
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FRONTIER LLMS STILL STRUGGLE WITH SIMPLE
REASONING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

While state-of-the-art large language models (LLMs) demonstrate advanced reason-
ing capabilities—achieving remarkable performance on challenging competitive
math and coding benchmarks—they also frequently fail on tasks that are easy for
humans. This work studies the performance of frontier LLMs on a broad set of
such “easy” reasoning problems. By extending previous work in the literature,
we create a suite of procedurally generated simple reasoning tasks, including
counting, first-order logic, proof trees, and travel planning, with changeable pa-
rameters (such as document length. or the number of variables in a math problem)
that can arbitrarily increase the amount of computation required to produce the
answer while preserving the fundamental difficulty. While previous work showed
that traditional, non-thinking models can be made to fail on such problems, we
demonstrate that even state-of-the-art thinking models consistently fail on such
problems and for similar reasons (e.g., statistical shortcuts, errors in intermediate
steps, and difficulties in processing long contexts). To further understand the
behavior of the models, we introduce the UNPUZZLES dataset, a different “easy”
benchmark consisting of trivialized versions of well-known math and logic puzzles.
Interestingly, while modern LLMs excel at solving the original puzzles, they tend
to fail on the trivialized versions, exhibiting several typical failure patterns related
to memorizing the originals. We show that this happens even if the models are
otherwise able to solve problems with different descriptions but requiring the same
logic. Our results highlight that out-of-distribution generalization is still problem-
atic for frontier language models and the new generation of thinking models, even
for simple reasoning tasks, and making tasks easier does not necessarily imply
improved performance.

1 INTRODUCTION

Modern transformer-based large language models (LLMs) (Vaswani, 2017) trained using next-token
prediction have achieved significant success across a wide range of tasks, especially in reasoning.
For instance, OpenAI’s o1 model—one of the leading reasoning models to date—“ranks in the 89th
percentile on competitive programming questions (Codeforces), places among the top 500 students in
the US in a qualifier for the USA Math Olympiad (AIME), and exceeds human PhD-level accuracy
on a benchmark of physics, biology, and chemistry problems (GPQA)”.1

On the other hand, researchers continue to uncover surprisingly simple reasoning problems that
still confuse even the most advanced LLMs. These include tasks such as counting characters in
words, comparing numbers like 9.11 and 9.9 (Xie, 2024), making simple inferences about family
relationships (Nezhurina et al., 2024), and solving various classes of arithmetic and logic problems
(see, e.g., McLeish et al., 2024; Zhang et al., 2022). Many of these failures are identified in isolation,
making it difficult to find common underlying issues. Moreover, some studies focus on earlier model
generations, leaving it open whether these failures persist in state-of-the-art (SOTA) models.

In this work, we study the performance of several high-quality, open and closed-source language
models, both traditional (GPT-4o, Gemini 1.5 Pro, 2.0 Flash, and 2.5 Flash, Gemma 3 27B, Claude
3.5 and 3.7 Sonnet) and thinking variants (OpenAI o1 and o3, Gemini 2.0 Flash Thinking, 2.5 Pro and

1https://openai.com/index/learning-to-reason-with-llms/

1

https://openai.com/index/learning-to-reason-with-llms/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Original Puzzle

13 purple, 15 yellow, and 17 maroon chameleons are found on an island. When two different-coloured
chameleons meet in a pair, they both turn into the third color. Is it possible that, after some pairwise
meetings, all the chameleons are the same color?
Answer: no (proof by contradiction related to a problem invariant)

Unpuzzle

15 purple, 15 yellow, and 17 maroon chameleons are found on an island. When two different-coloured
chameleons meet in a pair, they both turn into the third color. Is it possible that, after some pairwise
meetings, all the chameleons are the same color??
Answer: yes (purple and yellow chameleons all pair up)

Context-shifted Unpuzzle

There are 31 Spurs fans, 31 Arsenal fans, and 49 Chelsea fans. Every time fans of two different sports
teams meet, they realize they are both wrong and become fans of the third team. Is it possible that, after
a certain number of pairwise meetings, everyone is a fan of one team?
Answer: yes (Spurs fans and Arsenal fans all pair up)

Figure 1: Chameleons go on a date: a puzzle, corresponding unpuzzle, and a context-shifted unpuzzle

3.0 Pro, DeepSeek R1), across a broad range of “easy” reasoning problems. We begin by examining
four simple reasoning tasks: (1) character and word counting, (2) first-order logic evaluation and
negation, (3) math word problems based on proof trees, and (4) travel planning problems. Rather
than using fixed datasets, we generate problems randomly and procedurally, incorporating tunable
parameters—such as paragraph length in word counting and the number of cities in travel planning—
that adjust the amount of computation required to produce an answer while preserving the underlying
reasoning difficulty. With appropriately chosen parameters, these tasks may be tedious for humans
but remain straightforward. On the other hand, frontier LLMs consistently fail on such tasks, with
underlying causes including statistical shortcuts, errors in intermediate steps, and difficulties in
dealing with long contexts. While previous work showed that earlier SOTA models fail on similar
tasks, here we demonstrate that even the next generation of LLMs, the so-called thinking models fail
when the tasks become long enough. To our knowledge, no earlier papers demonstrated that thinking
models are similarly subject to such performance degradation; essentially, we provide evidence that
many of the claims in the literature of decreasing LLM performance with task difficulty will apply
to thinking models as well. Concurrently with our work, Shojaee et al. (2025) evaluate LLMs on
four puzzles with programmable complexity, and show that thinking LLMs completely fail beyond
a certain critical complexity threshold. However, the experiment design has been found lacking
(Lawsen, 2025; Chan, 2025).

Analyzing the behavior of the models, we found that the main reasons of the failures can be attributed
to procedure errors (i.e., making a mistake in applying a reasoning step), omitting information
given in the task, incorrectly copying information in the reasoning trace, parsing problems (e.g.,
parsing parentheses in logic formulas), hallucinations, applying shortcuts and heuristics which do not
generalize to the test data, and giving up the problem before a solution is reached. Tokenization can
also be a source of problems, especially for character counting. Interestingly, we find that thinking
models apply less shortcuts and are less prone to omissions, which seem to be the major sources of
their superior behavior.

We can also found indications that some of the erroneous behavior stems from overfitting or, in other
words, relying too much on memorization (which is also a natural source of failures of any machine
learning model. To examine this issue better, we introduce a new dataset for evaluating language
models called UNPUZZLES. This is a small dataset in two parts: The first has 97 well-known logical
puzzles and brainteasers that are commonly found on the internet (and can be assumed to be in the
training set of SOTA models), as well as their trivialized versions which we refer to as “unpuzzles”.
Each unpuzzle is created manually by making minimal textual edits to the original puzzle in order to
remove the difficulty and render the answer obvious. We demonstrate that while SOTA models all
perform well on the original (difficult) puzzles, they exhibit poor performance on the corresponding
(easy) unpuzzles. The second part focuses on a subset of 64 unpuzzles (with numerical answers that
can be machine-evaluated) and adds a “context-shifted” version of the unpuzzle where the language,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

setting, or vocabulary is changed but the logical structure is preserved. These context-shifted trivial
problems can be used to test if a model has the ability of solving the simpler problems, which in turn
helps us examine the reasons behind failures to solve the unpuzzle problems. An example is provided
in Figure 1; the unpuzzle only differs by two characters, and the solution logic of the unpuzzle and
the context-shifted version are identical.2

While many existing works evaluate LLM reasoning robustness by perturbing problems while
maintaining the same difficulty level (Mirzadeh et al., 2024; McCoy et al., 2024), our study instead
shows that decreasing difficulty can also lead to much worse performance. A key failure mode we
observe is that LLMs tend to “overthink” easy problems, often erroneously reusing reasoning steps
corresponding to the more complex puzzle solutions — a phenomenon we term reasoning delirium.
Further, these failures are not because the models do not know how to reason about easy problems:
every model we tested performed better on the context-shifted unpuzzles than the original ones,
indicating that failure was at least in part due to memorization of the original puzzle.

In summary, we make the following contributions: (1) we conduct a comprehensive evaluation of
frontier LLMs across a wide range of simple reasoning problems; (2) we connect failure modes
to their potential causes; (3) we present a new set of procedurally generated reasoning tasks with
tunable parameters that are challenging for high-quality LLMs; (4) we introduce the UNPUZZLES
dataset that confuses frontier LLMs, exposing memorization artifacts. Our work demonstrates that
the qualitative trend of performance degradation still exists even for the latest thinking models, even
though quantitative results have improved. We hope the new benchmarks and our methodology for
identifying failures will improve the assessment of reasoning capabilities of future model generations.

2 RELATED WORK

There is a long line of research focused on identifying tasks that challenge modern LLMs and
developing new benchmarks. In this paper, we review the studies most relevant to the tasks we
investigate. Transformer-based LLMs are known to struggle with seemingly simple tasks such as
counting (Ouellette et al., 2023; Yehudai et al., 2024; Barbero et al., 2024) and copying (Liu et al.,
2024; Barbero et al., 2024), due to issues related to tokenization, architecture, and embeddings. They
also perform poorly on tasks requiring multi-step reasoning, such as arithmetic, logic puzzles, and
dynamic programming (Dziri et al., 2024). The difficulty of solving simple logic problems has been
explored in Yang et al. (2023); Parmar et al. (2024); Han et al. (2022), where these tasks are often
framed as translation problems from natural language to first-order logic.

Other works, such as Valmeekam et al. (2024a;b), construct planning benchmarks using Planning
Domain Definition Language (PDDL), while Xie et al. (2024) develops a travel planning benchmark
in real-world scenarios. These studies show that existing LLMs are far from saturating these datasets.
Additionally, reasoning benchmarks with large amounts of irrelevant content have been proposed
(Shi et al., 2023; Mirzadeh et al., 2024) to test models’ long-context generalization capabilities. Most
of these benchmarks are fixed and often combine the core challenge (e.g., logic or planning) with
secondary challenges, such as understanding PDDL or real-world commonsense reasoning for travel,
making it difficult to pinpoint the exact sources of failure. Furthermore, fixed benchmarks are difficult
to extend or generalize and are prone to saturation or overfitting as LLMs improve.

In contrast, our work takes a principled approach by simplifying problems to isolate failure causes.
Our tasks are randomly and procedurally generated, allowing for easy adjustments to their distribution
and difficulty (at a superficial level), ensuring they remain challenging for future LLMs. The work
most relevant to ours is that of Opedal et al. (2025), which evaluates the out-of-distribution (OOD)
generalization ability of LLMs through MathGAP, a framework that procedurally generates arithmetic
problems by representing them as sequences of logical forms, with solutions structured as proof
trees. Compared to Opedal et al. (2025), our work takes a broader perspective by examining a
wider range of tasks and identifying multiple critical failure modes for OOD generalization. In the
vision-languagemodel domain, Rahmanzadehgervi et al. (2025) consider problems where the models
need to perform similarly simple problems on images, and identifies that image-processing mistakes
cause degradation in visual/spatial reasoning.

2All data will be released.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In a concurrent work to ours, Shojaee et al. (2025) evaluate LLMs on four puzzles with controllable
"complexity" and show that the accuracy of all models completely collapses beyond a certain
complexity threshold. It has been pointed out that their experiment design is somewhat flawed,
including unsolvable problems and potentially ignoring token limits (Lawsen, 2025; Chan, 2025).3.
Nonetheless, we observe qualitatively similar performance with accuracy decreasing as a function of
the task tediousness.

The idea of perturbing existing benchmarks to test the robustness of LLM reasoning has been explored
in several prior works. Mirzadeh et al. (2024) introduce a variant of the GSM8K benchmark for
mathematical reasoning, modifying numerical values and adding irrelevant information, both of
which lead to a performance drop in common models. Similarly, Jiang et al. (2024) evaluate LLMs on
conjunction and syllogistic fallacies by perturbing well-known problems—changing names, inserting
celebrity references, adding irrelevant content, and replacing quantifiers with synonyms—revealing
evidence of “token bias” in LLMs. The negative effect of adding irrelevant context to math word
problems was also shown recently by Xu et al. (2025). These studies primarily focus on perturbing
original problems while maintaining or increasing their difficulty.

In contrast, our UNPUZZLES benchmark takes the opposite approach: we make minimal edits to the
wording but drastically reduce problem difficulty. A related work by Williams and Huckle (2024)
introduces a benchmark of 30 easy problems that LLMs fail on, 12 of which are logical puzzles. Our
evaluation on puzzles is considerably more comprehensive. Finally, the failure modes identified in
UNPUZZLES also relate to findings from McCoy et al. (2024), which demonstrate that LLM accuracy
is heavily influenced by the likelihood of task formulations, inputs, or outputs appearing in the
training data.

3 PROCEDURALLY GENERATED REASONING TASKS

This section presents our collection of simple reasoning tasks, including several extensions of tasks
from existing literature. Each task is procedurally generated, allowing a near-infinite number of
new problems to be generated, and defined by parameters that control the difficulty or complexity.
One of our goals was to design tasks that are straightforward (albeit tedious) for humans, but
become unsolvable by frontier models when the difficulty parameters are large enough; all our results
demonstrate this feature. For brevity, each task is described informally; full descriptions, usually with
pseudocode, are in the appendix.

Throughout, we abbreviate Google’s Gemini 1.5 Pro, 2.0 Flash, 2.0 Flash Thinking, 2.5 Pro, and
3.0 Pro with G1.5, G2.0F, G2.0FT, and G2.5P, G3, respectively. We also abbreviate Anthropic’s
Claude 3.5 and 3.7-sonnet (run without thinking tokens), OpenAI’s o1, o3, GPT-4o, and GPT-5.1,
DeepSeek’s R1, and Gemma 3 27B by C3.5, C3.7, o1, o3, 4o, o5.1, R1, and gem3, respectively; see
the appendix for the specific versions. Unless specified otherwise, for every task and every choice of
parameters, we average the performance of the models across 20 randomly sampled tasks.

3.1 TASKS

Character and word counting Until somewhat recently, many LLMs infamously could not count
the number of r’s in “strawberry.” This task extends this task to simultaneous word or character
counting. The WORD COUNTING task requires the model to simultaneously count the number of
occurrences of each word in a list of size k from a paragraph of length m. The task obviously becomes
more difficult as k and m increase. The CHARACTER COUNTING task only requires counting a
single character, which already proves difficult for the models. The paragraphs are extracted from the
WikiText-2 dataset and are either selected to have minimum size m = 50 (with maximum size 150)
or minimum size m = 150 (with maximum size 400).

First-order logic tasks We evaluate models on two fundamental logic tasks: evaluating propo-
sitional logical statements and negating first-order logical statements. A logic formula can be
represented with a tree with logic operators as nodes and propositions and predicates as leaves.
An atomic proposition is a simple, binary-valued variable, usually represented P or Q, whereas a

3While the work of Lawsen (2025) was initially published as a joke, some of the flaws discussed are legitimate
concerns

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

predicate represents a property about an individual: for example, P (x) indicates that individual x has
property P . We include the standard logical operators ∨, ∧,⇔,⇒, ¬, ∀x ∈ X , and ∃x ∈ X , (respec-
tively, or, and, equivalent, implies, negation, for all, and exists), where the last two are quantifying
operators that require a domain to be specified. Exploiting the tree structure, we can sample a logic
formula recursively. The complexity is controlled by the maximum depth d and the total number n of
predicates and atomic propositions to sample for leaves. We either choose n = 16 (16 predicates, 16
atomic propositions, and 8 domains) or n = 8 (8, 8, and 4, respectively). The final parameter is what
vocabulary we use for the leaves: we created three categories: random 20 character strings, capital
letters (reflecting the training data), and words that describe motion pictures. We consider the tasks
of (1) LOGIC EVALUATION - identifying which of four value assignments evaluates to true, and (2)
LOGIC NEGATION - identifying the negation of a logic formula from four options. See Appendix H.2
and H.3 for more details and examples.

Math word problems based on proof trees We extend the MATHGAP task of Opedal et al. (2025),
which uses a tree-based representation of proofs to generate mathematical word problems. Each
problem is represented as a sequence of logical forms under the formalism from Opedal et al. (2024).
A logical form is a truth statement about the world, typically describing an arithmetic relationship,
such as “Alice has 3 more apples than Bob." Inference rules can be used to prove new logical forms
from existing ones. Problems are constructed by sampling a Proof Tree with logical forms as nodes,
leaves as axioms, and a question as the root, before programmatically converting nodes to natural
language. See Appendix I.4 for details. MATHGAP includes only four logical forms with one being
non-commutative (transfer, e.g. “Alice gave Bob 5 apples"). We extend MATHGAP in two ways:

• Diversity: We increase the diversity of logical forms and inference rules by adding nine statement
types, six of which are non-commutative. Examples include “A eats 5 apples", “A and B switch
the apples they have". Such statements make it more difficult for the model to keep track of the
intermediate states before computing the final answer. See Appendix I.1 and I.5 for the full list
and an example. Problem parameters are tree depth d and inclusion of diverse logical forms.

• Irrelevant statements: We generate additional statements involving people irrelevant to the
original problem and shuffle them into the original statements, such as “A is very generous and
enjoys sharing food with others”. See Appendix I.3 for the complete list. The problem parameters
are the number of additional people and the number of additional sentences.

Travel Planning This task presents the model with a list of cities and various connecting modes of
transit and asks the model to design a travel itinerary satisfying multiple constraints. This work is
similar to that of Xie et al. (2024). For each task, we randomly generated a directed graph where
the S nodes represent cities and the edges represent connections. Each edge carries a subset of A
transportation modes, each with a randomly sampled cost. Based on this graph, we construct our
travel planning problem, which consists of a word-based graph description and the constraints. The
constraints include the starting and ending cities, a limit on the total travel cost, and N , the number
of unique cities the traveler must visit. The problem parameters are S, A, and N . See Appendix J for
further details.

4 RESULTS AND FAILURE ANALYSIS

Shortened problem descriptions, parameters, and evaluation results are shown in Figures 2, 3, 4, and
5. In most cases, increasing the "tediousness" of each task through the available parameters leads
to a drop in performance. As expected, Gemma 3 has usually the weakest performance, the newest
model, Gemini 3 Pro, is the best, and thinking models (o1, o3, R1, Gemini 2.5 and 3.0 Pro) typically
outperform the non-thinking models (Gemma 3, Claude 3.7, Gemini 2.5 Flash). The GPT-5.1 model
performs surprisingly bad in several cases – we suspect that this is due to the routing of problems to
weaker models when the problem does not seem sufficiently complex, and due to this behavior we do
not consider GPT-5.1 to be either a thinking or non-thinking model.

Overall, the results demonstrate that LLM performance scales poorly in problem parameters related
to the amount of computation and storage, even on problems which are self-contained and quite easy
for humans, and even for thinking models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Word Counting:
Given a text paragraph,
count the occurrences
of every word in a
k-long list.
Parameters: number
of words to count k,
minimum paragraph
size m.

Character Counting:
Given a text paragraph,
count the occurrences
of a given character.
Parameter: minimum
paragraph size m.

