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Abstract
We propose PoLiGenX for de novo ligand design
using latent-conditioned, target-aware equivariant
diffusion. Our model leverages the conditioning
of the generation process on reference molecules
within a protein pocket to produce shape-similar
de novo ligands that can be used for target-aware
hit expansion and hit optimization. The results of
our study showcase the efficacy of PoLiGenX in
ligand design. Docking scores indicate that the
generated ligands exhibit superior binding affinity
compared to the reference molecule while pre-
serving the shape. At the same time, our model
maintains chemical diversity, ensuring the explo-
ration of diverse chemical space. The evaluation
of Lipinski’s rule of five suggests that the sampled
molecules possess a higher drug-likeness than the
reference data. This constitutes an important step
towards the controlled generation of therapeuti-
cally relevant de novo ligands tailored to specific
protein targets.

1. Introduction
In recent years, the intersection of artificial intelligence (AI)
and drug discovery has witnessed remarkable strides, with
the potential to revolutionize the traditional approaches to
identifying novel therapeutic compounds. Among these in-
novations, AI-enabled structure-based drug discovery has
emerged as a promising research avenue, in particular in
form of equivariant target-aware diffusion models. By con-
ditioning the diffusion process on the receptors of proteins,
these models exhibit a remarkable capacity to generate de
novo ligands with enhanced affinity (Peng et al., 2022; Guan
et al., 2023; Schneuing et al., 2023; Le et al., 2024). Failing
to consider the essential chemical properties for target bind-
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ing can lead to a significant lack of specificity and result
in ineffective drug candidates. Moreover, these candidates
must exhibit favorable absorption, distribution, metabolism,
excretion (ADME), and toxicity profiles. Designing ligands
from scratch without addressing these critical properties
may produce molecules with poor bioavailability or po-
tential toxicity, thereby limiting their therapeutic potential.
This challenge is further exacerbated by the often sparse
and noisy data available for developing effective machine
learning models. However, machine learning shows con-
siderable promise during the hit expansion phase of drug
discovery. This crucial stage involves enhancing and ex-
ploring the chemical space around promising hits already
identified through high-throughput screening or other meth-
ods. In this study, we introduce PoLiGenX (Pocket-based
Ligand Generator for hit eXpansion) that generates ligands
de novo within a protein binding pocket. Unlike previous
models, PoLiGenX starts with a seed molecule, such as a hit
candidate or an initial scaffold, and iteratively refines and
modifies it to improve its efficacy. We enhance the capabili-
ties of the existing equivariant diffusion model, EQGAT-diff
(Le et al., 2024), by incorporating a latent encoding as a con-
dition. It is derived from an invariant graph neural network
that is jointly trained to process 3D molecular inputs. The
setup ensures that the newly generated ligands retain struc-
tural characteristics of the seed molecules while undergoing
necessary chemical modifications and diversification. Our
proposed approach adds a new level of control to the pro-
cess of generating de novo ligands, aligning it more closely
with the specific needs of targeted drug design, particularly
during the hit expansion phase.

2. Related Work
Deep generative modeling in the life sciences has become a
promising research area. Recent work by Xu et al. (2022);
Jing et al. (2022) uses Denoising Diffusion Probabilistic
Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Kingma et al., 2021; Song et al., 2021) to predict the
3d coordinates of molecules with the help of 3d equivariant
graph neural networks. In the de novo setting, another line
of research focuses on directly generating the atomic coor-
dinates and elements, using autoregressive models (Gebauer
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Figure 1. Graphical model of the proposed latent diffusion model. The encoded ligand z serves as input to the diffusion model pθ to steer
the generation process of new ligands M0.

