

000 FRONTIER LLMS STILL STRUGGLE WITH SIMPLE 001 002 REASONING TASKS 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

ABSTRACT

011 While state-of-the-art large language models (LLMs) demonstrate advanced reasoning capabilities—achieving remarkable performance on challenging competitive
012 math and coding benchmarks—they also frequently fail on tasks that are easy for
013 humans. This work studies the performance of frontier LLMs on a broad set of
014 such “easy” reasoning problems. By extending previous work in the literature,
015 we create a suite of *procedurally generated* simple reasoning tasks, including
016 counting, first-order logic, proof trees, and travel planning, with changeable pa-
017 rameters (such as document length, or the number of variables in a math problem)
018 that can arbitrarily increase the amount of computation required to produce the
019 answer while preserving the fundamental difficulty. While previous work showed
020 that traditional, non-thinking models can be made to fail on such problems, we
021 demonstrate that even state-of-the-art thinking models consistently fail on such
022 problems and for similar reasons (e.g., statistical shortcuts, errors in intermediate
023 steps, and difficulties in processing long contexts). To further understand the
024 behavior of the models, we introduce the UNPUZZLES dataset, a different “easy”
025 benchmark consisting of trivialized versions of well-known math and logic puzzles.
026 Interestingly, while modern LLMs excel at solving the original puzzles, they tend
027 to fail on the trivialized versions, exhibiting several *typical* failure patterns related
028 to memorizing the originals. We show that this happens even if the models are
029 otherwise able to solve problems with different descriptions but requiring the same
030 logic. Our results highlight that out-of-distribution generalization is still problem-
031 atic for frontier language models and the new generation of thinking models, even
032 for simple reasoning tasks, and making tasks easier does not necessarily imply
033 improved performance.
034

035 1 INTRODUCTION

036
037 Modern transformer-based large language models (LLMs) (Vaswani, 2017) trained using next-token
038 prediction have achieved significant success across a wide range of tasks, especially in reasoning.
039 For instance, OpenAI’s o1 model—one of the leading reasoning models to date—“ranks in the 89th
040 percentile on competitive programming questions (Codeforces), places among the top 500 students in
041 the US in a qualifier for the USA Math Olympiad (AIME), and exceeds human PhD-level accuracy
042 on a benchmark of physics, biology, and chemistry problems (GPQA)”.¹

043 On the other hand, researchers continue to uncover surprisingly simple reasoning problems that
044 still confuse even the most advanced LLMs. These include tasks such as counting characters in
045 words, comparing numbers like 9.11 and 9.9 (Xie, 2024), making simple inferences about family
046 relationships (Nezhurina et al., 2024), and solving various classes of arithmetic and logic problems
047 (see, e.g., McLeish et al., 2024; Zhang et al., 2022). Many of these failures are identified in isolation,
048 making it difficult to find common underlying issues. Moreover, some studies focus on earlier model
049 generations, leaving it open whether these failures persist in state-of-the-art (SOTA) models.

050 In this work, we study the performance of several high-quality, open and closed-source language
051 models, both traditional (GPT-4o, Gemini 1.5 Pro, 2.0 Flash, and 2.5 Flash, Gemma 3 27B, Claude
052 3.5 and 3.7 Sonnet) and thinking variants (OpenAI o1 and o3, Gemini 2.0 Flash Thinking, 2.5 Pro and

053 ¹<https://openai.com/index/learning-to-reason-with-llms/>

108 setting, or vocabulary is changed but the logical structure is preserved. These context-shifted trivial
 109 problems can be used to test if a model has the ability of solving the simpler problems, which in turn
 110 helps us examine the reasons behind failures to solve the unpuzzle problems. An example is provided
 111 in Figure 1; the unpuzzle only differs by two characters, and the solution logic of the unpuzzle and
 112 the context-shifted version are identical.²

113 While many existing works evaluate LLM reasoning robustness by perturbing problems while
 114 maintaining the same difficulty level (Mirzadeh et al., 2024; McCoy et al., 2024), our study instead
 115 shows that *decreasing* difficulty can also lead to much worse performance. A key failure mode we
 116 observe is that LLMs tend to “overthink” easy problems, often erroneously reusing reasoning steps
 117 corresponding to the more complex puzzle solutions — a phenomenon we term *reasoning delirium*.
 118 Further, these failures are not because the models do not know how to reason about easy problems:
 119 every model we tested performed better on the context-shifted unpuzzles than the original ones,
 120 indicating that failure was at least in part due to memorization of the original puzzle.

121 In summary, we make the following contributions: (1) we conduct a comprehensive evaluation of
 122 frontier LLMs across a wide range of simple reasoning problems; (2) we connect failure modes
 123 to their potential causes; (3) we present a new set of procedurally generated reasoning tasks with
 124 tunable parameters that are challenging for high-quality LLMs; (4) we introduce the UNPUZZLES
 125 dataset that confuses frontier LLMs, exposing memorization artifacts. Our work demonstrates that
 126 the qualitative trend of performance degradation still exists even for the latest thinking models, even
 127 though quantitative results have improved. We hope the new benchmarks and our methodology for
 128 identifying failures will improve the assessment of reasoning capabilities of future model generations.

2 RELATED WORK

132 There is a long line of research focused on identifying tasks that challenge modern LLMs and
 133 developing new benchmarks. In this paper, we review the studies most relevant to the tasks we
 134 investigate. Transformer-based LLMs are known to struggle with seemingly simple tasks such as
 135 counting (Ouellette et al., 2023; Yehudai et al., 2024; Barbero et al., 2024) and copying (Liu et al.,
 136 2024; Barbero et al., 2024), due to issues related to tokenization, architecture, and embeddings. They
 137 also perform poorly on tasks requiring multi-step reasoning, such as arithmetic, logic puzzles, and
 138 dynamic programming (Dziri et al., 2024). The difficulty of solving simple logic problems has been
 139 explored in Yang et al. (2023); Parmar et al. (2024); Han et al. (2022), where these tasks are often
 140 framed as translation problems from natural language to first-order logic.

141 Other works, such as Valmeekam et al. (2024a;b), construct planning benchmarks using Planning
 142 Domain Definition Language (PDDL), while Xie et al. (2024) develops a travel planning benchmark
 143 in real-world scenarios. These studies show that existing LLMs are far from saturating these datasets.
 144 Additionally, reasoning benchmarks with large amounts of irrelevant content have been proposed
 145 (Shi et al., 2023; Mirzadeh et al., 2024) to test models’ long-context generalization capabilities. Most
 146 of these benchmarks are fixed and often combine the core challenge (e.g., logic or planning) with
 147 secondary challenges, such as understanding PDDL or real-world commonsense reasoning for travel,
 148 making it difficult to pinpoint the exact sources of failure. Furthermore, fixed benchmarks are difficult
 149 to extend or generalize and are prone to saturation or overfitting as LLMs improve.

150 In contrast, our work takes a principled approach by simplifying problems to isolate failure causes.
 151 Our tasks are randomly and procedurally generated, allowing for easy adjustments to their distribution
 152 and difficulty (at a superficial level), ensuring they remain challenging for future LLMs. The work
 153 most relevant to ours is that of Opedal et al. (2025), which evaluates the out-of-distribution (OOD)
 154 generalization ability of LLMs through MathGAP, a framework that procedurally generates arithmetic
 155 problems by representing them as sequences of logical forms, with solutions structured as proof
 156 trees. Compared to Opedal et al. (2025), our work takes a broader perspective by examining a
 157 wider range of tasks and identifying multiple critical failure modes for OOD generalization. **In the**
 158 **vision-languagelmodel domain, Rahmazadehgervi et al. (2025) consider problems where the models**
 159 **need to perform similarly simple problems on images, and identifies that image-processing mistakes**
 160 **cause degradation in visual/spatial reasoning.**

161 ²All data will be released.

162 In a concurrent work to ours, Shojaee et al. (2025) evaluate LLMs on four puzzles with controllable
 163 "complexity" and show that the accuracy of all models completely collapses beyond a certain
 164 complexity threshold. It has been pointed out that their experiment design is somewhat flawed,
 165 including unsolvable problems and potentially ignoring token limits (Lawsen, 2025; Chan, 2025).³.
 166 Nonetheless, we observe qualitatively similar performance with accuracy decreasing as a function of
 167 the task tediousness.

168 The idea of perturbing existing benchmarks to test the robustness of LLM reasoning has been explored
 169 in several prior works. Mirzadeh et al. (2024) introduce a variant of the GSM8K benchmark for
 170 mathematical reasoning, modifying numerical values and adding irrelevant information, both of
 171 which lead to a performance drop in common models. Similarly, Jiang et al. (2024) evaluate LLMs on
 172 conjunction and syllogistic fallacies by perturbing well-known problems—changing names, inserting
 173 celebrity references, adding irrelevant content, and replacing quantifiers with synonyms—revealing
 174 evidence of “token bias” in LLMs. The negative effect of adding irrelevant context to math word
 175 problems was also shown recently by Xu et al. (2025). These studies primarily focus on perturbing
 176 original problems while maintaining or increasing their difficulty.

177 In contrast, our UNPUZZLES benchmark takes the opposite approach: we make minimal edits to the
 178 wording but drastically *reduce* problem difficulty. A related work by Williams and Huckle (2024)
 179 introduces a benchmark of 30 easy problems that LLMs fail on, 12 of which are logical puzzles. Our
 180 evaluation on puzzles is considerably more comprehensive. Finally, the failure modes identified in
 181 UNPUZZLES also relate to findings from McCoy et al. (2024), which demonstrate that LLM accuracy
 182 is heavily influenced by the likelihood of task formulations, inputs, or outputs appearing in the
 183 training data.

184 3 PROCEDURALLY GENERATED REASONING TASKS

187 This section presents our collection of simple reasoning tasks, including several extensions of tasks
 188 from existing literature. Each task is procedurally generated, allowing a near-infinite number of
 189 new problems to be generated, and defined by parameters that control the difficulty or complexity.
 190 One of our goals was to design tasks that are [straightforward](#) (albeit tedious) for humans, but
 191 become unsolvable by frontier models when the difficulty parameters are large enough; all our results
 192 demonstrate this feature. For brevity, each task is described informally; full descriptions, usually with
 193 pseudocode, are in the appendix.

194 Throughout, we abbreviate Google’s Gemini 1.5 Pro, 2.0 Flash, 2.0 Flash Thinking, 2.5 Pro, and
 195 [3.0 Pro](#) with G1.5, G2.0F, G2.0FT, and G2.5P, [G3](#), respectively. We also abbreviate Anthropic’s
 196 Claude 3.5 and 3.7-sonnet (run without thinking tokens), OpenAI’s o1, o3, GPT-4o, and [GPT-5.1](#),
 197 DeepSeek’s R1, and Gemma 3 27B by C3.5, C3.7, o1, o3, 4o, [o5.1](#), R1, and gem3, respectively; see
 198 the appendix for the specific versions. Unless specified otherwise, for every task and every choice of
 199 parameters, we average the performance of the models across 20 randomly sampled tasks.

200 3.1 TASKS

202 **Character and word counting** Until somewhat recently, many LLMs infamously could not count
 203 the number of r’s in “strawberry.” This task extends this task to simultaneous word or character
 204 counting. The WORD COUNTING task requires the model to simultaneously count the number of
 205 occurrences of each word in a list of size k from a paragraph of length m . The task obviously becomes
 206 more difficult as k and m increase. The CHARACTER COUNTING task only requires counting a
 207 single character, which already proves difficult for the models. The paragraphs are extracted from the
 208 WikiText-2 dataset and are either selected to have minimum size $m = 50$ (with maximum size 150)
 209 or minimum size $m = 150$ (with maximum size 400).

210 **First-order logic tasks** We evaluate models on two fundamental logic tasks: evaluating propositional
 211 logical statements and negating first-order logical statements. A logic formula can be
 212 represented with a tree with logic operators as nodes and propositions and predicates as leaves.
 213 An atomic proposition is a simple, binary-valued variable, usually represented P or Q , whereas a

215 ³While the work of Lawsen (2025) was initially published as a joke, some of the flaws discussed are legitimate
 216 concerns

216 predicate represents a property about an individual: for example, $P(x)$ indicates that individual x has
 217 property P . We include the standard logical operators $\vee, \wedge, \Leftrightarrow, \Rightarrow, \neg, \forall x \in X$, and $\exists x \in X$, (respec-
 218 tively, or, and, equivalent, implies, negation, for all, and exists), where the last two are quantifying
 219 operators that require a domain to be specified. Exploiting the tree structure, we can sample a logic
 220 formula recursively. The complexity is controlled by the maximum depth d and the total number n of
 221 predicates and atomic propositions to sample for leaves. We either choose $n = 16$ (16 predicates, 16
 222 atomic propositions, and 8 domains) or $n = 8$ (8, 8, and 4, respectively). The final parameter is what
 223 vocabulary we use for the leaves: we created three categories: random 20 character strings, capital
 224 letters (reflecting the training data), and words that describe motion pictures. We consider the tasks
 225 of (1) LOGIC EVALUATION - identifying which of four value assignments evaluates to true, and (2)
 226 LOGIC NEGATION - identifying the negation of a logic formula from four options. See Appendix H.2
 227 and H.3 for more details and examples.
 228

Math word problems based on proof trees We extend the MATHGAP task of Opedal et al. (2025),
 229 which uses a tree-based representation of proofs to generate mathematical word problems. Each
 230 problem is represented as a sequence of *logical forms* under the formalism from Opedal et al. (2024).
 231 A logical form is a truth statement about the world, typically describing an arithmetic relationship,
 232 such as "Alice has 3 more apples than Bob." *Inference rules* can be used to prove new logical forms
 233 from existing ones. Problems are constructed by sampling a *Proof Tree* with logical forms as nodes,
 234 leaves as axioms, and a question as the root, before programmatically converting nodes to natural
 235 language. See Appendix I.4 for details. MATHGAP includes only four logical forms with one being
 236 non-commutative (*transfer*, e.g. "Alice gave Bob 5 apples"). We extend MATHGAP in two ways:
 237

- **Diversity:** We increase the diversity of logical forms and inference rules by adding nine statement
 238 types, six of which are non-commutative. Examples include "A eats 5 apples", "A and B switch
 239 the apples they have". Such statements make it more difficult for the model to keep track of the
 240 intermediate states before computing the final answer. See Appendix I.1 and I.5 for the full list
 241 and an example. Problem parameters are tree depth d and inclusion of diverse logical forms.
- **Irrelevant statements:** We generate additional statements involving people irrelevant to the
 242 original problem and shuffle them into the original statements, such as "A is very generous and
 243 enjoys sharing food with others". See Appendix I.3 for the complete list. The problem parameters
 244 are the number of additional people and the number of additional sentences.

Travel Planning This task presents the model with a list of cities and various connecting modes of
 247 transit and asks the model to design a travel itinerary satisfying multiple constraints. This work is
 248 similar to that of Xie et al. (2024). For each task, we randomly generated a directed graph where
 249 the S nodes represent cities and the edges represent connections. Each edge carries a subset of A
 250 transportation modes, each with a randomly sampled cost. Based on this graph, we construct our
 251 travel planning problem, which consists of a word-based graph description and the constraints. The
 252 constraints include the starting and ending cities, a limit on the total travel cost, and N , the number
 253 of unique cities the traveler must visit. The problem parameters are S , A , and N . See Appendix J for
 254 further details.
 255

4 RESULTS AND FAILURE ANALYSIS

260 Shortened problem descriptions, parameters, and evaluation results are shown in Figures 2, 3, 4, and
 261 5. In most cases, increasing the "tediousness" of each task through the available parameters leads
 262 to a drop in performance. As expected, Gemma 3 has usually the weakest performance, the newest
 263 model, Gemini 3 Pro, is the best, and thinking models (o1, o3, R1, Gemini 2.5 and 3.0 Pro) typically
 264 outperform the non-thinking models (Gemma 3, Claude 3.7, Gemini 2.5 Flash). The GPT-5.1 model
 265 performs surprisingly bad in several cases – we suspect that this is due to the routing of problems to
 266 weaker models when the problem does not seem sufficiently complex, and due to this behavior we do
 267 not consider GPT-5.1 to be either a thinking or non-thinking model.

268 Overall, the results demonstrate that LLM performance scales poorly in problem parameters related
 269 to the amount of computation and storage, even on problems which are self-contained and quite easy
 for humans, and even for thinking models.

270
271
272
273
274
275
276
277
278

Word Counting:
Given a text paragraph, count the occurrences of every word in a k -long list.

Parameters: number of words to count k , minimum paragraph size m .

		o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
k	m									
1	50	1.00	0.95	0.80	0.95	0.85	0.85	0.80	0.95	1.00
	150	0.95	1.00	0.40	0.90	0.45	0.55	0.65	0.80	1.00
3	50	1.00	0.95	0.75	0.90	0.55	0.65	0.50	0.80	1.00
	150	0.65	1.00	0.25	0.55	0.05	0.20	0.15	0.85	1.00
6	50	0.95	0.95	0.50	0.95	0.30	0.60	0.35	0.80	1.00
	150	0.70	1.00	0.15	0.35	0.00	0.25	0.00	0.70	0.80

279
280
281
282
283
284
285

Character Counting:
Given a text paragraph, count the occurrences of a given character.

Parameter: minimum paragraph size m .

		o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
	m									
50	0.95	0.80	0.15	0.05	0.05	0.10	0.05	0.15	0.90	
150	0.45	0.45	0.00	0.00	0.00	0.00	0.00	0.10	0.80	

286
287
288
289

Figure 2: **Top:** The pass@5 performance on the word counting task vs. the number of words to count k and minimum paragraph size m . While o1 performs well on word counting for the parameters in the table, it eventually fails with a sub 40% accuracy with $k \geq 3$ and $m \geq 2000$. **Bottom:** The pass@5 performance for the single character counting task vs minimum paragraph size m .

290
291
292
293
294
295
296
297
298
299
300

Logic Evaluation:
Given a propositional logic formula and four value assignments, identify which assignment evaluates to true.
Parameters: formula tree depth d , number of unique atomic propositions n .

		o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
depth	sizes									
4	medium	1.00	1.00	0.97	1.00	0.95	0.98	0.90	1.00	1.00
	small	0.98	1.00	0.97	0.98	0.93	0.97	0.97	1.00	1.00
8	medium	0.73	0.93	0.32	0.77	0.30	0.27	0.27	0.78	1.00
	small	0.80	0.98	0.32	0.78	0.38	0.28	0.37	0.85	0.98
12	medium	0.35	0.45	0.37	0.35	0.33	0.35	0.32	0.52	0.53
	small	0.43	0.33	0.33	0.38	0.25	0.38	0.33	0.55	0.53

301
302
303
304
305
306
307
308
309
310
311

Logic Negation:
Given a propositional logic formula, identify its negation from four options.
Parameters: formula tree depth d , vocabulary for propositions, predicates, and domains.

		o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
depth	values									
4	letters	0.95	1.00	0.95	0.15	0.85	0.95	0.85	1.00	1.00
	movies	1.00	1.00	0.95	0.15	0.75	0.97	0.95	0.97	1.00
	rand 20	1.00	0.97	1.00	0.15	0.70	1.00	0.95	0.95	1.00
8	letters	0.97	1.00	0.93	0.17	0.60	0.93	0.88	1.00	1.00
	movies	0.95	1.00	0.90	0.88	0.57	0.88	0.90	1.00	1.00
	rand 20	0.90	0.97	0.93	0.90	0.47	0.82	0.95	0.95	1.00
12	letters	0.75	0.88	0.85	0.82	0.45	0.80	0.82	0.93	0.88
	movies	0.80	0.88	0.82	0.82	0.35	0.82	0.68	0.88	0.85
	rand 20	0.62	0.62	0.78	0.68	0.30	0.62	0.82	0.90	0.88

312
313
314

Figure 3: **Top:** Accuracy for the logic evaluation task vs. tree depth d and number of possible unique predicates n . **Bottom:** Accuracy for the logic negation task vs. depth d and the vocabulary used for propositions, predicates, and domains (random 20 denotes random character strings of length 20).

315
316
317
318
319

While it is difficult to pin down the causes of the model failures, we have performed an analysis of the failure symptoms evident from the answers and reasoning traces. We identified the following broad classes of errors:

- **Procedural errors:** the model makes an error in executing a simple step in a problem, such as performing arithmetic or a logical operation, which eventually leads to the wrong answer. These errors occur more often with increased "tediousness" in all tasks (paragraph length in the Counting, tree depth in Logic and ProofTree problems, and number of unique cities to visit in Travel Planning).

324
325
326
327
328
329
330
331
332
333
334
335
336
337**ProofTree with diverse statements:**

Given a diverse set of logical statements, answer questions that require deduction sampled from a proof tree with a bounded depth and number of leaves.