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
k m

1 50 1.00 0.95 0.80 0.95 0.85 0.85 0.80 0.95 1.00
150 0.95 1.00 0.40 0.90 0.45 0.55 0.65 0.80 1.00

3 50 1.00 0.95 0.75 0.90 0.55 0.65 0.50 0.80 1.00
150 0.65 1.00 0.25 0.55 0.05 0.20 0.15 0.85 1.00

6 50 0.95 0.95 0.50 0.95 0.30 0.60 0.35 0.80 1.00
150 0.70 1.00 0.15 0.35 0.00 0.25 0.00 0.70 0.80

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
m

50 0.95 0.80 0.15 0.05 0.05 0.10 0.05 0.15 0.90
150 0.45 0.45 0.00 0.00 0.00 0.00 0.00 0.10 0.80

Figure 2: Top: The pass@5 performance on the word counting task vs. the number of words to count k
and minimum paragraph size m. While o1 performs well on word counting for the parameters in the table, it
eventually fails with a sub 40% accuracy with k ≥ 3 and m ≥ 2000. Bottom: The pass@5 performance for the
single character counting task vs minimum paragraph size m.

Logic Evaluation:
Given a propositional
logic formula and four
value assignments,
identify which assign-
ment evaluates to true.
Parameters: formula
tree depth d, number
of unique atomic
propositions n.

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
depth sizes

4 medium 1.00 1.00 0.97 1.00 0.95 0.98 0.90 1.00 1.00
small 0.98 1.00 0.97 0.98 0.93 0.97 0.97 1.00 1.00

8 medium 0.73 0.93 0.32 0.77 0.30 0.27 0.27 0.78 1.00
small 0.80 0.98 0.32 0.78 0.38 0.28 0.37 0.85 0.98

12 medium 0.35 0.45 0.37 0.35 0.33 0.35 0.32 0.52 0.53
small 0.43 0.33 0.33 0.38 0.25 0.38 0.33 0.55 0.53

Logic Negation:
Given a propositional
logic formula, identify
its negation from four
options.
Parameters: for-
mula tree depth d,
vocabulary for propo-
sitions, predicates, and
domains.

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
depth values

4 letters 0.95 1.00 0.95 0.15 0.85 0.95 0.85 1.00 1.00
movies 1.00 1.00 0.95 0.15 0.75 0.97 0.95 0.97 1.00
rand 20 1.00 0.97 1.00 0.15 0.70 1.00 0.95 0.95 1.00

8 letters 0.97 1.00 0.93 0.17 0.60 0.93 0.88 1.00 1.00
movies 0.95 1.00 0.90 0.88 0.57 0.88 0.90 1.00 1.00
rand 20 0.90 0.97 0.93 0.90 0.47 0.82 0.95 0.95 1.00

12 letters 0.75 0.88 0.85 0.82 0.45 0.80 0.82 0.93 0.88
movies 0.80 0.88 0.82 0.82 0.35 0.82 0.68 0.88 0.85
rand 20 0.62 0.62 0.78 0.68 0.30 0.62 0.82 0.90 0.88

Figure 3: Top: Accuracy for the logic evaluation task vs. tree depth d and number of possible unique predicates
n. Bottom: Accuracy for the logic negation task vs. depth d and the vocabulary used for propositions, predicates,
and domains (random 20 denotes random character strings of length 20).

While it is difficult to pin down the causes of the model failures, we have performed an analysis of
the failure symptoms evident from the answers and reasoning traces. We identified the following
broad classes of errors:

• Procedural errors: the model makes an error in executing a simple step in a problem, such
as performing arithmetic or a logical operation, which eventually leads to the wrong answer.
These errors occur more often with increased "tediousness" in all tasks (paragraph length in the
Counting, tree depth in Logic and ProofTree problems, and number of unique cities to visit in
Travel Planning).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ProofTree with di-
verse statements:
Given a diverse set
of logical statements,
answer questions that
require deduction
sampled from a proof
tree with a bounded
depth and number of
leaves.
Parameters: max
tree depth d, whether
to include diverse
logical forms,
` ∈ {True, False}

ProofTree with irrele-
vant information: An-
swer proof tree ques-
tions that include irrel-
evant information. Pa-
rameters: max tree
depth d, number of ir-
relevant people P , num-
ber of irrelevant sen-
tences S.

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
d diverse

3 False 1.00 0.70 0.85 1.00 0.95 0.90 1.00 1.00 1.00
True 0.90 0.60 0.85 0.90 0.65 0.95 0.65 0.80 0.70

6 False 0.60 0.55 0.40 0.95 0.30 0.60 0.30 0.50 1.00
True 0.70 0.90 0.45 0.65 0.15 0.55 0.30 0.45 0.65

9 False 0.35 0.75 0.15 0.55 0.15 0.20 0.30 0.25 0.80
True 0.55 0.55 0.20 0.55 0.15 0.15 0.35 0.35 0.80

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
P S

1 0 0.50 0.60 0.50 0.75 0.35 0.50 0.25 0.60 1.00
60 0.45 0.45 0.25 0.50 0.25 0.20 0.10 0.50 0.80

2 0 0.50 0.55 0.45 0.75 0.20 0.55 0.20 0.50 0.95
60 0.45 0.40 0.25 0.45 0.15 0.15 0.20 0.40 0.75

4 0 0.40 0.60 0.25 0.65 0.15 0.20 0.35 0.35 0.90
60 0.25 0.40 0.10 0.25 0.00 0.10 0.10 0.35 0.80

6 0 0.40 0.60 0.30 0.55 0.00 0.15 0.20 0.30 0.95
60 0.30 0.30 0.05 0.35 0.05 0.00 0.05 0.35 0.80

Figure 4: Pass@5 scores for the proof tree tasks. Top: results for the diverse logic rules task, where we vary
the depth d and whether the diverse rules are included. Bottom: results for the irrelevant sentences task, where
we vary P , the number of irrelevant people, and S, the number of irrelevant sentences.

Travel Planning: Create a
travel itinerary using a city
connection graph that ad-
heres to a list of constraints.
Parameters: num. cities S,
num. transportation modes
A, num. unique cities N

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
S steps

10 5 0.95 0.55 0.15 0.90 0.05 0.45 0.00 0.40 1.00
8 0.65 0.65 0.00 0.45 0.00 0.15 0.00 0.15 1.00

20 5 0.75 0.70 0.00 0.55 0.00 0.25 0.00 0.30 1.00
8 0.50 0.75 0.00 0.05 0.00 0.05 0.00 0.10 1.00

Figure 5: Travel planning: pass@5 performance results. We always have A = 4.

• Omission: The model misses or ignores a key step in the prompt. In ProofTree, models tend
to ignore "transfer" operations, or key statements surrounded by irrelevant ones. In multi-word
counting problems with long paragraphs, the models may miss relevant words.

• Copying error: The model copies text or values incorrectly, or incorrectly copies the reasoning
outcome to the final answer.

• Parsing: The model fails to parse the question correctly; we observe that models can lose track
of parentheses when reading a logic formula.

• Hallucination: The model hallucinates intermediate values or constraints. For example, in
ProofTree problems, some models will hallucinate the initial number of items, or that married
people have the same number of items. In Travel Planning, models sometimes propose a solution
with hallucinated parameters which satisfies the constraints.

• Shortcuts or heuristics: Rather than executing computation, models sometimes prefer to exploit
simplifications or take educated guesses, such as guessing the value of a logic formula based on
its length.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Abandonment: This is a special type of shortcut where the model concludes that the problem
is too hard and refuses to answer. For example, for Travel Planning, models sometimes fail by
randomly sampling a few solutions and concluding that the problem is infeasible. G2.5F is prone
to giving up when evaluating long logic formulas.

• Tokenization: The error can be explained by difficulties in translation from words to tokens.
For example, the character counting performance of all models is significantly lower than word
counting, which suggests that tokenization is an issue for this task.

We attributed errors to these types using the following procedure, with a strong model (Gemini 3.0)
as a grading assistant:

1. On a random subset of all incorrect responses, we prompted the grading assistant with the
original question, the correct answer, and the incorrect solution, and asked for a summary of
the errors made along with a single sentence identifying the primary cause of the error.

2. We used the same grading assistant to look at every summary sentence and, for every task
separately, cluster the primary causes into the 20 most common types (10 in the case of
word counting).

3. For every incorrect response, we prompted the grading assistant with the original question
and answer, the incorrect solution, and the list of the 20 most common error types for the
corresponding task. We then asked the model to list the errors in the solution and choose the
common error that best represents the failure.

4. Finally, we clustered the representative errors found in the previous step, by hand, into the
categories introduced above.

The results for several models (not including Gemini 3.0 Pro) are presented in Figure 6, analyzing the
error cases in the above tasks (except for the least interesting character counting task); more detailed
results and details of the prompting strategy for the analysis are given in Appendix C. Broadly, we
found that all models make procedural errors, as well as omission errors. They also hallucinate quite
a lot when the problem involves a composition of reasoning and natural language (ProofTree and
Travel Planning) while hallucination is less of a problem in the clean logic and and counting tasks.

When comparing thinking and non-thinking models, we observe that thinking models are less prone
to shortcuts, which demonstrates the real strength of producing reasoning traces, and they seem to
commit fewer omission errors (except for Gemini 2.5 Flash in the logic evaluation problems, where
these may be masked by other types of errors, such as abandonment). Otherwise, the error types
varied across models, and seem to be specific to a model’s performance on a given task (e.g., o3
usually makes very few procedural errors, except for the logic negation problem, while R1 makes
several procedure errors in the logic problems, suggesting that such problems were not emphasized
in its training data). Finally, perhaps surprisingly, we do not always find that thinking models make
fewer procedural errors than non-thinking models, for example, Gemini 2.5. Flash makes fewer
procedural errors than o1 and o3 in the logic tasks, but a proper comparison is hard due to the different
(and undisclosed) parameters of the models.

One would expect that poor out-of-distribution generalization and too much reliance on memorization
should also be problematic for LLMs. We see some evidence for this; for example, changing the
vocabulary in the logic tasks highlights errors due to poor out-of-distribution generalization: generally,
the performance is the best when the problem variables are single letters (which is likely the format
of logical problems in the training data), and worst for random 20-character strings. We can also
attribute some of the ProofTree failures to poor out-of-distribution generalization, as some of the
introduced statements (such as “A and B switch their apples") are not common in math word problems.
Nevertheless, without knowing exactly what is in the training data, it is hard to argue how much the
models rely on memorization, and it is hard to attribute any of the error-types above to memorization
(some hallucination errors may be due to memorization, such as assuming that married couples have
the same properties). To examine this issue better, in the next section we present a problem type,
consisting of trivialized versions of well-known logic puzzles, where we have good reasons to assume
that similar problems are in the training data of the models and we can show that the errors made by
the models are the direct consequence of relying too much on similar memorized data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

C3.7 r1 gem3 G2.5F G2.5P o1 o3 o5.10.0

0.2

0.4

0.6

0.8

1.0 logic evaluation error types
copying
omission
procedural
parsing

hallucination
shortcut
abandonment

C3.7 r1 gem3 G2.5F G2.5P o1 o3 o5.10.0

0.2

0.4

0.6

0.8

1.0 logic negation error types
copying
procedural
parsing

shortcut
abandonment

C3.7 r1 gem3 G2.5F G2.5P o1 o3 o5.10.0

0.2

0.4

0.6

0.8

1.0 travel planning error types
procedural hallucination

C3.7 r1 gem3 G2.5F G2.5P o1 o3 o5.10.0

0.2

0.4

0.6

0.8

1.0 word counting error types
copying
omission
procedural

hallucination
tokenization

C3.7 r1 gem3 G2.5F G2.5P o1 o3 o5.10.0

0.2

0.4

0.6

0.8

1.0 proof tree error types
copying
omission
procedural

hallucination
abandonment

Figure 6: Breakdown of error types for each model and each task.

Model G1.5 G2.0F G2.5P gem3 C3.5 C3.7 4o o1 o3 R1
Puzzle 79.4 78.4 93.8 68.0 63.9 77.3 75.3 86.7 87.6 87.6
Unpuzzle 17.5 38.1 62.9 34.0 27.8 48.5 19.6 59.8 74.2 59.8

Table 1: Percentage of correct answers on puzzles and unpuzzles.

Model G1.5 G2.0F G2.5P gem3 C3.5 C3.7 4o o1
Context corruption (CC) 80 59 34 56 63 41 76 38
CC, correct 7 6 4 2 12 4 13 6
CC, incorrect with delirium 40 36 20 25 26 14 31 22
CC, incorrect (other) 33 16 10 29 25 23 32 10

Table 2: Number of unpuzzle solutions (out of 97) containing “context corruption.” We further subcategorize
corrupt solutions as (i) correct: leading to a correct final answer; (ii) incorrect with delirium: leading to an
incorrect final answer with a solution that corresponds nearly exactly to the solution of the original puzzle; (iii)
incorrect (other): leading to an incorrect final answer for other reasons. R1 and o3 are omitted since the answers
we obtained often did not include full reasoning.

5 UNPUZZLES

To examine the aforementioned memorization problem, we introduce the UNPUZZLES dataset,
which consists of 97 well-known logical puzzles that are commonly found on the internet, and their
trivialized versions, manually constructed by formulating textually similar questions that remove
difficulty. While the puzzles typically require reasoning and background math knowledge, the answers
to the unpuzzles are intended to be immediately obvious by common sense. See Appendix D for
more details, dataset creation instructions, and some examples. As we will show, all language models
perform much better on the puzzles than on the unpuzzles, suggesting that they rely on memorized
input patterns to generate answers rather than performing true logical reasoning.

To provide further evidence of memorization, we created a dataset of context-shifted (CS) unpuzzles.
Each CS unpuzzle is textually different from the corresponding unpuzzle but retains the same logical
structure; that is, its answer is equally obvious. Performing poorly on an unpuzzle and well on a
corresponding CS unpuzzle would suggest that the failure is due to the memorization of the puzzle
text and solution, rather than inherent inability to reason about the problem. We generated CS
unpuzzles automatically for a subset of 64 unpuzzles with simple numerical or categorical answers
(as opposed to, e.g., puzzles asking for a strategy). We prompted models (o1 and Gemini 2.0 Flash)
to rewrite each unpuzzle and change the language and setting, but keep the same logical structure and
answer. We then verified and optionally edited the results. See Appendix D.2 for details. Figure 1
shows an example of a puzzle, unpuzzle, and CS unpuzzle.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Model G2.0F G2.0FT G2.5P gem3 C3.7 4o o1 o3 R1
Puzzle Score 67 66 72 52 67 58 77 73 80
Unpuzzle Score 53 36 55 41 55 33 50 75 67
Context-shifted Score 70 48 66 50 63 52 59 80 73

Table 3: Percentage accuracy of all tested models on the original puzzles, the unpuzzles, and the context-shifted
unpuzzles, for a subset of 64 problems with numerical or categorical answers. We see that every model performs
better on the context-shifted unpuzzles than the unpuzzles, indicating that similarity to the puzzles degrades
performance. In some cases, performance on the context-shifted unpuzzles is higher than for the original puzzles.

o1 solution to the Chameleons Go on a Date unpuzzle (excerpt)

A succinct way to see that they can all end up the same color (and in fact which color that must be) is
via the following “invariant” argument: [...]
Define the quantity S = P + 2Y (mod 3). [...]
Since the initial S = 0(mod 3), the only way to remain consistent with that invariant and end up with all
chameleons of one hue is if they all become Maroon (because only that final state also gives S = 0).
Conclusion: Yes. It is possible for all of the chameleons to end up the same color; specifically, they can
all turn Maroon.

Figure 7: Chameleons go on a date (Figure 1): solution by o1. The answer to the original puzzle is ’no’ through
a proof by contradiction. The answer to the unpuzzle is ’yes’. o1 provides the correct final answer, but an
incorrect solution; it finds that the contradiction does not hold and answers ’yes’ without a constructive proof.

5.1 EVALUATION

Correctness We generated the solution to each puzzle and unpuzzle independently using each
model. We first verified whether the final answer to each is correct or not (regardless of whether the
solution leading to the answer is correct). The evaluation was performed manually by four human
annotators, since the answers to some puzzles are strategies rather than simple values. Each answer
was assessed by a single annotator, or by consensus of all annotators if marked ambiguous.

Context corruption Next, we characterize the extent to which the poor performance on the un-
puzzles is a consequence of memorization of the original puzzles. We define “context corruption”
in an unpuzzle solution as erroneous or superfluous content (e.g. assumptions or reasoning steps)
inappropriately recalled from the original puzzle or its solution. We evaluated each unpuzzle solution
according to whether it contains context corruption or not. The most extreme behavior is when
the models provided a solution that is nearly identical to the puzzle solution, sometimes without
acknowledging that the unpuzzle is different – we call this category “delirium.” We omit o3 and
R1 as they often just responded with the final answer, making the degree of context corruption
unclear, though their erroneous answers usually correspond to the answer to the original puzzle.
This evaluation was performed by four human annotators and summarized in Table 2. We observe
that memorization artifacts from the original puzzle and its solution are found in most cases, and
even thinking models simply output the solution to the original puzzle about a fifth of the time. See
Figure 7 for an example of context corruption in o1’s solution to “Chameleons Go on a Date.” See
Appendix E for more illustrative examples as well as some amusing answers.

Context-shifted evaluation We evaluated models on the size-64 subset with corresponding CS
unpuzzles. The results are shown in Table 3. We note that all models perform better on the
context-shifted version of the dataset, which offers further evidence that the poor performance on
the unpuzzles is due to the wording (and memorization of the original puzzles), rather than models’
inherent inability to reason about the problems.

The UNPUZZLES dataset complements the procedural evaluations by providing another benchmark
that is easy for humans and difficult for LLMs. It illustrates that the good performance of the models
on the original (difficult) puzzles is at least in part a consequence of memorization of internet data,
rather than true problem-solving abilities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 DISCUSSION

In a society that is increasingly utilizing frontier language models, understanding the capabilities
and weaknesses of these models is becoming more and more important. We have presented a
comprehensive set of procedurally-generated parametric problems that are inherently easy (if tedious)
for humans, and designed to assess LLM failures due to statistical shortcut learning, procedural errors
or hallucinations due to long context and long reasoning chains. As we demonstrate, these problems
can be made difficult enough to make all SOTA LLMs fail. One suggestion from our paper is that
LLMs should be evaluated not only by the most difficult problem they can solve, but also by the
simplest problem they struggle with.

Our procedural problems also suggest that some errors are due to relying on memorized patterns
instead of performing proper reasoning. To investigate this problem, we have provided a small
human-curated UNPUZZLES dataset of trivialized versions of math and logic puzzles commonly
found on the internet. Our analysis shows that all models perform significantly worse on the unpuzzles
than on the original puzzles, in most cases due to memorization of web data. This demonstrates that
oftentimes LLMs mimic training data rather than performing true reasoning, making it relatively
easy to find out-of-distribution problems where the models fail, and this problem is also present at
the newest thinking models (while similar conclusions were hypothesized in other recent works, our
result is the first to show this without actual access to the training data). This suggests that users
remain careful when relying on the output of LLMs.