et al., 2019; 2022; Luo & Ji, 2022). Hoogeboom et al. (2022)
introduced E(3) equivariant diffusion model (EDM) for de
novo molecule design that simultaneously learns atomic
elements next to the coordinates while treating chemical
elements as continuous variables to utilize the formalism
of DDPM. Follow-up work leverages EDM and develop
diffusion models for linker design (Igashov et al., 2022) and
structure-based ligand modeling (Schneuing et al., 2023;
Guan et al., 2023; Le et al., 2024). In the context of shape-
conditioned molecule generation Adams & Coley (2023)
(SQUID) and Chen et al. (2023) (ShapeMol) recently pro-
posed to incorporate the shape of a seed molecule into the
generation process. Both approaches use an equivariant
surface encoding of a seed molecule, whereby SQUID uses
variational auto-encoding on graphs and focuses more on
fragment-based design. ShapeMol is an adaption of SQUID
in 3d space leveraging an equivariant diffusion model. How-
ever, both works do not include a protein receptor condition.
We propose to use a simple approach employing reference
molecules in a latent representation, as outlined in more
details below.

3. Methods
Problem Formulation and Notation We investigate the
generation of molecular structures M in a de novo setting
conditioned on a protein pocket P , i.e., building a generative
model pθ(M |P ). For this, we use the EQGAT-diff frame-
work proposed by Le et al. (2024). In this setup, a noisy
ligand Mt = (Xt, Ht, Et) — representing perturbed atomic
coordinates, element types, and bond features — is used,
and the diffusion model pθ predicts the uncorrupted data
modalities (X̂0, Ĥ0, Ê0), because the distribution Mt−1|Mt

depends on both Mt and M̂0. Specifically, for continuous
coordinates, the reverse distribution adheres to a multivari-
ate Gaussian model, while for discrete-valued modalities,

it follows a categorical distribution. We refer to Le et al.
(2024) for further details.

While models like EQGAT-diff, TargetDiff or DiffSBDD
generate ligands in context of a protein pocket, they do not
constraint the generated ligands to preserve properties like
shape or chemical similarity during training. In contrast, we
include a latent variable z ∈ RK that relates to the input
molecule M̂0. The latent z may serve as a shape condi-
tioning that also comprises chemical information like the
atom composition of the molecule M̂0. The graph encoder
qϕ : XM → RK is invariant to permutation, rotation and
translation of atoms (Winter et al., 2022; Le et al., 2022).

Following Adams & Coley (2023), chemical similarity
of two molecules is measured as the Tanimoto similar-
ity of ECFP4 fingerprints (2048 bits) computed by RDKit,
whereby shape similarity is defined by Gaussian descrip-
tions of molecular shape in form of atom-centered Gaussians
and calculated by the volume overlaps between them as in
Adams & Coley (2023).

PoLiGenX To model the dependence on variable z, we
include a variational distribution qϕ(z|M0) similar to Luo
& Hu (2021); Zeng et al. (2022) and obtain the ELBO

pθ(M0|P ) = Eq(M1:T |M0)qϕ(z|M0)[
pθ(M0,M1:T , z|P )

q(M1:T |M0)qϕ(z|M0)
]

≥ Eq(M1:T |M0)qϕ(z|M0)[log
pθ(M0,M1:T , z|P )

q(M1:T |M0)qϕ(z|M0)
]

= Eq(M1|M0)qϕ(z|M0)[log pθ(M0|M1, P, z)]

+ Eq(MT |M0)qϕ(z|M0)[log
p(MT |z)
q(MT |M0)

]

−DKL(qϕ(z|M0)||p(z))−
T∑

t=2

Eq(Mt|M0)qϕ(z|M0)[Lt−1],

(1)
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Figure 2. Top: Violin plot of the Tanimoto shape similarity evaluated across all test targets of the CrossDocked dataset. PoLiGenX
(left) is compared to EQGAT-diff (right). In the conditional setting the model generates significantly more shape-similar molecules.
Bottom: Heatmap histogram comparing PoLiGenX (left) with EQGAT-diff with respect to Tanimoto shape and chemical similarity on the
CrossDocked test set. The brighter the color the higher the molecule count.

where the diffusion loss Lt−1 is per timestep and defined as
Lt−1 = DKL(q(Mt−1|Mt,M0)||pθ(Mt−1|Mt, P, z)).