Parameters: max tree depth d , whether to include diverse logical forms, $\ell \in \{\text{True}, \text{False}\}$

338
339
340
341
342
343
344
345
346
347**ProofTree with irrelevant information:**

Answer proof tree questions that include irrelevant information. **Parameters:** max tree depth d , number of irrelevant people P , number of irrelevant sentences S .

d	diverse	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
3	False	1.00	0.70	0.85	1.00	0.95	0.90	1.00	1.00	1.00
	True	0.90	0.60	0.85	0.90	0.65	0.95	0.65	0.80	0.70
6	False	0.60	0.55	0.40	0.95	0.30	0.60	0.30	0.50	1.00
	True	0.70	0.90	0.45	0.65	0.15	0.55	0.30	0.45	0.65
9	False	0.35	0.75	0.15	0.55	0.15	0.20	0.30	0.25	0.80
	True	0.55	0.55	0.20	0.55	0.15	0.15	0.35	0.35	0.80

P	S	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
1	0	0.50	0.60	0.50	0.75	0.35	0.50	0.25	0.60	1.00
	60	0.45	0.45	0.25	0.50	0.25	0.20	0.10	0.50	0.80
2	0	0.50	0.55	0.45	0.75	0.20	0.55	0.20	0.50	0.95
	60	0.45	0.40	0.25	0.45	0.15	0.15	0.20	0.40	0.75
4	0	0.40	0.60	0.25	0.65	0.15	0.20	0.35	0.35	0.90
	60	0.25	0.40	0.10	0.25	0.00	0.10	0.10	0.35	0.80
6	0	0.40	0.60	0.30	0.55	0.00	0.15	0.20	0.30	0.95
	60	0.30	0.30	0.05	0.35	0.05	0.00	0.05	0.35	0.80

Figure 4: Pass@5 scores for the proof tree tasks. **Top:** results for the diverse logic rules task, where we vary the depth d and whether the diverse rules are included. **Bottom:** results for the irrelevant sentences task, where we vary P , the number of irrelevant people, and S , the number of irrelevant sentences.

352
353
354
355
356
357
358
359

Travel Planning: Create a travel itinerary using a city connection graph that adheres to a list of constraints. **Parameters:** num. cities S , num. transportation modes A , num. unique cities N

S	steps	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
10	5	0.95	0.55	0.15	0.90	0.05	0.45	0.00	0.40	1.00
	8	0.65	0.65	0.00	0.45	0.00	0.15	0.00	0.15	1.00
20	5	0.75	0.70	0.00	0.55	0.00	0.25	0.00	0.30	1.00
	8	0.50	0.75	0.00	0.05	0.00	0.05	0.00	0.10	1.00

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 5: Travel planning: pass@5 performance results. We always have $A = 4$.

- **Omission:** The model misses or ignores a key step in the prompt. In ProofTree, models tend to ignore "transfer" operations, or key statements surrounded by irrelevant ones. In multi-word counting problems with long paragraphs, the models may miss relevant words.
- **Copying error:** The model copies text or values incorrectly, or incorrectly copies the reasoning outcome to the final answer.
- **Parsing:** The model fails to parse the question correctly; we observe that models can lose track of parentheses when reading a logic formula.
- **Hallucination:** The model hallucinates intermediate values or constraints. For example, in ProofTree problems, some models will hallucinate the initial number of items, or that married people have the same number of items. In Travel Planning, models sometimes propose a solution with hallucinated parameters which satisfies the constraints.
- **Shortcuts or heuristics:** Rather than executing computation, models sometimes prefer to exploit simplifications or take educated guesses, such as guessing the value of a logic formula based on its length.

- **Abandonment:** This is a special type of shortcut where the model concludes that the problem is too hard and refuses to answer. For example, for Travel Planning, models sometimes fail by randomly sampling a few solutions and concluding that the problem is infeasible. G2.5F is prone to giving up when evaluating long logic formulas.
- **Tokenization:** The error can be explained by difficulties in translation from words to tokens. For example, the character counting performance of all models is significantly lower than word counting, which suggests that tokenization is an issue for this task.

We attributed errors to these types using the following procedure, with a strong model (Gemini 3.0) as a grading assistant:

1. On a random subset of all incorrect responses, we prompted the grading assistant with the original question, the correct answer, and the incorrect solution, and asked for a summary of the errors made along with a single sentence identifying the primary cause of the error.
2. We used the same grading assistant to look at every summary sentence and, for every task separately, cluster the primary causes into the 20 most common types (10 in the case of word counting).
3. For every incorrect response, we prompted the grading assistant with the original question and answer, the incorrect solution, and the list of the 20 most common error types for the corresponding task. We then asked the model to list the errors in the solution and choose the common error that best represents the failure.
4. Finally, we clustered the representative errors found in the previous step, by hand, into the categories introduced above.

The results for several models (not including Gemini 3.0 Pro) are presented in Figure 6, analyzing the error cases in the above tasks (except for the least interesting character counting task); more detailed results and details of the prompting strategy for the analysis are given in Appendix C. Broadly, we found that all models make procedural errors, as well as omission errors. They also hallucinate quite a lot when the problem involves a composition of reasoning and natural language (ProofTree and Travel Planning) while hallucination is less of a problem in the clean logic and counting tasks.

When comparing thinking and non-thinking models, we observe that thinking models are less prone to shortcuts, which demonstrates the real strength of producing reasoning traces, and they seem to commit fewer omission errors (except for Gemini 2.5 Flash in the logic evaluation problems, where these may be masked by other types of errors, such as abandonment). Otherwise, the error types varied across models, and seem to be specific to a model’s performance on a given task (e.g., o3 usually makes very few procedural errors, except for the logic negation problem, while R1 makes several procedure errors in the logic problems, suggesting that such problems were not emphasized in its training data). Finally, perhaps surprisingly, we do not always find that thinking models make fewer procedural errors than non-thinking models, for example, Gemini 2.5. Flash makes fewer procedural errors than o1 and o3 in the logic tasks, but a proper comparison is hard due to the different (and undisclosed) parameters of the models.

One would expect that poor out-of-distribution generalization and too much reliance on memorization should also be problematic for LLMs. We see some evidence for this; for example, changing the vocabulary in the logic tasks highlights errors due to poor out-of-distribution generalization: generally, the performance is the best when the problem variables are single letters (which is likely the format of logical problems in the training data), and worst for random 20-character strings. We can also attribute some of the ProofTree failures to poor out-of-distribution generalization, as some of the introduced statements (such as “A and B switch their apples”) are not common in math word problems. Nevertheless, without knowing exactly what is in the training data, it is hard to argue how much the models rely on memorization, and it is hard to attribute any of the error-types above to memorization (some hallucination errors may be due to memorization, such as assuming that married couples have the same properties). To examine this issue better, in the next section we present a problem type, consisting of trivialized versions of well-known logic puzzles, where we have good reasons to assume that similar problems are in the training data of the models and we can show that the errors made by the models are the direct consequence of relying too much on similar memorized data.

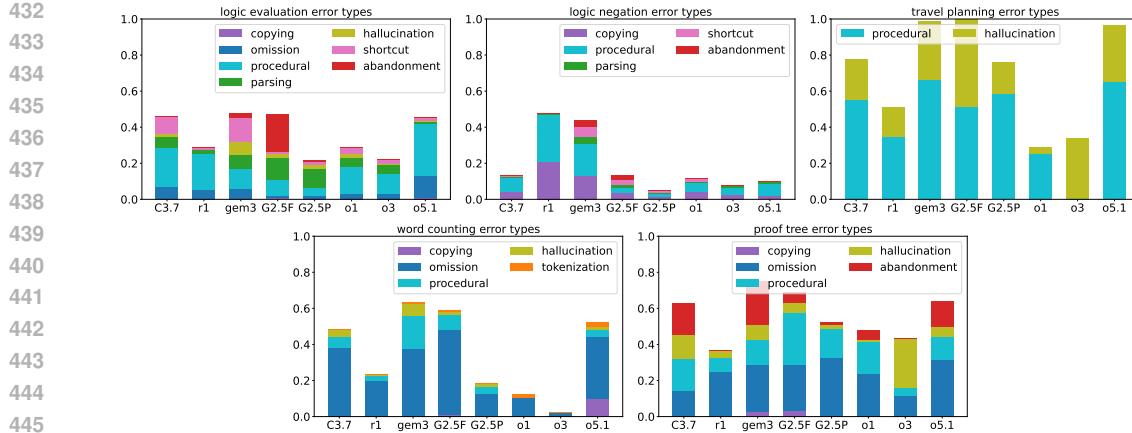


Figure 6: Breakdown of error types for each model and each task.

Model	G1.5	G2.0F	G2.5P	gem3	C3.5	C3.7	4o	o1	o3	R1
Puzzle	79.4	78.4	93.8	68.0	63.9	77.3	75.3	86.7	87.6	87.6
Unpuzzle	17.5	38.1	62.9	34.0	27.8	48.5	19.6	59.8	74.2	59.8

Table 1: Percentage of correct answers on puzzles and unpuzzles.

Model	G1.5	G2.0F	G2.5P	gem3	C3.5	C3.7	4o	o1
Context corruption (CC)	80	59	34	56	63	41	76	38
CC, correct	7	6	4	2	12	4	13	6
CC, incorrect with delirium	40	36	20	25	26	14	31	22
CC, incorrect (other)	33	16	10	29	25	23	32	10

Table 2: Number of unpuzzle solutions (out of 97) containing “context corruption.” We further subcategorize corrupt solutions as (i) correct: leading to a correct final answer; (ii) incorrect with delirium: leading to an incorrect final answer with a solution that corresponds nearly exactly to the solution of the original puzzle; (iii) incorrect (other): leading to an incorrect final answer for other reasons. R1 and o3 are omitted since the answers we obtained often did not include full reasoning.

5 UNPUZZLES

To examine the aforementioned memorization problem, we introduce the UNPUZZLES dataset, which consists of 97 well-known logical puzzles that are commonly found on the internet, and their *trivialized* versions, manually constructed by formulating textually similar questions that remove difficulty. While the puzzles typically require reasoning and background math knowledge, the answers to the unpuzzles are intended to be immediately obvious by common sense. See Appendix D for more details, dataset creation instructions, and some examples. As we will show, all language models perform much better on the puzzles than on the unpuzzles, suggesting that they rely on memorized input patterns to generate answers rather than performing true logical reasoning.

To provide further evidence of memorization, we created a dataset of *context-shifted* (CS) unpuzzles. Each CS unpuzzle is textually different from the corresponding unpuzzle but retains the same logical structure; that is, its answer is equally obvious. Performing poorly on an unpuzzle and well on a corresponding CS unpuzzle would suggest that the failure is due to the memorization of the puzzle text and solution, rather than inherent inability to reason about the problem. We generated CS unpuzzles automatically for a subset of 64 unpuzzles with simple numerical or categorical answers (as opposed to, e.g., puzzles asking for a strategy). We prompted models (o1 and Gemini 2.0 Flash) to rewrite each unpuzzle and change the language and setting, but keep the same logical structure and answer. We then verified and optionally edited the results. See Appendix D.2 for details. Figure 1 shows an example of a puzzle, unpuzzle, and CS unpuzzle.

Model	G2.0F	G2.0FT	G2.5P	gem3	C3.7	4o	o1	o3	R1
Puzzle Score	67	66	72	52	67	58	77	73	80
Unpuzzle Score	53	36	55	41	55	33	50	75	67
Context-shifted Score	70	48	66	50	63	52	59	80	73

Table 3: Percentage accuracy of all tested models on the original puzzles, the unpuzzles, and the context-shifted unpuzzles, for a subset of 64 problems with numerical or categorical answers. We see that every model performs better on the context-shifted unpuzzles than the unpuzzles, indicating that similarity to the puzzles degrades performance. In some cases, performance on the context-shifted unpuzzles is higher than for the original puzzles.

o1 solution to the Chameleons Go on a Date unpuzzle (excerpt)

A succinct way to see that they can all end up the same color (and in fact which color that must be) is via the following “invariant” argument: [...]
 Define the quantity $S = P + 2Y \pmod{3}$. [...] Since the initial $S = 0 \pmod{3}$, the only way to remain consistent with that invariant and end up with all chameleons of one hue is if they all become Maroon (because only that final state also gives $S = 0$). Conclusion: Yes. It is possible for all of the chameleons to end up the same color; specifically, they can all turn Maroon.

Figure 7: Chameleons go on a date (Figure 1): solution by o1. The answer to the original puzzle is ‘no’ through a proof by contradiction. The answer to the unpuzzle is ‘yes’. o1 provides the correct final answer, but an incorrect solution; it finds that the contradiction does not hold and answers ‘yes’ without a constructive proof.

5.1 EVALUATION

Correctness We generated the solution to each puzzle and unpuzzle independently using each model. We first verified whether the final answer to each is correct or not (regardless of whether the solution leading to the answer is correct). The evaluation was performed manually by four human annotators, since the answers to some puzzles are strategies rather than simple values. Each answer was assessed by a single annotator, or by consensus of all annotators if marked ambiguous.

Context corruption Next, we characterize the extent to which the poor performance on the unpuzzles is a consequence of memorization of the original puzzles. We define “context corruption” in an unpuzzle solution as erroneous or superfluous content (e.g. assumptions or reasoning steps) inappropriately recalled from the original puzzle or its solution. We evaluated each unpuzzle solution according to whether it contains context corruption or not. The most extreme behavior is when the models provided a solution that is nearly identical to the puzzle solution, sometimes without acknowledging that the unpuzzle is different – we call this category “delirium.” We omit o3 and R1 as they often just responded with the final answer, making the degree of context corruption unclear, though their erroneous answers usually correspond to the answer to the original puzzle. This evaluation was performed by four human annotators and summarized in Table 2. We observe that memorization artifacts from the original puzzle and its solution are found in most cases, and even thinking models simply output the solution to the original puzzle about a fifth of the time. See Figure 7 for an example of context corruption in o1’s solution to “Chameleons Go on a Date.” See Appendix E for more illustrative examples as well as some amusing answers.

Context-shifted evaluation We evaluated models on the size-64 subset with corresponding CS unpuzzles. The results are shown in Table 3. We note that all models perform better on the context-shifted version of the dataset, which offers further evidence that the poor performance on the unpuzzles is due to the wording (and memorization of the original puzzles), rather than models’ inherent inability to reason about the problems.

The UNPUZZLES dataset complements the procedural evaluations by providing another benchmark that is easy for humans and difficult for LLMs. It illustrates that the good performance of the models on the original (difficult) puzzles is at least in part a consequence of memorization of internet data, rather than true problem-solving abilities.

540

6 DISCUSSION

541
 542 In a society that is increasingly utilizing frontier language models, understanding the capabilities
 543 and weaknesses of these models is becoming more and more important. We have presented a
 544 comprehensive set of procedurally-generated parametric problems that are inherently easy (if tedious)
 545 for humans, and designed to assess LLM failures due to statistical shortcut learning, procedural errors
 546 or hallucinations due to long context and long reasoning chains. As we demonstrate, these problems
 547 can be made difficult enough to make all SOTA LLMs fail. One suggestion from our paper is that
 548 LLMs should be evaluated not only by the most difficult problem they can solve, but also by the
 549 simplest problem they struggle with.

550 Our procedural problems also suggest that some errors are due to relying on memorized patterns
 551 instead of performing proper reasoning. To investigate this problem, we have provided a small
 552 human-curated UNPUZZLES dataset of trivialized versions of math and logic puzzles commonly
 553 found on the internet. Our analysis shows that all models perform significantly worse on the unpuzzles
 554 than on the original puzzles, in most cases due to memorization of web data. This demonstrates that
 555 oftentimes LLMs mimic training data rather than performing true reasoning, making it relatively
 556 easy to find out-of-distribution problems where the models fail, and this problem is also present at
 557 the newest thinking models (while similar conclusions were hypothesized in other recent works, our
 558 result is the first to show this without actual access to the training data). This suggests that users
 559 remain careful when relying on the output of LLMs.

560 The main limitation of our work is that most of the experiments were run on closed-source models,
 561 which limits our ability to understand shortcomings beyond observing trends in the experiments and
 562 inspecting reasoning traces when available. We hope that our benchmarks will be useful in assessing
 563 and improving the reasoning capabilities of future generations of models.

564

565 REFERENCES

566 Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João Guilherme Madeira
 567 Araújo, Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses!
 568 information over-squashing in language tasks. In *The Thirty-eighth Annual Conference on Neural
 569 Information Processing Systems*, 2024.

570 Lawrence Chan. Beware General Claims about “Generalizable Reasoning Capabilities” (of
 571 Modern AI Systems). [https://www.lesswrong.com/posts/5uw26uDdFbFQgKzih/
 572 beware-general-claims-about-generalizable-reasoning](https://www.lesswrong.com/posts/5uw26uDdFbFQgKzih/beware-general-claims-about-generalizable-reasoning), 2025. Accessed:
 573 2025-07-07.

574 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning.
 575 *arXiv preprint arXiv:2501.12948*, 2025.

576 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
 577 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
 578 transformers on compositionality. *Advances in Neural Information Processing Systems*, 36, 2024.

579 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
 580 Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
 581 first-order logic. *arXiv preprint arXiv:2209.00840*, 2022.

582 Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng Wang, Tanwi Mallick, Weijie J Su, Camillo J
 583 Taylor, and Dan Roth. A peek into token bias: Large language models are not yet genuine reasoners.
 584 *arXiv preprint arXiv:2406.11050*, 2024.

585 A Lawsen. The illusion of the illusion of thinking: A comment on shojaee et al.(2025). *arXiv preprint
 586 arXiv:2506.09250*, 2025.

587 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 588 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
 589 Association for Computational Linguistics*, 12:157–173, 2024.

594 R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. Embers
 595 of autoregression show how large language models are shaped by the problem they are trained to
 596 solve. *Proceedings of the National Academy of Sciences*, 121(41):e2322420121, 2024.

597

598 Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
 599 Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers
 600 can do arithmetic with the right embeddings. In *Advances in Neural Information Processing
 601 Systems*, volume 38, pages 108012–108041, 2024.

602 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 603 models, 2016.

604

605 Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
 606 step-by-step reasoning. *arXiv preprint arXiv:2308.00436*, 2023.

607

608 Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
 609 Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
 610 language models. *arXiv preprint arXiv:2410.05229*, 2024.

611

612 Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti, and Jenia Jitsev. Alice in wonderland:
 613 Simple tasks showing complete reasoning breakdown in state-of-the-art large language models.
 614 *arXiv preprint arXiv:2406.02061*, 2024.

615

616 Andreas Opedal, Alessandro Stolfo, Haruki Shirakami, Ying Jiao, Ryan Cotterell, Bernhard
 617 Schölkopf, Abulhair Saparov, and Mrinmaya Sachan. Do language models exhibit the same
 618 cognitive biases in problem solving as human learners? In *Proceedings of the 41st International
 Conference on Machine Learning*, pages 38762–38778, 2024.

619

620 Andreas Opedal, Haruki Shirakami, Bernhard Schölkopf, Abulhair Saparov, and Mrinmaya Sachan.
 621 MathGAP: Out-of-distribution evaluation on problems with arbitrarily complex proofs. In *The
 622 Thirteenth International Conference on Learning Representations*, 2025.

623

624 Simon Ouellette, Rolf Pfister, and Hansueli Jud. Counting and algorithmic generalization with
 625 transformers. *arXiv preprint arXiv:2310.08661*, 2023.

626

627 Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
 628 Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
 629 ability of large language models. In *Proceedings of the 62nd Annual Meeting of the Association
 630 for Computational Linguistics (Volume 1: Long Papers)*, pages 13679–13707, 2024.

631

632 Rod Pierce. About Math is Fun. <https://www.mathsisfun.com/aboutmathsisfun.html>. Accessed: October 2024.

633

634 Pooyan Rahmazadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision
 635 language models are blind: Failing to translate detailed visual features into words. *arXiv preprint
 636 arXiv:2407.06581*, 2025.

637

638 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
 639 Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
 640 *International Conference on Machine Learning*, pages 31210–31227. PMLR, 2023.

641

642 Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
 643 Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
 644 models via the lens of problem complexity. *arXiv preprint arXiv:2506.06941*, 2025.

645

646 Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
 647 pati. Planbench: An extensible benchmark for evaluating large language models on planning and
 648 reasoning about change. *Advances in Neural Information Processing Systems*, 36, 2024a.

649

650 Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can't plan; can lrms? a
 651 preliminary evaluation of openai's o1 on planbench. *arXiv preprint arXiv:2409.13373*, 2024b.

652

653 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

648 Sean Williams and James Huckle. Easy problems that llms get wrong. *arXiv preprint*
649 *arXiv:2405.19616*, 2024.
650

651 Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
652 Yu Su. Travelplanner: A benchmark for real-world planning with language agents. *arXiv preprint*
653 *arXiv:2402.01622*, 2024.