The main limitation of our work is that most of the experiments were run on closed-source models,
which limits our ability to understand shortcomings beyond observing trends in the experiments and
inspecting reasoning traces when available. We hope that our benchmarks will be useful in assessing
and improving the reasoning capabilities of future generations of models.

REFERENCES

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João Guilherme Madeira
Araújo, Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses!
information over-squashing in language tasks. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Lawrence Chan. Beware General Claims about “Generalizable Reasoning Capabilities” (of
Modern AI Systems). https://www.lesswrong.com/posts/5uw26uDdFbFQgKzih/
beware-general-claims-about-generalizable-reasoning, 2025. Accessed:
2025-07-07.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng Wang, Tanwi Mallick, Weijie J Su, Camillo J
Taylor, and Dan Roth. A peek into token bias: Large language models are not yet genuine reasoners.
arXiv preprint arXiv:2406.11050, 2024.

A Lawsen. The illusion of the illusion of thinking: A comment on shojaee et al.(2025). arXiv preprint
arXiv:2506.09250, 2025.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

11

https://www.lesswrong.com/posts/5uw26uDdFbFQgKzih/beware-general-claims-about-generalizable-reasoning
https://www.lesswrong.com/posts/5uw26uDdFbFQgKzih/beware-general-claims-about-generalizable-reasoning

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

R Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D Hardy, and Thomas L Griffiths. Embers
of autoregression show how large language models are shaped by the problem they are trained to
solve. Proceedings of the National Academy of Sciences, 121(41):e2322420121, 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers
can do arithmetic with the right embeddings. In Advances in Neural Information Processing
Systems, volume 38, pages 108012–108041, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. arXiv preprint arXiv:2308.00436, 2023.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti, and Jenia Jitsev. Alice in wonderland:
Simple tasks showing complete reasoning breakdown in state-of-the-art large language models.
arXiv preprint arXiv:2406.02061, 2024.

Andreas Opedal, Alessandro Stolfo, Haruki Shirakami, Ying Jiao, Ryan Cotterell, Bernhard
Schölkopf, Abulhair Saparov, and Mrinmaya Sachan. Do language models exhibit the same
cognitive biases in problem solving as human learners? In Proceedings of the 41st International
Conference on Machine Learning, pages 38762–38778, 2024.

Andreas Opedal, Haruki Shirakami, Bernhard Schölkopf, Abulhair Saparov, and Mrinmaya Sachan.
MathGAP: Out-of-distribution evaluation on problems with arbitrarily complex proofs. In The
Thirteenth International Conference on Learning Representations, 2025.

Simon Ouellette, Rolf Pfister, and Hansueli Jud. Counting and algorithmic generalization with
transformers. arXiv preprint arXiv:2310.08661, 2023.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
ability of large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 13679–13707, 2024.

Rod Pierce. About Math is Fun. https://www.mathsisfun.com/aboutmathsisfun.
html. Accessed: October 2024.

Pooyan Rahmanzadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision
language models are blind: Failing to translate detailed visual features into words. arXiv preprint
arXiv:2407.06581, 2025.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In
International Conference on Machine Learning, pages 31210–31227. PMLR, 2023.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. Planbench: An extensible benchmark for evaluating large language models on planning and
reasoning about change. Advances in Neural Information Processing Systems, 36, 2024a.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024b.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

12

https://www.mathsisfun.com/aboutmathsisfun.html
https://www.mathsisfun.com/aboutmathsisfun.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sean Williams and James Huckle. Easy problems that llms get wrong. arXiv preprint
arXiv:2405.19616, 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Zikai Xie. Order matters in hallucination: Reasoning order as benchmark and reflexive prompting for
large-language-models. arXiv preprint arXiv:2408.05093, 2024.

Xin Xu, Tong Xiao, Zitong Chao, Zhenya Huang, Can Yang, and Yang Wang. Can LLMs solve
longer math word problems better? In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=C9ju8QQSCv.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. Harnessing the power
of large language models for natural language to first-order logic translation. arXiv preprint
arXiv:2305.15541, 2023.

Gilad Yehudai, Haim Kaplan, Asma Ghandeharioun, Mor Geva, and Amir Globerson. When can
transformers count to n? arXiv preprint arXiv:2407.15160, 2024.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
paradox of learning to reason from data. arXiv preprint arXiv:2205.11502, 2022.

13

https://openreview.net/forum?id=C9ju8QQSCv

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LICENCES FOR EXISTING ASSETS

A.1 MODELS

Below, we’ve tabulated the specific models and licences we have used.

OpenAI The specific models we used from OpenAI are gpt-4o-2024-08-06,
o1-2024-12-17, and o3-2025-04-16, which were abbreviated by 4o, o1,
and o3 in the text. Terms of Use can be found at https://openai.com/policies/
row-terms-of-use/.

Anthropic We used claude-3-5-sonnet-20240620 and claude-3-7-sonnet-20250219,
which were abbreviated C3.5 and C3.7. Terms of Service can be
found at https://privacy.anthropic.com/en/articles/
9190861-terms-of-service-updates.

Gemma 3: We used the 27b-it model, which has open weights and permits responsible commercial use.
Terms of Service are given at https://gemma3.app/terms-of-service.

DeepSeek DeepSeek’s R1 model and weights are licenced under the MIT licence DeepSeek-AI (2025).
Gemini The Gemini 2.0 Flash, 2.0 Flash Thinking, and 2.5 Pro had API names

of gemini-2.0-flash-001, gemini-2.0-flash-thinking-exp
and gemini-2.5-pro-exp-03-25. Terms of service can be found at
https://ai.google.dev/gemini-api/terms.

A.2 DATA

We list the websites used to collect math and logic puzzles and their licences and terms of use below.
Please see the released dataset for per-puzzle attributions.

• Wikipedia (https://www.wikipedia.org/): CC BY-SA 4.0 Creative Com-
mons Attribution-ShareAlike 4.0 International https://creativecommons.org/
licenses/by-sa/4.0/

• www.mathisfun.com copyright Rod Pierce, cited as instructed on the website (Pierce)
• https://puzzles.nigelcoldwell.co.uk/ copyright Nigel Coldwell.
• https://geeksforgeeks.org/, Terms of Use https://www.
geeksforgeeks.org/legal/intellectual-property-rights-legal/

B PROCEDURAL LOGIC RESULTS WITH CONFIDENCE INTERVALS

We now include the procedural logic results including simple Gaussian error bars; these were omitted
from the main body due to space constrains. In particular, results for OpenAI’s o3 model are included.
You can find the results in Tables 4-10.

o1 o3 5.1 R1 gem3 C3.7 G2.5F G2.5P G3
m

50 0.95±0.10 0.80±0.18 0.15±0.16 0.05±0.10 0.05±0.10 0.10±0.14 0.05±0.10 0.15±0.16 0.90±0.14
150 0.45±0.23 0.45±0.23 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.10±0.14 0.80±0.18

Table 4: Full results, with confidence intervals, for the Character Count task

C AUTO-GRADING THE ERRORS IN RESPONSES

This section provides more details about the auto-grading. In the main paper, we described four
steps for auto-grading the responses; we elaborate on each below. This process was repeated for the
word count, logic evaluation, logic negation, ProofTree, and travel planning tasks. The errors in the

14

https://openai.com/policies/row-terms-of-use/
https://openai.com/policies/row-terms-of-use/
https://privacy.anthropic.com/en/articles/9190861-terms-of-service-updates
https://privacy.anthropic.com/en/articles/9190861-terms-of-service-updates
https://gemma3.app/terms-of-service
https://ai.google.dev/gemini-api/terms
https://www.wikipedia.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
www.mathisfun.com
https://puzzles.nigelcoldwell.co.uk/
https://geeksforgeeks.org/
https://www.geeksforgeeks.org/legal/intellectual-property-rights-legal/
https://www.geeksforgeeks.org/legal/intellectual-property-rights-legal/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
k m

1 50 1.00±0.00 0.95±0.10 0.80±0.18 0.95±0.10 0.85±0.16 0.85±0.16 0.80±0.18 0.95±0.10 1.00±0.00
150 0.95±0.10 1.00±0.00 0.40±0.22 0.90±0.14 0.45±0.23 0.55±0.23 0.65±0.22 0.80±0.18 1.00±0.00

3 50 1.00±0.00 0.95±0.10 0.75±0.20 0.90±0.14 0.55±0.23 0.65±0.22 0.50±0.23 0.80±0.18 1.00±0.00
150 0.65±0.22 1.00±0.00 0.25±0.20 0.55±0.23 0.05±0.10 0.20±0.18 0.15±0.16 0.85±0.16 1.00±0.00

6 50 0.95±0.10 0.95±0.10 0.50±0.23 0.95±0.10 0.30±0.21 0.60±0.22 0.35±0.22 0.80±0.18 1.00±0.00
150 0.70±0.21 1.00±0.00 0.15±0.16 0.35±0.22 0.00±0.00 0.25±0.20 0.00±0.00 0.70±0.21 0.80±0.18

Table 5: Full results, with confidence intervals, for the Word Count task

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
d sizes

4 medium 1.00±0.00 1.00±0.00 0.97±0.05 1.00±0.00 0.95±0.06 0.98±0.03 0.90±0.08 1.00±0.00 1.00±0.00
small 0.98±0.03 1.00±0.00 0.97±0.05 0.98±0.03 0.93±0.06 0.97±0.05 0.97±0.05 1.00±0.00 1.00±0.00

8 medium 0.73±0.12 0.93±0.06 0.32±0.12 0.77±0.11 0.30±0.12 0.27±0.12 0.27±0.12 0.78±0.11 1.00±0.00
small 0.80±0.10 0.98±0.03 0.32±0.12 0.78±0.11 0.38±0.13 0.28±0.12 0.37±0.13 0.85±0.09 0.98±0.03

12 medium 0.35±0.12 0.45±0.13 0.37±0.13 0.35±0.12 0.33±0.12 0.35±0.12 0.32±0.12 0.52±0.13 0.53±0.13
small 0.43±0.13 0.33±0.12 0.33±0.12 0.38±0.13 0.25±0.11 0.38±0.13 0.33±0.12 0.55±0.13 0.53±0.13

Table 6: Full results, with confidence intervals, for the Logic Evaluation task

character counting were essentially all due to tokenization and memorizing the number of different
characters in each token, and therefore less interesting.

1. On a sampled subset of all incorrect responses, we prompted the grading assistant with the
original question, the correct answer, and the incorrect solution and asked for a summary of
the errors made along with a single sentence identifying the primary cause of the error:

Auto-grading step 1 template

You are an expert at identifying errors in solutions to logic
and reasoning problems. I will give you such a problem, the correct answer,
then an incorrect solution. I want you to analyze the solution and find
the errors that lead to the incorrect answer.

The question is: {question}.
End question.

The correct answer is: {correct_answer}.

The incorrect response is: {incorrect_response}.
End response.

Please list specific errors in the response that contribute to the
incorrect solution. Then, in a single sentence, describe the primary
reason for the incorrect answer.

2. We used the same grading assistant to look at every summary sentence and, for every task
separately, cluster the primary causes into the 20 most common types (for word counting we
use only 10 types due to the simplicity of the task).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
d values

4 letters 0.95±0.07 1.00±0.00 0.95±0.07 0.15±0.11 0.85±0.11 0.95±0.07 0.85±0.11 1.00±0.00 1.00±0.00
movies 1.00±0.00 1.00±0.00 0.95±0.07 0.15±0.11 0.75±0.14 0.97±0.05 0.95±0.07 0.97±0.05 1.00±0.00
rand20 1.00±0.00 0.97±0.05 1.00±0.00 0.15±0.11 0.70±0.15 1.00±0.00 0.95±0.07 0.95±0.07 1.00±0.00

8 letters 0.97±0.05 1.00±0.00 0.93±0.08 0.17±0.12 0.60±0.16 0.93±0.08 0.88±0.11 1.00±0.00 1.00±0.00
movies 0.95±0.07 1.00±0.00 0.90±0.10 0.88±0.11 0.57±0.16 0.88±0.11 0.90±0.10 1.00±0.00 1.00±0.00
rand20 0.90±0.10 0.97±0.05 0.93±0.08 0.90±0.10 0.47±0.16 0.82±0.12 0.95±0.07 0.95±0.07 1.00±0.00

12 letters 0.75±0.14 0.88±0.11 0.85±0.11 0.82±0.12 0.45±0.16 0.80±0.13 0.82±0.12 0.93±0.08 0.88±0.11
movies 0.80±0.13 0.88±0.11 0.82±0.12 0.82±0.12 0.35±0.15 0.82±0.12 0.68±0.15 0.88±0.11 0.85±0.11
rand20 0.62±0.16 0.62±0.16 0.78±0.13 0.68±0.15 0.30±0.15 0.62±0.16 0.82±0.12 0.90±0.10 0.88±0.11

Table 7: Full results, with confidence intervals, for the Logic Negation task

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
d diverse

3 False 1.00±0.00 0.70±0.21 0.85±0.16 1.00±0.00 0.95±0.10 0.90±0.14 1.00±0.00 1.00±0.00 1.00±0.00
True 0.90±0.14 0.60±0.22 0.85±0.16 0.90±0.14 0.65±0.22 0.95±0.10 0.65±0.22 0.80±0.18 0.70±0.21

6 False 0.60±0.22 0.55±0.23 0.40±0.22 0.95±0.10 0.30±0.21 0.60±0.22 0.30±0.21 0.50±0.23 1.00±0.00
True 0.70±0.21 0.90±0.14 0.45±0.23 0.65±0.22 0.15±0.16 0.55±0.23 0.30±0.21 0.45±0.23 0.65±0.22

9 False 0.35±0.22 0.75±0.20 0.15±0.16 0.55±0.23 0.15±0.16 0.20±0.18 0.30±0.21 0.25±0.20 0.80±0.18
True 0.55±0.23 0.55±0.23 0.20±0.18 0.55±0.23 0.15±0.16 0.15±0.16 0.35±0.22 0.35±0.22 0.80±0.18

Table 8: Full results, with confidence intervals, for the MathGap Diverse task

Auto-grading step 1 template

You are an expert instructor for logic problems and familiar with
mathematical word problems. I have a collection of word problems with
incorrect solutions. I have already gone through them and listed the
errors as well as summary sentences for the primary reason the solution
was wrong.

Please go through all the examples and provide the twenty most common mistakes
in the incorrect solutions.
{concatenated responses from part one}

3. For every incorrect response, we prompted the grading assistant with the original question
and answer, the incorrect solution, and the list of 20 most common error for the correspond-
ing task. We then asked the model to list the errors in the solution and choose the common
error that best represents the failure.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5 G3
P S

1 0 0.50±0.23 0.60±0.22 0.50±0.23 0.75±0.20 0.35±0.22 0.50±0.23 0.25±0.20 0.60±0.22 1.00±0.00
60 0.45±0.23 0.45±0.23 0.25±0.20 0.50±0.23 0.25±0.20 0.20±0.18 0.10±0.14 0.50±0.23 0.80±0.18

2 0 0.50±0.23 0.55±0.23 0.45±0.23 0.75±0.20 0.20±0.18 0.55±0.23 0.20±0.18 0.50±0.23 0.95±0.10
60 0.45±0.23 0.40±0.22 0.25±0.20 0.45±0.23 0.15±0.16 0.15±0.16 0.20±0.18 0.40±0.22 0.75±0.20

4 0 0.40±0.22 0.60±0.22 0.25±0.20 0.65±0.22 0.15±0.16 0.20±0.18 0.35±0.22 0.35±0.22 0.90±0.14
60 0.25±0.20 0.40±0.22 0.10±0.14 0.25±0.20 0.00±0.00 0.10±0.14 0.10±0.14 0.35±0.22 0.80±0.18

6 0 0.40±0.22 0.60±0.22 0.30±0.21 0.55±0.23 0.00±0.00 0.15±0.16 0.20±0.18 0.30±0.21 0.95±0.10
60 0.30±0.21 0.30±0.21 0.05±0.10 0.35±0.22 0.05±0.10 0.00±0.00 0.05±0.10 0.35±0.22 0.80±0.18

Table 9: Full results, with confidence intervals, for the MathGap irrelevant tasks

o1 o3 o5.1 R1 gem3 C3.7 G2.5F G2.5P G3
S steps

10 5 0.95±0.10 0.55±0.23 0.15±0.16 0.90±0.14 0.05±0.10 0.45±0.23 0.00±0.00 0.40±0.22 1.00±0.00
8 0.65±0.22 0.65±0.22 0.00±0.00 0.45±0.23 0.00±0.00 0.15±0.16 0.00±0.00 0.15±0.16 1.00±0.00

20 5 0.75±0.20 0.70±0.21 0.00±0.00 0.55±0.23 0.00±0.00 0.25±0.20 0.00±0.00 0.30±0.21 1.00±0.00
8 0.50±0.23 0.75±0.20 0.00±0.00 0.05±0.10 0.00±0.00 0.05±0.10 0.00±0.00 0.10±0.14 1.00±0.00

Table 10: Full results, with confidence intervals, for the Travel task

Auto-grading step 1 template

You are an expert at identifying errors in solutions to logic and
mathematical word problems and an excellent tutor. I will give you
a question that can be solved with simple logical reasoning
followed by an incorrect response to that question.

I want you to first identify the mistakes in the incorrect response
then describe the primary causes of the incorrect answer

The question is: {question}.
End of question.

The correct answer is: {answer}.

The incorrect response is: {response}.
End of response.

From the follow twenty options, please find the error that contributed
the most to the incorrect answer and point out specifically where the
error was made.
{list of mistakes as below}
Please point out where the primary error is and answer using the
template
Final answer: 1 or 2 or ...or 20.

4. Finally, we extracted the error per question and clusters the errors, by hand, into the nine
main categories.

C.1 ERROR ANALYSIS FOR WORD COUNTING

The following table introduces the ten most common failure modes, as well an the main error category
they fall into, for the word counting task. The biggest error for every model was a failure to count
repeated words in close proximity. Some other noteworthy anomalies are Gemma 3’s confusion about
matching plurals and Gemini 2.5 pro’s failures to count words towards the end of the paragraph.

1. Inexact String Matching (Singular/Plural Conflation) (procedure): Counting "markets"
when the target is "market," "Koreans" for "Korean," or "statues" for "statue." Conversely,
counting the singular "tank" when the target is the plural "tanks."

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2. Repetition Blindness (Intra-Sentence Proximity) (omission): In phrases like "tracking
from a few feet away from" or "experimented with hollow shot filled with," the solution
identifies the first instance but skips the second.

3. End-of-Text Attentional Decay (omission): The solution counts correctly through the
first 80% of the text but misses words in phrases like "pressure from his fellow legislators"
or "candidates that included..." appearing at the very end.

4. Failure to Parse Dense Clusters (omission): Missing instances of "were" in a sentence
where the word appears 6 or 7 times (e.g., "were sent... were assigned... were destroyed").

5. Internal Inconsistency (Reasoning vs. Output) (copying): The "Step-by-Step" section
correctly identifies 3 instances of a word, but the final output list records the number 4 or 2.
Or, the solver lists instances but sums them incorrectly.

