost: $22 + $21 + $30 + $56 = $129 (This exceeds the budget)
Attempting to adjust for budget:
Upon further investigation and adjustment to remain under budget:
‘‘‘python
[
(’Greensboro’, ’Boise’, ’flight’), # Cost: $22
(’Boise’, ’Louisville’, ’flight’), # Cost: $21
(’Louisville’, ’Minneapolis’, ’motorhome’) # Cost: $26
]
‘‘‘
Total cost: $22 + $21 + $26 = $69 (This now exceeds the adjusted budget
by $1) The provided constraints and connections do not allow a feasible
plan under the budget given the stringent constraints listed, without
exceeding the budget or revisiting cities which could potentially
minimize costs. Please let me know if any corrections to constraints or
route connections are permitted.

Claude 3.7 response

[...]
Cost: $28 + $27 + $39 + $39 + $34 + $59 = $226 (still over budget)

One final attempt:

‘‘‘python
[(’Irvine’, ’Pittsburgh’, ’flight’),
(’Pittsburgh’, ’Kansas City’, ’train’),
(’Kansas City’, ’Memphis’, ’taxi’),
(’Memphis’, ’Atlanta’, ’flight’),
(’Atlanta’, ’Charlotte’, ’train’),
(’Charlotte’, ’Austin’, ’motorhome’),
(’Austin’, ’Oklahoma City’, ’taxi’)]
‘‘‘

I’ve made several attempts to find a valid route within budget, but the
constraints make it challenging. The best route I found is:

‘‘‘python
[(’Irvine’, ’Spokane’, ’motorhome’),
(’Spokane’, ’Atlanta’, ’train’),
(’Atlanta’, ’Charlotte’, ’train’),
(’Charlotte’, ’Kansas City’, ’train’),
(’Kansas City’, ’Pittsburgh’, ’train’),
(’Pittsburgh’, ’Wichita’, ’train’),
(’Wichita’, ’Oklahoma City’, ’motorhome’)]
‘‘‘
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2. Hallucination: the model either hallucinates the total cost or the number of unique cities
visited.

Claude 3.7 response

I need to plan a trip from Charlotte to Chicago with at least 5
unique cities, staying within a $100 budget.

Let me analyze the connections and find an efficient route:

1. Starting from Charlotte, I’ll look for affordable connections.
2. I need to find a path that visits at least 5 cities (including
Charlotte and Chicago).
3. Each leg needs to be cost-effective to stay under $100.

After analyzing the possible routes, here’s my plan:

‘‘‘python
[(’Charlotte’, ’Oklahoma City’, ’motorhome’),
(’Oklahoma City’, ’Austin’, ’ferry’),
(’Austin’, ’Aurora’, ’motorhome’),
(’Aurora’, ’Chicago’, ’hyperloop’)]
‘‘‘

Cost calculation:
- Charlotte to Oklahoma City (motorhome): $16
- Oklahoma City to Austin (ferry): $32
- Austin to Aurora (motorhome): $22
- Aurora to Chicago (hyperloop): $43

Total cost: $16 + $32 + $22 + $43 = $93, which is under the $100
budget.

This plan visits 5 unique cities: Charlotte, Oklahoma City, Austin,
Aurora, and Chicago, satisfying the requirement to visit at least 5
cities including start and end.

However, 16 + 32 + 22 + 43 = 103, not 93.

4o response

To create a cost-effective and efficient travel plan that adheres to
the constraints, I’ll map out a feasible path from Phoenix to
Milwaukee, ensuring we visit at least 5 unique cities within a
budget of $115. After examining the connections and costs provided,
here is a suitable travel itinerary:
‘‘‘python
[
(’Phoenix’, ’Nashville’, ’tram’), # $59
(’Nashville’, ’Madison’, ’hyperloop’), # $24
(’Madison’, ’Milwaukee’, ’tram’) # $26
]
‘‘‘
This plan visits 5 cities, including Phoenix and Milwaukee, and
keeps the trip cost at a total of $109, under the budget constraints
of $115.
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Claude response

[...]
The costs break down as:
- Lexington to Greensboro by car: $25
- Greensboro to Plano by car: $19
- Plano to Lexington by flight: $19
- Lexington to Tacoma by car: $54

Total cost: $117

This plan visits 5 unique cities (Lexington, Greensboro, Plano,
Lexington again, and Tacoma) while exactly meeting the budget
constraint of $117.

The above plans visit only four unique cities.
Gemini performs very poorly on the travel planning task and tends to output a travel plan
without reasoning, and the generated plans do not adhere to either the budget constraint or
the number of unique cities.
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