654 Zikai Xie. Order matters in hallucination: Reasoning order as benchmark and reflexive prompting for
655 large-language-models. *arXiv preprint arXiv:2408.05093*, 2024.
656

657 Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can LLMs solve
658 longer math word problems better? In *The Thirteenth International Conference on Learning*
659 *Representations*, 2025. URL <https://openreview.net/forum?id=C9ju8QQSCv>.

660 Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. Harnessing the power
661 of large language models for natural language to first-order logic translation. *arXiv preprint*
662 *arXiv:2305.15541*, 2023.

663 Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. When can
664 transformers count to n? *arXiv preprint arXiv:2407.15160*, 2024.
665

666 Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
667 paradox of learning to reason from data. *arXiv preprint arXiv:2205.11502*, 2022.
668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A LICENCES FOR EXISTING ASSETS
703704 A.1 MODELS
705706 Below, we've tabulated the specific models and licences we have used.
707708 OpenAI The specific models we used from OpenAI are gpt-4o-2024-08-06,
709 o1-2024-12-17, and o3-2025-04-16, which were abbreviated by 4o, o1,
710 and o3 in the text. Terms of Use can be found at <https://openai.com/policies/row-terms-of-use/>.
711712 Anthropic We used claude-3-5-sonnet-20240620 and claude-3-7-sonnet-20250219,
713 which were abbreviated C3.5 and C3.7. Terms of Service can be
714 found at <https://privacy.anthropic.com/en/articles/9190861-terms-of-service-updates>.
715716 Gemma 3: We used the 27b-it model, which has open weights and permits responsible commercial use.
717 Terms of Service are given at <https://gemma3.app/terms-of-service>.
718719 DeepSeek DeepSeek's R1 model and weights are licenced under the MIT licence DeepSeek-AI (2025).
720721 Gemini The Gemini 2.0 Flash, 2.0 Flash Thinking, and 2.5 Pro had API names
722 of gemini-2.0-flash-001, gemini-2.0-flash-thinking-exp
723 and gemini-2.5-pro-exp-03-25. Terms of service can be found at
724 <https://ai.google.dev/gemini-api/terms>.
725726 A.2 DATA
727728 We list the websites used to collect math and logic puzzles and their licences and terms of use below.
729 Please see the released dataset for per-puzzle attributions.
730731

- 732 • Wikipedia (<https://www.wikipedia.org/>): CC BY-SA 4.0 Creative Commons Attribution-ShareAlike 4.0 International <https://creativecommons.org/licenses/by-sa/4.0/>
- 733 • www.mathisfun.com copyright Rod Pierce, cited as instructed on the website (Pierce)
- 734 • <https://puzzles.nigelcoldwell.co.uk/> copyright Nigel Coldwell.
- 735 • <https://geeksforgeeks.org/>, Terms of Use <https://www.geeksforgeeks.org/legal/intellectual-property-rights-legal/>

736737 B PROCEDURAL LOGIC RESULTS WITH CONFIDENCE INTERVALS
738739 We now include the procedural logic results including simple Gaussian error bars; these were omitted
740 from the main body due to space constrains. In particular, results for OpenAI's o3 model are included.
741 You can find the results in Tables 4-10.
742

m	o1	o3	5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
50	0.95±0.10	0.80±0.18	0.15±0.16	0.05±0.10	0.05±0.10	0.10±0.14	0.05±0.10	0.15±0.16	0.90±0.14
150	0.45±0.23	0.45±0.23	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00	0.10±0.14	0.80±0.18

747 Table 4: Full results, with confidence intervals, for the Character Count task
748749 C AUTO-GRADING THE ERRORS IN RESPONSES
750751 This section provides more details about the auto-grading. In the main paper, we described four
752 steps for auto-grading the responses; we elaborate on each below. This process was repeated for the
753 word count, logic evaluation, logic negation, ProofTree, and travel planning tasks. The errors in the
754

756	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3		
757	k	m									
758	1	50	1.00±0.00	0.95±0.10	0.80±0.18	0.95±0.10	0.85±0.16	0.85±0.16	0.80±0.18	0.95±0.10	1.00±0.00
759		150	0.95±0.10	1.00±0.00	0.40±0.22	0.90±0.14	0.45±0.23	0.55±0.23	0.65±0.22	0.80±0.18	1.00±0.00
760	3	50	1.00±0.00	0.95±0.10	0.75±0.20	0.90±0.14	0.55±0.23	0.65±0.22	0.50±0.23	0.80±0.18	1.00±0.00
761		150	0.65±0.22	1.00±0.00	0.25±0.20	0.55±0.23	0.05±0.10	0.20±0.18	0.15±0.16	0.85±0.16	1.00±0.00
762	6	50	0.95±0.10	0.95±0.10	0.50±0.23	0.95±0.10	0.30±0.21	0.60±0.22	0.35±0.22	0.80±0.18	1.00±0.00
763		150	0.70±0.21	1.00±0.00	0.15±0.16	0.35±0.22	0.00±0.00	0.25±0.20	0.00±0.00	0.70±0.21	0.80±0.18

Table 5: Full results, with confidence intervals, for the Word Count task

764	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3		
765	d	sizes									
766	4	medium	1.00±0.00	1.00±0.00	0.97±0.05	1.00±0.00	0.95±0.06	0.98±0.03	0.90±0.08	1.00±0.00	
767		small	0.98±0.03	1.00±0.00	0.97±0.05	0.98±0.03	0.93±0.06	0.97±0.05	0.97±0.05	1.00±0.00	
768	8	medium	0.73±0.12	0.93±0.06	0.32±0.12	0.77±0.11	0.30±0.12	0.27±0.12	0.27±0.12	0.78±0.11	1.00±0.00
769		small	0.80±0.10	0.98±0.03	0.32±0.12	0.78±0.11	0.38±0.13	0.28±0.12	0.37±0.13	0.85±0.09	0.98±0.03
770	12	medium	0.35±0.12	0.45±0.13	0.37±0.13	0.35±0.12	0.33±0.12	0.35±0.12	0.32±0.12	0.52±0.13	0.53±0.13
771		small	0.43±0.13	0.33±0.12	0.33±0.12	0.38±0.13	0.25±0.11	0.38±0.13	0.33±0.12	0.55±0.13	0.53±0.13

Table 6: Full results, with confidence intervals, for the Logic Evaluation task

character counting were essentially all due to tokenization and memorizing the number of different characters in each token, and therefore less interesting.

1. On a sampled subset of all incorrect responses, we prompted the grading assistant with the original question, the correct answer, and the incorrect solution and asked for a summary of the errors made along with a single sentence identifying the primary cause of the error:

Auto-grading step 1 template

You are an expert at identifying errors in solutions to logic and reasoning problems. I will give you such a problem, the correct answer, then an incorrect solution. I want you to analyze the solution and find the errors that lead to the incorrect answer.

The question is: {question}.
End question.

The correct answer is: {correct_answer}.

The incorrect response is: {incorrect_response}.
End response.

Please list specific errors in the response that contribute to the incorrect solution. Then, in a single sentence, describe the primary reason for the incorrect answer.

2. We used the same grading assistant to look at every summary sentence and, for every task separately, cluster the primary causes into the 20 most common types (for word counting we use only 10 types due to the simplicity of the task).

d	values	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
4	letters	0.95±0.07	1.00±0.00	0.95±0.07	0.15±0.11	0.85±0.11	0.95±0.07	0.85±0.11	1.00±0.00	1.00±0.00
	movies	1.00±0.00	1.00±0.00	0.95±0.07	0.15±0.11	0.75±0.14	0.97±0.05	0.95±0.07	0.97±0.05	1.00±0.00
	rand20	1.00±0.00	0.97±0.05	1.00±0.00	0.15±0.11	0.70±0.15	1.00±0.00	0.95±0.07	0.95±0.07	1.00±0.00
8	letters	0.97±0.05	1.00±0.00	0.93±0.08	0.17±0.12	0.60±0.16	0.93±0.08	0.88±0.11	1.00±0.00	1.00±0.00
	movies	0.95±0.07	1.00±0.00	0.90±0.10	0.88±0.11	0.57±0.16	0.88±0.11	0.90±0.10	1.00±0.00	1.00±0.00
	rand20	0.90±0.10	0.97±0.05	0.93±0.08	0.90±0.10	0.47±0.16	0.82±0.12	0.95±0.07	0.95±0.07	1.00±0.00
12	letters	0.75±0.14	0.88±0.11	0.85±0.11	0.82±0.12	0.45±0.16	0.80±0.13	0.82±0.12	0.93±0.08	0.88±0.11
	movies	0.80±0.13	0.88±0.11	0.82±0.12	0.82±0.12	0.35±0.15	0.82±0.12	0.68±0.15	0.88±0.11	0.85±0.11
	rand20	0.62±0.16	0.62±0.16	0.78±0.13	0.68±0.15	0.30±0.15	0.62±0.16	0.82±0.12	0.90±0.10	0.88±0.11

Table 7: Full results, with confidence intervals, for the Logic Negation task

d	diverse	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
3	False	1.00±0.00	0.70±0.21	0.85±0.16	1.00±0.00	0.95±0.10	0.90±0.14	1.00±0.00	1.00±0.00	1.00±0.00
	True	0.90±0.14	0.60±0.22	0.85±0.16	0.90±0.14	0.65±0.22	0.95±0.10	0.65±0.22	0.80±0.18	0.70±0.21
6	False	0.60±0.22	0.55±0.23	0.40±0.22	0.95±0.10	0.30±0.21	0.60±0.22	0.30±0.21	0.50±0.23	1.00±0.00
	True	0.70±0.21	0.90±0.14	0.45±0.23	0.65±0.22	0.15±0.16	0.55±0.23	0.30±0.21	0.45±0.23	0.65±0.22
9	False	0.35±0.22	0.75±0.20	0.15±0.16	0.55±0.23	0.15±0.16	0.20±0.18	0.30±0.21	0.25±0.20	0.80±0.18
	True	0.55±0.23	0.55±0.23	0.20±0.18	0.55±0.23	0.15±0.16	0.15±0.16	0.35±0.22	0.35±0.22	0.80±0.18

Table 8: Full results, with confidence intervals, for the MathGap Diverse task

Auto-grading step 1 template

You are an expert instructor for logic problems and familiar with mathematical word problems. I have a collection of word problems with incorrect solutions. I have already gone through them and listed the errors as well as summary sentences for the primary reason the solution was wrong.

Please go through all the examples and provide the twenty most common mistakes in the incorrect solutions.

{concatenated responses from part one}

3. For every incorrect response, we prompted the grading assistant with the original question and answer, the incorrect solution, and the list of 20 most common error for the corresponding task. We then asked the model to list the errors in the solution and choose the common error that best represents the failure.

P	S	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5	G3
1	0	0.50±0.23	0.60±0.22	0.50±0.23	0.75±0.20	0.35±0.22	0.50±0.23	0.25±0.20	0.60±0.22	1.00±0.00
	60	0.45±0.23	0.45±0.23	0.25±0.20	0.50±0.23	0.25±0.20	0.20±0.18	0.10±0.14	0.50±0.23	0.80±0.18
2	0	0.50±0.23	0.55±0.23	0.45±0.23	0.75±0.20	0.20±0.18	0.55±0.23	0.20±0.18	0.50±0.23	0.95±0.10
	60	0.45±0.23	0.40±0.22	0.25±0.20	0.45±0.23	0.15±0.16	0.15±0.16	0.20±0.18	0.40±0.22	0.75±0.20
4	0	0.40±0.22	0.60±0.22	0.25±0.20	0.65±0.22	0.15±0.16	0.20±0.18	0.35±0.22	0.35±0.22	0.90±0.14
	60	0.25±0.20	0.40±0.22	0.10±0.14	0.25±0.20	0.00±0.00	0.10±0.14	0.10±0.14	0.35±0.22	0.80±0.18
6	0	0.40±0.22	0.60±0.22	0.30±0.21	0.55±0.23	0.00±0.00	0.15±0.16	0.20±0.18	0.30±0.21	0.95±0.10
	60	0.30±0.21	0.30±0.21	0.05±0.10	0.35±0.22	0.05±0.10	0.00±0.00	0.05±0.10	0.35±0.22	0.80±0.18

Table 9: Full results, with confidence intervals, for the MathGap irrelevant tasks

S	steps	o1	o3	o5.1	R1	gem3	C3.7	G2.5F	G2.5P	G3
10	5	0.95±0.10	0.55±0.23	0.15±0.16	0.90±0.14	0.05±0.10	0.45±0.23	0.00±0.00	0.40±0.22	1.00±0.00
	8	0.65±0.22	0.65±0.22	0.00±0.00	0.45±0.23	0.00±0.00	0.15±0.16	0.00±0.00	0.15±0.16	1.00±0.00
20	5	0.75±0.20	0.70±0.21	0.00±0.00	0.55±0.23	0.00±0.00	0.25±0.20	0.00±0.00	0.30±0.21	1.00±0.00
	8	0.50±0.23	0.75±0.20	0.00±0.00	0.05±0.10	0.00±0.00	0.05±0.10	0.00±0.00	0.10±0.14	1.00±0.00

Table 10: Full results, with confidence intervals, for the Travel task

Auto-grading step 1 template

You are an expert at identifying errors in solutions to logic and mathematical word problems and an excellent tutor. I will give you a question that can be solved with simple logical reasoning followed by an incorrect response to that question.

I want you to first identify the mistakes in the incorrect response then describe the primary causes of the incorrect answer

The question is: {question}.
End of question.

The correct answer is: {answer}.

The incorrect response is: {response}.
End of response.

From the follow twenty options, please find the error that contributed the most to the incorrect answer and point out specifically where the error was made.

{list of mistakes as below}

Please point out where the primary error is and answer using the template

Final answer: 1 or 2 or ...or 20.

4. Finally, we extracted the error per question and clusters the errors, by hand, into the nine main categories.

C.1 ERROR ANALYSIS FOR WORD COUNTING

The following table introduces the ten most common failure modes, as well as the main error category they fall into, for the word counting task. The biggest error for every model was a failure to count repeated words in close proximity. Some other noteworthy anomalies are Gemma 3’s confusion about matching plurals and Gemini 2.5 pro’s failures to count words towards the end of the paragraph.

1. **Inexact String Matching (Singular/Plural Conflation)** (procedure): Counting "markets" when the target is "market," "Koreans" for "Korean," or "statues" for "statue." Conversely, counting the singular "tank" when the target is the plural "tanks."

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

2. **Repetition Blindness (Intra-Sentence Proximity)** (omission): In phrases like "tracking from a few feet away from" or "experimented with hollow shot filled with," the solution identifies the first instance but skips the second.
3. **End-of-Text Attentional Decay** (omission): The solution counts correctly through the first 80% of the text but misses words in phrases like "pressure from his fellow legislators" or "candidates that included..." appearing at the very end.
4. **Failure to Parse Dense Clusters** (omission): Missing instances of "were" in a sentence where the word appears 6 or 7 times (e.g., "were sent... were assigned... were destroyed").
5. **Internal Inconsistency (Reasoning vs. Output)** (copying): The "Step-by-Step" section correctly identifies 3 instances of a word, but the final output list records the number 4 or 2. Or, the solver lists instances but sums them incorrectly.
6. **Repeated Phrase Oversight** (omission): If the phrase "center of government" appears twice in the text, the solver often counts it as one occurrence, failing to realize that the phrase (and the target word "government" inside it) actually occurs twice at different locations.
7. **Function Word Blindness** (omission): Consistently undercounting high-frequency words like "that," "with," "were," and "from."
8. **Hallucination and Double-Counting** (hallucination): Counting a word because it *should* be there based on context (e.g., in a quote not actually present in the text) or identifying "shot camera" and "camera tracking" as two separate occurrences of "camera" when they are actually the same word in the text "shot camera tracking."
9. **Tokenization and Punctuation Failures** (tokenization): Missing "wooden" in "wooden@-@unk" because of the hyphen, or missing "tank" in "tank's" because of the apostrophe.
10. **Semantic Filtering (False Exclusions)** (procedure): Excluding the word "Hill" because it refers to a person's name (proper noun) rather than a geographic location, or excluding "infantry" because it appears as a general adjective rather than part of a specific unit title (e.g., "2nd Infantry Division").

C.2 ERROR ANALYSIS FOR LOGIC EVALUATION

As before, we introduce the twenty most common errors and the error breakdown per model. A surprisingly common failure mode was disregarding a global negation. Another source of error was misidentifying the overall-logical structure, through a parenthesis parsing error or otherwise. Surprisingly, Gemini 2.5 pro had the largest number of abandonment errors, though one might argue that refusing to solve the problem is a more desirable outcome than confidently providing an incorrect answer.

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

1. **Failure to Identify Vacuous Truth (Implication Shortcuts)** (procedure): Failing to recognize that if the antecedent (P) of an implication ($P \rightarrow Q$) is False, the entire implication is automatically True, regardless of the complexity of the consequent (Q).
2. **Overlooking Disjunction Short-Circuiting** (procedure) Failing to recognize that if the first operand (P) of a disjunction ($P \vee Q$) is True, the entire expression is True, regardless of the second operand.
3. **Misidentification of the Main Logical Connective** (parsing): Incorrectly parsing the top-level structure of the formula.
4. **Incorrect Scope of Negation** (parsing): Misinterpreting which part of the formula a 'not' operator applies to.
5. **Operator Precedence Failures** (procedure): Evaluating logical operators in the wrong order when parentheses are not explicit, or misinterpreting standard precedence rules.
6. **Biconditional Truth Value Logic Error** (procedure): Assuming that 'False' \leftrightarrow 'False' evaluates to False.
7. **One-Sided Biconditional Evaluation** (procedure): Proving that the Left-Hand Side (LHS) of a biconditional ($P \leftrightarrow Q$) is True and immediately concluding the formula is True.
8. **Implication Calculation Error (True \rightarrow False)** (procedure): Evaluating an implication with a True Antecedent and a False Consequent as True.

972 9. **Conjunction Block Failure** (procedure): Failing to notice that a single False term in a
 973 top-level Conjunction ($P \wedge Q \wedge R$) invalidates the entire formula.
 974

975 10. **Premature Termination (Partial Evaluation)** (shortcut): Evaluating only a fragment of
 976 the formula (e.g., the first sub-clause) and assuming it dictates the final answer.
 977

978 11. **Reliance on Invalid Heuristics** (shortcut): Using "rules of thumb" instead of boolean
 979 algebra.
 980

981 12. **Refusal to Solve (Abandonment)** (abandonment): Explicitly giving up on the evaluation
 982 due to complexity.
 983

984 13. **Hallucination of External Tool Verification** (hallucination): Claiming to have used a
 985 Python script or "symbolic logic solver" to verify an answer that is objectively incorrect.
 986

987 14. **Variable Assignment Errors** (copying): Using the truth values from one option (e.g.,
 988 Option A) while evaluating another option (e.g., Option C).
 989

990 15. **Necessity vs. Sufficiency Confusion** (procedure): Treating a sub-expression as a necessary
 991 condition when it is not.
 992

993 16. **Neglecting the Global Negation** (omission): Correctly evaluating the massive inner
 994 formula but forgetting to apply the outermost 'not(...)'.
 995

996 17. **Incorrect Parsing of Parentheses Depth** (parsing): Losing track of nesting depth, often
 997 "closing" a parenthesis too early or too late.
 998

999 18. **"False implies False" Confusion** (procedure): Believing that 'False' \rightarrow 'False' evaluates
 1000 to False.
 1001

1002 19. **Ignoring Biconditional Mismatches** (procedure): Failing to spot that $True \leftrightarrow False$
 1003 evaluates to False.
 1004

1005 20. **False Generalization from Partial Data** (shortcut): Analyzing one option, finding a spe-
 1006 cific sub-structure behaves a certain way, and assuming that behavior applies to all other
 1007 options without verification.
 1008

1009 C.3 ERROR ANALYSIS FOR LOGIC NEGATION

1010 The logic negation errors show some interesting patterns. For example, R1 and Gemma 3 are both
 1011 prone to incorrectly copying predicates or variables, whereas the other models are not. Double
 1012 negation is a common failure mode across most models; it seems like negation is generally difficult.
 1013 There are some specific failures: R1 does not know how to take a biconditional expansion, and
 1014 Gemma 3 frequently used a visual difference heuristic no other mode
 1015

1016 1. **Double Negation Oversight** ($\neg(\neg P) \equiv P$) (procedure): The most frequent error. When
 1017 asked to negate a statement that already begins with a negation (e.g., 'not (Exists x...)'),
 1018 solvers often attempt to distribute a new negation into the inner formula (changing quantifiers
 1019 and connectives) rather than recognizing that the correct answer is simply the inner statement
 1020 with the outer "not" removed.
 1021

1022 2. **Corruption of the Antecedent in Implications** (procedure): When negating a conditional
 1023 statement ($P \rightarrow Q$), the correct negation is $P \wedge \neg Q$. A very common mistake is to negate
 1024 or modify the antecedent P (e.g., flipping quantifiers inside P or adding a "not"), failing to
 1025 realize that the antecedent must remain exactly identical to the original.
 1026

1027 3. **Retaining the Implication Operator** (procedure): Solvers often fail to change the main
 1028 operator from an implication (\rightarrow) to a conjunction (\wedge) during negation. They incorrectly
 1029 produce a statement like $P \vee \neg Q$ or $P \wedge Q$ instead of the required $P \wedge \neg Q$.
 1030

1031 4. **Recursive Biconditional Negation** (procedure): When negating an equivalence (P iff
 1032 Q), solvers frequently assume the negation is $\neg P$ iff $\neg Q$ (negating both sides recursively).
 1033 This results in a logically equivalent statement, not a negation. The correct negation is the
 1034 exclusive disjunction ($(P \wedge \neg Q) \vee (\neg P \wedge Q)$).
 1035

1036 5. **Incomplete Biconditional Expansion** (procedure): Even when solvers recognize that a
 1037 negated biconditional requires an XOR structure, they often fail to preserve the un-negated
 1038 sides correctly. For example, they might produce $(P \wedge \neg Q) \vee (\neg P \wedge \neg Q)$ or fail to keep P
 1039 identical in the first disjunct.
 1040

1026 6. **De Morgan's Law Failures** (procedure): When negating conjunctions or disjunctions,
 1027 solvers often flip the operator (AND \leftrightarrow OR) but fail to negate the individual terms, or
 1028 conversely, negate the terms but fail to flip the operator.