6. Repeated Phrase Oversight (omission): If the phrase "center of government" appears
twice in the text, the solver often counts it as one occurrence, failing to realize that the phrase
(and the target word "government" inside it) actually occurs twice at different locations.

7. Function Word Blindness (omission): Consistently undercounting high-frequency words
like "that," "with," "were," and "from."

8. Hallucination and Double-Counting (hallucination): Counting a word because it
should be there based on context (e.g., in a quote not actually present in the text) or
identifying "shot camera" and "camera tracking" as two separate occurrences of "camera"
when they are actually the same word in the text "shot camera tracking."

9. Tokenization and Punctuation Failures (tokenization): Missing "wooden" in "wooden@-
@unk" because of the hyphen, or missing "tank" in "tank’s" because of the apostrophe.

10. Semantic Filtering (False Exclusions) (procedure): Excluding the word "Hill" because
it refers to a person’s name (proper noun) rather than a geographic location, or excluding
"infantry" because it appears as a general adjective rather than part of a specific unit title
(e.g., "2nd Infantry Division").

C.2 ERROR ANALYSIS FOR LOGIC EVALUATION

As before, we introduce the twenty most common errors and the error breakdown per model. A
surprisingly common failure mode was disregarding a global negation. Another source of error
was misidentifying the overall-logical structure, through a parenthesis parsing error or otherwise.
Surprisingly, Gemini 2.5 pro had the largest number of abandonment errors, though one might argue
that refusing to solve the problem is a more desirable outcome than confidently providing an incorrect
answer.

1. Failure to Identify Vacuous Truth (Implication Shortcuts) (procedure): Failing to rec-
ognize that if the antecedent (P) of an implication (P → Q) is False, the entire implication
is automatically True, regardless of the complexity of the consequent (Q).

2. Overlooking Disjunction Short-Circuiting (procedure) Failing to recognize that if the
first operand (P) of a disjunction (P ∨Q) is True, the entire expression is True, regardless
of the second operand.

3. Misidentification of the Main Logical Connective (parsing): Incorrectly parsing the top-
level structure of the formula.

4. Incorrect Scope of Negation (parsing): Misinterpreting which part of the formula a ‘not‘
operator applies to.

5. Operator Precedence Failures (procedure): Evaluating logical operators in the wrong
order when parentheses are not explicit, or misinterpreting standard precedence rules.

6. Biconditional Truth Value Logic Error (procedure): Assuming that ‘False‘ ↔ ‘False‘
evaluates to False.

7. One-Sided Biconditional Evaluation (procedure): Proving that the Left-Hand Side (LHS)
of a biconditional (P ↔ Q) is True and immediately concluding the formula is True.

8. Implication Calculation Error (True → False) (procedure): Evaluating an implication
with a True Antecedent and a False Consequent as True.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

9. Conjunction Block Failure (procedure): Failing to notice that a single False term in a
top-level Conjunction (P ∧Q ∧R) invalidates the entire formula.

10. Premature Termination (Partial Evaluation) (shortcut): Evaluating only a fragment of
the formula (e.g., the first sub-clause) and assuming it dictates the final answer.

11. Reliance on Invalid Heuristics (shortcut): Using "rules of thumb" instead of boolean
algebra.

12. Refusal to Solve (Abandonment) (abandonment): Explicitly giving up on the evaluation
due to complexity.

13. Hallucination of External Tool Verification (hallucination): Claiming to have used a
Python script or "symbolic logic solver" to verify an answer that is objectively incorrect.

14. Variable Assignment Errors (copying): Using the truth values from one option (e.g.,
Option A) while evaluating another option (e.g., Option C).

15. Necessity vs. Sufficiency Confusion (procedure): Treating a sub-expression as a necessary
condition when it is not.

16. Neglecting the Global Negation (omission): Correctly evaluating the massive inner
formula but forgetting to apply the outermost ‘not(...)‘.

17. Incorrect Parsing of Parentheses Depth (parsing): Losing track of nesting depth, often
"closing" a parenthesis too early or too late.

18. "False implies False" Confusion (procedure): Believing that ‘False‘→ ‘False‘ evaluates
to False.

19. Ignoring Biconditional Mismatches (procedure): Failing to spot that True ↔ False
evaluates to False.

20. False Generalization from Partial Data (shortcut): Analyzing one option, finding a spe-
cific sub-structure behaves a certain way, and assuming that behavior applies to all other
options without verification.

C.3 ERROR ANALYSIS FOR LOGIC NEGATION

The logic negation errors show some interesting patters. For example, R1 and Gemma 3 are both
prone to incorrectly copying predicates or variables, whereas the other models are not. Double
negation is a common failure mode across most models; it seems like negation is generally difficult.
There are some specific failures: R1 does not know how to take a biconditional expansion, and
Gemma 3 frequently used a visual difference heuristic no other mode

1. Double Negation Oversight (¬(¬P) ≡ P) (procedure): The most frequent error. When
asked to negate a statement that already begins with a negation (e.g., ‘not (Exists x...)‘),
solvers often attempt to distribute a new negation into the inner formula (changing quantifiers
and connectives) rather than recognizing that the correct answer is simply the inner statement
with the outer "not" removed.

2. Corruption of the Antecedent in Implications (procedure): When negating a conditional
statement (P → Q), the correct negation is P ∧ ¬Q. A very common mistake is to negate
or modify the antecedent P (e.g., flipping quantifiers inside P or adding a "not"), failing to
realize that the antecedent must remain exactly identical to the original.

3. Retaining the Implication Operator (procedure): Solvers often fail to change the main
operator from an implication (→) to a conjunction (∧) during negation. They incorrectly
produce a statement like P ∨ ¬Q or P ∧Q instead of the required P ∧ ¬Q.

4. Recursive Biconditional Negation (procedure): When negating an equivalence (P iff
Q), solvers frequently assume the negation is ¬P iff ¬Q (negating both sides recursively).
This results in a logically equivalent statement, not a negation. The correct negation is the
exclusive disjunction (P ∧ ¬Q) ∨ (¬P ∧Q).

5. Incomplete Biconditional Expansion (procedure): Even when solvers recognize that a
negated biconditional requires an XOR structure, they often fail to preserve the un-negated
sides correctly. For example, they might produce (P ∧ ¬Q) ∨ (¬P ∧ ¬Q) or fail to keep P
identical in the first disjunct.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

6. De Morgan’s Law Failures (procedure): When negating conjunctions or disjunctions,
solvers often flip the operator (AND ↔ OR) but fail to negate the individual terms, or
conversely, negate the terms but fail to flip the operator.

7. Quantifier Inversion in Non-Negated Scopes (copying): Solvers frequently flip quantifiers
(∀ ↔ ∃) universally throughout the entire formula, including within sub-formulas that should
be preserved (such as the antecedent of a negated implication or the un-negated side of a
biconditional expansion).

8. Failure to Negate Quantifiers (procedure): Conversely, in sections that *should* be
negated, solvers often negate the predicates but forget to swap the quantifier (e.g., leaving
"Exists" as "Exists" while negating the inner proposition).

9. Misidentification of the Main Connective (procedure): Solvers often misidentify the top-
level logical operator. For example, analyzing a complex statement as a "Conjunction"
when the main operator is actually an "Implication" or "Biconditional," leading to the wrong
negation strategy.

10. Parsing Scope Errors (parsing): Misinterpreting the scope of parentheses or quantifiers.
A common error is assuming a quantifier applies only to the immediate next term, when it
actually scopes over a subsequent biconditional or implication (e.g., negating ∃x(P → Q)
as ∀xP → ¬Q instead of ∀x(P ∧ ¬Q)).

11. Negating "A and B" as an Implication (procedure): Solvers sometimes incorrectly negate
a conjunction A ∧B using an implication structure like ¬A→ ¬B, rather than the correct
De Morgan’s expansion ¬A ∨ ¬B.

12. Confusing Negation with Simplification (procedure): Solvers sometimes attempt to "sim-
plify" the expression (e.g., pushing a "not" inwards) rather than finding the negation. For
example, transforming ¬∃xP into ∀x¬P creates an equivalent statement, whereas the
negation of ¬∃xP is ∃xP .

13. Arbitrary Predicate/Variable Substitution (Hallucination) (copying): A pervasive error
where the solver selects an option that arbitrarily changes variable names (e.g., changing x
to y), constants (e.g., changing constant a to b), or predicates (e.g., changing ‘Horror‘ to
‘Comedy‘).

14. Arbitrary Operator Modification (copying): Solvers often select options that randomly
change logical connectives in sub-formulas that should be preserved. For example, changing
an inner ‘AND‘ to an ‘OR‘ or ‘->‘ to ‘<=>‘ in a section of the text that is not under the scope
of the negation operation.

15. Transcription Errors in "Correct" Options (copying): Solvers correctly derive the ab-
stract logical form (e.g., "I need P ∧ ¬Q") but select an option where P has a subtle
typo (like a missing "not" or a swapped operator) because they did not verify the text
character-by-character.

16. The "Visual Difference" Heuristic (shortcut): Solvers incorrectly assume that the correct
negation must look "the most different" from the original statement. This leads them to reject
correct answers that preserve large chunks of text (like the antecedent of an implication) in
favor of incorrect answers that scramble the entire formula.

17. False Equivalence of Options (shortcut): Solvers frequently claim that two distinct options
(e.g., A and B) are "identical" when they contain subtle but critical differences (such as one
quantifier change or one missing "not"), leading to arbitrary and incorrect guessing.

18. Evaluating Truth Value Instead of Syntax (shortcut): Solvers try to determine if the
statement is "True" or "False" based on real-world knowledge or probability, rather than
performing the syntactic manipulation required to find the logical string that represents the
negation.

19. Applying Recursive "Flipping" (shortcut): An invalid heuristic where solvers assume
negation means systematically flipping every single operator and quantifier in the text,
ignoring logical hierarchy and the requirement to preserve certain structures (like the "if"
part of a conditional).

20. Premature Abandonment (abandonment): Solvers incorrectly conclude that the problem
is "too complex" or "impossible to determine" and resort to guessing, often failing to notice
that the first few terms of the formula are sufficient to eliminate the incorrect options.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 ERROR ANALYSIS FOR PROOFTREE

1. Use of Stale Variable Values (omission): The most common error is treating variables as
static. The solver calculates a value for a character (e.g., "Bob has 10") early in the problem,
ignores a subsequent transaction (e.g., "Bob gives 5 to Alice"), and uses the obsolete value
(10 instead of 5) in later equations.

2. Omission of Transaction Statements (omission): Completely overlooking sentences con-
taining "gives" or "receives" (e.g., "Jane gives 12 tomatoes to Doe"). The solver treats these
sentences as flavor text rather than mathematical subtraction/addition operations.

3. Failure to Apply Final State Changes (omission): The logic chain is solved correctly
to find an intermediate number, but the solution fails to apply the very last transaction
mentioned in the text (e.g., the final answer provided is the count *before* the character
receives the final gift).

4. One-Sided Transaction Updates (procedure): Correctly subtracting items from the "giver"
but failing to add them to the "receiver," effectively causing items to vanish from the system
and corrupting the receiver’s value for future equations.

5. Chronological Misplacement of Constraints (procedure): Applying a logical constraint
(e.g., "X has twice as many as Y") to the wrong point in the timeline—either applying it to
the final total instead of the initial total, or vice versa.

6. Absolute Value Fallacy (procedure): Misinterpreting the phrase "the difference between X
and Y" as the absolute magnitude (|X − Y |) in contexts where a signed difference (X − Y)
is required to handle negative offsets (e.g., when X has fewer items than Y).

7. "More Than" as Strict Inequality (procedure): Assuming that "X has more than Y"
implies that X’s count must be greater than Y’s. In these algebraic puzzles, this phrase often
defines a variable relationship that results in a negative number (e.g., "The number X has
more than Y is -5"). Solvers often reject valid negative differences as contradictions.

8. "Increases by X Times" Ambiguity (procedure): Misinterpreting the arithmetic oper-
ation for growth. Common errors include calculating an additive increase (Original +
(Original×X)) when a multiplicative scalar (Original×X) was intended, or interpreting
"increases by 1 times" as doubling rather than multiplying by 1 (identity).

9. Reverse Translation of Comparative Statements (procedure): Translating "A has 5 more
than B" as B = A+ 5 or A+ 5 = B, rather than the correct A = B + 5.

10. Rejection of Negative Intermediate Values (procedure): In complex chains, an intermedi-
ate variable (e.g., a "difference" value) may be negative to make the final math work. Solvers
often incorrectly attempt to force these to be positive or declare the puzzle "unsolvable"
upon seeing a negative. 4

11. Premature "Unsolvable" Declaration (abandonment): Failing to trace the full dependency
chain of variables (back-propagation). The solver looks for a direct value, doesn’t find one,
and claims information is missing, even though the value can be derived from a sequence of
3-4 other characters.

12. The "Zero-Initialization" Fallacy (hallucination): Assuming that if a character’s starting
value is not explicitly stated as a number, it must be zero.

13. Arbitrary Value Selection (hallucination): When faced with ambiguity (often caused by
the Absolute Value Fallacy), the solver arbitrarily guesses a value (e.g., picking the positive
root) without verifying if it contradicts other constraints.

14. Unjustified Equality Assumptions (hallucination): Hallucinating constraints to resolve
unknown variables, such as assuming married couples share the same inventory or that two
characters mentioned in the same sentence have equal amounts.

15. Dependency Loop Confusion (procedure): Failing to calculate necessary intermediate
variables (e.g., calculating A and B, but failing to calculate C, which bridges them) and
concluding the variables are disconnected.

4This may actually be an error in constructing the task using our text templates.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

16. Complete Task Hallucination (hallucination): Ignoring the provided text entirely and
solving a completely unrelated problem (specifically, generating travel itineraries or budget
optimizations instead of solving the logic puzzle).

17. Variable Conflation/Name Confusion (procedure): Confusing characters with similar
names (e.g., Mary vs. Martha, Carleen vs. Clarice) or swapping the values of two distinct
characters.

18. Single-Letter Variable Collisions (copying): Using the first letter of a name as a variable
(e.g., S) when multiple characters start with that letter (e.g., Sam, Sarah, and Steven), leading
to mathematical contradictions.

19. Distractor Data Usage (hallucination): Using a character’s Age (e.g., "Bob is 25 years
old") as their item count (e.g., assuming Bob has 25 bananas) when the chain of logic is
difficult to follow.

20. Integer Constraint Violation (procedure): Calculating fractional amounts (e.g., 12.5 ba-
nanas) in problems implying discrete items. This usually indicates an error in a previous
multiplication or division step that the solver failed to catch.

C.5 ERROR ANALYSIS FOR TRAVEL PLANNING

1. Budget Constraint Violation (procedure): This is the most frequent error. The solution
proposes a valid path between the start and end points, but the total cost of the edges exceeds
the specified budget limit. This often happens because the search algorithm prioritizes
finding *a* path over finding the *cheapest* path.

2. Minimum Unique Cities Violation (procedure): The solution fails to visit the required
minimum number of unique cities (e.g., "visit at least 8 unique cities"). The model often
finds a direct or short path that satisfies the start/end and budget constraints but falls short
on the node count.

3. Hallucinated Travel Connections (hallucination): The solution invents a direct link be-
tween two cities that does not exist in the provided graph data. This is a topological error
where the model "bridges the gap" between unconnected nodes to force a solution.

4. False Assertion of Infeasibility (False Negative) (abandonment): The model incorrectly
concludes that "no valid path exists" or returns an empty list ‘[]‘, even though a valid
mathematical solution exists within the constraints. This indicates a failure in the depth or
exhaustiveness of the search strategy.

5. Graph Directionality Errors (hallucination): The model treats the directed graph as undi-
rected. It utilizes a connection from City A→ City B using the cost and existence of the
connection from City B→ A. This is a specific type of invalid connection error.

6. Arithmetic Calculation Errors (procedure): The model selects specific edges and lists
their costs correctly but sums them incorrectly. Consequently, the model believes the path is
within the budget when it actually exceeds it.

7. Hallucinated Dataset (Massive Hallucination) (hallucination): In several instances, the
model completely ignores the provided city list and graph data, instead solving a problem
involving unrelated cities (e.g., using "Detroit" or "Miami" when the data implies a different
region) or solving for constraints not present in the prompt.

8. Invalid Transportation Methods (hallucination): The model proposes a trip between two
valid connected cities but uses a transportation mode that is not available for that specific
edge (e.g., suggesting a "flight" where only a "ferry" is listed), or uses a mode not present in
the general list (e.g., "hyperloop" when only "car" is allowed).

9. Incorrect Start or End City (procedure): The generated path begins or ends at a city
different from the one explicitly requested in the prompt. This often happens when the
model gets confused by intermediate nodes or hallucinations.

10. Suboptimal Edge Selection (Greedy Failure) (procedure): The model fails to select the
lowest-cost edge between two nodes (e.g., choosing a 56 flight instead of a 19 car ride).
This local inefficiency often causes the global budget constraint to fail later in the path.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

11. Cumulative Cost Oversight (procedure): The model fails to track the running total of costs
during the trip. It often adds a final expensive leg to a path that has already exceeded the
budget earlier in the sequence.

12. Unique City Counting Errors (procedure): The model lists a specific number of cities
(e.g., 6) but claims in the text that it has visited the required amount (e.g., "This path visits 8
unique cities"). This is a disconnect between the generated list and the validation logic.

13. Inefficient Routing (Redundant Loops) (procedure): The solution includes unnecessary
backtracking or loops (e.g., A→ B→A→ C). While this increases the path length, it wastes
budget and often fails to increase the *unique* city count, leading to valid but suboptimal
paths that violate constraints.

14. Hallucinated Costs (hallucination): The model invents costs for specific trips that do not
match the provided text (e.g., claiming a trip costs 15 when the data says 50). This can lead
to the selection of paths that are actually too expensive.

15. Incorrect Constraint Hallucination (hallucination): The model attempts to solve the
problem using constraints from a different problem instance (e.g., trying to stay under 162
when the prompt asks for 105, or trying to visit 8 cities when the prompt asks for 5).

16. Lookup Errors (Row/Column Confusion) (copying): The model correctly identifies a
connection but retrieves the cost associated with a different transportation method on the
same route or a different route entirely (e.g., confusing the cost of a "bus" with a "train").

17. Premature Path Termination (procedure): The path stops before reaching the required
destination city, usually because the model "runs out" of budget or steps and submits an
incomplete fragment as the solution.

18. Logical Inconsistency (procedure): The model acknowledges in its explanation that a path
exceeds the budget or fails a constraint (e.g., "This costs 269 which is over 188") but still
submits it as the final answer.

19. Failure to Find Low-Cost Detours (procedure): When a direct path is too expensive or too
short, the model fails to find specific, complex low-cost "detours" required to rack up the
unique city count without breaking the budget.

20. Counting Start/End Nodes Incorrectly (procedure): The model sometimes fails to include
the start or end node in the unique city count, leading to an attempt to add extra, unnecessary
stops that push the total cost over the budget.

D UNPUZZLING

This section provides more detail about the UNPUZZLES and their auto-evaluation.

