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ABSTRACT

When working with electronic health records (EHR), it is critical for deep learn-
ing (DL) models to achieve both high performance and explainability. Here we
present the Parallel Attention Transformer (PAT), which performs temporal and
sensor attention in parallel, is competitive to state-of-the-art models in EHR clas-
sification, and has a uniquely explainable structure. PAT is trained on two EHR
datasets, compared to five DL models of different architectures, and its attention
weights are used to visualize key sensors and time points. Our results show that
PAT is particularly well-suited for healthcare and pharmaceutical applications,
which have a strong interest in identifying key features to differentiate patient
groups and conditions, and key times for intervention.

1 INTRODUCTION

Modelling Electronic Health Record data has gained significant attention in the medical, clinical and
pharmaceutical fields (Sidey-Gibbons & Sidey-Gibbons, 2019; Moor et al., 2023; Rajpurkar et al.,
2022). EHR data can be generated from multiple time points, allowing for longitudinal analyses
(Cascarano et al., 2023). This can lead to the identification of: slow and fast progressors (Geifman
et al., 2018), disease prevention and co-morbidity risk prediction (Li et al., 2020), and prediction of
disease onset (Zhao et al., 2019), leading to more personalized, effective treatments.

Longitudinal data poses special challenges compared to single time point measurements. The data
may contain missing values, irregularly sampled observations, and varying lengths of time intervals
between observations (Miotto et al., 2018; Zhang et al., 2021; Yuan et al., 2022). Furthermore,
datasets can vary in the number of patients, time points, and type of features (categorical, continuous,
images, or text) (Johnson et al., 2016). These issues affect the choice and performance of algorithms
(Javidi et al., 2022). Besides accuracy, different approaches have varying degrees of explainability
(Subramanian et al., 2020), which is vital for developing drugs as well as for reliably informing the
patients and regulatory agencies in healthcare settings (Liu et al., 2020).

Although Transformer models have been successful in various fields (Jumper et al., 2021; Yang
et al., 2019), literature shows that they are often outperformed in the context of EHR data, both in
accuracy and explainability (Lu & Uddin, 2021; Xiao et al., 2018). In this paper, we implement a
Parallel Attention Transformer (PAT), inspired by Axial Attention Ho et al. (2019) and iTransformer
Liu et al. (2023). Applied on EHR data, it has performance competitive to state-of-the-art (SOTA)
models and allows for the analysis sensor impact on model predictions. PAT has the potential to
improve patient outcomes by enabling more accurate and interpretable predictions, thus enhancing
the quality of DL applied to healthcare.
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2 BACKGROUND

2.1 PROBLEM FORMULATION

The dataset consists of tuples, D := {(S1,p1,h1, y1), ..., (SN ,pN ,hN , yN )}. For each sample
i ∈ N , there is a multivariate time series of dynamic features Si ∈ RTi×D, where xt

i,d ∈ R is
the reading at time t for feature d, and the total number of time points Ti is nonuniform and varies
per sample. Time vectors hi ∈ RTi contain the observation times in hours, static feature vectors
pi are taken once at t = 0, and class labels are represented as y ∈ {1, ..., C}. For EHR data,
dynamic features correspond to lab test results and medical instrument readings, and static features
include demographic information, such as age, sex, and height. The objective is to predict yi, given
(Si,hi,pi). This is complicated by Si being sparsely sampled for each i, with only a subset of D
containing values for each t.

2.2 TRANSFORMERS FOR TIME SERIES

One approach to this task is using the Transformer by Vaswani et al. (2017) to perform self-attention
between the time points for each individual. Briefly, self-attention quantifies relationships between
the time point representations, generating weights that represent the importance of each to the
model’s final prediction. An attention layer transforms S into queries Q, keys K, and values V
with learned weight matrices implemented as linear projections. It then applies an attention mech-
anism, such as the scaled dot-product Attention(Q,K, V ) = softmax(QKT /

√
dk)V , where dk

corresponds to the dimension of each key. The full model will first generate an embedding for each
t from all corresponding dynamic features (xt

i,1, ..., x
t
i,D). The embeddings are then attended to,

reduced to a single representation via a pooling layer, and fed to a classification head to predict yi.
The Transformer has been implemented in various baseline experiments for EHR classification, but
is often outperformed by other model types (Zhang et al., 2021; Xu et al., 2023).