1029 7. **Quantifier Inversion in Non-Negated Scopes** (copying): Solvers frequently flip quantifiers
 1030 ($\forall \leftrightarrow \exists$) universally throughout the entire formula, including within sub-formulas that should
 1031 be preserved (such as the antecedent of a negated implication or the un-negated side of a
 1032 biconditional expansion).

1033 8. **Failure to Negate Quantifiers** (procedure): Conversely, in sections that *should* be
 1034 negated, solvers often negate the predicates but forget to swap the quantifier (e.g., leaving
 1035 "Exists" as "Exists" while negating the inner proposition).

1036 9. **Misidentification of the Main Connective** (procedure): Solvers often misidentify the top-
 1037 level logical operator. For example, analyzing a complex statement as a "Conjunction"
 1038 when the main operator is actually an "Implication" or "Biconditional," leading to the wrong
 1039 negation strategy.

1040 10. **Parsing Scope Errors** (parsing): Misinterpreting the scope of parentheses or quantifiers.
 1041 A common error is assuming a quantifier applies only to the immediate next term, when it
 1042 actually scopes over a subsequent biconditional or implication (e.g., negating $\exists x(P \rightarrow Q)$
 1043 as $\forall xP \rightarrow \neg Q$ instead of $\forall x(P \wedge \neg Q)$).

1044 11. **Negating "A and B" as an Implication** (procedure): Solvers sometimes incorrectly negate
 1045 a conjunction $A \wedge B$ using an implication structure like $\neg A \rightarrow \neg B$, rather than the correct
 1046 De Morgan's expansion $\neg A \vee \neg B$.

1047 12. **Confusing Negation with Simplification** (procedure): Solvers sometimes attempt to "sim-
 1048 plify" the expression (e.g., pushing a "not" inwards) rather than finding the negation. For
 1049 example, transforming $\neg \exists xP$ into $\forall x \neg P$ creates an equivalent statement, whereas the
 1050 *negation* of $\neg \exists xP$ is $\exists xP$.

1051 13. **Arbitrary Predicate/Variable Substitution (Hallucination)** (copying): A pervasive error
 1052 where the solver selects an option that arbitrarily changes variable names (e.g., changing x
 1053 to y), constants (e.g., changing constant a to b), or predicates (e.g., changing 'Horror' to
 1054 'Comedy').

1055 14. **Arbitrary Operator Modification** (copying): Solvers often select options that randomly
 1056 change logical connectives in sub-formulas that should be preserved. For example, changing
 1057 an inner 'AND' to an 'OR' or ' \rightarrow ' to ' $\leq\geq$ ' in a section of the text that is not under the scope
 1058 of the negation operation.

1059 15. **Transcription Errors in "Correct" Options** (copying): Solvers correctly derive the ab-
 1060 stract logical form (e.g., "I need $P \wedge \neg Q$ ") but select an option where P has a subtle
 1061 typo (like a missing "not" or a swapped operator) because they did not verify the text
 1062 character-by-character.

1063 16. **The "Visual Difference" Heuristic** (shortcut): Solvers incorrectly assume that the correct
 1064 negation must look "the most different" from the original statement. This leads them to reject
 1065 correct answers that preserve large chunks of text (like the antecedent of an implication) in
 1066 favor of incorrect answers that scramble the entire formula.

1067 17. **False Equivalence of Options** (shortcut): Solvers frequently claim that two distinct options
 1068 (e.g., A and B) are "identical" when they contain subtle but critical differences (such as one
 1069 quantifier change or one missing "not"), leading to arbitrary and incorrect guessing.

1070 18. **Evaluating Truth Value Instead of Syntax** (shortcut): Solvers try to determine if the
 1071 statement is "True" or "False" based on real-world knowledge or probability, rather than
 1072 performing the syntactic manipulation required to find the logical string that represents the
 1073 negation.

1074 19. **Applying Recursive "Flipping"** (shortcut): An invalid heuristic where solvers assume
 1075 negation means systematically flipping every single operator and quantifier in the text,
 1076 ignoring logical hierarchy and the requirement to preserve certain structures (like the "if"
 1077 part of a conditional).

1078 20. **Premature Abandonment** (abandonment): Solvers incorrectly conclude that the problem
 1079 is "too complex" or "impossible to determine" and resort to guessing, often failing to notice
 that the first few terms of the formula are sufficient to eliminate the incorrect options.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
C.4 ERROR ANALYSIS FOR PROFTREE

1. **Use of Stale Variable Values** (omission): The most common error is treating variables as static. The solver calculates a value for a character (e.g., "Bob has 10") early in the problem, ignores a subsequent transaction (e.g., "Bob gives 5 to Alice"), and uses the obsolete value (10 instead of 5) in later equations.
2. **Omission of Transaction Statements** (omission): Completely overlooking sentences containing "gives" or "receives" (e.g., "Jane gives 12 tomatoes to Doe"). The solver treats these sentences as flavor text rather than mathematical subtraction/addition operations.
3. **Failure to Apply Final State Changes** (omission): The logic chain is solved correctly to find an intermediate number, but the solution fails to apply the very last transaction mentioned in the text (e.g., the final answer provided is the count *before* the character receives the final gift).
4. **One-Sided Transaction Updates** (procedure): Correctly subtracting items from the "giver" but failing to add them to the "receiver," effectively causing items to vanish from the system and corrupting the receiver's value for future equations.
5. **Chronological Misplacement of Constraints** (procedure): Applying a logical constraint (e.g., "X has twice as many as Y") to the wrong point in the timeline—either applying it to the final total instead of the initial total, or vice versa.
6. **Absolute Value Fallacy** (procedure): Misinterpreting the phrase "the difference between X and Y" as the absolute magnitude ($|X - Y|$) in contexts where a signed difference ($X - Y$) is required to handle negative offsets (e.g., when X has fewer items than Y).
7. **"More Than" as Strict Inequality** (procedure): Assuming that "X has more than Y" implies that X's count must be greater than Y's. In these algebraic puzzles, this phrase often defines a variable relationship that results in a negative number (e.g., "The number X has more than Y is -5"). Solvers often reject valid negative differences as contradictions.
8. **"Increases by X Times" Ambiguity** (procedure): Misinterpreting the arithmetic operation for growth. Common errors include calculating an additive increase ($Original + (Original \times X)$) when a multiplicative scalar ($Original \times X$) was intended, or interpreting "increases by 1 times" as doubling rather than multiplying by 1 (identity).
9. **Reverse Translation of Comparative Statements** (procedure): Translating "A has 5 more than B" as $B = A + 5$ or $A + 5 = B$, rather than the correct $A = B + 5$.
10. **Rejection of Negative Intermediate Values** (procedure): In complex chains, an intermediate variable (e.g., a "difference" value) may be negative to make the final math work. Solvers often incorrectly attempt to force these to be positive or declare the puzzle "unsolvable" upon seeing a negative.⁴
11. **Premature "Unsolvable" Declaration** (abandonment): Failing to trace the full dependency chain of variables (back-propagation). The solver looks for a direct value, doesn't find one, and claims information is missing, even though the value can be derived from a sequence of 3-4 other characters.
12. **The "Zero-Initialization" Fallacy** (hallucination): Assuming that if a character's starting value is not explicitly stated as a number, it must be zero.
13. **Arbitrary Value Selection** (hallucination): When faced with ambiguity (often caused by the Absolute Value Fallacy), the solver arbitrarily guesses a value (e.g., picking the positive root) without verifying if it contradicts other constraints.
14. **Unjustified Equality Assumptions** (hallucination): Hallucinating constraints to resolve unknown variables, such as assuming married couples share the same inventory or that two characters mentioned in the same sentence have equal amounts.
15. **Dependency Loop Confusion** (procedure): Failing to calculate necessary intermediate variables (e.g., calculating A and B, but failing to calculate C, which bridges them) and concluding the variables are disconnected.

⁴This may actually be an error in constructing the task using our text templates.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391</p

1188 11. **Cumulative Cost Oversight** (procedure): The model fails to track the running total of costs
 1189 during the trip. It often adds a final expensive leg to a path that has already exceeded the
 1190 budget earlier in the sequence.

1191 12. **Unique City Counting Errors** (procedure): The model lists a specific number of cities
 1192 (e.g., 6) but claims in the text that it has visited the required amount (e.g., "This path visits 8
 1193 unique cities"). This is a disconnect between the generated list and the validation logic.

1194 13. **Inefficient Routing (Redundant Loops)** (procedure): The solution includes unnecessary
 1195 backtracking or loops (e.g., A → B → A → C). While this increases the path length, it wastes
 1196 budget and often fails to increase the *unique* city count, leading to valid but suboptimal
 1197 paths that violate constraints.

1198 14. **Hallucinated Costs** (hallucination): The model invents costs for specific trips that do not
 1199 match the provided text (e.g., claiming a trip costs 15 when the data says 50). This can lead
 1200 to the selection of paths that are actually too expensive.

1201 15. **Incorrect Constraint Hallucination** (hallucination): The model attempts to solve the
 1202 problem using constraints from a different problem instance (e.g., trying to stay under 162
 1203 when the prompt asks for 105, or trying to visit 8 cities when the prompt asks for 5).

1204 16. **Lookup Errors (Row/Column Confusion)** (copying): The model correctly identifies a
 1205 connection but retrieves the cost associated with a different transportation method on the
 1206 same route or a different route entirely (e.g., confusing the cost of a "bus" with a "train").

1207 17. **Premature Path Termination** (procedure): The path stops before reaching the required
 1208 destination city, usually because the model "runs out" of budget or steps and submits an
 1209 incomplete fragment as the solution.

1210 18. **Logical Inconsistency** (procedure): The model acknowledges in its explanation that a path
 1211 exceeds the budget or fails a constraint (e.g., "This costs 269 which is over 188") but still
 1212 submits it as the final answer.

1213 19. **Failure to Find Low-Cost Detours** (procedure): When a direct path is too expensive or too
 1214 short, the model fails to find specific, complex low-cost "detours" required to rack up the
 1215 unique city count without breaking the budget.

1216 20. **Counting Start/End Nodes Incorrectly** (procedure): The model sometimes fails to include
 1217 the start or end node in the unique city count, leading to an attempt to add extra, unnecessary
 1218 stops that push the total cost over the budget.

D UNPUZZLING

This section provides more detail about the UNPUZZLES and their auto-evaluation.

D.1 DATASET CREATION INSTRUCTIONS

The following are instructions given to humans to trivialize puzzles:

Task: Trivialize a puzzle Make a minimal edit to a well-known logical puzzle such that the solution becomes trivial. Either choose a puzzle from the given list or add a new puzzle. Suitable puzzles should be known to all language models, meaning that they readily provide you with the solution. Prefer puzzles where the solution is simply stated or can be checked with a simple question, for example one with a yes/no or an integer. Many famous puzzles can be modified to have simple solutions. Create an unpuzzle: modify the puzzle such that there is a trivial solution and the original solution is no longer necessary or even correct. Ideally, the simple question that verified the original puzzle should have a different answer. Check that large models still use the original solution to erroneously solve the modified puzzle or give the original (incorrect) answer. If not, repeat from step 3. Examples:

- Puzzle: There are 100 lockers in a row, all initially closed. A person walks down the row and opens every locker. Then, another person walks down the row and closes every second locker (starting from the second locker). Next, a third person walks down the row and

1242 changes the state (opens it if it's closed or closes it if it's open) of every third locker (starting
 1243 from the third locker). This continues until 100 people have walked down the row. At the
 1244 end, how many lockers are open?

1245 Unpuzzle: There are 100 lockers in a row, all initially closed. A person walks down the row
 1246 and opens every locker. Then, another person walks down the row and closes every second
 1247 locker (starting from the second locker). At the end, how many lockers are open?

1248 Explanation: The original puzzle requires that one finds the number of times each locker
 1249 door's state is changed, which in turn requires the number of prime factors. This puzzle can
 1250 be checked by asking a simple, integer-valued question. On the other hand, the unpuzzle
 1251 has an obvious solution, as every second door is closed. The reasoning steps needed for the
 1252 original puzzle are not required at all. (Gemini gives the same answer for both: 10)

- 1254 • Puzzle: You have 12 coins, and one is counterfeit, being either heavier or lighter than the
 1255 others. You have a balance scale and can use it three times. How can you identify the
 1256 counterfeit coin and determine if it is heavier or lighter?

1257 Unpuzzle: You have 12 coins, and they are all counterfeit. You have a balance scale and can
 1258 use it three times. How can you identify all the counterfeit coins?

1259 Explanation: The original puzzle requires careful reasoning through all possible results
 1260 from the weighing. The unpuzzle has a laughably trivial solution. We could also modify
 1261 the puzzle to ask "how many weighings are required to determine which is the counterfeit
 1262 coin?".

1263 D.2 CONTEXT-SHIFTED UNPUZZLES

1265 We generated the context-shifted unpuzzles by first identifying a subset of 64 unpuzzles with simple
 1266 categorical or integer answers (e.g. asking "what is the minimum number of crossings?" instead of
 1267 "How can we move all items across the river?"). We used the following method for automatically
 1268 shifting the context for the unpuzzles

- 1270 1. We prompt a strong model with "I will give you a puzzle and a solution. I would like you to
 1271 provide a single rewrite of the puzzle that changes the language and setting but keeps the
 1272 logical structure and the answer the same; think carefully, highlighting the logical structure
 1273 present in the puzzle," followed by a templated response specifying the domain the answer
 1274 must lie in (the categories or an integer).
- 1275 2. We verify that the new puzzle has the same solution as the original unpuzzle. If not, return
 1276 to step 1).
- 1277 3. We query the same model with the new unpuzzle; if the correct answer is not returned,
 1278 return to step 1).
- 1279 4. Verify that the context-shifted puzzle has the correct logical structure.

1281 We found that models differed on the unpuzzles they could context-shift successfully, so we recom-
 1282 mend using a few models simultaneously (we used o1 and Gemini 2.5 Flash). Of the context-shifted
 1283 unpuzzles produced this way, 75% required minimal or no modification. One could use this method
 1284 to generate large numbers of context-shifted puzzles.

1285 D.3 AUTO-EVALUATION

1288 Prompting models to disambiguate between the different levels of delirium is difficult. However, we
 1289 had some success automatically evaluating correctness of the unpuzzle solution if we have access to
 1290 a ground-truth unpuzzle solution.

1291 The first question: is the unpuzzle solution correct or not? Our approach involved asking the model
 1292 two questions. The first (following Miao et al., 2023) asks a critic model whether correct solution
 1293 "supports," "contradicts," or "is not directly related to" the model's response. The second presents the
 1294 unpuzzle with the correct solution and asks whether the model's response had different reasoning,
 1295 regardless of its correctness (we frequently saw that models would say that any reasoning not aligning
 1296 with the original puzzle's solution was incorrect). We only conclude that the model's response

Critic	Model			
	G1.5	C3.5	4o	o1
G1.5	(35.3, 2.4)	(32.0, 4.1)	(38.9, 1.2)	(36.7, 7.7)
C3.5	(11.8, 0.0)	(24.0, 8.1)	(27.8, 3.7)	(40.0, 5.1)
4o	(64.7, 0.0)	(80.0, 1.4)	(72.2, 0.0)	(78.3, 5.1)
o1	(23.5, 1.2)	(28.0, 6.8)	(22.2, 2.5)	(43.3, 7.7)

Table 11: (False positive, False Negative) percentages for autoevaluation. Each row corresponds to using a different critic model for evaluation.

is correct if the two questions were answered “supports” and “no;” the prompt details are in the appendix.

Each row of Table 11 shows the performance of using the given model as a critic to evaluate the responses from every model: each cell gives (false positive rate, false negative rate), where positive means the unpuzzle solution is correct. In general, the false negative rates were significantly lower than the false positive rates, so autoevaluation gives a conservative estimate of performance. Also noteworthy is the complete lack of symmetry: o1 is much better at judging than being judged, though overall Claude seems to make the best critic. We hope that the autoevals have enough fidelity to allow the unpuzzles to be used for model improvement. Given the original unpuzzle, the correct unpuzzle_solution, and the model’s response, we prompted the model twice with the following question:

```
Autoevaluation prompt template 1

Here is a simple question:
{unpuzzle}

This simple question has the simple solution:
<correct solution>
{unpuzzle_solution}
</correct solution>

Is the reasoning in the following solution different,
regardless of it is correct or not?
<second solution>
{response}
</second solution>

Please answer with <answer>yes or no</answer>
```

The second question is the following:

```
Autoevaluation prompt template 2

The following are 2 solutions to a simple puzzle.
Solution 1: {unpuzzle_solution}

Solution 2: {response}

Compare the key points from both solutions step by step and then check
whether Solution 1 ‘supports’, ‘contradicts’ or ‘is not directly related
to’ the conclusion in Solution 2.

Please answer with <answer>‘supports’, ‘contradicts’, or
‘is not directly related to’</answer>
```

We only declared the model response as correct if we received answers “no” and “supports.”

1350 E UNPUZZLES: EXAMPLES OF CONTEXT CORRUPTION
1351

1352 We give examples of answers containing various degree of context corruption. As an example of
1353 reasoning delirium, we show the solution of o1 to the Conjunctive Fallacy problem (Figure 8) in
1354 Figure 9. As an example of context corruption leading to a correct final solution, we show o1’s full
1355 solution to Chameleons Go on a Date (Figure 1) in Figure 10. As an example of context corruption
1356 with an incorrect final solution, we show G1.5’s full solution to the same problem in Figure 11.
1357

1358 Conjunctive Fallacy (original puzzle)
1359

1360 Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
1361 she was deeply concerned with issues of discrimination and social justice, and also participated in
1362 anti-nuclear demonstrations. Which is more probable? A) Linda is a bank teller. B) Linda is a bank
1363 teller and is active in the feminist movement. **Answer:** A (conjunctive fallacy)

1364 Conjunctive Fallacy (unpuzzle)
1365

1366 Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
1367 she was deeply concerned with issues of discrimination and social justice, and also participated in
1368 anti-nuclear demonstrations. She is active in the feminist movement. Which is more probable? A) Linda
1369 is a bank teller. B) Linda is active in the feminist movement. **Answer:** B (given)

1370 Figure 8: Conjunctive fallacy: puzzle and corresponding unpuzzle.

1371 o1’s Solution to Conjunctive Fallacy

1372 This question is a version of the well-known “Linda problem,” originally posed by Tversky
1373 and Kahneman to illustrate the conjunction fallacy. In the classic form, the two options are:
1374 A) Linda is a bank teller. B) Linda is a bank teller and is active in the feminist movement.
1375 The correct answer is always option A (that she is simply a bank teller), because any single
1376 event (being a bank teller) must be at least as probable as that same event combined with
1377 another (being both a bank teller and a feminist). Adding more conditions (in this case, being
1378 a feminist as well) can never make an event more likely, even if that extra detail sounds more
1379 “representative” of Linda’s personality.

1380 Why it feels counter-intuitive (the “conjunction fallacy”): • People often choose the more
1381 “representative” description—bank teller plus feminist—because it fits Linda’s profile better.
1382 • However, mathematically, $P(A \text{ and } B) \leq P(A)$. Hence, it cannot be more probable to be
1383 both a bank teller and a feminist than it is to be just a bank teller.
1384 In short, the more probable statement is simply “Linda is a bank teller.”

1385 Figure 9: o1 solution to the Conjunction Fallacy problem, illustrating complete context corruption,
1386 or delirium. The model provides the solution to the original problem, acknowledging the difference
1387 only by referring to the “classic form” of the problem.