D.1 DATASET CREATION INSTRUCTIONS

The following are instructions given to humans to trivialize puzzles:

Task: Trivialize a puzzle Make a minimal edit to a well-known logical puzzle such that the
solution becomes trivial. Either choose a puzzle from the given list or add a new puzzle. Suitable
puzzles should be known to all language models, meaning that they readily provide you with the
solution. Prefer puzzles where the solution is simply stated or can be checked with a simple question,
for example one with a yes/no or an integer. Many famous puzzles can be modified to have simple
solutions. Create an unpuzzle: modify the puzzle such that there is a trivial solution and the original
solution is no longer necessary or even correct. Ideally, the simple question that verified the original
puzzle should have a different answer. Check that large models still use the original solution to
erroneously solve the modified puzzle or give the original (incorrect) answer. If not, repeat from step
3. Examples:

• Puzzle: There are 100 lockers in a row, all initially closed. A person walks down the row
and opens every locker. Then, another person walks down the row and closes every second
locker (starting from the second locker). Next, a third person walks down the row and

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

changes the state (opens it if it’s closed or closes it if it’s open) of every third locker (starting
from the third locker). This continues until 100 people have walked down the row. At the
end, how many lockers are open?

Unpuzzle: There are 100 lockers in a row, all initially closed. A person walks down the row
and opens every locker. Then, another person walks down the row and closes every second
locker (starting from the second locker). At the end, how many lockers are open?

Explanation: The original puzzle requires that one finds the number of times each locker
door’s state is changed, which in turn requires the number of prime factors. This puzzle can
be checked by asking a simple, integer-valued question. On the other hand, the unpuzzle
has an obvious solution, as every second door is closed. The reasoning steps needed for the
original puzzle are not required at all. (Gemini gives the same answer for both: 10)

• Puzzle: You have 12 coins, and one is counterfeit, being either heavier or lighter than the
others. You have a balance scale and can use it three times. How can you identify the
counterfeit coin and determine if it is heavier or lighter?

Unpuzzle: You have 12 coins, and they are all counterfeit. You have a balance scale and can
use it three times. How can you identify all the counterfeit coins?

Explanation: The original puzzle requires careful reasoning through all possible results
from the weighing. The unpuzzle has a laughably trivial solution. We could also modify
the puzzle to ask “how many weighings are required to determine which is the counterfeit
coin?”.

D.2 CONTEXT-SHIFTED UNPUZZLES

We generated the context-shifted unpuzzles by first identifying a subset of 64 unpuzzles with simple
categorical or integer answers (e.g. asking "what is the minimum number of crossings?" instead of
"How can we move all items across the river?"). We used the following method for automatically
shifting the context for the unpuzzles

1. We prompt a strong model with “I will give you a puzzle and a solution. I would like you to
provide a single rewrite of the puzzle that changes the language and setting but keeps the
logical structure and the answer the same; think carefully, highlighting the logical structure
present in the puzzle,” followed by a templated response specifying the domain the answer
must lie in (the categories or an integer).

2. We verify that the new puzzle has the same solution as the original unpuzzle. If not, return
to step 1).

3. We query the same model with the new unpuzzle; if the correct answer is not returned,
return to step 1).

4. Verify that the context-shifted puzzle has the correct logical structure.

We found that models differed on the unpuzzles they could context-shift successfully, so we recom-
mend using a few models simultaneously (we used o1 and Gemini 2.5 Flash). Of the context-shifted
unpuzzles produced this way, 75% required minimal or no modification. One could use this method
to generate large numbers of context-shifted puzzles.

D.3 AUTO-EVALUATION

Prompting models to disambiguate between the different levels of delirium is difficult. However, we
had some success automatically evaluating correctness of the unpuzzle solution if we have access to
a ground-truth unpuzzle solution.

The first question: is the unpuzzle solution correct or not? Our approach involved asking the model
two questions. The first (following Miao et al., 2023) asks a critic model whether correct solution
“supports,” “contradicts,” or ”is not directly related to” the model’s response. The second presents the
unpuzzle with the correct solution and asks whether the model’s response had different reasoning,
regardless of its correctness (we frequently saw that models would say that any reasoning not aligning
with the original puzzle’s solution was incorrect). We only conclude that the model’s response

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Model

Critic G1.5 C3.5 4o o1
G1.5 (35.3, 2.4) (32.0, 4.1) (38.9, 1.2) (36.7, 7.7)
C3.5 (11.8, 0.0) (24.0, 8.1) (27.8, 3.7) (40.0, 5.1)
4o (64.7, 0.0) (80.0, 1.4) (72.2, 0.0) (78.3, 5.1)
o1 (23.5, 1.2) (28.0, 6.8) (22.2, 2.5) (43.3, 7.7)

Table 11: (False positive, False Negative) percentages for autoevaluation. Each row corresponds to
using a different critic model for evaluation.

is correct if the two questions were answered “supports” and “no;” the prompt details are in the
appendix.

Each row of Table 11 shows the performance of using the given model as a critic to evaluate the
responses from every model: each cell gives (false positive rate, false negative rate), where positive
means the unpuzzle solution is correct. In general, the false negative rates were significantly lower
than the false positive rates, so autoevaluation gives a conservative estimate of performance. Also
noteworthy is the complete lack of symmetry: o1 is much better at judging than being judged, though
overall Claude seems to make the best critic. We hope that the autoevals have enough fidelity to
allow the unpuzzles to be used for model improvement. Given the original unpuzzle, the correct
unpuzzle_solution, and the model’s response, we prompted the model twice with the following
question:

Autoevaluation prompt template 1

Here is a simple question:
{unpuzzle}

This simple question has the simple solution:
<correct solution>
{unpuzzle_solution}
</correct solution>

Is the reasoning in the following solution different,
regardless of it is correct or not?
<second solution>
{response}
</second solution>

Please answer with <answer>yes or no</answer>

The second question is the following:

Autoevaluation prompt template 2

The following are 2 solutions to a simple puzzle.
Solution 1: {unpuzzle_solution}

Solution 2: {response}

Compare the key points from both solutions step by step and then check
whether Solution 1 ‘supports’,‘contradicts’ or ‘is not directly related
to’ the conclusion in Solution 2.

Please answer with <answer>’supports’, ’contradicts’, or
’is not directly related to’</answer>

We only declared the model response as correct if we received answers “no” and “supports.”

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E UNPUZZLES: EXAMPLES OF CONTEXT CORRUPTION

We give examples of answers containing various degree of context corruption. As an example of
reasoning delirium, we show the solution of o1 to the Conjunctive Fallacy problem (Figure 8) in
Figure 9. As an example of context corruption leading to a correct final solution, we show o1’s full
solution to Chameleons Go on a Date (Figure 1) in Figure 10. As an example of context corruption
with an incorrect final solution, we show G1.5’s full solution to the same problem in Figure 11.

Conjunctive Fallacy (original puzzle)

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations. Which is more probable? A) Linda is a bank teller. B) Linda is a bank
teller and is active in the feminist movement. Answer: A (conjunctive fallacy)

Conjunctive Fallacy (unpuzzle)

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations. She is active in the feminist movement. Which is more probable? A)
Linda is a bank teller. B) Linda is active in the feminist movement. Answer: B (given)

Figure 8: Conjunctive fallacy: puzzle and corresponding unpuzzle.

o1’s Solution to Conjunctive Fallacy

This question is a version of the well-known “Linda problem,” originally posed by Tversky
and Kahneman to illustrate the conjunction fallacy. In the classic form, the two options are:
A) Linda is a bank teller. B) Linda is a bank teller and is active in the feminist movement.
The correct answer is always option A (that she is simply a bank teller), because any single
event (being a bank teller) must be at least as probable as that same event combined with
another (being both a bank teller and a feminist). Adding more conditions (in this case, being
a feminist as well) can never make an event more likely, even if that extra detail sounds more
“representative” of Linda’s personality.
Why it feels counter-intuitive (the “conjunction fallacy”): • People often choose the more
“representative” description—bank teller plus feminist—because it fits Linda’s profile better.
• However, mathematically, P(A and B) <= P(A). Hence, it cannot be more probable to be
both a bank teller and a feminist than it is to be just a bank teller.
In short, the more probable statement is simply “Linda is a bank teller.”

Figure 9: o1 solution to the Conjunction Fallacy problem, illustrating complete context corruption,
or delirium. The model provides the solution to the original problem, acknowledging the difference
only by referring to the "classic form" of the problem.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

o1’s solution to Chameleons Go on a Date

A succinct way to see that they can all end up the same color (and in fact which color that
must be) is via the following “invariant” argument:
1) Label the number of Purple, Yellow, and Maroon chameleons by P, Y, M, respectively. 2)
Notice that in any “meeting” of two different-colored chameleons, P, Y, M change according
to one of these three rules:
P + Y → 2M , so (P, Y,M) becomes (P − 1, Y − 1,M + 2).
Y +M → 2P , so (P, Y,M) becomes (P + 2, Y − 1,M − 1).
P +M → 2Y , so (P, Y,M) becomes (P − 1, Y + 2,M − 1).
3) Define the quantity S = P + 2Y (mod 3). One checks that under each of the above
transformations, S remains unchanged (that is, S is an invariant modulo 3).
4) At the start, we have P=15, Y=15, M=17. Then S = 15 + 2 * 15 = 15+30 = 45 = 0(mod 3).
5) If eventually all chameleons turn into a single color, say all Purple (P=47) or all Yellow
(Y=47) or all Maroon (M=47), then we can compute S in each scenario:
- All Purple: P = 47 =⇒ S = 47 + 2 · 0 = 47 = 2(mod3).
- All Yellow: Y = 47 =⇒ S = 0 + 2 · 47 = 94 = 1(mod3).
- All Maroon: M = 47 =⇒ S = 0 + 2 · 0 = 0 = 0(mod3).
Since the initial S = 0(mod 3), the only way to remain consistent with that invariant and end
up with all chameleons of one hue is if they all become Maroon (because only that final state
also gives S = 0).
Conclusion: Yes. It is possible for all of the chameleons to end up the same color; specifically,
they can all turn Maroon.

Figure 10: o1’s solution to Chameleons Go on a Date, illustrating context corruption with a correct
final answer

F UNPUZZLES MODEL RESPONSE HIGHLIGHTS

We saw many “creative” responses for the UNPUZZLES. Figures 12 and 13 show amusing examples
involving socks, ducks, and chickens.

Occasionally, a model will get delirious due to a different puzzle. Figure 14 shows an example of o1
copying a solution not from the original puzzle, but from an unrelated puzzle that also happens to
involve socks.

Sometimes the models seem aware that the problem is different, but they seem pretty intent on
sticking to the training distribution and make up flimsy excuses to rehash the original solution, as in
the River Crossing puzzle shown in Figure 15.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Gemini 1.5’s Solution to Chameleons Go on a Date unpuzzle

Let p, y, and m be the number of purple, yellow, and maroon chameleons, respectively.
Initially, we have p = 15, y = 15, and m = 17.
When two different-colored chameleons meet, they both turn into the third color. This means
the changes in the numbers of chameleons are always in increments of 2. We look at the
remainders when the numbers are divided by 3.
Initially, we have p ≡ 0 (mod 3), y ≡ 0 (mod 3), and m ≡ 2 (mod 3).
Consider the remainders when dividing the number of each color by 3 at each step. Let p ≡ p′

(mod 3), y ≡ y′ (mod 3), and m ≡ m′ (mod 3). The possible values for (p′, y′,m′) are
(0, 0, 2).
If a purple and a yellow chameleon meet, we have (p−1, y−1,m+2). Then the remainders
are (2, 2, 1). If a purple and a maroon chameleon meet, we have (p − 1, y + 2,m − 1).
Then the remainders are (2, 2, 1). If a yellow and a maroon chameleon meet, we have
(p+ 2, y − 1,m− 1). Then the remainders are (2, 2, 1).
We can notice a pattern. The remainders after any interaction will always satisfy p′+y′+m′ ≡
2 (mod 3). The possible remainder sets are: (0, 0, 2), (0, 2, 0), (2, 0, 0), (1, 1, 0), (1, 0, 1),
(0, 1, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2). We need all chameleons to have the same color. This
means two of the colors must be zero. The only combinations with two zeros are (0, 0, 2),
(0, 2, 0), and (2, 0, 0). We start with (0, 0, 2). If all the chameleons are purple, we would
have (1, 0, 0), which has a remainder sum of 1, which is not possible. If all the chameleons
are yellow, we would have (0, 1, 0), which has a remainder sum of 1, which is not possible.
If all the chameleons are maroon, we would have (0, 0, 1), which has a remainder sum of 1,
which is not possible.
Since all final states are not achievable, it is not possible for all chameleons to have the same
hue.
My final is: no.

Figure 11: G1.5’s solution to Chameleons Go on a Date, illustrating context corruption leading to an
incorrect final answer.

Matching Socks 2 (original puzzle)

You are about to leave for holiday, but you forgot socks! You race back to your room, but the power is off so you
can’t see sock colors. Never mind, because you remember that in your drawer there are ten pairs of identical
green socks, ten pairs of identical black socks, and eleven pairs of identical blue socks, but they are all mixed
up. How many of your socks do you need to take before you can be sure to have at least one pair matching in
color? Answer: 4 (by the pigeonhole principle)

Matching Socks 2 (unpuzzle)

You are about to leave for holiday, but you forgot socks! You race back to your room, but the power is off so
you can’t see sock colors. Never mind, because you remember that in your drawer there are ten pairs of green
socks, but they are all mixed up. All socks have an identical shape (there is no distinction between socks for left
and right feet). How many of your socks do you need to take before you can be sure to have at least one pair
matching in color? Answer: Since all socks are green, taking two clearly suffices.

Gemini 1.5’s Solution

The worst-case scenario is that you pick one sock from each of the ten pairs. This means you could
pick ten socks and still not have a matching pair. However, the very next sock you pick *must* create
a pair with one of the socks you already have.
So you need to pick 10 + 1 = 11 socks.
My final answer is: 11

Figure 12: Matching Socks 2: puzzle, unpuzzle, and an amusing answer by Gemini 1.5.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Counting Ducks (original puzzle)

There are two ducks in front of a duck, two ducks behind a duck and a duck in the middle. How many ducks are
there? Answer: 3

Matching Socks 2 (unpuzzle)

There are two ducks in front of the chicken, two ducks behind the chicken, and a duck to the left of the chicken.
How many ducks are there? Answer: 5

o1’s Solution

A classic way to see why the answer is three is to realize that “the chicken” named in the riddle is
actually just one of the three ducks (it has the nickname “Chicken”). Line the three ducks up:
• Duck 1 (sometimes called “Chicken”),
• Duck 2,
• Duck 3.
From the perspective of each duck, you can say there are “two ducks in front of it,” “two ducks
behind it,” and so on—yet you never actually need more than three ducks. The riddle’s wording
double-counts the same birds from different points of view. Hence, the total number of ducks is 3.

Figure 13: Counting ducks: puzzle, unpuzzle, and an answer by o1.

More Socks (original puzzle)

A man has 53 socks in his drawer: 21 identical blue, 15 identical black and 17 identical red. The lights are out
and he is completely in the dark. How many socks must he take out to make 100 percent certain he has at least
one pair of black socks? Answer: 38

More Socks (unpuzzle)

A man has 53 socks in his drawer: 21 identical blue, 15 identical black and 17 identical red. There is no
distinction between left and right socks. The lights are out and he is completely in the dark. How many socks
must he take out to have one sock for each foot? Answer: 2

o1’s Solution

A straightforward way to see why the answer is 4 is to use the “worst-case” or pigeonhole principle
argument:
• There are three colors (blue, black, red).
• If you pick 3 socks, in the worst case you could have one of each color (1 blue, 1 black, 1 red) and
thus no matching pair.
• As soon as you pick a 4th sock, by the pigeonhole principle at least two of them must be the same
color.
Hence, you must take out 4 socks to guarantee having a matching pair for your two feet.

Figure 14: More Socks: puzzle, unpuzzle, and an answer by o1.

G DETAILS FOR COUNTING

The counting tasks both use data from the Salesforce/wikitext and wikitext-2-v1 dataset Merity et al.
(2016) hosted on Hugging Face. We will briefly describe each of them and provide task cards.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

River Crossing with a Weight Constraint (original puzzle)

Four people (Alex, Brook, Chris and Dusty) want to cross a river in a boat that can only carry 100kg. Alex
weighs 90kg, Brook weighs 80kg, Chris weighs 60kg and Dusty weighs 40kg, and they have 20kg of supplies.
What is the minimum number of river crossings they need to get across?

River Crossing with a Weight Constraint (unpuzzle)

Four people (Alex, Brook, Chris and Dusty) want to cross a river in a boat that can only carry 300kg. Alex
weighs 90kg, Brook weighs 80kg, Chris weighs 60kg and Dusty weighs 40kg, and they have 20kg of supplies.
What is the minimum number of river crossings they need to get across? Answer: 1

Claude 3.5’s Solution

Let’s approach this step-by-step:
1. First, we need to consider the total weight: 90 + 80 + 60 + 40 + 20 = 290kg This is within the
300kg limit, but they can’t all go at once because the boat can only carry 300kg.
2. The most efficient way to cross is to always have the boat full or nearly full on each trip across,
and to send the lightest person back with the boat.
3. Here’s an efficient crossing strategy: - Trip 1: Chris (60kg) and Dusty (40kg) cross (100kg total)
- Trip 2: Dusty returns alone - Trip 3: Alex (90kg) and Brook (80kg) cross (170kg total) - Trip 4:
Chris returns alone - Trip 5: Chris (60kg), Dusty (40kg), and supplies (20kg) cross (120kg total)
4. This strategy requires 5 crossings in total.
5. We can’t reduce this number because: - We need at least 2 trips to get everyone across (the boat
must return at least once) - We can’t fit everyone in just two trips because Alex and Brook together
are already 170kg, leaving only 130kg for Chris, Dusty, and the supplies, which isn’t enough
Therefore, 5 is the minimum number of crossings required.
My final answer is: 5

Figure 15: River Crossing with a Weight Constraint: puzzle, unpuzzle, and an answer by Claude 3.5.

G.1 CHARACTER COUNTING

The character counting task is defined by paragraph bounds ml and mu. We randomly choose a
wikitext snippit from all paragraphs that adhere to the length limits. We then count all the characters
and randomly pick one in the top 10 most frequent.

Character counting prompt template

I will provide you a block of text. Please count the number of times
the character "{sampled_char}" appears in the text.
Give your answer using the format:

"The character appears #your answer# times."

Think step by step.
Here is the text.
{sampled_paragraph}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G.2 WORD COUNTING

For the word counting task, we begin the same way by sampling a paragraph that obeys the length
restrictions. We then compute the word frequencies, always asking the model to find the top k most
frequent words. Because the wikitext data have white spaces around each word and all characters are
lower case, each word always has the same tokenization.

The prompt template is give below.

I will provide you a block of text. Please count the number of
times each word in the list [word 1, word 2,...,word k] appears
in the text.
Give your answer using the format:
"The words appear [your answer for the first word ,
your answer for the second word , ...] times."
Think step by step.
Here is the text
{text}

H DETAILS FOR THE LOGIC TASKS

This section provides pseudocode for generating tasks for logic evaluation and logic negation tasks.