Transformers have been used to explore multidimensional data from novel perspectives, resulting in
strong performance across several applications. In particular, Axial Attention by Ho et al. (2019)
was designed for image/video prediction and generation, performing self-attention across multiple
data dimensions using a shared pixel embedding. The SeFT model (Horn et al., 2020), like Axial
Attention along the time dimension, applied self-attention to each sensor separately and used the
time of the observation in the Transformer positional embedding function. The iTransformer (Liu
et al., 2023), performed time series forecasting on dense datasets by attending to features rather than
time points. This resulted in a SOTA model for densely observed time series data that improves with
increasing lookback windows, which has previously been seen as a challenge with Transformers
(Zeng et al., 2023; Das et al., 2023; Zhang & Yan, 2022; Ekambaram et al., 2023). For longitudinal
datasets, this is a desirable quality.

3 METHODOLOGY

3.1 PARALLEL ATTENTION TRANSFORMER (PAT)

PAT draws from Axial Attention and iTransformer to learn from sparse irregular data (Figure 1).
iTransformer’s strategy of attending to sensor representations can retain information from early time
points within each sensor embedding, and it is also possible to explore the impact of sensors on
model decisions by analyzing attention weights. However, in comparison to the more dense and
uniform datasets used in the development and testing of iTransformer (Wu et al., 2021; Lai et al.,
2018; Liu et al., 2022), the model showed worse performance on sparse irregular EHR data, with the
Transformer outperforming it (Experiments 4). By performing attention over both time points and
sensors, PAT retains the ability to analyze sensor-model relationships while obtaining a classification
performance that is better than Transformer and iTransformer.

Axial attention analyzes multiple input dimensions with a shared embedding, generated from the
channel (color) dimension (Ho et al., 2019). In an image or video, color is agnostic to dimension, as
the same channels are used to generate pixels in all rows and columns. For EHR data, each dynamic
sensor can be represented by a unique distribution, and the relationship of an observation to other
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Figure 1: a) PAT architecture, which embeds, attends to, and classifies EHR data. The data’s shape
throughout the forward pass is shown by tuples containing time T and dynamic feature D dimen-
sions, with E and p representing embeddings and static vectors. Orange follows feature attention
and purple follows temporal attention, and the attention operation always works on the second-to-
last dimension. We also show architectures of b) Axial Attention as implemented by Lucidrains
(2020), c) Transformer, and d) iTransformer. Input data and static features p handling for b), c), and
d) are omitted for simplicity, as they are equivalent to PAT.

readings from the same sensor (across t) and to different sensors (across d) is more complicated. To
retain the complexity of these relationships, PAT generates unique embeddings for each axis.

PAT has the following components: embed, attend, and combine/classify (Fig. 2a). The first two
parts are applied separately to each axis, resulting in unique ”tracks” for the time and the dynamic
feature dimensions. We first permute S on the feature track to embed the correct dimension, and
append binary mask vectors on both tracks to indicate the presence or absence of observations. The
embeddings are then generated using a linear layer. A time encoding is added on the time track
calculated from observation times in vectors h (Horn et al., 2020) using the standard positional
encoding recipe (Vaswani et al., 2017). Sensor identity embeddings were not used for the dynamic
feature track, as the relative position of sensors in the data is always the same (Liu et al., 2023).

Next, attention is performed across embeddings with a Transformer encoder block, which in-
cludes attention heads, normalization layers and a feed-forward network. At the final stage, the
weighted embeddings are pooled into a single embedding for each dimension, concatenated from
each track, and fed to a two-layer classification head. PAT also considers the static features,
learning a separate embedding from them that is also concatenated prior to classification. PAT
is trained to minimize the cross entropy between mortality predictions and the true outcomes,
L = − 1

N

∑N
i=1 yi · log(p(yi)) + (1− yi) · log(1− p(yi)), with p(yi) representing the predictions.

Further details about PAT hyperparameters, which were selected by testing for optimal performance,
can be found in Appendix Table 3.