1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404
1405

o1's solution to Chameleons Go on a Date

1406

A succinct way to see that they can all end up the same color (and in fact which color that must be) is via the following “invariant” argument:

1407

1) Label the number of Purple, Yellow, and Maroon chameleons by P , Y , M , respectively. 2) Notice that in any “meeting” of two different-colored chameleons, P , Y , M change according to one of these three rules:

1408

$P + Y \rightarrow 2M$, so (P, Y, M) becomes $(P - 1, Y - 1, M + 2)$.

1409

$Y + M \rightarrow 2P$, so (P, Y, M) becomes $(P + 2, Y - 1, M - 1)$.

1410

$P + M \rightarrow 2Y$, so (P, Y, M) becomes $(P - 1, Y + 2, M - 1)$.

1411

3) Define the quantity $S = P + 2Y \pmod{3}$. One checks that under each of the above transformations, S remains unchanged (that is, S is an invariant modulo 3).

1412

4) At the start, we have $P=15$, $Y=15$, $M=17$. Then $S = 15 + 2 * 15 = 15+30 = 45 = 0 \pmod{3}$.

1413

5) If eventually all chameleons turn into a single color, say all Purple ($P=47$) or all Yellow ($Y=47$) or all Maroon ($M=47$), then we can compute S in each scenario:

1414

- All Purple: $P = 47 \implies S = 47 + 2 \cdot 0 = 47 = 2 \pmod{3}$.

1415

- All Yellow: $Y = 47 \implies S = 0 + 2 \cdot 47 = 94 = 1 \pmod{3}$.

1416

- All Maroon: $M = 47 \implies S = 0 + 2 \cdot 0 = 0 = 0 \pmod{3}$.

1417

Since the initial $S = 0 \pmod{3}$, the only way to remain consistent with that invariant and end up with all chameleons of one hue is if they all become Maroon (because only that final state also gives $S = 0$).

1418

Conclusion: Yes. It is possible for all of the chameleons to end up the same color; specifically, they can all turn Maroon.

1419

1420

1421

1422

1423

1424

1425

1426

1427

Figure 10: o1’s solution to Chameleons Go on a Date, illustrating context corruption with a correct final answer

1428

1429

1430

1431

F UNPUZZLES MODEL RESPONSE HIGHLIGHTS

1432

1433

1434

We saw many “creative” responses for the UNPUZZLES. Figures 12 and 13 show amusing examples involving socks, ducks, and chickens.

1435

1436

1437

Occasionally, a model will get delirious due to a different puzzle. Figure 14 shows an example of o1 copying a solution not from the original puzzle, but from an unrelated puzzle that also happens to involve socks.

1438

1439

1440

Sometimes the models seem aware that the problem is different, but they seem pretty intent on sticking to the training distribution and make up flimsy excuses to rehash the original solution, as in the River Crossing puzzle shown in Figure 15.

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458
1459

Gemini 1.5's Solution to Chameleons Go on a Date unpuzzle

1460

Let p , y , and m be the number of purple, yellow, and maroon chameleons, respectively. Initially, we have $p = 15$, $y = 15$, and $m = 17$.

1461

When two different-colored chameleons meet, they both turn into the third color. This means the changes in the numbers of chameleons are always in increments of 2. We look at the remainders when the numbers are divided by 3.

1462

Initially, we have $p \equiv 0 \pmod{3}$, $y \equiv 0 \pmod{3}$, and $m \equiv 2 \pmod{3}$.

1463

Consider the remainders when dividing the number of each color by 3 at each step. Let $p \equiv p' \pmod{3}$, $y \equiv y' \pmod{3}$, and $m \equiv m' \pmod{3}$. The possible values for (p', y', m') are $(0, 0, 2)$.

1464

If a purple and a yellow chameleon meet, we have $(p-1, y-1, m+2)$. Then the remainders are $(2, 2, 1)$. If a purple and a maroon chameleon meet, we have $(p-1, y+2, m-1)$. Then the remainders are $(2, 2, 1)$. If a yellow and a maroon chameleon meet, we have $(p+2, y-1, m-1)$. Then the remainders are $(2, 2, 1)$.

1465

We can notice a pattern. The remainders after any interaction will always satisfy $p' + y' + m' \equiv 2 \pmod{3}$. The possible remainder sets are: $(0, 0, 2)$, $(0, 2, 0)$, $(2, 0, 0)$, $(1, 1, 0)$, $(1, 0, 1)$, $(0, 1, 1)$, $(2, 2, 1)$, $(2, 1, 2)$, $(1, 2, 2)$. We need all chameleons to have the same color. This means two of the colors must be zero. The only combinations with two zeros are $(0, 0, 2)$, $(0, 2, 0)$, and $(2, 0, 0)$. We start with $(0, 0, 2)$. If all the chameleons are purple, we would have $(1, 0, 0)$, which has a remainder sum of 1, which is not possible. If all the chameleons are yellow, we would have $(0, 1, 0)$, which has a remainder sum of 1, which is not possible. If all the chameleons are maroon, we would have $(0, 0, 1)$, which has a remainder sum of 1, which is not possible.

1466

Since all final states are not achievable, it is not possible for all chameleons to have the same hue.

1467

My final is: no.

1468

Figure 11: G1.5's solution to Chameleons Go on a Date, illustrating context corruption leading to an incorrect final answer.

1469

Matching Socks 2 (original puzzle)

1470

You are about to leave for holiday, but you forgot socks! You race back to your room, but the power is off so you can't see sock colors. Never mind, because you remember that in your drawer there are ten pairs of identical green socks, ten pairs of identical black socks, and eleven pairs of identical blue socks, but they are all mixed up. How many of your socks do you need to take before you can be sure to have at least one pair matching in color? **Answer:** 4 (by the pigeonhole principle)

1471

Matching Socks 2 (unpuzzle)

1472

You are about to leave for holiday, but you forgot socks! You race back to your room, but the power is off so you can't see sock colors. Never mind, because you remember that in your drawer there are ten pairs of green socks, but they are all mixed up. All socks have an identical shape (there is no distinction between socks for left and right feet). How many of your socks do you need to take before you can be sure to have at least one pair matching in color? **Answer:** Since all socks are green, taking two clearly suffices.

1473

Gemini 1.5's Solution

1474

The worst-case scenario is that you pick one sock from each of the ten pairs. This means you could pick ten socks and still not have a matching pair. However, the very next sock you pick *must* create a pair with one of the socks you already have.

1475

So you need to pick $10 + 1 = 11$ socks.

1476

My final answer is: 11

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Figure 12: Matching Socks 2: puzzle, unpuzzle, and an amusing answer by Gemini 1.5.

1512 Counting Ducks (original puzzle)
 1513
 1514 There are two ducks in front of a duck, two ducks behind a duck and a duck in the middle. How many ducks are
 1515 there? **Answer:** 3

1516
 1517 Matching Socks 2 (unpuzzle)
 1518
 1519 There are two ducks in front of the chicken, two ducks behind the chicken, and a duck to the left of the chicken.
 1520 How many ducks are there? **Answer:** 5

1521
 1522 o1's Solution
 1523 A classic way to see why the answer is three is to realize that “the chicken” named in the riddle is
 1524 actually just one of the three ducks (it has the nickname “Chicken”). Line the three ducks up:
 1525 • Duck 1 (sometimes called “Chicken”),
 1526 • Duck 2,
 1527 • Duck 3.
 1528 From the perspective of each duck, you can say there are “two ducks in front of it,” “two ducks
 1529 behind it,” and so on—yet you never actually need more than three ducks. The riddle’s wording
 1530 double-counts the same birds from different points of view. Hence, the total number of ducks is 3.

Figure 13: Counting ducks: puzzle, unpuzzle, and an answer by o1.

1531
 1532
 1533
 1534
 1535 More Socks (original puzzle)
 1536
 1537 A man has 53 socks in his drawer: 21 identical blue, 15 identical black and 17 identical red. The lights are out
 1538 and he is completely in the dark. How many socks must he take out to make 100 percent certain he has at least
 1539 one pair of black socks? **Answer:** 38

1540
 1541 More Socks (unpuzzle)
 1542
 1543 A man has 53 socks in his drawer: 21 identical blue, 15 identical black and 17 identical red. There is no
 1544 distinction between left and right socks. The lights are out and he is completely in the dark. How many socks
 1545 must he take out to have one sock for each foot? **Answer:** 2

1546
 1547 o1's Solution
 1548 A straightforward way to see why the answer is 4 is to use the “worst-case” or pigeonhole principle
 1549 argument:
 1550 • There are three colors (blue, black, red).
 1551 • If you pick 3 socks, in the worst case you could have one of each color (1 blue, 1 black, 1 red) and
 1552 thus no matching pair.
 1553 • As soon as you pick a 4th sock, by the pigeonhole principle at least two of them must be the same
 1554 color.
 1555 Hence, you must take out 4 socks to guarantee having a matching pair for your two feet.

Figure 14: More Socks: puzzle, unpuzzle, and an answer by o1.

G DETAILS FOR COUNTING

1561
 1562
 1563
 1564
 1565 The counting tasks both use data from the Salesforce/wikitext and wikitext-2-v1 dataset Merity et al.
 1566 (2016) hosted on Hugging Face. We will briefly describe each of them and provide task cards.

1566 River Crossing with a Weight Constraint (original puzzle)
 1567

1568 Four people (Alex, Brook, Chris and Dusty) want to cross a river in a boat that can only carry 100kg. Alex
 1569 weighs 90kg, Brook weighs 80kg, Chris weighs 60kg and Dusty weighs 40kg, and they have 20kg of supplies.
 1570 What is the minimum number of river crossings they need to get across?

1571 River Crossing with a Weight Constraint (unpuzzle)
 1572

1573 Four people (Alex, Brook, Chris and Dusty) want to cross a river in a boat that can only carry 300kg. Alex
 1574 weighs 90kg, Brook weighs 80kg, Chris weighs 60kg and Dusty weighs 40kg, and they have 20kg of supplies.
 1575 What is the minimum number of river crossings they need to get across? **Answer: 1**

1576 Claude 3.5's Solution
 1577

1578 Let's approach this step-by-step:
 1579 1. First, we need to consider the total weight: $90 + 80 + 60 + 40 + 20 = 290\text{kg}$ *This is within the*
 1580 *300kg limit, but they can't all go at once because the boat can only carry 300kg.*
 1581 2. The most efficient way to cross is to always have the boat full or nearly full on each trip across,
 1582 and to send the lightest person back with the boat.
 1583 3. Here's an efficient crossing strategy: - Trip 1: Chris (60kg) and Dusty (40kg) cross (100kg total)
 1584 - Trip 2: Dusty returns alone - Trip 3: Alex (90kg) and Brook (80kg) cross (170kg total) - Trip 4:
 1585 Chris returns alone - Trip 5: Chris (60kg), Dusty (40kg), and supplies (20kg) cross (120kg total)
 1586 4. This strategy requires 5 crossings in total.
 1587 5. We can't reduce this number because: - We need at least 2 trips to get everyone across (the boat
 1588 must return at least once) - We can't fit everyone in just two trips because Alex and Brook together
 1589 are already 170kg, leaving only 130kg for Chris, Dusty, and the supplies, which isn't enough
 1590 Therefore, 5 is the minimum number of crossings required.
 1591 My final answer is: 5

Figure 15: River Crossing with a Weight Constraint: puzzle, unpuzzle, and an answer by Claude 3.5.

G.1 CHARACTER COUNTING

1597 The character counting task is defined by paragraph bounds m_l and m_u . We randomly choose a
 1598 wikitext snippet from all paragraphs that adhere to the length limits. We then count all the characters
 1599 and randomly pick one in the top 10 most frequent.

Character counting prompt template

1600 I will provide you a block of text. Please count the number of times
 1601 the character "{sampled_char}" appears in the text.
 1602 Give your answer using the format:

1603 "The character appears #your answer# times."

1604 Think step by step.

1605 Here is the text.

1606 {sampled_paragraph}

1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
1621

G.2 WORD COUNTING

1622
1623
1624
1625

For the word counting task, we begin the same way by sampling a paragraph that obeys the length restrictions. We then compute the word frequencies, always asking the model to find the top k most frequent words. Because the wikitext data have white spaces around each word and all characters are lower case, each word always has the same tokenization.

1626
1627

The prompt template is give below.

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638

```
I will provide you a block of text. Please count the number of
times each word in the list [word 1, word 2, ..., word k] appears
in the text.

Give your answer using the format:
"The words appear [ your answer for the first word ,
your answer for the second word , ... ] times."

Think step by step.
Here is the text
{text}
```

1639
1640

H DETAILS FOR THE LOGIC TASKS

1641
1642
1643
1644
1645
1646
1647

This section provides pseudocode for generating tasks for logic evaluation and logic negation tasks.

A logic formula can be represented by a tree where nodes are logical operators and leaves are atomic propositions. The nodes have a certain truth value depending on the value of their children. The standard nodes have three types: connective, unitary, and quantifying. Connective nodes have two children (left and right), and unitary and quantifying nodes have one child. Throughout this section, T and F denote True and False, respectively.

1648

There are two types of leaves:

1649
1650
1651
1652
1653
1654
1655

- Atomic propositions (often denoted by single capital letters, e.g., P, Q , etc.) are either true or false.
- Predicates represent a property about an individual. For example, for predicate P , we have $P(x) = T$ if the individual x has the property P . We expect $P(x)$ to have different values as x changes.

1656
1657

There are seven operators, described in the following table (other logical primitives, e.g., the exclusive or, may be derived from the ones below).

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Name	Symbol	Type	Description
and	\wedge	connective	True if both children are True
or	\vee	connective	True if at least one child is True
implies	\rightarrow	connective	Only False if $T \rightarrow F$
equals	\Leftrightarrow	connective	True if the left and right child are equal
not	\neg	unitary	The opposite value of its child
universal quantification	$\forall x \in X$	quantifying	True if the child evaluates to True for <i>every</i> value x in domain X .
existential quantification	$\exists x \in X$ s.t.	quantifying	True if the child evaluates to True for <i>some</i> value x in domain X .

Nodes of connective and unitary types are only defined by their symbol. A quantifying node is defined by its symbol and the domain it operates on. For simplicity, we will simply number the possible domains, e.g., D_1, D_2, \dots

The first step in constructing a logic task is to sample a logic formula. We describe how in the next section.

1674
1675

H.1 SAMPLING A LOGIC FORMULA

1676
1677
1678
1679
1680

Including first-order logic requires a sampling procedure that ensures the domains have scopes that make sense. In particular, the domain of a predicate must be from one of its ancestors. To enforce this, we keep track of every used domain in each subtree and limit the domains of predicates to these domains. Once we finish sampling a subtree with a root quantifying node, we then check if the subtree actually used the domain of the root. If not, the quantifying node is removed.

1681
1682
1683

The logic problems were also parameterized by the number of unique propositions, n . For $n = 8$, we also chose the number of unique predicates and domains to be 8 and 4, respectively. For $n = 16$, the number of unique predicates and domains were 16 and 8, respectively.

1684
1685

We use several different sets of names for the propositions, predicates, and domains. They include

1686
1687
1688
1689

- common letters;
- random 20 character-long lower case strings;
- words about movies.

1690
1691
1692

For generating each prompt, a subset of the appropriate size was selected from larger sets. For example, the “movie” vocabulary uses the following words:

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707

- Propositions: *dark, dramatic, intense, thrilling, suspenseful, romantic, comedic, tragic, epic, inspiring, thought-provoking, emotional, powerful, beautiful, visually-stunning, artistic, creative, imaginative, innovative, classic, mainstream, independent, foreign, animated, biographical, historical, fictional, realistic, surreal, abstract*
- Predicates: *has_subtitles, is_streamable, is_theatrical_release, is_direct_to_video, is_part_of_franchise, has_sequel, has_prequel, is_remake, is_based_on_book, is_based_on_true_story, is_animated, uses_cgi, uses_stop_motion, is_live_action, is_musical, is_comedy, is_drama, is_horror, is_action, is_sci_fi, is_fantasy, is_romance, is_thriller, is_documentary, is_historical_fiction, is_independent_film, is_big_budget, won_awards, has_famous_actors, has_original_score, is_award_winning*,
- Domains: *action_movies, comedies, period_pieces, science_fiction_films, fantasy_films, horror_films, thrillers, dramas, romantic_comedies, romantic_dramas, musicals, westerns, crime_films, war_films, documentaries, biopics, animated_films, adventure_films, mystery_films, superhero_films*.

1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719**Algorithm 1:** Sampling a First-order Logic Formula**Data:** maximum depth d_{\max}

probability of deepening tree p_d
 probability of sampling a connective node p_c
 probability of sampling a unitary node p_u
 probability of sampling a quantifying node p_q
 the number of unique atomic propositions N_a
 the number of unique domains N_d

Call the helper function Algorithm 3 with $\mathcal{D} = \emptyset, d = 0$;1720
1721
1722
1723
1724
1725
1726
1727

H.2 CONSTRUCTING THE LOGIC EVALUATION TASK

For every task, we first sample a logic formula with $p_q = 0$, i.e. without quantifying nodes. We use $p_d = .8$, $p_c = .85$ and $p_u = .15$; that is, we only choose an atomic proposition 20% of the time (unless we must to adhere to the maximum depth), and of the remaining 80%, we choose a connective node 85% of the time and a \neg operator 15%. After sampling the formula, the names for all atomic propositions are chosen from a name set as described above. We then sample random value assignments for all atomic propositions until we find one that evaluates to true and three that evaluate to false. These are then presented in random order using the following prompt template. Some models (notably o1) have restrictions on the language you can use to prompt the model. In that case “think carefully step-by-step and” was removed from the last sentence.

A:
 Algs
 2
 and
 3
 swap?
 prob-
 a-
 bili-
 ties
 0.3.etc.
 in
 Alg
 2.,
 if
 "with
 prob-
 a-
 bili-
 ty"
 in
 alg
 3

1728
1729
1730
1731
1732**Algorithm 2:** Sampling a node

Data: Probabilities p_c, p_u, p_q of sampling a connective, unitary, or quantifying node
 List of previously used domains \mathcal{D}
 Number of unique domains N_d

```

1733 if  $|\mathcal{D}| = N_d$  then
1734   | Choose node from (connective, unitary) with probabilities proportional to  $(p_c, p_u)$ ;
1735 else
1736   | Choose node from (connective, unitary, quantifying) with probabilities to  $(p_c, p_u, p_q)$ ;
1737 if node is connective then
1738   | Choose operator from  $(\wedge, \vee, \rightarrow, \Leftrightarrow)$  with probabilities (.3, .3, .3, .1);
1739 else if node is unitary then
1740   | Set operator to be  $\neg$ .;
1741 else
1742   | /* node is quantifying
1743     Choose operator from  $(\forall, \exists)$  with equal probability.;
1744     Choose new domain uniformly from  $\{1, \dots, N_d\} \setminus \mathcal{D}$ ;
1745 return operator, new domain
1746
  
```

1747
1748**Algorithm 3:** Sampling Helper function

Data: maximum depth d_{\max}
 current depth d
 List of previously used domains \mathcal{D}
 Number of unique domains N_d
 Probability of going deeper p_d
 List of atomic propositions $\mathcal{L}_{\text{prop}}$
 List of predicates $\mathcal{L}_{\text{pred}}$

```

1756 Sample  $U \sim \text{Uniform}[0, 1]$ ;
1757 if  $d = d_{\max}$  or  $U \geq p_d$  then
1758   | if With probability 50% then
1759     |   | return An atomic predicate uniformly from  $\mathcal{L}_{\text{prop}}$ 
1760   | else
1761     |   | Sample a predicate uniformly from  $\mathcal{L}_{\text{pred}}$ ;
1762     |   | Sample a domain uniformly from  $\mathcal{D}$ ;
1763     |   | return the predicate over the domain
1764 else
1765   | Choose node  $N$ , with domain  $D_{\text{new}}$  if  $N$  is quantifying, using Algorithm 2;
1766   | For each child of  $N$ , sample using this algorithm with  $d = d + 1$ ,  $\mathcal{D} = \mathcal{D} \cup \{D_{\text{new}}\}$ ;
1767   | if  $N$  is quantifying and  $D_{\text{new}}$  was not used by the descendants of  $N$  then
1768     |   | return the child of  $N$ 
1769   | else
1770     |   | return  $N$ 
  
```

1771
1772
1773

Logic evaluation prompt template

You are a logic student. I will give you a logical formula, written in propositional logic, as well as four options for values of every atomic proposition in the formula.

Logical formula: {formula}

Which of the following choices makes the logical formula evaluate to True?