A logic formula can be represented by a tree where nodes are logical operators and leaves are atomic
propositions. The nodes have a certain truth value depending on the value of their children. The
standard nodes have three types: connective, unitary, and quantifying. Connective nodes have two
children (left and right), and unitary and quantifying nodes have one child. Throughout this section,
T and F denote True and False, respectively.

There are two types of leaves:

• Atomic propositions (often denoted by single capital letters, e.g., P , Q, etc.) are either true
or false.

• Predicates represent a property about an individual. For example, for predicate P , we have
P (x) = T if the individual x has the property P . We expect P (x) to have different values
as x changes.

There are seven operators, described in the following table (other logical primitives, e.g., the exclusive
or, may be derived from the ones below).

Name Symbol Type Description
and ∧ connective True if both children are True
or ∨ connective True if at least one child is True

implies → connective Only False if T → F
equals ⇔ connective True if the left and right child are equal

not ¬ unitary The opposite value of its child
universal quantification ∀x ∈ X quantifying True if the child evaluates to True for

every value x in domain X .
existential quantification ∃x ∈ X s.t. quantifying True if the child evaluates to True for

some value x in domain X .

Nodes of connective and unitary types are only defined by their symbol. A quantifying node is
defined by its symbol and the domain it operates on. For simplicity, we will simply number the
possible domains, e.g., D1, D2,

The first step in constructing a logic task is to sample a logic formula. We describe how in the next
section.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H.1 SAMPLING A LOGIC FORMULA

Including first-order logic requires a sampling procedure that ensures the domains have scopes that
make sense. In particular, the domain of a predicate must be from one of its ancestors. To enforce
this, we keep track of every used domain in each subtree and limit the domains of predicates to these
domains. Once we finish sampling a subtree with a root quantifying node, we then check if the
subtree actually used the domain of the root. If not, the quantifying node is removed.

The logic problems were also parameterized by the number of unique propositions, n. For n = 8, we
also chose the number of unique predicates and domains to be 8 and 4, respectively. For n = 16, the
number of unique predicates and domains were 16 and 8, respectively.

We use several different sets of names for the propositions, predicates, and domains. They include

• common letters;
• random 20 character-long lower case strings;
• words about movies.

For generating each prompt, a subset of the appropriate size was selected from larger sets. For
example, the “movie” vocabulary uses the following words:

• Propositions: dark, dramatic, intense, thrilling, suspenseful, romantic, comedic, tragic, epic,
inspiring, thought-provoking, emotional, powerful, beautiful, visually-stunning, artistic,
creative, imaginative, innovative, classic, mainstream, independent, foreign, animated,
biographical, historical, fictional, realistic, surreal, abstract

• Predicates: has_subtitles, is_streamable, is_theatrical_release, is_direct_to_video,
is_part_of_franchise, has_sequel, has_prequel, is_remake, is_based_on_book,
is_based_on_true_story, is_animated, uses_cgi, uses_stop_motion, is_live_action,
is_musical, is_comedy, is_drama, is_horror, is_action, is_sci_fi, is_fantasy, is_romance,
is_thriller, is_documentary, is_historical_fiction, is_independent_film, is_big_budget,
won_awards, has_famous_actors, has_original_score„ is_award_winning,

• Domains: action_movies, comedies, period_pieces, science_fiction_films, fantasy_films,
horror_films, thrillers, dramas, romantic_comedies, romantic_dramas, musicals, west-
erns, crime_films, war_films, documentaries, biopics, animated_films, adventure_films,
mystery_films, superhero_films.

Algorithm 1: Sampling a First-order Logic Formula
Data: maximum depth dmax

probability of deepening tree pd
probability of sampling a connective node pc
probability of sampling a unitary node pu
probability of sampling a quantifying node pq
the number of unique atomic propositions Na

the number of unique domains Nd

Call the helper function Algorithm 3 with D = ∅, d = 0;
A:
Algs
2
and
3
swap?
prob-
a-
bli-
ties
0.3,etc.
in
Alg
2.,
if
"with
prob-
a-
bil-
ity"
in
alg
3

H.2 CONSTRUCTING THE LOGIC EVALUATION TASK

For every task, we first sample a logic formula with pq = 0, i.e. without quantifying nodes. We
use pd = .8, pc = .85 and pu = .15; that is, we only choose an atomic proposition 20% of the
time (unless we must to adhere to the maximum depth), and of the remaining 80%, we choose a
connective node 85% of the time and a ¬ operator 15%. After sampling the formula, the names for
all atomic propositions are chosen from a name set as described above. We then sample random
value assignments for all atomic propositions until we find one that evaluates to true and three that
evaluate to false. These are then presented in random order using the following prompt template.
Some models (notably o1) have restrictions on the language you can use to prompt the model. In that
case “think carefully step-by-step and” was removed from the last sentence.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 2: Sampling a node
Data: Probabilities pc, pu, pq of sampling a connective, unitary, or quantifying node

List of previously used domains D
Number of unique domains ND

if |D| = Nd then
Choose node from (connective, unitary) with probabilities proportional to (pc, pu);

else
Choose node from (connective, unitary, quantifying) with probabilities to (pc, pu, pq);

if node is connective then
Choose operator from (∧,∨,→,⇔) with probabilities (.3, .3, .3, .1);

else if node is unitary then
Set operator to be ¬.;

else
/* node is quantifying */
Choose operator from (∀,∃) with equal probability.;
Choose new domain uniformly from {1, . . . Nd} \D;

return operator, new domain

Algorithm 3: Sampling Helper function
Data: maximum depth dmax

current depth d
List of previously used domains D
Number of unique domains Nd

Probability of going deeper pd
List of atomic propositions Lprop

List of predicates Lpred

Sample U ∼ Uniform[0, 1];
if d = dmax or U ≥ pd then

if With probability 50% then
return An atomic predicate uniformly from Lprop

else
Sample a predicate uniformly from Lpred;
Sample a domain uniformly from D;
return the predicate over the domain

else
Chose node N , with domain Dnew if N is quantifying, using Algorithm 2;
For each child of N , sample using this algorithm with d = d+ 1, D = D ∪ {Dnew};
if N is quantifying and Dnew was not used by the descendants of N then

return the child of N
else

return N

Logic evaluation prompt template

You are a logic student. I will give you a logical formula, written in
propositional logic, as well as four options for values of every atomic
proposition in the formula.

Logical formula: {formula}

Which of the following choices makes the logical formula evaluate to
True?

A: {answer 1}
B: {answer 2}
C: {answer 3}
D: {answer 4}

Please think carefully step-by-step and provide your answer with
<answer>A, B, C, or D</answer>.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H.3 CONSTRUCTING THE LOGIC NEGATION TASK

Similar to the Logic Evaluation Task, the negation task samples a logic formula with pc = .6,
pu = pq = .2 and all other sampling parameters the same. We then compute the negation using the
standard rules for first-order logic, assign it to a random choice, then perturb the correct answer to
arrive at the three incorrect choices.

We perturb a logic formula by selecting, uniformly at random, a single node or leaf of the tree; the
perturb operation depends on node type.

• Proposition: we create a list of all propositions in the formula, append a new, unused
proposition (so long as the total number of propositions satisfies the constraints of the
problem), then replace the proposition from the list uniformly at random.

• Predicate: We do an analogous procedure.

• Quantifying node: we changed it to the other type.

• Connective node: we replace with a connective node of a different type, selected uniformly
at random

• Unitary node: We simply remove this node.

We apply two perturbations to generate each incorrect answer, and repeat the perturbation process to
guarantee that all four choices are unique. Finally, we form a question using the following template.
Some models (notably o1) have restrictions on the language you can use to prompt the model. In that
case “think carefully step-by-step and” was removed from the last sentence.

Logic negation prompt template

You are a logic student. I will give you a statement in first-order
logic, and your task is to find it’s negation from a list of choices.

Logical formula: {formula}

Which of the following is its negation?

A: {answer 1}
B: {answer 2}
C: {answer 3}
D: {answer 4}

Please think carefully step-by-step and provide your answer with
<answer>A, B, C, or D</answer>.

H.4 EXAMPLES OF FAILURES

Here are some illuminating examples of incorrect responses.

Finding a shortcut but failing at simple logic Here is an example where the prompt is very long
but there is an obvious simplification. All models notice this simplification and try to exploit it to find
the answer, but all make very elementary mistakes after making the simplification. Given the model,s
scores for d = 4 trees, we know that they are able to perform the correct logical steps for a simple
formula, but fail when the formula is simple but with a large sub-tree in it.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Question

You are a logic student. I will give you a logical formula, written in
propositional logic, as well as four options for values of every atomic
proposition in the formula.

Logical formula:
thrilling and ((not thrilling or X....X)) or (dark or thrilling))

Which of the following choices makes the logical formula evaluate to
True?
A) dark: False, dramatic: True, intense: True, thrilling: False,
suspenseful: False, romantic: True, comedic: True, tragic: False.
B) dark: False, dramatic: True, intense: True, thrilling: False,
suspenseful: True, romantic: False, comedic: False, tragic: False.
C) dark: True, dramatic: False, intense: True, thrilling: False,
suspenseful: True, romantic: True, comedic: False, tragic: False.
D) dark: True, dramatic: True, intense: False, thrilling: True,
suspenseful: False, romantic: False, comedic: False, tragic: True.

Please provide your answer with <answer>A, B, C, or D</answer>.

where the correct answer is D and X...X is a large sub-expression we have hidden.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

o1’s Response

Step-by-step reasoning:

1) Observe the formula’s overall shape. Its outermost structure is of
the form (thrilling AND ...) OR (dark OR thrilling).

In more schematic form:
X or (dark or thrilling),

where X is a very large sub-formula involving all the propositions.

2) Recall how OR works in propositional logic:
• If (dark or thrilling) is true, then the whole formula is true
regardless of X.
• If (dark or thrilling) is false, then dark = false and
thrilling = false, and in that case we would need (thrilling AND ...)
to be true. But if thrilling = false, then

(thrilling AND ...) is automatically
false, making the entire formula false.

3) Check each choice’s (dark or thrilling):
A) dark = False, thrilling = False => dark or thrilling = False

Then the left part is “thrilling AND ...” = False AND ... = False.
Overall result = False or False = False.

B) dark = False, thrilling = False => exactly the same reasoning as
(A), yields False.
C) dark = True, thrilling = False => dark or thrilling = True,

so the whole formula = X or True = True (no need to check X).
D) dark = True, thrilling = True => dark or thrilling = True,

so again the whole formula = X or True = True.

Thus both (C) and (D) make (dark or thrilling) = True, and so make the
entire formula evaluate to True.

Since the question asks “Which of the following choices makes the
logical formula evaluate to True?” the correct answer (in standard
multiple-choice fashion) is whichever of (C) or (D) is offered as valid.
In fact, both of them do.

Therefore, a valid selection is:

<answer>C</answer>

The error results from eliminating all options except for C and D). This mistake causes the model to
focus on the wrong part of the clause.

Gemini makes a similar mistake.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Gemini 2.0 Flash’s Response

The given statement is of the form $P \Leftrightarrow Q$. The negation of
$P \Leftrightarrow Q$ is $\neg (P \Leftrightarrow Q)$, which is equivalent
to $(P \land \neg Q) \lor (\neg P \land Q)$.

Let’s denote the left side of the main biconditional as L and the right
side as R. So the given statement is $L \Leftrightarrow R$. Its negation
is
$\neg (L \Leftrightarrow R) \equiv (L \land \neg R) \lor (\neg L \land R)$.

Looking at the options, we can see that all of them are of the form
$(L \to \neg R) \lor (\neg L \to R)$, which is incorrect. The negation of
$P \Leftrightarrow Q$ is not equivalent to
$(P \to \neg Q) \lor (\neg P \to R)$.

...

The reasoning traces of Claude 3.7 often suggest that it is taking shortcuts rather than executing
computations, in that explicit computations are not present in the reasoning trace. Claude typically
tries to guess the best option based on the formula structure ("This is extremely complex, but I’ll
focus on the overall structure.")

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Claude 3.7 Response

I need to find the negation of the given logical statement. Let me work
through this step by step.

The original statement has the form:
b or (...complex formula...) -> (...complex formula...) or (h and ...)

To negate this statement, I need to apply the negation rules:
- Negation of "p or q" is "not p and not q"
- Negation of "p -> q" is "p and not q"
- Negation of "p and q" is "not p or not q"

So the negation should have the form:
not b and ((...complex formula...) and not(...complex formula...)) and
(not h or ...)

Looking at the options, I notice they all start with "not b and...", which
is correct for the negation of "b or...".

Among the choices, I need to check which one correctly negates all parts of
the original statement. This is extremely complex, but I’ll focus on the
overall structure.

Since the original statement has the form:
b or X -> Y or (h and Z)

The negation should be:
not b and X and not Y and (not h or not Z)

Looking at options B and C, they appear to have the correct structure for
the negation of the original statement. Option B includes "not b and..."
followed by the same complex formula structure with appropriate negations
applied. The final part properly includes "not h or...".

After careful examination, I believe option B correctly represents the
negation of the original statement. It properly negates all components
while maintaining the correct logical structure.

<answer>B</answer>

Nonsensical Logic When there is no simplifying tactic, the models will try to evaluate the expres-
sion by breaking it into sub expressions where errors creep in eventually

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Gemini 2.0 Flash’s Response

Let the given statement be S. The statement S has the form
$(P \land Q) \lor (R \land (\neg e)) \land T$, where
$P = \exists x \in X3 \text{ s.t. } ((E(x) \lor (g \to h)
\iff \neg(h \lor c)) \to (((\forall x \in X1 C(x)) \iff \neg A(x))
\iff \neg(f \lor b)))$
$Q = \neg(\forall x \in X1 \exists x \in X1 \text{ s.t. } H(x))$
$R = \neg((\exists x \in X1 \text{ s.t. } (h \iff b) \lor
(\forall x \in X1 E(x))) \lor b)$
$T = \forall x \in X3 (((((\exists x \in X1
\text{ s.t. } C(x)) \lor g) \lor ((C(x) \iff f) \lor \neg f)) \land
(((b \iff E(x)) \land (E(x) \lor a)) \iff ((D(x) \to g) \to g)))
\to ((c \to b) \iff (C(x) \land C(x)))) \land ((\neg(E(x) \lor
(C(x) \land b \to ((h \to h) \land (\exists x \in X
\text{ s.t. } H(x)))))) \to g))$

We want to find the negation of S, which is
$\neg S = \neg((P \land Q) \lor (R \land (\neg e)) \land T)$.
Using De Morgan’s laws, we have:
$\neg S = \neg(P \land Q) \lor \neg(R \land (\neg e)) \lor \neg T$
$\neg S = (\neg P \lor \neg Q) \land (\neg R \lor \neg(\neg e)) \land \neg T$
$\neg S = (\neg P \lor \neg Q) \land (\neg R \lor e) \land \neg T$

Let’s negate each part:
$\neg P = \neg(\exists x \in X3 \text{ s.t. } ((E(x) \lor (g \to h)
\iff \neg(h \lor c)) \to (((\forall x \in X1 C(x)) \iff \neg A(x))
\iff \neg(f \lor b))))$...
...
Without a clear match, and given the high complexity, I cannot confidently
select an option. I suspect an error in the provided question or options.

Final Answer: (No answer can be confidently determined due to
structural mismatch)
<answer>A</answer>"

The logic used is hard to follow because it’s nonsensical. Gemini starts trying to evaluate the whole
phrase, but then essentially gives up and leaves large expressions in the (...).

Misreading the options Another common failure mode is that the model concludes that two
options are the same or that no correct answer exists when it erroneously assumes two options are the
same.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Gemini 2.0 Flash’s Response

"The given logical statement is:
not ((((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t. A(x)
or b <=> not m) or (not (p and g -> (e <=> i)))))
and ((((f -> l) -> j and f <=> (Exists x in X1 s.t. N(x) and H(x))) ->
((j or j -> not m) and (p and g -> h)))
<=> ((not j -> (d <=> m -> o)) <=> n and f))) or c)

We need to find the negation of this statement. Let’s represent the statement
inside the outermost ’not’ as P. So the given statement is ’not (P or c)’.

The negation of ’not (P or c)’ is ’(P or c)’.

Now let’s substitute P back with its original form:
(((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t. A(x) or b
<=> not m) or (not (p and g -> (e <=> i))))) and ((((f -> l) -> j and f <=>
(Exists x in X1 s.t. N(x) and H(x))) -> ((j or j -> not m) and
(p and g -> h)))
<=> ((not j -> (d <=> m -> o)) <=> n and f))) or c

Comparing this result with the given options:

Option A: (((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t.
A(x) or b <=> not m) or (not (p and g -> (e <=> i))))) and ((((f -> l) -> j
and f <=> (Exists x in X1 s.t. N(x) and H(x)))
-> ((j or j -> not m) and
(p and g -> h))) <=> ((not j -> (d <=> m -> o)) <=> n and f))) or c
This option is exactly the same as the expression we derived for the
negation.

Option B: (((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t.
A(x) or b <=> not m) or (not (p and g -> (e <=> i))))) and ((((f -> l) -> j and
f <=> (Exists x in X1 s.t. N(x) and H(x))) -> ((j or j -> not m) and (p and g
-> h))) <=> ((not j -> (d <=> m -> o)) <=> n and f))) or c
This option is also exactly the same as the expression we derived for the
negation.

Option C: (((Exists x in X5 s.t. not (l <=> M(x))) and ((Exists x in X5 s.t.
A(x) or k <=> not n) or (not (e and b -> (m <=> f))))) and ((((c -> p) -> o
and p <=> (Exists x in X1 s.t. N(x) and H(x))) -> ((d or d -> not o) and
(o and b -> p))) <=> ((not i -> (h <=> o -> b)) <=> e and i))) or d
This option is different from the derived negation.

Option D: (((Exists x in X5 s.t. not (k <=> M(x))) and ((Exists x in X5 s.t.
A(x) or b -> not m) or (not (p and g -> (e <=> i))))) and (((f and l -> j
and f <=> (Exists x in X1 s.t. N(x) and H(x))) -> ((j or j -> not m) and
(p and g -> h))) <=> ((not j -> (d <=> m or o)) <=> n and f))) or c
This option is also different from the derived negation.

Since the negation of ’not (P or c)’ is ’(P or c)’, and both options A and
B are identical to P or c, both are correct negations. However, usually
there should be only one correct answer in a multiple-choice question.
Let’s re-examine the question and the options to ensure there isn’t a subtle
difference I missed.

There is no subtle difference. Options A and B are identical and represent
the negation of the given statement. Assuming there was a typo in the
question and only one option should be correct, and given that they are
identical, we can choose either one.

<answer>A</answer>"

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Missing Simple Rules Perhaps surprisingly, sometimes the models fail because they cannot apply
simple logical rules (De Morgan’s, in this case:)

o1’s Response

"First, note that the given statement is of the form
not (Exists x in X_2 : ...)

in other words, it begins with “not (Exists x in X_2 s.t. ...).”

The standard logical negation of
not (Exists x : P(x))
is
Exists x : not P(x).
...

We truncated the output because the error is already present: the model negated the first term
incorrectly, clearly violating the rule it just wrote out.