4 EXPERIMENTS

4.1 MORTALITY PREDICTION

PAT was trained and tested on two publicly-available EHR datasets for mortality prediction from In-
tensive Care Unit (ICU) stays, the PhysioNew/CinC Challenge 2012 (P12) Goldberger et al. (2000)
and the Medical Information Mart for Intensive Care Database (MIMIC-III) Johnson et al. (2016).
Further information about the datasets and preprocessing can be found in Appendix Section A.2.
Both datasets were randomly split into 5 iterations of train/test/val groups with a ratio of 8/1/1, on
each of which the evaluated models were separately trained and tested. The average and standard
deviations of the AUPRC and AUROC can be seen in Table 1.
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Table 1: Mortality prediction performance on P12 and MIMIC-III, averaged across 5 data splits.

P12 MIMIC-III

AUPRC ↑ AUROC ↑ AUPRC ↑ AUROC ↑

SeFT 53.97 +/- 1.70 85.66 +/- 1.04 54.01 +/- 3.58 84.99 +/- 1.18
GRU-D 56.96 +/- 2.66 87.39 +/- 0.36 52.38 +/- 3.12 85.29 +/- 0.69
IP-Nets 55.18 +/- 1.99 86.39 +/- 0.35 53.29 +/- 2.00 85.12 +/- 0.61
Transformer 52.58 +/- 2.05 85.89 +/- 0.68 49.75 +/- 1.82 84.22 +/- 0.88
iTransformer 35.15 +/- 1.57 74.11 +/- 1.98 32.20 +/- 3.03 71.40 +/- 1.99
PAT 54.21 +/- 2.64 86.21 +/- 1.15 52.00 +/- 1.78 85.33 +/- 0.52

The evaluated models1, chosen for their high performance on mortality or other time series predic-
tion tasks, were: Transformer Vaswani et al. (2017), iTransformer Liu et al. (2023), SeFT Horn et al.
(2020), GRU-D Che et al. (2018), and IP-Nets Shukla & Marlin (2019), each of which were trained
and tested using their published hyperparameters (Appendix Table 3).

Transformer and iTransformer were also tested in order to compare performance when attending
to the time or sensor axis alone. Results show that performing attention on both axes via PAT is an
improvement over the single-axis attention in Transformer and iTransformer (Table 1). Furthermore,
PAT results in AUPRC and AUROC values that are competitive to the tested models, although the
top model for each data set and metric varied.

4.2 ATTENTION WEIGHTS

Heatmaps of the average sensor attention weights for members of each label class C = {0, 1}
(where C = 1 is positive for mortality) were generated from PAT and iTransformer after training on
P12 (Fig. 2). Average time attention weight heatmaps can be found in Appendix Figure 3.

Sensor attention in iTransformer is more uniformly distributed across dynamic features, while PAT
shows high attention weights on a subset of features. Additionally, PAT identifies specific sensors
contributing the most to the classification of each class, with C = 1 having a large weight on
sensor 23 (non-invasive diastolic arterial blood pressure) (Appendix Table 2), while C = 0 does not.
This could suggest better discrimination capabilities than iTransformer, which shows no such clear
difference between classes. While it is not possible to draw conclusions on the clinical relevance of
these findings without further study, these results demonstrate that PAT’s architecture can provide
clear model explanations.

(a) PAT C = 1 (b) PAT C = 0 (c) iTransformer C = 1 (d) iTransformer C = 0

Figure 2: P12 average sensor attention weights after Softmax normalization. Includes PAT averages
for all a) positive and b) negative mortality class samples, and iTransformer averages for all c)
positive and d) negative class samples. Attention weights sum to 1 across rows.

1RAINDROP by Zhang et al. (2021) was also tested, but not reported as parameter optimization is needed.
Further details in Appendix A.3
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5 DISCUSSION

Understanding model predictions on longitudinal clinical data is of high priority in the pharmaceuti-
cal and healthcare industries. However, many EHR classification models do not provide insights on
both time points and sensors. This capability is crucial in differentiating one group of patients from
another, and determining the best time for medical intervention. PAT achieves these goals by at-
tending to both temporal and dynamic feature embeddings, and performs competitively with SOTA
models on P12 and MIMIC-III.