A: {answer 1}
 B: {answer 2}
 C: {answer 3}
 D: {answer 4}

1782 H.3 CONSTRUCTING THE LOGIC NEGATION TASK
17831784 Similar to the Logic Evaluation Task, the negation task samples a logic formula with $p_c = .6$,
1785 $p_u = p_q = .2$ and all other sampling parameters the same. We then compute the negation using the
1786 standard rules for first-order logic, assign it to a random choice, then perturb the correct answer to
1787 arrive at the three incorrect choices.1788 We perturb a logic formula by selecting, uniformly at random, a single node or leaf of the tree; the
1789 perturb operation depends on node type.
17901791

- **Proposition:** we create a list of all propositions in the formula, append a new, unused
1792 proposition (so long as the total number of propositions satisfies the constraints of the
1793 problem), then replace the proposition from the list uniformly at random.
- **Predicate:** We do an analogous procedure.
- **Quantifying node:** we changed it to the other type.
- **Connective node:** we replace with a connective node of a different type, selected uniformly
1800 at random
- **Unitary node:** We simply remove this node.

1801
1802
1803
18041805 We apply two perturbations to generate each incorrect answer, and repeat the perturbation process to
1806 guarantee that all four choices are unique. Finally, we form a question using the following template.
1807 Some models (notably o1) have restrictions on the language you can use to prompt the model. In that
1808 case “think carefully step-by-step and” was removed from the last sentence.
18091810 Logic negation prompt template
18111812 You are a logic student. I will give you a statement in first-order
1813 logic, and your task is to find its negation from a list of choices.

1814 Logical formula: {formula}

1815 Which of the following is its negation?

1816

- A: {answer 1}
- B: {answer 2}
- C: {answer 3}
- D: {answer 4}

18171818 Please think carefully step-by-step and provide your answer with
1819 <answer>A, B, C, or D</answer>.
18201821 H.4 EXAMPLES OF FAILURES
18221823 Here are some illuminating examples of incorrect responses.
18241825
1826
1827
1828
1829
1830
1831
1832 **Finding a shortcut but failing at simple logic** Here is an example where the prompt is very long
1833 but there is an obvious simplification. All models notice this simplification and try to exploit it to find
1834 the answer, but all make very elementary mistakes after making the simplification. Given the model's
1835 scores for $d = 4$ trees, we know that they are able to perform the correct logical steps for a simple
formula, but fail when the formula is simple but with a large sub-tree in it.

1836
1837

Question

1838 You are a logic student. I will give you a logical formula, written in
1839 propositional logic, as well as four options for values of every atomic
1840 proposition in the formula.1841
1842
1843

Logical formula:

thrilling and ((not thrilling or X....X)) or (dark or thrilling))

1844
1845Which of the following choices makes the logical formula evaluate to
True?1846
1847
1848
1849
1850
1851
1852

- A) dark: False, dramatic: True, intense: True, thrilling: False,
suspenseful: False, romantic: True, comedic: True, tragic: False.
- B) dark: False, dramatic: True, intense: True, thrilling: False,
suspenseful: True, romantic: False, comedic: False, tragic: False.
- C) dark: True, dramatic: False, intense: True, thrilling: False,
suspenseful: True, romantic: True, comedic: False, tragic: False.
- D) dark: True, dramatic: True, intense: False, thrilling: True,
suspenseful: False, romantic: False, comedic: False, tragic: True.

1853
1854

Please provide your answer with <answer>A, B, C, or D</answer>.

1855
1856where the correct answer is *D* and *X....X* is a large sub-expression we have hidden.1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890

o1's Response

1891

1892

Step-by-step reasoning:

1893

1894

1) Observe the formula's overall shape. Its outermost structure is of the form (thrilling AND ...) OR (dark OR thrilling).

1895

In more schematic form:

1896

X or (dark or thrilling),

1897

where X is a very large sub-formula involving all the propositions.

1898

1899

2) Recall how OR works in propositional logic:

1900

• If (dark or thrilling) is true, then the whole formula is true regardless of X.

1901

• If (dark or thrilling) is false, then dark = false and thrilling = false, and in that case we would need (thrilling AND ...) to be true. But if thrilling = false, then (thrilling AND ...) is automatically false, making the entire formula false.

1902

1903

3) Check each choice's (dark or thrilling):

1904

A) dark = False, thrilling = False => dark or thrilling = False
Then the left part is "thrilling AND ..." = False AND ... = False.
Overall result = False or False = False.

1905

B) dark = False, thrilling = False => exactly the same reasoning as (A), yields False.

1906

C) dark = True, thrilling = False => dark or thrilling = True,
so the whole formula = X or True = True (no need to check X).

1907

D) dark = True, thrilling = True => dark or thrilling = True,
so again the whole formula = X or True = True.

1908

1909

Thus both (C) and (D) make (dark or thrilling) = True, and so make the entire formula evaluate to True.

1910

1911

Since the question asks "Which of the following choices makes the logical formula evaluate to True?" the correct answer (in standard multiple-choice fashion) is whichever of (C) or (D) is offered as valid. In fact, both of them do.

1912

1913

Therefore, a valid selection is:

1914

<answer>C</answer>

1915

1916

The error results from eliminating all options except for C and D). This mistake causes the model to focus on the wrong part of the clause.

1917

1918

Gemini makes a similar mistake.

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944
1945 Gemini 2.0 Flash's Response

1946 The given statement is of the form $\$P \rightarrow Q\$$. The negation of
1947 $\$P \rightarrow Q\$$ is $\$\\neg (P \rightarrow Q)\$$, which is equivalent
1948 to $\$(P \\land \\neg Q) \\lor (\\neg P \\land Q)\$$.

1949 Let's denote the left side of the main biconditional as $\$L\$$ and the right
1950 side as $\$R\$$. So the given statement is $\$L \leftrightarrow R\$$. Its negation
1951 is
1952 $\$\\neg (L \rightarrow R) \\equiv (L \\land \\neg R) \\lor (\\neg L \\land R)\$$.

1953
1954 Looking at the options, we can see that all of them are of the form
1955 $\$(L \\rightarrow \\neg R) \\lor (\\neg L \\rightarrow R)\$$, which is incorrect. The negation of
1956 $\$P \rightarrow Q\$$ is not equivalent to
1957 $\$(P \\rightarrow \\neg Q) \\lor (\\neg P \\rightarrow R)\$$.

1958
1959 ...

1960 The reasoning traces of Claude 3.7 often suggest that it is taking shortcuts rather than executing
1961 computations, in that explicit computations are not present in the reasoning trace. Claude typically
1962 tries to guess the best option based on the formula structure ("This is extremely complex, but I'll
1963 focus on the overall structure.")

1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

1998 Claude 3.7 Response
1999
2000 I need to find the negation of the given logical statement. Let me work
2001 through this step by step.
2002
2003 The original statement has the form:
2004 $b \text{ or } (\dots \text{complex formula} \dots) \rightarrow (\dots \text{complex formula} \dots) \text{ or } (h \text{ and } \dots)$
2005 To negate this statement, I need to apply the negation rules:
2006 - Negation of " $p \text{ or } q$ " is " $\text{not } p \text{ and not } q$ "
2007 - Negation of " $p \rightarrow q$ " is " $p \text{ and not } q$ "
2008 - Negation of " $p \text{ and } q$ " is " $\text{not } p \text{ or not } q$ "
2009 So the negation should have the form:
2010 $\text{not } b \text{ and } (\dots \text{complex formula} \dots) \text{ and not } (\dots \text{complex formula} \dots) \text{ and}$
2011 $(\text{not } h \text{ or } \dots)$
2012
2013 Looking at the options, I notice they all start with " $\text{not } b \text{ and } \dots$ ", which
2014 is correct for the negation of " $b \text{ or } \dots$ ".
2015 Among the choices, I need to check which one correctly negates all parts of
2016 the original statement. This is extremely complex, but I'll focus on the
2017 overall structure.
2018
2019 Since the original statement has the form:
2020 $b \text{ or } X \rightarrow Y \text{ or } (h \text{ and } Z)$
2021
2022 The negation should be:
2023 $\text{not } b \text{ and } X \text{ and not } Y \text{ and } (\text{not } h \text{ or not } Z)$
2024
2025 Looking at options B and C, they appear to have the correct structure for
2026 the negation of the original statement. Option B includes " $\text{not } b \text{ and } \dots$ "
2027 followed by the same complex formula structure with appropriate negations
2028 applied. The final part properly includes " $\text{not } h \text{ or } \dots$ ".
2029
2030 After careful examination, I believe option B correctly represents the
2031 negation of the original statement. It properly negates all components
2032 while maintaining the correct logical structure.
2033
2034 <answer>B</answer>

Nonsensical Logic When there is no simplifying tactic, the models will try to evaluate the expression by breaking it into sub expressions where errors creep in eventually

2052
2053

Gemini 2.0 Flash's Response

```

2054 Let the given statement be $S$. The statement $S$ has the form
2055 $P \land Q) \lor (R \land (\neg e)) \land T$, where
2056 $P = \exists x \in X_3 \text{ s.t. } ((E(x) \lor (g \rightarrow h)
2057 \rightarrow (\neg(h \lor c)) \rightarrow (((\forall x \in X_1 C(x)) \rightarrow \neg A(x))
2058 \rightarrow \neg(f \lor b)))$ 
2059 $Q = \neg(\forall x \in X_1 \exists x \in X_1 \text{ s.t. } H(x))$ 
2060 $R = \neg(\exists x \in X_1 \text{ s.t. } (h \rightarrow b) \lor
2061 (\forall x \in X_1 E(x))) \lor b)$ 
2062 $T = \forall x \in X_3 (((\exists x \in X_1
2063 \text{ s.t. } C(x)) \rightarrow g) \rightarrow ((C(x) \rightarrow f) \rightarrow (\neg f)) \land
2064 (((b \rightarrow E(x)) \land (E(x) \rightarrow a)) \rightarrow ((D(x) \rightarrow g) \rightarrow g))
2065 \rightarrow ((c \rightarrow b) \rightarrow ((C(x) \land C(x)) \rightarrow \neg(E(x) \rightarrow
2066 (C(x) \land b) \rightarrow ((h \rightarrow h) \land (\exists x \in X
2067 \text{ s.t. } H(x)))))) \rightarrow g))$ 

2068 We want to find the negation of $S$, which is
2069 $S \neg S = \neg(P \land Q) \lor \neg(R \land (\neg e)) \land \neg T$.
2070 Using De Morgan's laws, we have:
2071 $S \neg S = \neg(\neg(P \land Q) \lor \neg(\neg(R \land (\neg e)) \land \neg \neg T))
2072 = (\neg P \lor \neg Q) \land (\neg(\neg R \land \neg(\neg e)) \land \neg \neg T)
2073 = (\neg P \lor \neg Q) \land (\neg R \land \neg e) \land \neg \neg T$ 

2074 Let's negate each part:
2075 $S \neg P = \neg(\exists x \in X_3 \text{ s.t. } ((E(x) \rightarrow (g \rightarrow h)
2076 \rightarrow (\neg(h \rightarrow c)) \rightarrow (((\forall x \in X_1 C(x)) \rightarrow \neg A(x))
2077 \rightarrow \neg(f \rightarrow b)))$ ... 
2078 ... 
2079 Without a clear match, and given the high complexity, I cannot confidently
2080 select an option. I suspect an error in the provided question or options.
2081 
2082 Final Answer: (No answer can be confidently determined due to
2083 structural mismatch)
2084 <answer>A</answer>"
```

2083

The logic used is hard to follow because it's nonsensical. Gemini starts trying to evaluate the whole phrase, but then essentially gives up and leaves large expressions in the (...).

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104
2105

Misreading the options Another common failure mode is that the model concludes that two options are the same or that no correct answer exists when it erroneously assumes two options are the same.

2106
2107

Gemini 2.0 Flash's Response

2108 "The given logical statement is:
 2109 $\neg (((\exists x \in X_5 \text{ s.t. } \neg (k \Leftrightarrow M(x))) \text{ and } ((\exists x \in X_5 \text{ s.t. } A(x) \text{ or } b \Leftrightarrow \neg m) \text{ or } (\neg (p \text{ and } g \rightarrow (e \Leftrightarrow i)))) \text{ and } (((f \rightarrow l) \rightarrow j \text{ and } f \Leftrightarrow (\exists x \in X_1 \text{ s.t. } N(x) \text{ and } H(x))) \rightarrow ((j \text{ or } j \rightarrow \neg m) \text{ and } (p \text{ and } g \rightarrow h))) \Leftrightarrow ((\neg j \rightarrow (d \Leftrightarrow m \rightarrow o)) \Leftrightarrow n \text{ and } f))) \text{ or } c)$
 2110
 2111
 2112
 2113

2114 We need to find the negation of this statement. Let's represent the statement
 2115 inside the outermost 'not' as P. So the given statement is 'not (P or c)'.

2116 The negation of 'not (P or c)' is '(P or c)'.
 2117

2118 Now let's substitute P back with its original form:
 2119 $((\exists x \in X_5 \text{ s.t. } \neg (k \Leftrightarrow M(x))) \text{ and } ((\exists x \in X_5 \text{ s.t. } A(x) \text{ or } b \Leftrightarrow \neg m) \text{ or } (\neg (p \text{ and } g \rightarrow (e \Leftrightarrow i)))) \text{ and } (((f \rightarrow l) \rightarrow j \text{ and } f \Leftrightarrow (\exists x \in X_1 \text{ s.t. } N(x) \text{ and } H(x))) \rightarrow ((j \text{ or } j \rightarrow \neg m) \text{ and } (p \text{ and } g \rightarrow h))) \Leftrightarrow ((\neg j \rightarrow (d \Leftrightarrow m \rightarrow o)) \Leftrightarrow n \text{ and } f))) \text{ or } c)$
 2120
 2121
 2122
 2123

2124 Comparing this result with the given options:
 2125

2126 Option A: $((\exists x \in X_5 \text{ s.t. } \neg (k \Leftrightarrow M(x))) \text{ and } ((\exists x \in X_5 \text{ s.t. } A(x) \text{ or } b \Leftrightarrow \neg m) \text{ or } (\neg (p \text{ and } g \rightarrow (e \Leftrightarrow i)))) \text{ and } (((f \rightarrow l) \rightarrow j \text{ and } f \Leftrightarrow (\exists x \in X_1 \text{ s.t. } N(x) \text{ and } H(x))) \rightarrow ((j \text{ or } j \rightarrow \neg m) \text{ and } (p \text{ and } g \rightarrow h))) \Leftrightarrow ((\neg j \rightarrow (d \Leftrightarrow m \rightarrow o)) \Leftrightarrow n \text{ and } f))) \text{ or } c)$
 2127 This option is exactly the same as the expression we derived for the
 2128 negation.
 2129

2130 Option B: $((\exists x \in X_5 \text{ s.t. } \neg (k \Leftrightarrow M(x))) \text{ and } ((\exists x \in X_5 \text{ s.t. } A(x) \text{ or } b \Leftrightarrow \neg m) \text{ or } (\neg (p \text{ and } g \rightarrow (e \Leftrightarrow i)))) \text{ and } (((f \rightarrow l) \rightarrow j \text{ and } f \Leftrightarrow (\exists x \in X_1 \text{ s.t. } N(x) \text{ and } H(x))) \rightarrow ((j \text{ or } j \rightarrow \neg m) \text{ and } (p \text{ and } g \rightarrow h))) \Leftrightarrow ((\neg j \rightarrow (d \Leftrightarrow m \rightarrow o)) \Leftrightarrow n \text{ and } f))) \text{ or } c)$
 2131 This option is also exactly the same as the expression we derived for the
 2132 negation.
 2133

2134 Option C: $((\exists x \in X_5 \text{ s.t. } \neg (l \Leftrightarrow M(x))) \text{ and } ((\exists x \in X_5 \text{ s.t. } A(x) \text{ or } k \Leftrightarrow \neg n) \text{ or } (\neg (e \text{ and } b \rightarrow (m \Leftrightarrow f)))) \text{ and } (((c \rightarrow p) \rightarrow o \text{ and } p \Leftrightarrow (\exists x \in X_1 \text{ s.t. } N(x) \text{ and } H(x))) \rightarrow ((d \text{ or } d \rightarrow \neg o) \text{ and } (o \text{ and } b \rightarrow p))) \Leftrightarrow ((\neg i \rightarrow (h \Leftrightarrow o \rightarrow b)) \Leftrightarrow e \text{ and } i))) \text{ or } d)$
 2135 This option is different from the derived negation.
 2136

2137 Option D: $((\exists x \in X_5 \text{ s.t. } \neg (k \Leftrightarrow M(x))) \text{ and } ((\exists x \in X_5 \text{ s.t. } A(x) \text{ or } b \rightarrow \neg m) \text{ or } (\neg (p \text{ and } g \rightarrow (e \Leftrightarrow i)))) \text{ and } (((f \text{ and } l \rightarrow j \text{ and } f \Leftrightarrow (\exists x \in X_1 \text{ s.t. } N(x) \text{ and } H(x))) \rightarrow ((j \text{ or } j \rightarrow \neg m) \text{ and } (p \text{ and } g \rightarrow h))) \Leftrightarrow ((\neg j \rightarrow (d \Leftrightarrow m \rightarrow o)) \Leftrightarrow n \text{ and } f))) \text{ or } c)$
 2138 This option is also different from the derived negation.
 2139

2140 Since the negation of 'not (P or c)' is '(P or c)', and both options A and
 2141 B are identical to P or c, both are correct negations. However, usually
 2142 there should be only one correct answer in a multiple-choice question.
 2143 Let's re-examine the question and the options to ensure there isn't a subtle
 2144 difference I missed.
 2145

2146 There is no subtle difference. Options A and B are identical and represent
 2147 the negation of the given statement. Assuming there was a typo in the
 2148 question and only one option should be correct, and given that they are
 2149 identical, we can choose either one.
 2150

2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

<answer>A</answer>"

2160
 2161 **Missing Simple Rules** Perhaps surprisingly, sometimes the models fail because they cannot apply
 2162 simple logical rules (De Morgan's, in this case):

2163 o1's Response

2164 "First, note that the given statement is of the form
 2165 not (Exists x in X_2 : ...)
 2166
 2167 in other words, it begins with "not (Exists x in X_2 s.t.)".
 2168
 2169 The standard logical negation of
 2170 not (Exists x : P(x))
 2171 is
 2172 Exists x : not P(x).
 2173 ...
 2174

2175 We truncated the output because the error is already present: the model negated the first term
 2176 incorrectly, clearly violating the rule it just wrote out.
 2177

2178 **I DETAILS FOR PROOF TREE**

2180 This section describes the Proof Tree construction, along with the inference rules we derived.
 2181

2182 **I.1 LOGICAL FORMS**

2184 These forms were included in the original paper:
 2185

- 2186 • container (cont): "A has 5 apples."
- 2187 • comparison (comp): "A has 3 more apples than B."
- 2188 • transfer: "A gives B 3 apples."
- 2189 • comp-eq: "The number of apples that C has more than D is equal to the difference between
 2190 the number of apples that A and B have."
- 2191 • partwhole: "A and B combine the fruits that they have."
- 2192

2194 Our diverse rules task added the following additional rules.
 2195

- 2196 • consume (cons): "A eats 5 apples."
- 2197 • increase: "The number of apples that A has increases by 2 times."
- 2198 • switch: "A and B switch the apples they have."
- 2199 • redistribute: "A and B redistribute their apples to ensure each has an equal amount."
- 2200 • split: "A splits all the apples she owns equally between B and C."
- 2201 • conditional transfer (cond-transfer): "If B has more than 2 apples, B will transfer all their
 2202 apples to A."
- 2203 • cumulative (cum): "The combined quantity of apples that A, B, and C have is 20."
- 2204 • multi-agent comparison (multi-comp): "A has 10 more apples than B and C combined."
- 2205 • sequential comparison (seq-comp): "A has 3 more apples than B and 5 less apples than C."
- 2206

2208 **I.2 INFERENCE RULES**

2210 Each logical form requires inference rules that describe its implications on our knowledge of the
 2211 number of apples everyone has. The inference rules from the original paper include:
 2212

- 2213 • ContCompInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{comp}(b, a, q_2, e)}{\text{cont}(b, q_1 + q_2, e)}$$

2214 – Example: "Alice has 3 apples. Bob has 2 more apples than Alice. \vdash Bob has 5 apples."

2215

2216 • ContTransferInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{transfer}(a, b, q_2, e)}{\text{cont}(a, q_1 + q_2, e)}$$

2217 – Example: "Alice has 3 apples. Bob gave 2 apples to Alice. \vdash Alice has 5 apples."

2218

2219 • ContContInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{cont}(b, q_2, e)}{\text{comp}(b, a, q_2 - q_1, e)}$$

2220 – Example: "Alice has 3 apples. Bob has 5 apples. \vdash Bob has 2 more apples than Alice."

2221

2222 • CompEqInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{comp}(d, c, q_2, e) \quad \text{comp-eq}(b, a, d, c, e)}{\text{cont}(b, q_1 + q_2, e)}$$

2223 – Example: "Alice has 7 apples. David has 2 more apples than Charlie. The number of apples that Bob has more than Alice is the same as the difference between the number of apples that David and Charlie have. \vdash Bob has 9 apples."