We extend the diffusion model by a conditioning on z and
train pθ(M |P, z) to minimize the KL divergence to the
tractable reverse distribution, which is achieved when pre-
dicting the original data points M̂0 (Ho et al., 2020; Austin
et al., 2021; Le et al., 2024). Similar to prior works, we
optimize the diffusion Lt−1 by drawing steps per minibatch
instead of the entire trajectory. We adopt a Gaussian prior
for the latent distribution, i.e., p(z) ∼ N(0, I) and enforce
a smooth latent space by choosing the maximum mean dis-
crepancy (MMD) loss (Tolstikhin et al., 2018) over the KL
divergence. The prior distribution for the ambient data space,
i.e., MT is a 0-CoM Gaussian for coordinates and empiri-
cal categorical distribution for discrete data types from the
training set as discussed in Le et al. (2024). During train-
ing, we sample a batch of pocket-ligand pairs and a step
t ∈ {1, . . . , 500}. Next, we encode the ligands M0 into
latents z, apply the noise process to the ligands to obtain
Mt and minimize the diffusion loss while providing z as an
additional input via adaptive layer normalization (Huang &
Belongie, 2017) next to the protein pocket P . We refer to
the supplementary material for further details including the
derivation of the ELBO.

4. Results
We train PoLiGenX using the CrossDocked2020 (Francoeur
et al., 2020) dataset, following the same dataset splits as
found in previous research (Luo et al., 2021; Peng et al.,
2022; Guan et al., 2023; Schneuing et al., 2023; Le et al.,
2024). Unlike other models, PoLiGenX incorporates not
only the protein pocket as a condition for generating novel
ligands but also utilizes a latent embedding of a ligand from
the dataset as an initial condition. This distinctive approach
positions PoLiGenX differently from the mentioned mod-
els — it is specifically designed to perform tasks akin to
hit expansion by enhancing specificity, chemical diversity,
and binding affinity, rather than operating solely as a target-
aware, but unconditional de novo model. In the following,
we evaluate if PoLiGenX effectively maintains the struc-
tural shape of the seed molecule while promoting chemical
diversity.

Fig. 2 (top) shows the evaluation of the mean shape sim-
ilarity on the CrossDocked test set for both PoLiGenX
(conditional) and EQGAT-diff (unconditional). The test
set comprises 100 ligand-pocket complexes for which 100
ligands each were sampled and the Tanimoto shape simi-
larity measured against the reference ligands. PoLiGenX
exhibits significantly higher shape similarities across com-
plexes. However, we aim to preserve the shape between
reference and sample without sacrificing chemical diversity
to ensure an efficient exploration of chemical space. Fig. 2
(bottom) shows the distribution of shape similarity against
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Figure 3. UMAP plot showing the 2d projections of the latent embeddings of 100 sampled ligands per target for ten randomly sampled
test set targets.

Reference Generated
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Figure 4. Reference molecules extracted from the CrossDocked test split (left) and four generated molecules sampled randomly with
PoLiGenX. Below each generated ligand, we also show the chemical similarity to the reference ligand.

chemical similarity for conditional and unconditional sam-
pling. We observe a mean shape similarity of 0.64 and 0.12
chemical similarity for EQGAT-diff. In contrast, PoLiGenX
exhibits a significant increase in shape similarity with mean
value of 0.87, but also generates a reasonably high diversity
in samples with mean chemical similarity of 0.33.

To evaluate the expressiveness of the learned latent embed-
dings, Fig. 3 visualizes the UMAP projections of the latent
embeddings. We sampled 100 ligands per receptor for ten

randomly selected targets of the CrossDocked test set. The
resulting UMAP projections reveal that the latent embed-
dings effectively separate the ligands into distinct clusters
specific to each target. This observation suggests that our
latent model successfully captures the context of ligands in
relation to their respective protein receptors.