It is important not only to be explainable, but to have explanations that are intuitive and discrimi-
native. To this end, we show that PAT is able to identify specific features characterizing each class
when visualizing the average attention weights from P12. While further work is needed to validate
and contextualize the clinical relevance of these weights (Jain & Wallace, 2019; Wiegreffe & Pinter,
2019), PAT’s architecture shows great promise in further understanding the impact of times and sen-
sors on patient health. Future studies may uncover new explanations through additional techniques,
such as gradient based attributions.
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A APPENDIX

A.1 PAT ARCHITECTURE AND HYPERPARAMETER SELECTION

In addition to the model structure outlined in 3.1, there were several other components implemen-
tated in PAT. This includes masking out all missing time points for the temporal attention track, and
utilizing the same mask in the temporal pooling layer. Because the number of time points T varies
between samples, Ti was zero-padded to the largest T in each dataset.

It should also be noted that while sensor identity embeddings were not required for this analysis,
dynamic feature identity handling would be necessary when leaving out or have to generalize to
new dynamic features.

Several iterations of hyperparameters were tested. Using early stopping, the model with the best
AUROC on the validation set was selected. The tested parameters included learning rate, pooling
layer, and number of heads and layers (Table 3). Due to time constraints, testing for batch and
embedding sizes was not completed, but we aim to do so in the future.

A.2 DATASETS AND PREPROCESSING

P12: The PhysioNet/Computing in Cardiology Challenge 2012 is a publicly-available EHR dataset
containing sensor readings and lab results for de-identified ICU stays (Goldberger et al., 2000). We
used the preprocessed dataset as described in Horn et al. (2020), which included one-hot encoding
all passive sensor readings and normalizing active sensor readings by mean and standard deviation.
After preprocessing, the dataset contained 11,988 samples, with 37 dynamic features and 8 static
features over a maximum of 215 time points. The specific features and their corresponding sensor
IDs as referenced in Figure 2 can be found in Table 2. Data split indices were originally generated
by Zhang et al. (2021).

Table 2: P12 sensor IDs and corresponding sensors. Further detail on individual sensors can be
found in Goldberger et al. (2000).

ID Sensor

1 Weight
2 ALP
3 ALT
4 AST
5 Albumin
6 BUN
7 Bilirubin
8 Cholesterol
9 Creatinine
10 DiasABP
11 FiO2
12 GCS
13 Glucose
14 HCO3
15 HCT
16 HR
17 K
18 Lactate
19 MAP

ID Sensor

20 MechVent
21 Mg
22 NIDiasABP
23 NIMAP
24 NISysABP
25 Na
26 PaCO2
27 PaO2
28 Platelets
29 RespRate
30 SaO2
31 SysABP
32 Temp
33 TroponinI
34 TroponinT
35 Urine
36 WBC
37 pH

MIMIC-III: The Medical Information Mart for Intensive Care (MIMIC-III Clinical Database v.1.4)
is another ICU stay database containing records from 53,423 patients, including demographics, vital
sign measurements, and laboratory test results (Johnson et al., 2016). It is publicly available to
researchers after completing a required training and data use agreement. Similarly to P12, we used
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the dataset as processed by Horn et al. (2020), and split indices were obtained from Raindrop Zhang
et al. (2021).

Both datasets are highly imbalanced for positive/negative class labels, with more negative labels
present (for example, P12 was 14% positive). To address this imbalance, each epoch was constructed
with all negative training samples and an equal number of positive samples, resampled from the
training group up to 3 times.

A.3 BASELINE COMPARISON

All baseline models were chosen for their SOTA performance, and to represent several of the ar-
chitectures types that exist for time series classification. Hyperparameters were chosen based on
original model publications and implementations, and can be found in Table 3.

Created by Che et al. (2018), GRU-D is a variant of the Gated Recurrent Unit (GRU) model, which
adds a decay mechanism to balance memory retention. It also feeds the model a mask to inform
about present/missing feature values (a strategy we have also incorporated into PAT), and includes
time intervals to the closest preceding measurement.

Set Functions for Time Series, or SeFT, was designed by Horn et al. (2020) to be time and memory-
efficient by representing inputs as tuples containing the time point, dynamic feature, and value. This
also makes it easy to query the relationship between single values and model predictions.

Interpolation Prediction Networks (IP-Nets) was designed by Shukla & Marlin (2019) and contains
two components. The interpolation component generates interpolants for each dimension and time
point in a time series, which is given as input to the prediction component to predict y. In the original
publication, a GRU network is used as the prediction component.