2224

2225

2226

2227

To be able to make correct inferences over our new rules, we also derived the following inference rules.

2228

2229

2230 • ContConsInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{cons}(a, q_2, e)}{\text{cont}(a, q_1 - q_2, e)}$$

2231 – Example: "A has 10 apples. A eats 3 apples. \vdash A has 7 apples."

2232

2233

2234 • ContIncreaseInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{increase}(a, q_2, e)}{\text{cont}(a, q_1 \times q_2, e)}$$

2235 – Example: "A has 4 apples. The number of apples that A has increases by 3 times. \vdash A has 12 apples."

2236

2237

2238 • ContSwitchInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{cont}(b, q_2, e) \quad \text{switch}(a, b, e)}{\text{cont}(a, q_2, e) \quad \text{cont}(b, q_1, e)}$$

2239 – Example: "A has 5 apples. B has 8 apples. A and B switch the apples they have. \vdash A has 8 apples. B has 5 apples."

2240

2241

2242

2243 • ContRedistributeInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{cont}(b, q_2, e) \quad \text{redistribute}(a, b, e)}{\text{cont}(a, \frac{q_1 + q_2}{2}, e) \quad \text{cont}(b, \frac{q_1 + q_2}{2}, e)}$$

2244 – Example: "A has 6 apples. B has 10 apples. A and B redistribute their apples to ensure each has an equal amount. \vdash A has 8 apples, and B has 8 apples."

2245

2246

2247 • SplitInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{cont}(b, q_2, e) \quad \text{split}(a, q_4, \{b, c\}, e)}{\text{cont}(a, q_1 - q_4, e) \quad \text{cont}(b, q_2 + \frac{q_4}{2}, e)}$$

2248 – Example: "A has 12 apples. B has 4 apples. A splits all the apples she owns equally between B and C. \vdash A has 0 apples. B has 10 apples."

2249

2250

2251

2252 • CondTransferInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{cont}(b, q_2, e) \quad \text{cond-transfer}(b, a, q_2, e, q_2 > q_3)}{\text{cont}(a, q_1 + q_2, e) \text{ if } q_2 > q_3; \quad \text{cont}(a, q_1, e) \text{ otherwise}}$$

2253 – Example: "A has 5 apples. B has 7 apples. If B has more than 6 apples, B will transfer all their apples to A. \vdash A has 12 apples."

2254

2255

2256 • CumulativeToContInference:
$$\frac{\text{cont}(a_1, q_1, e) \quad \dots \quad \text{cont}(a_{n-1}, q_{n-1}, e) \quad \text{cum}(a_1, \dots, a_n, q, e)}{\text{cont}(a_n, q - \sum_{i=1}^{n-1} q_i, e)}$$

2257 – Example: "A has 5 apples. B has 3 apples. The combined quantity of apples that A, B, and C have is 15. \vdash C has 7 apples."

2258

2259

2260

2261 • MultiCompInference:
$$\frac{\text{cont}(a, q_1, e) \quad \text{cont}(b, q_2, e) \quad \text{multi-comp}(a, b, c, q_3, e)}{\text{cont}(c, q_1 - q_2 - q_3, e)}$$

2262 – Example: "A has 12 apples. B has 2 apples. A has 10 more apples than B and C combined. \vdash C has 0 apples."

2263

2264

2265 • SeqCompInference:
$$\frac{\text{seq-comp}(a, b, c, q_1, q_2, e) \quad \text{cont}(b, q_3, e)}{\text{cont}(a, q_3 + q_1, e) \quad \text{cont}(c, q_3 + q_1 + q_2, e)}$$

2266 – Example: "A has 3 more apples than B and 5 fewer apples than C. B has 7 apples. \vdash A has 10 apples. C has 15 apples."

2267

2268 I.3 DETAILS FOR PROOF TREE IRRELEVANT

2269

2270 The irrelevant sentences are samples from the following list:

2271

2272 Irrelevant sentences template

2273

```

2274 "{} is very generous and enjoys
2275 sharing food with others.",
2276 "{} tends to be laid-back and prefers
2277 staying in rather than going out.",
2278 "{} is highly introverted and prefers
2279 minimal communication with others.",
2280 "{} is very outgoing and frequently
2281 hosts parties at home.",
2282 "{} and {} are good friends who often
2283 go fruit or vegetable picking together
2284 on weekends.",
2285 "{} and {} have been married for {}
2286 years.",
2287 # Random years will be added
2288 "{} is {} years old."
2289 # Random age will be added

```

2290

2291

2292 I.4 CONSTRUCTING BASIC PROOF TREE AND PROMPTS

2293

2294 A proof tree is generated by first picking a target conclusion predicate—a “cont” (container) that
 2295 states how many items a single agent possesses. Given this target, the system identifies all inference
 2296 rule classes that can yield such a conclusion. Each rule class is assigned a weight, determining its
 2297 likelihood of selection; higher weights correspond to a greater chance of being chosen. Specifically,
 2298 “ContCompInference” is weighted at 1, “ContTransferInference” at 5, “ContContInference” at 1,
 2299 and “CompEqInference” at 10. The system then randomly selects one inference rule among those
 2300 whose premises can produce the target conclusion, with the probability of each rule proportional to
 2301 its weight. The chosen rule provides the premises (new conclusion targets) required to derive the
 2302 original predicate. Each of these premises is then handled the same way: we attempt to produce them
 2303 (recursively) via suitable rules, or it marks them as leaves (facts) if no rules fit or the tree has reached
 2304 its maximum size constraints. This procedure yields a proof tree where each internal node applies a
 2305 randomly selected (but weighted) inference rule to derive the node’s conclusion from its premises,
 2306 while the leaves represent axiomatic statements used in the proof. See Algorithm 4 and Algorithm 5
 2307 for the pseudocode.

2308

2309

2310 **Algorithm 4:** Pseudocode for Generating a Proof Tree

```

2311 Function GenerateProofTree (max_depth, max_leaves, available_agents);
2312   selected_agent  $\leftarrow$  randomly pick 1 from available_agents;
2313   remove selected_agent from available_agents;
2314   quantity  $\leftarrow$  random integer in  $[10, \dots, 30]$ ;
2315   entity  $\leftarrow$  random pick an entity;
2316   root_predicate  $\leftarrow$  Cont(selected_agent, quantity, entity);
2317   return GenerateSubtree(root_predicate, max_depth, max_leaves, 0, 1, available_agents)

```

2318

2319

2320 Once the proof tree is constructed, its leaves are traversed in order and converted into sentences using
 2321 natural language templates, forming the textual body of the problem. The question of the problem is
 derived from the logical form at the root of the proof tree.

A:
 Comment
 on
 how
 the
 dif-
 fer-
 ent
 sub-
 trees
 do
 not
 con-
 tra-
 dict.

2322 **Algorithm 5:** Pseudocode for Generating a Subtree Tree

2323 **Data:** $node, max_depth, max_leaves, current_depth, current_leaves, available_agents$

2324 **if** $current_depth \geq max_depth$ **then**

2325 **return** $node$ /* do not expand further at max depth */

2326

2327 $candidate_rules \leftarrow \emptyset$;

2328 **for** $rule_class \in \{ContCompInference, ContTransferInference, CompEqInference, ContContInference\}$ **do**

2329 **if** $rule_class.can_yield(node.conclusion, available_agents)$ **and**

2330 $(rule_class.num_premises + current_leaves) \leq max_leaves$ **then**

2331 $candidate_rules.add(rule_class)$;

2332

2333 **if** $candidate_rules$ is empty **then**

2334 **return** $node$ /* no valid rules; node is leaf */

2335 $weights \leftarrow$ map each rule class in $candidate_rules$ to its weight;

2336 $chosen_rule_class \leftarrow$ randomly select from $candidate_rules$ using $weights$;

2337 $instantiated_rule \leftarrow$

2338 $chosen_rule_class.make_rnd_instance(node.conclusion, available_agents)$;

2339 $node.rule \leftarrow instantiated_rule$;

2340 $current_leaves \leftarrow current_leaves + instantiated_rule.num_premises - 1$;

2341 **if** $current_depth < max_depth - 1$ **then**

2342 **for** $premise \in instantiated_rule.premises$ **do**

2343 $child_node \leftarrow$ Generate Subtree with data $premise, max_depth, max_leaves,$

2344 $current_depth + 1, current_leaves, available_agents$, and

2345 $node.children.add(child_node)$;

2346 $current_leaves \leftarrow current_leaves + (child_node.num_leaves() - 1)$;

2347 **for** $agent \in premise.agents()$ **do**

2348 **if** $agent \in available_agents$ **then**

2349 **remove** $agent$ from $available_agents$

2350 **return** $node$

2351

2352 Proof Tree Example with max depth 5 and max leaves 20

2354 Lindsay has 13 apples.

2355 Arleth has 4 more apples than Mathew.

2356 Nellie has 17 apples.

2357 Dian has 3 more apples than Amy.

2358 Amy has 17 apples.

2359 Courtney has 14 more apples than Peggy.

2360 Ida has 31 apples.

2361 The number of apples that Peggy has more than Courtney

2362 is equal to the difference between the number of apples

2363 that Amy and Ida have.

2364 Dian has 20 apples.

2365 Dian has 13 apples.

2366 Prudence gives 7 apples to Dian.

2367 Annabelle has 14 apples.

2368 Lacie has 13 more apples than Federico.

2369 Georgia has 27 apples.

2370 Jose has 13 more apples than Agatha.

2371 Wilson has 40 apples.

2372 The number of apples that Agatha has more than Jose is

2373 equal to the difference between the number of apples

2374 that Georgia and Wilson have.

2375 The number of apples that Federico has more than Lacie is

2376 equal to the difference between the number of apples that

2377 Annabelle and Georgia have.

2378 The number of apples that Dian has more than Amy is equal to the

2379 difference between the number of apples that Nellie and

2380 Annabelle have.

2381 The number of apples that Mathew has more than Arleth is equal to the

2382 difference between the number of apples that Lindsay and Nellie have.

2376
2377

Prompt Example

2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391

Courtney has 14 more apples than Peggie. Ida has 31 apples. The number of apples that Peggie has more than Courtney is equal to the difference between the number of apples that Amy and Ida have. Dian has 13 apples. Prudence gives 7 apples to Dian. Jose has 13 more apples than Agatha. Wilson has 40 apples. The number of apples that Agatha has more than Jose is equal to the difference between the number of apples that Georgia and Wilson have. Lacie has 13 more apples than Federico. The number of apples that Federico has more than Lacie is equal to the difference between the number of apples that Annabelle and Georgia have. The number of apples that Dian has more than Amy is equal to the difference between the number of apples that Nellie and Annabelle have. Arleth has 4 more apples than Mathew. The number of apples that Mathew has more than Arleth is equal to the difference between the number of apples that Lindsay and Nellie have. How many apples does Lindsay have? Give your answer using the format:
 "The final answer is \\$\boxed{\#your answer}\$. "

2392
2393
2394
2395
2396
2397
2398
23992400
2401

I.5 CONSTRUCTING PROOF TREES WITH DIVERSE STATEMENTS

2402
2403
2404

In this task, given a diverse set of logical statements, the model must answer word-based questions that require deduction, sampled from a tree with a bounded depth and number of leaves. The parameters are the maximum tree depth d , and whether to include the additional logical forms.

2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421

Proof Tree with Diverse Statements example

Briana has 2 bananas. Tom has 0 bananas. If Tom has more than 1 bananas, Tom will transfer all their bananas to Briana.... Whitney and Freida redistribute their bananas to ensure each has an equal amount. Eula has 6 more bananas than Dexter and 11 fewer bananas than Bernardo.... How many bananas does Amelia have? Give your answer using the format:
 The final answer is
 \\$\boxed{\#your answer}\$.

2422
2423
2424
2425
2426
2427
2428
2429

The process of constructing a proof tree with diverse statements is similar to the basic proof tree construction, with the key difference being the set of inference rules used and their assigned weights. Specifically, the weights for the inference rules are as follows: "ContCompInference" is weighted at 1, "ContTransferInference" at 1, "ContContInference" at 1, "CompEqInference" at 10, "ContConsInference" at 1, "ContIncreaseInference" at 10, "ContSwitchInference" at 1, "ContRedistributeInference" at 10, "SplitInference" at 10, "CondTransferInference" at 10, "CumulativeToContInference" at 1, "MultiCompInference" at 10, "SeqCompInference" at 10.

In our experiments, we set the maximum number of leaves to 20. We then vary the maximum depth and the inclusion of diverse statements to evaluate the model's performance.

2430

I.6 CONSTRUCTING PROMPTS WITH IRRELEVANT INFORMATION

2431

2432

2433

2434

Proof Tree with Irrelevant information example

2435

2436

Veda is very generous and enjoys sharing food with others.

2437

Sibyl has 14 more apples than Ashley. ...

2438

The number of apples that Ali has more than Howell is equal to the difference between the number of apples that Jacqueline and Vollie have....

2439

Carlo tends to be laid-back and prefers staying in rather than going out....

2440

How many apples does Destiny have?

2441

Give your answer using the format:

2442

The final answer is \\$\textbackslash boxed\{\#\textbackslash textbackslash text\{your answer\}\}\\$.

2443

In problems involving proof trees with irrelevant information, the problem parameters are the maximum tree depth d , the number of irrelevant people P , and the number of irrelevant sentences S . To construct prompts containing irrelevant information, we first generate the baseline proof tree with a maximum depth of 5 and a maximum of 20 leaves. Irrelevant information is then introduced through two main components: *irrelevant agents* and *irrelevant sentences*:

2444

- *Irrelevant agents*: Irrelevant agents are created by dividing the pool of agent names into subsets that are distinct from the key agents, ensuring no overlap. These subsets are then used to generate irrelevant proof trees, employing a consistent randomization process (i.e., all the irrelevant proof trees are identical to the key proof trees, differing only in the names of the agents involved). Each irrelevant proof tree is converted into axioms and shuffled alongside the key axioms.

2454

2455

Irrelevant Proof Tree Example with max depth 5 and max leaves 20

2456

Nora has 13 apples.

2457

Hal has 4 more apples than Jean.

2458

Aggie has 17 apples.

2459

Theron has 3 more apples than Marjorie.

2460

Marjorie has 17 apples.

2461

Caryl has 14 more apples than Robert.

2462

Philomena has 31 apples.

2463

The number of apples that Robert has more than Caryl is equal to the difference between the number of apples that Marjorie and Philomena have.

2464

Theron has 20 apples.

2465

Theron has 13 apples.

2466

Stefani gives 7 apples to Theron.

2467

Genevieve has 14 apples.

2468

Ida has 13 more apples than Angelique.

2469

Doris has 27 apples.

2470

Lorenzo has 13 more apples than Gussie.

2471

Adrian has 40 apples.

2472

The number of apples that Gussie has more than Lorenzo is equal to the difference between the number of apples that Doris and Adrian have.

2473

The number of apples that Angelique has more than Ida is equal to the difference between the number of apples that Genevieve and Doris have.

2474

The number of apples that Theron has more than Marjorie is equal to the difference between the number of apples that Aggie and Genevieve have.

2475

The number of apples that Jean has more than Hal is equal to the difference between the number of apples that Nora and Aggie have.

2476

2477

2478

2479

2480

2481

2482

2483

- *Irrelevant sentences*: Irrelevant sentences are generated using predefined templates (see Section I.3). To integrate the irrelevant information with the context, these sentences are randomly inserted into the shuffled list of axioms at arbitrary positions.

2484
2485

Irrelevant Sentence Examples

2486 Caryl is highly introverted and prefers minimal communication with others.
 2487 Courtney is very generous and enjoys sharing food with others.
 2488 Adella is 46 years old.
 2489 Newton tends to be laid-back and prefers staying in rather than going out.
 2490 Arleth is very generous and enjoys sharing food with others.
 2491 Nico is very outgoing and frequently hosts parties at home.
 2492 Dennis is very generous and enjoys sharing food with others.
 2493 Moe and Agatha have been married for 17 years.
 2494 Rubie and Angelique have been married for 16 years.
 2495 Jean tends to be laid-back and prefers staying in rather than going out.
 2496 Mathew is highly introverted and prefers minimal communication with others.
 2497 Dalton tends to be laid-back and prefers staying in rather than going out.
 2498 Joel is very generous and enjoys sharing food with others.
 2499 Adrian and Perla are good friends who often go fruit or vegetable picking
 2500 together on weekends.
 2501 Rosina is very generous and enjoys sharing food with others.
 2502 Mickie is very outgoing and frequently hosts parties at home.
 2503 Elijah is very generous and enjoys sharing food with others.
 2504 Bert is very generous and enjoys sharing food with others.
 2505 Robert is 32 years old.
 2506 Delma is highly introverted and prefers minimal communication with others.
 2507 Vallie and Miriam are good friends who often go fruit or vegetable picking
 2508 together on weekends.
 2509 Orma is highly introverted and prefers minimal communication with others.
 2510 Cornelius is very generous and enjoys sharing food with others.
 2511 Marylee is very outgoing and frequently hosts parties at home.
 2512 Mitchell and Doris have been married for 3 years.

2510 In our experiments, we set the maximum depth to 5 and the maximum number of leaves to 20. We
 2511 then vary the number of irrelevant agents A and the number of irrelevant sentences S to evaluate the
 2512 model's performance.

2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537

2538 I.7 EXAMPLE OF FAILURE DUE TO DIVERSE STATEMENTS
2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

Question

2567 Milo has 24 blueberries.
 2568 The number of blueberries that Milo has increases by 19/6 times.
 2569 Aubrey has 1 more blueberry than Larue.
 2570 Gregory has 3 blueberries.
 2571 The number of blueberries that Larue has more than Aubrey is equal
 2572 to the difference between the number of blueberries that
 2573 Thaddeus and Gregory have.
 2574 Zane has 7 blueberries.
 2575 The number of blueberries that Zane has increases by 9/7 times.
 2576 Odell has 21 blueberries.
 2577 Christian has 3 blueberries.
 2578 If Christian has more than 5 blueberries, Christian will transfer their
 2579 blueberries to Odell.
 2580 Milo splits all the blueberries she owns equally among Thaddeus and Della.
 2581 Zane and Odell redistribute their blueberries to ensure each has an
 2582 equal amount.
 2583 Thaddeus has 17 more blueberries than Zane and Artie combined.
 2584 Keegan has 7 more blueberries than Aliya and 7 fewer blueberries than
 2585 Everett.
 2586 Aliya has 0 blueberries.
 2587 Margarita has 1 blueberry.
 2588 If Margarita has more than 4 blueberries,
 2589 Margarita will transfer their blueberries to Artie.
 2590 The number of blueberries that Everett has increases by 17/14 times.
 2591 If Everett has more than 2 blueberries, Everett will transfer their
 2592 blueberries to Artie.
 2593 How many blueberries does Artie have?
 2594 Give your answer using the format:
 2595 "The final answer is \\$\boxed{\#your answer}\\$."

2592
2593

o1's Response

2594
2595

First, let us track each person's blueberry count step by step (in the order given), focusing on changes that actually affect Artie:

2596

1) Milo starts with 24 blueberries.

2597

The puzzle says Milo's count "increases by 19/6 times," so Milo now has $24 \times (19/6) = 24 \times 19 \div 6 = 76$.

2598

2) Aubrey has 1 more blueberry than Larue (Aubrey = Larue + 1), but no specific numbers result yet.

2600

3) Gregory has 3 blueberries.

2601

4) Zane starts with 7 blueberries.

2602

The puzzle says Zane's count "increases by 9/7 times," so Zane now has $7 \times (9/7) = 9$.

2603

5) Odell has 21 blueberries.

2604

6) Christian has 3 blueberries.

2605

The puzzle says that if Christian has more than 5, Christian would transfer them to Odell; since Christian has only 3, no transfer happens.

2606

7) Milo (who has 76) "splits all the blueberries she owns equally among Thaddeus and Della."

2607

Each receives $76 \div 2 = 38$.

2608

Thus, Thaddeus = 38, Della = 38, and Milo goes to 0.

2609

8) Zane (9) and Odell (21) "redistribute their blueberries to ensure each has an equal amount."

2610

Together they have $9 + 21 = 30$, so each ends up with 15.

2611

Hence Zane = 15, Odell = 15.

2612

9) "Thaddeus has 17 more blueberries than Zane and Artie combined."

2613

Thaddeus = 38 from above. Let Artie = x. Then

2614

$38 = (\text{Zane's } 15) + x + 17$

2615

$38 = 15 + x + 17 = 32 + x$

2616

$x = 6$.

2617

So Artie = 6 at this point.

2618

10) Keegan has 7 more blueberries than Aliya and 7 fewer than Everett.

2619

Aliya = 0, so Keegan = 7 and Everett = 14.