I DETAILS FOR PROOF TREE

This section describes the Proof Tree construction, along with the inference rules we derived.

I.1 LOGICAL FORMS

These forms were included in the original paper:

• container (cont): “A has 5 apples."

• comparison (comp): “A has 3 more apples than B."

• transfer: “A gives B 3 apples."

• comp-eq: “The number of apples that C has more than D is equal to the difference between
the number of apples that A and B have."

• partwhole: “A and B combine the fruits that they have."

Our diverse rules task added the following additional rules.

• consume (cons): “A eats 5 apples."

• increase: “The number of apples that A has increases by 2 times."

• switch: “A and B switch the apples they have."

• redistribute: “A and B redistribute their apples to ensure each has an equal amount."

• split: “A splits all the apples she owns equally between B and C."

• conditional transfer (cond-transfer): “If B has more than 2 apples, B will transfer all their
apples to A."

• cumulative (cum): “The combined quantity of apples that A, B, and C have is 20."

• multi-agent comparison (multi-comp): “A has 10 more apples than B and C combined."

• sequential comparison (seq-comp): “A has 3 more apples than B and 5 less apples than C."

I.2 INFERENCE RULES

Each logical form requires inference rules that describe its implications on our knowledge of the
number of apples everyone has. The inference rules from the original paper include:

• ContCompInference: cont(a,q1,e) comp(b,a,q2,e)
cont(b,q1+q2,e)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

– Example: "Alice has 3 apples. Bob has 2 more apples than Alice. ` Bob has 5 apples."

• ContTransferInference: cont(a,q1,e) transfer(a,b,q2,e)
cont(a,q1+q2,e)

– Example: "Alice has 3 apples. Bob gave 2 apples to Alice. ` Alice has 5 apples."

• ContContInference: cont(a,q1,e) cont(b,q2,e)
comp(b,a,q2−q1,e)

– Example: "Alice has 3 apples. Bob has 5 apples. ` Bob has 2 more apples than Alice."

• CompEqInference: cont(a,q1,e) comp(d,c,q2,e) comp-eq(b,a,d,c,e)
cont(b,q1+q2,e)

– Example: "Alice has 7 apples. David has 2 more apples than Charlie. The number of
apples that Bob has more than Alice is the same as the difference between the number
of apples that David and Charlie have. ` Bob has 9 apples."

To be able to make correct inferences over our new rules, we also derived the following inference
rules.

• ContConsInference: cont(a,q1,e) cons(a,q2,e)
cont(a,q1−q2,e)

– Example: "A has 10 apples. A eats 3 apples. ` A has 7 apples."

• ContIncreaseInference: cont(a,q1,e) increase(a,q2,e)
cont(a,q1×q2,e)

– Example: "A has 4 apples. The number of apples that A has increases by 3 times. ` A
has 12 apples."

• ContSwitchInference: cont(a,q1,e) cont(b,q2,e) switch(a,b,e)
cont(a,q2,e) cont(b,q1,e)

– Example: "A has 5 apples. B has 8 apples. A and B switch the apples they have. ` A
has 8 apples. B has 5 apples."

• ContRedistributeInference: cont(a,q1,e) cont(b,q2,e) redistribute(a,b,e)

cont(a, q1+q2
2 ,e) cont(b, q1+q2

2 ,e)

– Example: "A has 6 apples. B has 10 apples. A and B redistribute their apples to ensure
each has an equal amount. ` A has 8 apples, and B has 8 apples."

• SplitInference: cont(a,q1,e) cont(b,q2,e) split(a,q4,{b,c},e)

cont(a,q1−q4,e) cont(b,q2+
q4
2 ,e)

– Example: "A has 12 apples. B has 4 apples. A splits all the apples she owns equally
between B and C. ` A has 0 apples. B has 10 apples."

• CondTransferInference: cont(a,q1,e) cont(b,q2,e) cond-transfer(b,a,q2,e,q2>q3)
cont(a,q1+q2,e) if q2>q3; cont(a,q1,e) otherwise

– Example: "A has 5 apples. B has 7 apples. If B has more than 6 apples, B will transfer
all their apples to A. ` A has 12 apples."

• CumulativeToContInference: cont(a1,q1,e) ... cont(an−1,qn−1,e) cum(a1,...,an,q,e)

cont(an,q−Σn−1
i=1 qi,e)

– Example: "A has 5 apples. B has 3 apples. The combined quantity of apples that A, B,
and C have is 15. ` C has 7 apples."

• MultiCompInference: cont(a,q1,e) cont(b,q2,e) multi-comp(a,b,c,q3,e)
cont(c,q1−q2−q3,e)

– Example: "A has 12 apples. B has 2 apples. A has 10 more apples than B and C
combined. ` C has 0 apples."

• SeqCompInference: seq-comp(a,b,c,q1,q2,e) cont(b,q3,e)
cont(a,q3+q1,e) cont(c,q3+q1+q2,e)

– Example: "A has 3 more apples than B and 5 fewer apples than C. B has 7 apples. ` A
has 10 apples. C has 15 apples."

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

I.3 DETAILS FOR PROOF TREE IRRELEVANT

The irrelevant sentences are samples from the following list:

Irrelevant sentences template

"{} is very generous and enjoys
sharing food with others.",
"{} tends to be laid-back and prefers
staying in rather than going out.",
"{} is highly introverted and prefers
minimal communication with others.",
"{} is very outgoing and frequently
hosts parties at home.",
"{} and {} are good friends who often
go fruit or vegetable picking together
on weekends.",
"{} and {} have been married for {}
years.",
Random years will be added
"{} is {} years old."
Random age will be added

I.4 CONSTRUCTING BASIC PROOF TREE AND PROMPTS

A proof tree is generated by first picking a target conclusion predicate—a “cont” (container) that
states how many items a single agent possesses. Given this target, the system identifies all inference
rule classes that can yield such a conclusion. Each rule class is assigned a weight, determining its
likelihood of selection; higher weights correspond to a greater chance of being chosen. Specifically,
“ContCompInference” is weighted at 1, “ContTransferInference” at 5, “ContContInference” at 1,
and “CompEqInference” at 10. The system then randomly selects one inference rule among those
whose premises can produce the target conclusion, with the probability of each rule proportional to
its weight. The chosen rule provides the premises (new conclusion targets) required to derive the
original predicate. Each of these premises is then handled the same way: we attempt to produce them
(recursively) via suitable rules, or it marks them as leaves (facts) if no rules fit or the tree has reached
its maximum size constraints. This procedure yields a proof tree where each internal node applies a
randomly selected (but weighted) inference rule to derive the node’s conclusion from its premises,
while the leaves represent axiomatic statements used in the proof. See Algorithm 4 and Algorithm 5
for the pseudocode. A:

Com-
ment
on
how
the
dif-
fer-
ent
sub-
trees
do
not
con-
tra-
dict.

Algorithm 4: Pseudocode for Generating a Proof Tree
Function GenerateProofTree (max_depth,max_leaves, available_agents);

selected_agent ← randomly pick 1 from available_agents;
remove selected_agent from available_agents;
quantity ← random integer in [10, . . . , 30];
entity ← random pick an entity;
root_predicate ← Cont(selected_agent , quantity , entity);
return GenerateSubtree(root_predicate,max_depth,max_leaves, 0, 1, available_agents)

Once the proof tree is constructed, its leaves are traversed in order and converted into sentences using
natural language templates, forming the textual body of the problem. The question of the problem is
derived from the logical form at the root of the proof tree.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Algorithm 5: Pseudocode for Generating a Subtree Tree
Data: node,max_depth,max_leaves, current_depth, current_leaves, available_agents
if current_depth ≥ max_depth then

return node /* do not expand further at max depth */

candidate_rules ← ∅;
for rule_class ∈
{ContCompInference,ContTransferInference,CompEqInference,ContContInference} do

if rule_class.can_yield(node.conclusion, available_agents) and
(rule_class.num_premises + current_leaves) ≤ max_leaves then

candidate_rules.add(rule_class);

if candidate_rules is empty then
return node /* no valid rules; node is leaf */

weights ← map each rule class in candidate_rules to its weight;
chosen_rule_class ← randomly select from candidate_rules using weights;
instantiated_rule ←
chosen_rule_class.make_rnd_instance(node.conclusion, available_agents);
node.rule ← instantiated_rule;
current_leaves ← current_leaves + instantiated_rule.num_premises − 1;
if current_depth < max_depth − 1 then

for premise ∈ instantiated_rule.premises do
child_node ← Generate Subtree with data premise, max_depth , max_leaves ,
current_depth + 1, current_leaves , available_agents , and
node.children.add(child_node;

current_leaves ← current_leaves + (child_node.num_leaves()− 1);
for agent ∈ premise.agents() do

if agent ∈ available_agents then
remove agent from available_agents

return node

Proof Tree Example with max depth 5 and max leaves 20

Lindsay has 13 apples.
Arleth has 4 more apples than Mathew.
Nellie has 17 apples.

Dian has 3 more apples than Amy.
Amy has 17 apples.

Courtney has 14 more apples than Peggie.
Ida has 31 apples.
The number of apples that Peggie has more than Courtney
is equal to the difference between the number of apples
that Amy and Ida have.

Dian has 20 apples.
Dian has 13 apples.
Prudence gives 7 apples to Dian.

Annabelle has 14 apples.
Lacie has 13 more apples than Federico.
Georgia has 27 apples.

Jose has 13 more apples than Agatha.
Wilson has 40 apples.
The number of apples that Agatha has more than Jose is
equal to the difference between the number of apples
that Georgia and Wilson have.

The number of apples that Federico has more than Lacie is
equal to the difference between the number of apples that
Annabelle and Georgia have.

The number of apples that Dian has more than Amy is equal to the
difference between the number of apples that Nellie and
Annabelle have.

The number of apples that Mathew has more than Arleth is equal to the
difference between the number of apples that Lindsay and Nellie have.44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Prompt Example

Courtney has 14 more apples than Peggie. Ida has 31 apples. The number
of apples that Peggie has more than Courtney is equal to the difference
between the number of apples that Amy and Ida have. Dian has 13 apples.
Prudence gives 7 apples to Dian. Jose has 13 more apples than Agatha.
Wilson has 40 apples. The number of apples that Agatha has more than
Jose is equal to the difference between the number of apples that
Georgia and Wilson have. Lacie has 13 more apples than Federico. The
number of apples that Federico has more than Lacie is equal to the
difference between the number of apples that Annabelle and Georgia have.
The number of apples that Dian has more than Amy is equal to the
difference between the number of apples that Nellie and Annabelle have.
Arleth has 4 more apples than Mathew. The number of apples that Mathew
has more than Arleth is equal to the difference between the number of
apples that Lindsay and Nellie have. How many apples does Lindsay have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."

I.5 CONSTRUCTING PROOF TREES WITH DIVERSE STATEMENTS

In this task, given a diverse set of logical statements, the model must answer word-based questions that
require deduction, sampled from a tree with a bounded depth and number of leaves. The parameters
are the maximum tree depth d, and whether to include the additional logical forms.

Proof Tree with Diverse Statements example

Briana has 2 bananas. Tom has 0 bananas.
If Tom has more than 1 bananas, Tom will
transfer all their bananas to Briana....
Whitney and Freida redistribute their
bananas to ensure each has an equal
amount. Eula has 6 more bananas than
Dexter and 11 fewer bananas than
Bernardo.... How many bananas does
Amelia have?
Give your answer using the format:
The final answer is
$\boxed{#your answer}$.

The process of constructing a proof tree with diverse statements is similar to the basic proof tree
construction, with the key difference being the set of inference rules used and their assigned weights.
Specifically, the weights for the inference rules are as follows: “ContCompInference” is weighted at 1,
“ContTransferInference” at 1, “ContContInference” at 1, “CompEqInference” at 10, "ContConsInfer-
ence" at 1, "ContIncreaseInference" at 10, "ContSwitchInference" at 1, "ContRedistributeInference"
at 10, "SplitInference" at 10, "CondTransferInference" at 10, "CumulativeToContInference" at 1,
"MultiCompInference" at 10, "SeqCompInference" at 10.

In our experiments, we set the maximum number of leaves to 20. We then vary the maximum depth
and the inclusion of diverse statements to evaluate the model’s performance.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

I.6 CONSTRUCTING PROMPTS WITH IRRELEVANT INFORMATION

Proof Tree with Irrelevant information example

Veda is very generous and enjoys sharing food with others.
Sibyl has 14 more apples than Ashley. ...
The number of apples that Ali has more than Howell is equal to the difference
between the number of apples that Jacqueline and Vollie have....
Carlo tends to be laid-back and prefers staying in rather than going out....
How many apples does Destiny have?
Give your answer using the format:
The final answer is \$\textbackslash boxed\{\#\textbackslash text\{your answer\}\}\$.

In problems involving proof trees with irrelevant information, the problem parameters are the
maximum tree depth d, the number of irrelevant people P , and the number of irrelevant sentences
S. To construct prompts containing irrelevant information, we first generate the baseline proof tree
with a maximum depth of 5 and a maximum of 20 leaves. Irrelevant information is then introduced
through two main components: irrelevant agents and irrelevant sentences:

- Irrelevant agents: Irrelevant agents are created by dividing the pool of agent names into subsets
that are distinct from the key agents, ensuring no overlap. These subsets are then used to generate
irrelevant proof trees, employing a consistent randomization process (i.e., all the irrelevant proof
trees are identical to the key proof trees, differing only in the names of the agents involved). Each
irrelevant proof tree is converted into axioms and shuffled alongside the key axioms.

Irrelevant Proof Tree Example with max depth 5 and max leaves 20

Nora has 13 apples.
Hal has 4 more apples than Jean.
Aggie has 17 apples.

Theron has 3 more apples than Marjorie.
Marjorie has 17 apples.

Caryl has 14 more apples than Robert.
Philomena has 31 apples.
The number of apples that Robert has more than Caryl is
equal to the difference between the number of apples that
Marjorie and Philomena have.

Theron has 20 apples.
Theron has 13 apples.
Stefani gives 7 apples to Theron.

Genevieve has 14 apples.
Ida has 13 more apples than Angelique.
Doris has 27 apples.

Lorenzo has 13 more apples than Gussie.
Adrian has 40 apples.
The number of apples that Gussie has more than Lorenzo
is equal to the difference between the number of apples
that Doris and Adrian have.

The number of apples that Angelique has more than Ida is
equal to the difference between the number of apples that
Genevieve and Doris have.

The number of apples that Theron has more than Marjorie is equal
to the difference between the number of apples that Aggie and
Genevieve have.

The number of apples that Jean has more than Hal is equal to the
difference between the number of apples that Nora and Aggie have.

- Irrelevant sentences: Irrelevant sentences are generated using predefined templates (see Section I.3).
To integrate the irrelevant information with the context, these sentences are randomly inserted into
the shuffled list of axioms at arbitrary positions.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Irrelevant Sentence Examples

Caryl is highly introverted and prefers minimal communication with others.
Courtney is very generous and enjoys sharing food with others.
Adella is 46 years old.
Newton tends to be laid-back and prefers staying in rather than going out.
Arleth is very generous and enjoys sharing food with others.
Nico is very outgoing and frequently hosts parties at home.
Dennis is very generous and enjoys sharing food with others.
Moe and Agatha have been married for 17 years.
Rubie and Angelique have been married for 16 years.
Jean tends to be laid-back and prefers staying in rather than going out.
Mathew is highly introverted and prefers minimal communication with others.
Dalton tends to be laid-back and prefers staying in rather than going out.
Joel is very generous and enjoys sharing food with others.
Adrian and Perla are good friends who often go fruit or vegetable picking
together on weekends.
Rosina is very generous and enjoys sharing food with others.
Mickie is very outgoing and frequently hosts parties at home.
Elijah is very generous and enjoys sharing food with others.
Bert is very generous and enjoys sharing food with others.
Robert is 32 years old.
Delma is highly introverted and prefers minimal communication with others.
Vallie and Miriam are good friends who often go fruit or vegetable picking
together on weekends.
Orma is highly introverted and prefers minimal communication with others.
Cornelius is very generous and enjoys sharing food with others.
Marylee is very outgoing and frequently hosts parties at home.
Mitchell and Doris have been married for 3 years.

In our experiments, we set the maximum depth to 5 and the maximum number of leaves to 20. We
then vary the number of irrelevant agents A and the number of irrelevant sentences S to evaluate the
model’s performance.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

I.7 EXAMPLE OF FAILURE DUE TO DIVERSE STATEMENTS

Question

Milo has 24 blueberries.
The number of blueberries that Milo has increases by 19/6 times.
Aubrey has 1 more blueberry than Larue.
Gregory has 3 blueberries.
The number of blueberries that Larue has more than Aubrey is equal
to the difference between the number of blueberries that
Thaddeus and Gregory have.
Zane has 7 blueberries.
The number of blueberries that Zane has increases by 9/7 times.
Odell has 21 blueberries.
Christian has 3 blueberries.
If Christian has more than 5 blueberries, Christian will transfer their
blueberries to Odell.
Milo splits all the blueberries she owns equally among Thaddeus and Della.
Zane and Odell redistribute their blueberries to ensure each has an
equal amount.
Thaddeus has 17 more blueberries than Zane and Artie combined.
Keegan has 7 more blueberries than Aliya and 7 fewer blueberries than
Everett.
Aliya has 0 blueberries.
Margarita has 1 blueberry.
If Margarita has more than 4 blueberries,
Margarita will transfer their blueberries to Artie.
The number of blueberries that Everett has increases by 17/14 times.
If Everett has more than 2 blueberries, Everett will transfer their
blueberries to Artie.
How many blueberries does Artie have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

o1’s Response

First, let us track each person’s blueberry count step by step
(in the order given), focusing on changes that actually affect Artie:
1) Milo starts with 24 blueberries.

The puzzle says Milo’s count "increases by 19/6 times,” so Milo now has
24 × (19/6) = 24 × 19 ÷ 6 = 76.

2) Aubrey has 1 more blueberry than Larue (Aubrey = Larue + 1), but no specific
numbers result yet.
3) Gregory has 3 blueberries.
4) Zane starts with 7 blueberries.

The puzzle says Zane’s count "increases by 9/7 times," so Zane now has
7 × (9/7) = 9.

5) Odell has 21 blueberries.
6) Christian has 3 blueberries.

The puzzle says that if Christian has more than 5, Christian would transfer
them to Odell; since Christian has only 3, no transfer happens.

7) Milo (who has 76) "splits all the blueberries she owns equally among Thaddeus
and Della.”

Each receives 76 ÷ 2 = 38.
Thus, Thaddeus = 38, Della = 38, and Milo goes to 0.

8) Zane (9) and Odell (21) "redistribute their blueberries to ensure each has
an equal amount.”

Together they have 9 + 21 = 30, so each ends up with 15.
Hence Zane = 15, Odell = 15.

9) "Thaddeus has 17 more blueberries than Zane and Artie combined.”
Thaddeus = 38 from above. Let Artie = x. Then
38 = (Zane’s 15) + x + 17
38 = 15 + x + 17 = 32 + x
x = 6.
So Artie = 6 at this point.