Next, we compare molecules sampled conditionally from
our model, PoLiGenX, with the reference test data, focusing
on docking scores and chemical properties. As previously
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Table 1. Docking performance on the CrossDocked test set and ligands generated using PoLiGenX. QuickVina2 is employed for docking.
We report mean values across all targets with standard deviations given as subscripts. Drug-likeness is measured via RDKit’s QED value.
Further, molecules are evaluated in terms of the octanol–water partition coefficient (logP), the molecular weight (MolWt) and the number
of hydrogen acceptors and donors. Following Lipinski’s rule of five, we report the percentage of molecules that obey the respective rule.
The last column gives the average of molecules fulfilling all rules.

Data QVina2 (All) ↓ QVina2 (Top-10%) ↓ QED ↑ logP ↑ MolWt ↑ H-acceptors ↑ H-donors ↑ Lipinski ↑
CrossDocked test set -6.85±2.33 - 0.47±0.20 0.79 0.85 0.84 0.8 3.35±1.14

PoLiGenX -7.21±2.22 -8.04±2.44 0.59±0.20 0.91 0.87 0.85 0.91 3.57±0.93

outlined, the purpose of PoLiGenX is significantly different
to recent de novo models, such as EQGAT-diff, hence we
omit a comparison. Tab. 1 summarizes the results. We ob-
serve improved docking scores for generated samples com-
pared to the CrossDocked test data, in particular within the
top 10% of each target. Here, we reach a docking score of
−8.04± 2.44 compared to −6.85± 2.33 for the test data.
At the same time, the generated ligands per target show
improvement in RDKit’s drug-likeness score (QED) and
adherence to Lipinski’s Rule of Five. These are chemical
features recognized from a medicinal chemistry perspective
as guidelines to identify compounds likely to possess favor-
able bioavailability. Specifically, the octanol-water partition
coefficient (logP) should be less than 5, molecular weight
(MolWt) should be less than 500 Daltons, hydrogen bond
acceptors (H-acceptors) less than 10 and hydrogen bond
donors (H-donors) should be less than 5.

Fig. 4 depicts three randomly chosen test set ligands with
four conditionally sampled and randomly selected ligands
each. Judging by visual inspection, the topology is well pre-
served. We note that chemical similarity, especially based
on fingerprints can change drastically if some chemical ele-
ments are interchanged. As shown in the bottom panel in
Figure 2, PoLiGenX achieves a mean chemical similarity
of around 0.33 while preserving shape similarity of 0.87
compared to the unconditional case with 0.12 and 0.64 for
chemical and shape similarity, respectively.

The controlable generation of PoLiGenX can be further reg-
ulated by including a control parameter λ ∈ (0, 1] that scales
the latent z when going into the diffusion model. That is, for
small λ values approaching 0, PoLiGenX does not include
any latent information and collapses to the unconditional
EQGAT-diff and only leverages the pocket information as
context. With λ interpolating between e.g. (0.5, 1.0), we
observe that the mean chemical similarity for generated
ligands with respect to the references also increases as de-
picted in Figure 5. We detail the influence of the latent
variable z in combination with the scale parameter λ in the
supplementary materials.
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Figure 5. Density plot for chemical similarity of generated ligands
from PoLiGenX with varying λ control parameter. With increasing
λ, the latent z of reference/seed ligand M0 is preserved such that
generated ligands exhibit higher chemical similarity to M0.

5. Conclusions
We have developed PoLiGenX for controlled de novo ligand
generation within a protein binding pocket. By incorporat-
ing a latent encoding from a seed molecule into the diffusion
model, we ensure that the generated ligands preserve shape
and also adhere to the structural constraints of the target
protein binding site. The effectiveness of PoLiGenX is evi-
denced by improved docking scores compared to reference
ligands. Additionally, the generated ligands conform to
Lipinski’s Rule of Five, demonstrating their drug-likeness.
Importantly, the model maintains chemical diversity, which
is essential for exploring a broad range of chemical space
and discovering novel therapeutic candidates. This integra-
tion of shape preservation, target specificity, and chemical
diversity provides a powerful approach for the targeted gen-
eration of drug candidates, particularly useful in the hit
expansion phase of drug discovery campaigns.
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