2620

11) Margarita has 1 blueberry. Because that is not "more than 4," there is no transfer to Artie.

2621

12) Everett's 14 blueberries "increase by 17/14 times," so Everett becomes $14 \times (17/14) = 17$.

2622

13) "If Everett has more than 2 blueberries, Everett will transfer their blueberries to Artie."

2623

Since Everett has 17 (> 2), Everett transfers all 17 to Artie, leaving Everett at 0 and raising Artie's total to

2624

$Artie = 6 + 17 = 23$.

2625

No further steps change Artie's count. Therefore, Artie finishes with 23 blueberries.

2626

The final answer is $\boxed{23}$.

2627

In 7), o1 claims that Thaddeus has 38 after the splitting, ignoring the fact that Thaddeus initially had 2 (which can be inferred from previous information). This lack of understanding of the splitting process leads to an incorrect solution by o1.

2628

2629

2630

I.8 FAILURE PATTERNS WITH THE INCLUSION OF IRRELEVANT INFORMATION

2631

2632

2633

2634

2635

2636

2637

2638

1. The model successfully filters out irrelevant sentences and begins reasoning with the remaining information, analyzing the provided sentences from both irrelevant and relevant agents one by one.

2639

2640

2641

2642

2643

2644

2645

- (a) The model overlooks important relevant information, resulting in an incorrect solution.

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

Question 1

Franco has 5 more oranges than Sergio. Alfred has 5 more oranges than Parker. Angus and Danny have been married for 11 years. Penelope has 15 oranges. The number of oranges that Sergio has more than Franco is equal to the difference between the number of oranges that Susan and Penelope have. Oran tends to be laid-back and prefers staying in rather than going out.

...

Novella has 8 oranges. Susan is highly introverted and prefers minimal communication with others. Leann is highly introverted and prefers minimal communication with others. Hosea is very outgoing and frequently hosts parties at home. Meredith is highly introverted and prefers minimal communication with others. Novella gives 3 oranges to Angus. Collie and Gust have been married for 20 years. Maxine has 2 more oranges than Celeste.

...

How many oranges does Cornelia have?

Give your answer using the format:

"The final answer is \\$\boxed{\#your answer}\\$."

o1's Response for Question 1

First, note that several statements in the puzzle concern personalities or marriages but do not affect the orange counts; we will ignore those and track only statements that specify relationships or transfers of oranges.

1) "Franco has 5 more oranges than Sergio."

Let S = Sergio's oranges. Then Franco's oranges $F = S + 5$.

2) "Penelope has 15 oranges."

$Pn = 15$.

...

10) "Novella has 8 oranges."

$Nl = 8$.

11) "Maxine has 2 more oranges than Celeste."

Let Ce = Celeste's and Mx = Maxine's $\rightarrow Mx = Ce + 2$.

12) "The number of oranges that Celeste has more than Maxine is equal to the difference between the number of oranges that Johathan and Novella have."

$Ce - Mx = Jo - Nl$, where Jo = Johathan's oranges.

But $Mx = Ce + 2 \rightarrow Ce - (Ce + 2) = -2$.

So $-2 = Jo - 8 \rightarrow Jo = 6$ (Johathan has 6).

...

18) "The number of oranges that Florida has more than Aaron is equal to the difference between the number of oranges that Cornelia and Johathan have."

Florida has 13, Aaron has 10 $\rightarrow 13 - 10 = 3$.

Let Co' = Cornelia's oranges;

Johathan has 6 $\rightarrow 3 = Co' - 6 \rightarrow Co' = 9$.

So before any transfers to Cornelia, she has 9.

...

20) "Beaulah gives 17 oranges to Cornelia."

Cornelia had 9, then receives +17 \rightarrow Cornelia now has 26.

21) "Janet gives 17 oranges to Kattie" (irrelevant to Cornelia's total). No further changes to Cornelia's total are stated. Therefore, Cornelia ends up with 26 oranges.

The final answer is \\$\boxed{26}\\$.

o1 overlooks the critical information that "Novella gives 3 oranges to Angus," resulting in an incorrect calculation of Novella's oranges. The correct number should be 5 instead of 8, ultimately leading to an incorrect solution.

2700 (b) Redundant information confuses the model, resulting in either an incorrect solution, an
 2701 incomplete proof, or the model claiming that a proof is impossible.
 2702
 2703

2704 Gemini 2.0 Flash's Response
 2705

2706 Let $\$S\$$ be the number of blueberries Sherman has, $\$T\$$ be the number of
 2707 blueberries Troy has.
 2708 $\$S = T + 7\$$ (1)
 2709 Let $\$N\$$ be the number of blueberries Ned has, $\$G\$$ be the number of
 2710 blueberries Garth has.
 2711 $\$N = G - 7\$$ or $\$G = N + 7\$$ (2)
 2712 Jarvis has $\$J = 20\$$ blueberries.
 2713 Hattie has $\$H = 20\$$ blueberries.
 2714 ...
 2715 We are given insufficient information to uniquely determine the
 2716 value of Yesenia. There might be an error in the problem statement
 2717 or missing information.
 2718 ...
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727

2728 2. The model successfully filters out irrelevant sentences but reasons using only partial relevant
 2729 information.
 2730
 2731
 2732

2733 Question 2
 2734

2735 Jarred is very outgoing and frequently hosts parties at home. Annie has 2
 2736 tomatoes. William has 5 tomatoes. Lavinia is very generous and enjoys
 2737 sharing food with others. Alyce has 19 tomatoes.
 2738 ...
 2739 Alyssa has 7 more tomatoes than Jones.
 2740 ...
 2741 Roslyn has 19 tomatoes.
 2742 ...
 2743 The number of tomatoes that Jones has more than Alyssa is equal to the
 2744 difference between the number of tomatoes that Bonnie and Roslyn have.
 2745 ...
 2746 Bonnie gives 3 tomatoes to Lavinia. Faith is 19 years old.
 2747 ...
 2748 Alyce and Myles have been married for 17 years. Charlene gives 4 tomatoes
 2749 to Bonnie.
 2750 ...
 2751 The number of tomatoes that Clara has more than Gracie is equal to the
 2752 difference between the number of tomatoes that Ryann and Bonnie have.
 2753 Fernando and Alton are good friends who often go fruit or vegetable
 2754 picking together on weekends. How many tomatoes does Ryann have?
 2755 Give your answer using the format:
 2756 "The final answer is \\$\boxed{\#your answer}\\$."
 2757

2754
2755

o1's Response for Question 2

2756
2757
2758
2759

First, note that several "difference" statements in the puzzle equate one pair's difference of tomato counts to another pair's difference. In particular, two key statements pin down Bonnie's and then Ryann's counts.

2760
2761

1) From "Alyssa has 7 more tomatoes than Jones" and "The number of tomatoes that Jones has more than Alyssa is equal to the difference between the number of tomatoes that Bonnie and Roslyn have," we get:

2762
2763

- Let J = Jones's tomatoes, A = Alyssa's, B = Bonnie's, and R = Roslyn's (19).

2764
2765

- $A = J + 7$.

2766
2767

- $J - A = B - 19$.

2768
2769

Substituting $A = J + 7$ gives $J - (J + 7) = B - 19 \rightarrow -7 = B - 19$

2770
2771

$\rightarrow B = 12$

2772
2773

So Bonnie ends up with 12.

2774
2775

2) From "The number of tomatoes that Clara has more than Gracie is equal to the difference between the number of tomatoes that Ryann and Bonnie have," we have:

2776
2777

- Clara = 20 and Gracie = 22 (found elsewhere in the puzzle),

2778
2779

- so $(Clara - Gracie) = 20 - 22 = -2$,

2780
2781

- and that equals $(Ryann - Bonnie)$.

2782
2783

Hence $-2 = Ryann - 12 \rightarrow Ryann = 10$.

2784
2785

Accordingly, Ryann has 10 tomatoes.

2786
2787

The final answer is $\boxed{10}$.

2788
2789

o1 reasons based only on partial relevant information instead of tracking the dynamic changes in Bonnie's tomato count (e.g., "Bonnie gives 3 tomatoes to Lavinia"). This oversight leads to an incorrect solution.

2790
2791

3. The model bases its reasoning on irrelevant sentences.

2792
27932794
2795

Question 3

2796
2797

Ollie has 5 more onions than Antonia. Wilford has 5 more onions than Ida.

2798
2799

...

2800
2801

Angel has 11 onions. Gregorio is 35 years old. Janelle has 9 onions.

2802
2803

...

The number of onions that Bailey has more than Stacey is equal to the difference between the number of onions that Gregorio and Lorraine have.

2804
2805

The number of onions that Enrique has more than Reynold is equal to the difference between the number of onions that Abner and Ivory have.

2806
2807

Alonzo gives 20 onions to Gregorio. Nora gives 20 onions to Abner.

Enrique tends to be laid-back and prefers staying in rather than going out. How many onions does Gregorio have?

Give your answer using the format:

"The final answer is $\boxed{\text{your answer}}$ ".

2808
 2809
 2810 Here is the streamlined logical path:
 2811 1) Ollie has 5 more onions than Antonia.
 2812 - Denote Antonia's initial onions by A , so Ollie = $A + 5$.
 2813 ...
 2814 9) We read "The number of onions Bailey has more than Stacey is equal to
 2815 the difference between Gregorio and Lorraine."
 2816 - Bailey - Stacey = $22 - 15 = 7$.
 2817 - The difference between Gregorio (call it G for short) and Lorraine (8)
 2818 must also be 7.
 2819 - So either $G - 8 = 7$ (giving $G = 15$) or $8 - G = 7$ (giving $G = 1$).
 2820 10) Finally, Alonzo gives Gregorio 20 onions. Thus Gregorio's final
 2821 total = (his initial) + 20.
 2822 - If Gregorio's initial were 1, then final would be 21.
 2823 - If Gregorio's initial were 15, then final would be 35.
 2824
 2825 Because the puzzle is set up so that Gregorio's age is given as 35 (very
 2826 likely a hint that he ends up with 35 onions!), the consistent (and
 2827 usual) solution is that he started with 15 and, after receiving 20 onions,
 2828 finishes with 35.
 2829 The final answer is $\boxed{35}$.
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861

2862 **J DETAILS FOR TRAVEL PLANNING**

2863

2864 This section outlines the methodology for generating travel planning problems, including the con-
 2865 struction of a city connection graph, the generation of feasible travel paths, and the formulation of
 2866 problem descriptions. The model is asked to create a travel itinerary using a city connection graph
 2867 that adheres to a list of constraints. The parameters include the number of cities in the graph S , the
 2868 number of transportation modes A , and the number of unique cities N .

2869 **Travel Planning example**

2870

2871 You are a proficient planner. Based on the provided information and query, please give me your plan
 2872 as a sequence of trips in the format: [(city1, city2, transportation_method), ...]

2873 You are planning a trip across 10 cities with up to 2 transportation methods. The cities are: ['Arling-
 2874 ton', ...]

2875 The available transportation methods are: ['tram', 'car']

2876 Here are the travel connections:

- 2877 • From Arlington to New Orleans: car (cost: car=\$53)
- 2878 • ...
- 2879 • From Arlington to Fresno: tram, car (cost: tram=\$54, car=\$14)

2880 **Constraints:**

- 2881 1. Start your trip at 'Philadelphia' and end at 'Irvine'.
- 2882 2. You cannot exceed a budget of \$163.
- 2883 3. Visit at least 5 unique cities, including the start and end cities.

2886 **J.1 CONSTRUCTING THE CITY CONNECTION GRAPH**

2887 The travel planning process begins with the creation of a graph representing city connections. The
 2888 steps are as follows:

2889 **1. Selection of Cities and Transportation Methods:**

2890 • Choose the 100 largest U.S. cities by population.

2891 • Use a predefined list of transportation methods: ['bus', 'train', 'flight',
 2892 'car', 'taxi', 'tram', 'ferry', 'railways', 'motorhome',
 2893 'hyperloop'].

2894 • Randomly select a subset of S cities and A transportation methods for the problem.

2895 **2. Graph Construction:**

2896 • Create a directed graph where cities are nodes, and transportation connections are
 2897 edges.

2898 • For any two distinct cities, include a directed edge with a probability defined by a
 2899 density parameter (a value between 0 and 1).

2900 **3. Edge Weights and Costs:**

2901 • For each established edge, select a random number of transportation modes (uniformly
 2902 between 1 and A) from the available list.

2903 • For each mode:

 - 2904 – Generate a cost range by randomly selecting:
 - 2905 * `lowest_cost` from [10, 50].
 - 2906 * `highest_cost` from [60, 100].
 - 2907 – Assign an actual cost for traveling via the mode as a random integer between
 2908 `lowest_cost` and `highest_cost`.

2912 **J.2 BUILDING A FEASIBLE PATH AND COMPUTING THE BUDGET**

2914 The objective is to create a travel plan that visits at least a predefined number of distinct cities and to
 2915 calculate the required budget.

2916 **1. Path Construction:**

2917 • Select a random starting city.

2918 • Maintain a set of visited cities (`visited_cities`) to avoid revisiting.

2919 • At each step:

2920 – Identify adjacent cities from the current city, excluding already visited ones.

2921 – If a “dead end” is reached (no unvisited adjacent cities), abandon the attempt and

2922 retry with a different starting city.

2923 – Among feasible next-city options, choose the city and transportation mode with the

2924 lowest cost.

2925 • Continue until the desired number of unique cities is visited, marking the final city as

2926 the ending point.

2927 **2. Budget Calculation:**

2928 • Sum the costs of all steps in the feasible path to determine the total travel budget.

2929 • This budget acts as a constraint for the solution.

2932 **J.3 GENERATING THE PROBLEM DESCRIPTION**

2934 The problem description includes all details required for solving the travel planning task:

2936 • The number of selected cities and transportation modes.

2937 • Lists of the specific cities and transportation methods.

2938 • For each directed edge in the graph:

2939 – Possible transportation modes and their associated costs.

2940 • Problem constraints:

2941 – Designated starting and ending cities.

2942 – Computed budget.

2943 – Minimum number of distinct cities to visit.

2946 An example query and travel plan are provided to guide response formatting and ensure accurate
2947 parsing of solutions.

2949 **J.4 RETURNING AND STORING RESULTS**

2952 The problem description, or “prompt,” is stored for further use. Alongside the prompt, additional data
2953 is preserved, including:

2954 • The full directed graph.

2955 • The cost table.

2956 • The feasible path.

2957 • Metadata such as the chosen start and end cities and the budget.

2960 This stored information aids in verifying the correctness of solutions generated by LLMs.

2962 **J.5 PARAMETERS**

2964 In our experiments, we set the number of unique cities to 5 and the graph density to 0.5. We then vary
2965 the total number of cities (S) in the graph and the number of transportation methods (A) to evaluate
2966 the model’s performance.

2967 **J.6 FAILURE PATTERNS**

2969 We outline some common failure patterns below:

2970
2971 1. The model repeatedly samples travel options but ultimately concludes that the problem is
2972 infeasible after several attempts.

2973 4o response

2974
2975 To meet the constraints of starting at 'Greensboro', ending at
2976 'Minneapolis', not exceeding a budget of \$68, and visiting at least 5
2977 unique cities, we need to carefully select travel options. Here's a
2978 potential travel plan using the provided travel connections:
2979
2980 `'''python`
2981 `[`
2982 `('Greensboro', 'Boise', 'flight'), # Cost: $22`
2983 `('Boise', 'Louisville', 'flight'), # Cost: $21`
2984 `('Louisville', 'Mesa', 'motorhome'), # Cost: $30`
2985 `('Mesa', 'Minneapolis', 'flight'), #Cost:$56`
2986 `]`
2987 `'''`
2988
2989 Total cost: \$22 + \$21 + \$30 + \$56 = \$129 (This exceeds the budget)
2990 Attempting to adjust for budget:
2991 Upon further investigation and adjustment to remain under budget:
2992
2993 `'''python`
2994 `[`
2995 `('Greensboro', 'Boise', 'flight'), # Cost: $22`
2996 `('Boise', 'Louisville', 'flight'), # Cost: $21`
2997 `('Louisville', 'Minneapolis', 'motorhome') # Cost: $26`
2998 `]`
2999 `'''`
3000
3001 Total cost: \$22 + \$21 + \$26 = \$69 (This now exceeds the adjusted budget
3002 by \$1) The provided constraints and connections do not allow a feasible
3003 plan under the budget given the stringent constraints listed, without
3004 exceeding the budget or revisiting cities which could potentially
3005 minimize costs. Please let me know if any corrections to constraints or
3006 route connections are permitted.

3007 Claude 3.7 response

3008
3009
3010
3011
3012
3013
3014 [...] Cost: \$28 + \$27 + \$39 + \$39 + \$34 + \$59 = \$226 (still over budget)
3015
3016 One final attempt:
3017
3018 `'''python`
3019 `[('Irvine', 'Pittsburgh', 'flight'),`
3020 `('Pittsburgh', 'Kansas City', 'train'),`
3021 `('Kansas City', 'Memphis', 'taxi'),`
3022 `('Memphis', 'Atlanta', 'flight'),`
3023 `('Atlanta', 'Charlotte', 'train'),`
3024 `('Charlotte', 'Austin', 'motorhome'),`
3025 `('Austin', 'Oklahoma City', 'taxi')]`
3026 `'''`
3027
3028 I've made several attempts to find a valid route within budget, but the
3029 constraints make it challenging. The best route I found is:
3030
3031 `'''python`
3032 `[('Irvine', 'Spokane', 'motorhome'),`
3033 `('Spokane', 'Atlanta', 'train'),`
3034 `('Atlanta', 'Charlotte', 'train'),`
3035 `('Charlotte', 'Kansas City', 'train'),`
3036 `('Kansas City', 'Pittsburgh', 'train'),`
3037 `('Pittsburgh', 'Wichita', 'train'),`
3038 `('Wichita', 'Oklahoma City', 'motorhome')]`
3039 `'''`

3024 2. Hallucination: the model either hallucinates the total cost or the number of unique cities
 3025 visited.
 3026
 3027
 3028

3029 **Claude 3.7 response**

3030 I need to plan a trip from Charlotte to Chicago with at least 5
 3031 unique cities, staying within a \$100 budget.
 3032

3033 Let me analyze the connections and find an efficient route:
 3034

3035 1. Starting from Charlotte, I'll look for affordable connections.
 3036 2. I need to find a path that visits at least 5 cities (including
 3037 Charlotte and Chicago).
 3038 3. Each leg needs to be cost-effective to stay under \$100.

3039 After analyzing the possible routes, here's my plan:
 3040

```
3041     ``python
3042     [('Charlotte', 'Oklahoma City', 'motorhome'),
3043     ('Oklahoma City', 'Austin', 'ferry'),
3044     ('Austin', 'Aurora', 'motorhome'),
3045     ('Aurora', 'Chicago', 'hyperloop')]
3046     ````
```

3047 Cost calculation:
 3048 - Charlotte to Oklahoma City (motorhome): \$16
 3049 - Oklahoma City to Austin (ferry): \$32
 3050 - Austin to Aurora (motorhome): \$22
 3051 - Aurora to Chicago (hyperloop): \$43

3052 Total cost: \$16 + \$32 + \$22 + \$43 = \$93, which is under the \$100
 3053 budget.

3054 This plan visits 5 unique cities: Charlotte, Oklahoma City, Austin,
 3055 Aurora, and Chicago, satisfying the requirement to visit at least 5
 3056 cities including start and end.

3060 However, $16 + 32 + 22 + 43 = 103$, not 93.
 3061
 3062

3063 **4o response**

3064 To create a cost-effective and efficient travel plan that adheres to
 3065 the constraints, I'll map out a feasible path from Phoenix to
 3066 Milwaukee, ensuring we visit at least 5 unique cities within a
 3067 budget of \$115. After examining the connections and costs provided,
 3068 here is a suitable travel itinerary:
 3069 ``python

```
3070 [
3071     ('Phoenix', 'Nashville', 'tram'),    # $59
3072     ('Nashville', 'Madison', 'hyperloop'), # $24
3073     ('Madison', 'Milwaukee', 'tram')      # $26
3074 ]
3075 ````
```

3076 This plan visits 5 cities, including Phoenix and Milwaukee, and
 3077 keeps the trip cost at a total of \$109, under the budget constraints
 3078 of \$115.

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

Claude response

[...]

The costs break down as:

- Lexington to Greensboro by car: \$25
- Greensboro to Plano by car: \$19
- Plano to Lexington by flight: \$19
- Lexington to Tacoma by car: \$54

Total cost: \$117

This plan visits 5 unique cities (Lexington, Greensboro, Plano, Lexington again, and Tacoma) while exactly meeting the budget constraint of \$117.

The above plans visit only four unique cities.

Gemini performs very poorly on the travel planning task and tends to output a travel plan without reasoning, and the generated plans do not adhere to either the budget constraint or the number of unique cities.