10) Keegan has 7 more blueberries than Aliya and 7 fewer than Everett.
Aliya = 0, so Keegan = 7 and Everett = 14.

11) Margarita has 1 blueberry. Because that is not "more than 4,” there is
no transfer to Artie.
12) Everett’s 14 blueberries "increase by 17/14 times,” so Everett becomes

14 × (17/14) = 17.
13) "If Everett has more than 2 blueberries, Everett will transfer their
blueberries to Artie.”

Since Everett has 17 (> 2), Everett transfers all 17 to Artie, leaving
Everett at 0 and raising Artie’s total to
Artie = 6 + 17 = 23.

No further steps change Artie’s count. Therefore, Artie finishes with 23
blueberries.

The final answer is $\boxed{23}$.

In 7), o1 claims that Thaddeus has 38 after the splitting, ignoring the fact that Thaddeus initially
had 2 (which can be inferred from previous information). This lack of understanding of the splitting
process leads to an incorrect solution by o1.

I.8 FAILURE PATTERNS WITH THE INCLUSION OF IRRELEVANT INFORMATION

1. The model successfully filters out irrelevant sentences and begins reasoning with the remain-
ing information, analyzing the provided sentences from both irrelevant and relevant agents
one by one.

(a) The model overlooks important relevant information, resulting in an incorrect solution.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Question 1

Franco has 5 more oranges than Sergio. Alfred has 5 more oranges
than Parker. Angus and Danny have been married for 11 years.
Penelope has 15 oranges. The number of oranges that Sergio has more
than Franco is equal to the difference between the number of oranges
that Susan and Penelope have. Oran tends to be laid-back and prefers
staying in rather than going out.
...
Novella has 8 oranges. Susan is highly introverted and prefers
minimal communication with others. Leann is highly introverted and
prefers minimal communication with others. Hosea is very outgoing
and frequently hosts parties at home. Meredith is highly introverted
and prefers minimal communication with others. Novella gives 3
oranges to Angus. Collie and Gust have been married for 20 years.
Maxine has 2 more oranges than Celeste.
...
How many oranges does Cornelia have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."

o1’s Response for Question 1

First, note that several statements in the puzzle concern
personalities or marriages but do not affect the orange counts; we
will ignore those and track only statements that specify
relationships or transfers of oranges.
1) "Franco has 5 more oranges than Sergio."

Let S = Sergio’s oranges. Then Franco’s oranges F = S + 5.
2) "Penelope has 15 oranges."

Pn = 15.
...
10)"Novella has 8 oranges."

Nl = 8.
11) "Maxine has 2 more oranges than Celeste."

Let Ce = Celeste’s and Mx = Maxine’s -> Mx = Ce + 2.
12) "The number of oranges that Celeste has more than Maxine is equal
to the difference between the number of oranges that Johathan and
Novella have."

Ce - Mx = Jo - Nl, where Jo = Johathan’s oranges.
But Mx = Ce + 2 -> Ce - (Ce + 2) = -2.
So -2 = Jo - 8 -> Jo = 6 (Johathan has 6).

...
18) "The number of oranges that Florida has more than Aaron is equal
to the difference between the number of oranges that Cornelia and
Johathan have."

Florida has 13, Aaron has 10 -> 13 - 10 = 3.
Let Co’ = Cornelia’s oranges;
Johathan has 6 -> 3 = Co’ - 6 -> Co’ = 9.
So before any transfers to Cornelia, she has 9.

...
20) "Beaulah gives 17 oranges to Cornelia."

Cornelia had 9, then receives +17 -> Cornelia now has 26.
21) "Janet gives 17 oranges to Kattie" (irrelevant to Cornelia’s
total). No further changes to Cornelia’s total are stated.
Therefore, Cornelia ends up with 26 oranges.

The final answer is $\boxed{26}$.

o1 overlooks the critical information that "Novella gives 3 oranges to Angus," resulting
in an incorrect calculation of Novella’s oranges. The correct number should be 5
instead of 8, ultimately leading to an incorrect solution.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

(b) Redundant information confuses the model, resulting in either an incorrect solution, an
incomplete proof, or the model claiming that a proof is impossible.

Gemini 2.0 Flash’s Response

Let S be the number of blueberries Sherman has, T be the number of
blueberries Troy has.
$S = T + 7$ (1)
Let N be the number of blueberries Ned has, G be the number of
blueberries Garth has.
$N = G - 7$ or $G = N + 7$ (2)
Jarvis has $J = 20$ blueberries.
Hattie has $H = 20$ blueberries.
...
We are given insufficient information to uniquely determine the
value of Yesenia. There might be an error in the problem statement
or missing information.
...

2. The model successfully filters out irrelevant sentences but reasons using only partial relevant
information.

Question 2

Jarred is very outgoing and frequently hosts parties at home. Annie has 2
tomatoes. William has 5 tomatoes. Lavinia is very generous and enjoys
sharing food with others. Alyce has 19 tomatoes.
...
Alyssa has 7 more tomatoes than Jones.
...
Roslyn has 19 tomatoes.
...
The number of tomatoes that Jones has more than Alyssa is equal to the
difference between the number of tomatoes that Bonnie and Roslyn have.
...
Bonnie gives 3 tomatoes to Lavinia. Faith is 19 years old.
...
Alyce and Myles have been married for 17 years. Charlene gives 4 tomatoes
to Bonnie.
...
The number of tomatoes that Clara has more than Gracie is equal to the
difference between the number of tomatoes that Ryann and Bonnie have.
Fernando and Alton are good friends who often go fruit or vegetable
picking together on weekends. How many tomatoes does Ryann have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

o1’s Response for Question 2

First, note that several "difference” statements in the puzzle equate
one pair’s difference of tomato counts to another pair’s difference.
In particular, two key statements pin down Bonnie’s and then Ryann’s
counts.
1) From "Alyssa has 7 more tomatoes than Jones” and "The number of
tomatoes that Jones has more than Alyssa is equal to the difference
between the number of tomatoes that Bonnie and Roslyn have,” we get:

• Let J = Jones’s tomatoes, A = Alyssa’s, B = Bonnie’s,
and R = Roslyn’s (19).
• A = J + 7.
• J - A = B - 19.
Substituting A = J + 7 gives J - (J + 7) = B - 19 -> -7 = B - 19
-> B = 12
So Bonnie ends up with 12.

2) From "The number of tomatoes that Clara has more than Gracie is equal
to the difference between the number of tomatoes that Ryann and Bonnie
have,” we have:

• Clara = 20 and Gracie = 22 (found elsewhere in the puzzle),
• so (Clara - Gracie) = 20 - 22 = -2,
• and that equals (Ryann - Bonnie).
Hence -2 = Ryann - 12 -> Ryann = 10.

Accordingly, Ryann has 10 tomatoes.
The final answer is $\boxed{10}$.

o1 reasons based only on partial relevant information instead of tracking the dynamic
changes in Bonnie’s tomato count (e.g., "Bonnie gives 3 tomatoes to Lavinia"). This
oversight leads to an incorrect solution.

3. The model bases its reasoning on irrelevant sentences.

Question 3

Ollie has 5 more onions than Antonia. Wilford has 5 more onions than Ida.
...
Angel has 11 onions. Gregorio is 35 years old. Janelle has 9 onions.
...
The number of onions that Bailey has more than Stacey is equal to the
difference between the number of onions that Gregorio and Lorraine have.
The number of onions that Enrique has more than Reynold is equal to the
difference between the number of onions that Abner and Ivory have.
Alonzo gives 20 onions to Gregorio. Nora gives 20 onions to Abner.
Enrique tends to be laid-back and prefers staying in rather than going
out. How many onions does Gregorio have?
Give your answer using the format:
"The final answer is $\boxed{#your answer}$."

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

o1’s Response for Question 3

Here is the streamlined logical path:
1) Ollie has 5 more onions than Antonia.

- Denote Antonia’s initial onions by A, so Ollie = A + 5.
...
9) We read "The number of onions Bailey has more than Stacey is equal to
the difference between Gregorio and Lorraine."

- Bailey - Stacey = 22 - 15 = 7.
- The difference between Gregorio (call it G for short) and Lorraine (8)
must also be 7.
- So either G - 8 = 7 (giving G = 15) or 8 - G = 7 (giving G = 1).

10) Finally, Alonzo gives Gregorio 20 onions. Thus Gregorio’s final
total = (his initial) + 20.

- If Gregorio’s initial were 1, then final would be 21.
- If Gregorio’s initial were 15, then final would be 35.

Because the puzzle is set up so that Gregorio’s age is given as 35 (very
likely a hint that he ends up with 35 onions!), the consistent (and
usual) solution is that he started with 15 and, after receiving 20 onions,
finishes with 35.
The final answer is $\boxed{35}$.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

J DETAILS FOR TRAVEL PLANNING

This section outlines the methodology for generating travel planning problems, including the con-
struction of a city connection graph, the generation of feasible travel paths, and the formulation of
problem descriptions. The model is asked to create a travel itinerary using a city connection graph
that adheres to a list of constraints. The parameters include the number of cities in the graph S, the
number of transportation modes A, and the number of unique cities N .

Travel Planning example

You are a proficient planner. Based on the provided information and query, please give me your plan
as a sequence of trips in the format: [(city1, city2, transportation_method), ...]
You are planning a trip across 10 cities with up to 2 transportation methods. The cities are: [’Arling-
ton’,...]
The available transportation methods are: [’tram’, ’car’]
Here are the travel connections:

• From Arlington to New Orleans: car (cost: car=$53)
• ...
• From Arlington to Fresno: tram, car (cost: tram=$54, car=$14)

Constraints:
1. Start your trip at ’Philadelphia’ and end at ’Irvine’.
2. You cannot exceed a budget of $163.
3. Visit at least 5 unique cities, including the start and end cities.

J.1 CONSTRUCTING THE CITY CONNECTION GRAPH

The travel planning process begins with the creation of a graph representing city connections. The
steps are as follows:

1. Selection of Cities and Transportation Methods:
• Choose the 100 largest U.S. cities by population.
• Use a predefined list of transportation methods: [’bus’, ’train’, ’flight’,
’car’, ’taxi’, ’tram’, ’ferry’, ’railways’, ’motorhome’,
’hyperloop’].

• Randomly select a subset of S cities and A transportation methods for the problem.
2. Graph Construction:

• Create a directed graph where cities are nodes, and transportation connections are
edges.

• For any two distinct cities, include a directed edge with a probability defined by a
density parameter (a value between 0 and 1).

3. Edge Weights and Costs:
• For each established edge, select a random number of transportation modes (uniformly

between 1 and A) from the available list.
• For each mode:

– Generate a cost range by randomly selecting:
* lowest_cost from [10, 50].
* highest_cost from [60, 100].

– Assign an actual cost for traveling via the mode as a random integer between
lowest_cost and highest_cost.

J.2 BUILDING A FEASIBLE PATH AND COMPUTING THE BUDGET

The objective is to create a travel plan that visits at least a predefined number of distinct cities and to
calculate the required budget.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

1. Path Construction:

• Select a random starting city.
• Maintain a set of visited cities (visited_cities) to avoid revisiting.
• At each step:

– Identify adjacent cities from the current city, excluding already visited ones.
– If a “dead end” is reached (no unvisited adjacent cities), abandon the attempt and

retry with a different starting city.
– Among feasible next-city options, choose the city and transportation mode with the

lowest cost.
• Continue until the desired number of unique cities is visited, marking the final city as

the ending point.

2. Budget Calculation:

• Sum the costs of all steps in the feasible path to determine the total travel budget.
• This budget acts as a constraint for the solution.

J.3 GENERATING THE PROBLEM DESCRIPTION

The problem description includes all details required for solving the travel planning task:

• The number of selected cities and transportation modes.

• Lists of the specific cities and transportation methods.

• For each directed edge in the graph:

– Possible transportation modes and their associated costs.

• Problem constraints:

– Designated starting and ending cities.
– Computed budget.
– Minimum number of distinct cities to visit.

An example query and travel plan are provided to guide response formatting and ensure accurate
parsing of solutions.

J.4 RETURNING AND STORING RESULTS

The problem description, or “prompt,” is stored for further use. Alongside the prompt, additional data
is preserved, including:

• The full directed graph.

• The cost table.

• The feasible path.

• Metadata such as the chosen start and end cities and the budget.

This stored information aids in verifying the correctness of solutions generated by LLMs.

J.5 PARAMETERS

In our experiments, we set the number of unique cities to 5 and the graph density to 0.5. We then vary
the total number of cities (S) in the graph and the number of transportation methods (A) to evaluate
the model’s performance.

J.6 FAILURE PATTERNS

We outline some common failure patterns below:

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

1. The model repeatedly samples travel options but ultimately concludes that the problem is
infeasible after several attempts.

4o response

To meet the constraints of starting at ’Greensboro’, ending at
’Minneapolis’, not exceeding a budget of $68, and visiting at least 5
unique cities, we need to carefully select travel options. Here’s a
potential travel plan using the provided travel connections:
‘‘‘python
[
(’Greensboro’, ’Boise’, ’flight’), # Cost: $22
(’Boise’, ’Louisville’, ’flight’), # Cost: $21
(’Louisville’, ’Mesa’, ’motorhome’), # Cost: $30
(’Mesa’, ’Minneapolis’, ’flight’), #Cost:$56
]
‘‘‘
Total cost: $22 + $21 + $30 + $56 = $129 (This exceeds the budget)
Attempting to adjust for budget:
Upon further investigation and adjustment to remain under budget:
‘‘‘python
[
(’Greensboro’, ’Boise’, ’flight’), # Cost: $22
(’Boise’, ’Louisville’, ’flight’), # Cost: $21
(’Louisville’, ’Minneapolis’, ’motorhome’) # Cost: $26
]
‘‘‘
Total cost: $22 + $21 + $26 = $69 (This now exceeds the adjusted budget
by $1) The provided constraints and connections do not allow a feasible
plan under the budget given the stringent constraints listed, without
exceeding the budget or revisiting cities which could potentially
minimize costs. Please let me know if any corrections to constraints or
route connections are permitted.

Claude 3.7 response

[...]
Cost: $28 + $27 + $39 + $39 + $34 + $59 = $226 (still over budget)

One final attempt:

‘‘‘python
[(’Irvine’, ’Pittsburgh’, ’flight’),
(’Pittsburgh’, ’Kansas City’, ’train’),
(’Kansas City’, ’Memphis’, ’taxi’),
(’Memphis’, ’Atlanta’, ’flight’),
(’Atlanta’, ’Charlotte’, ’train’),
(’Charlotte’, ’Austin’, ’motorhome’),
(’Austin’, ’Oklahoma City’, ’taxi’)]
‘‘‘

I’ve made several attempts to find a valid route within budget, but the
constraints make it challenging. The best route I found is:

‘‘‘python
[(’Irvine’, ’Spokane’, ’motorhome’),
(’Spokane’, ’Atlanta’, ’train’),
(’Atlanta’, ’Charlotte’, ’train’),
(’Charlotte’, ’Kansas City’, ’train’),
(’Kansas City’, ’Pittsburgh’, ’train’),
(’Pittsburgh’, ’Wichita’, ’train’),
(’Wichita’, ’Oklahoma City’, ’motorhome’)]
‘‘‘

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

2. Hallucination: the model either hallucinates the total cost or the number of unique cities
visited.

Claude 3.7 response

I need to plan a trip from Charlotte to Chicago with at least 5
unique cities, staying within a $100 budget.

Let me analyze the connections and find an efficient route:

1. Starting from Charlotte, I’ll look for affordable connections.
2. I need to find a path that visits at least 5 cities (including
Charlotte and Chicago).
3. Each leg needs to be cost-effective to stay under $100.

After analyzing the possible routes, here’s my plan:

‘‘‘python
[(’Charlotte’, ’Oklahoma City’, ’motorhome’),
(’Oklahoma City’, ’Austin’, ’ferry’),
(’Austin’, ’Aurora’, ’motorhome’),
(’Aurora’, ’Chicago’, ’hyperloop’)]
‘‘‘

Cost calculation:
- Charlotte to Oklahoma City (motorhome): $16
- Oklahoma City to Austin (ferry): $32
- Austin to Aurora (motorhome): $22
- Aurora to Chicago (hyperloop): $43

Total cost: $16 + $32 + $22 + $43 = $93, which is under the $100
budget.

This plan visits 5 unique cities: Charlotte, Oklahoma City, Austin,
Aurora, and Chicago, satisfying the requirement to visit at least 5
cities including start and end.

However, 16 + 32 + 22 + 43 = 103, not 93.

4o response

To create a cost-effective and efficient travel plan that adheres to
the constraints, I’ll map out a feasible path from Phoenix to
Milwaukee, ensuring we visit at least 5 unique cities within a
budget of $115. After examining the connections and costs provided,
here is a suitable travel itinerary:
‘‘‘python
[
(’Phoenix’, ’Nashville’, ’tram’), # $59
(’Nashville’, ’Madison’, ’hyperloop’), # $24
(’Madison’, ’Milwaukee’, ’tram’) # $26
]
‘‘‘
This plan visits 5 cities, including Phoenix and Milwaukee, and
keeps the trip cost at a total of $109, under the budget constraints
of $115.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Claude response

[...]
The costs break down as:
- Lexington to Greensboro by car: $25
- Greensboro to Plano by car: $19
- Plano to Lexington by flight: $19
- Lexington to Tacoma by car: $54

Total cost: $117

This plan visits 5 unique cities (Lexington, Greensboro, Plano,
Lexington again, and Tacoma) while exactly meeting the budget
constraint of $117.

The above plans visit only four unique cities.
Gemini performs very poorly on the travel planning task and tends to output a travel plan
without reasoning, and the generated plans do not adhere to either the budget constraint or
the number of unique cities.

58

	Introduction
	Related work
	Procedurally generated reasoning tasks
	Tasks

	Results and failure analysis
	Unpuzzles
	Evaluation

	Discussion
	Licences for existing assets
	Models
	Data

	Procedural logic results with confidence intervals
	Auto-grading the Errors in Responses
	Error analysis for Word Counting
	Error Analysis for Logic Evaluation
	Error Analysis for Logic Negation
	Error Analysis for ProofTree
	Error Analysis for Travel Planning

	Unpuzzling
	Dataset creation instructions
	Context-shifted unpuzzles
	Auto-evaluation

	Unpuzzles: Examples of context corruption
	Unpuzzles Model Response Highlights
	Details for Counting
	Character Counting
	Word Counting

	Details for the Logic Tasks
	Sampling a Logic Formula
	Constructing the Logic Evaluation Task
	Constructing the Logic Negation Task
	Examples of Failures

	Details for Proof Tree
	Logical Forms
	Inference Rules
	Details for Proof Tree Irrelevant
	Constructing Basic Proof Tree and Prompts
	Constructing Proof Trees with Diverse Statements
	Constructing Prompts with Irrelevant Information
	Example of Failure Due to Diverse Statements
	Failure Patterns with the Inclusion of Irrelevant Information

	Details for Travel Planning
	Constructing the City Connection Graph
	Building a Feasible Path and Computing the Budget
	Generating the Problem Description
	Returning and Storing Results
	Parameters
	Failure Patterns