As stated previously, the classic Transformer by Vaswani et al. (2017) and iTransformer by Liu et al.
(2023) were also implemented and tested, containing the same masking components as PAT in order
to be as comparable as possible.

There are other models that perform time-series classification on EHR datasets. This particularly
includes graph model Raindrop by Zhang et al. (2021), which uses multi-dimensional attention for
sensors and time points. For this study, Raindrop was also trained and tested for mortality prediction
on P12 and MIMIC-III (resulting in, for example, an AUPRC and AUROC of 40.07 and 80.20 for
MIMIC-III). However, there are no published hyperparameters for mortality prediction on either
of these two datasets, and because of resource constraints, no parameter searches were performed
to optimize Raindrop performance. We highlight this as a potential baseline comparison in future
work.

A.4 ATTENTION WEIGHTS

In addition to the average sensor attention weights, the average time attention weights were calcu-
lated and used to generate heatmaps from the best-performing PAT and Transformer p12 classifi-
cation models (Fig. 3). The attention weights sum to 1 across each row, and due to irregularities
between samples, time points were binned by hour.

When analyzing the time axis, it is interesting to note in the PAT results that the most strongly
attended time points for classification are the latest ones (closest to the diagnosis) for the class 1
group, while class 0 patients are already distinguished from much earlier time points. In contrast,
the Transformer time attention provides fewer insights, as weights are very similar between the two
groups. Notably, Transformer pays the most attention to the earliest time points, which is contrary to
evidence that a patient’s phenotype is the clearest closest to the diagnosis (the outcome) (Krasowski
et al., 2022). In other words, the measurements of the sensors close to the endpoint, are expected to
be the most informative for the classification.
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Table 3: Hyperparameters used for baseline model comparison.

P12 MIMIC-III

SeFT attn dropout: 0.5, phi dropout: 0.2,
rho dropout: 0.0, heads: 4, lr:
0.00081, phi layers: 4, phi width:
128, psi layers: 2, psi width: 64,
psi latent width: 128, dot prod dim:
128, latent width: 32, rho layers:
2, rho width: 512, batch: 512,
max timescale: 100, positional dims:
4

attn dropout: 0.1, phi dropout: 0.1,
rho dropout: 0.1, heads: 4, lr:
0.00245, phi layers: 3, phi width:
64, psi layers: 2, psi width: 64,
psi latent width: 128, dot prod dim:
128, latent width: 256, rho layers:
2, rho width: 512, batch: 512,
max timescale: 1000, positional dims:
8

GRU-D dropout:0.5, recurrent dropout:0.5,
n units:100, lr:0.001, batch:32

dropout:0.5, recurrent dropout:0.5,
n units:64, lr:0.001, batch:32

IP-Nets dropout:0.2, recurrent dropout:0.2,
lr:0.001, batch:256, n units:100,
impute stepsize:0.25, recon-
struct fraction:0.2

dropout:0.2, recurrent dropout:0.2,
lr:0.001, batch:256, n units:100,
impute stepsize:0.25, recon-
struct fraction:0.2

Transformer dropout:0.2, attn dropout:0.2,
heads:2, layers:1, pool:sum, dims:74,
static dims:12, lr:0.001, batch:128

dropout:0.4, attn dropout:0.0, heads:8,
layers:2, pool:mean, dims:512,
static dims:5, lr:0.00204, batch:256

iTransformer dropout:0.2, heads:1, layers:1,
pool:mean, dims:500, batch:64

dropout:0.2, heads:1, layers:1,
pool:mean, dims:500, batch:64

PAT dropout:0.3, time heads:2, sen-
sor heads:1, layers:1, pool:max,
dims1: 430 , dims2: 74, batch:64

dropout:0.2, time heads:2, sen-
sor heads:1, layers:1, pool:max,
dims1: 500 , dims2: 32, batch:64
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(a) PAT C=1 (b) PAT C=0

(c) Transformer C=1 (d) Transformer C=0

Figure 3: P12 average time attention weights after Softmax normalization. Includes PAT averages for all a)
positive and b) negative mortality class samples, and Transformer averages for all c) positive and d) negative
class samples.
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