
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SINKQ: ACCURATE KV CACHE QUANTIZATION WITH
DYNAMIC SINK TRACKING

Anonymous authors
Paper under double-blind review

ABSTRACT

The impressive capabilities of large language models (LLMs) come at the cost
of substantial computational resources during deployment. While KV Cache can
significantly reduce recomputation during inference, it also introduces additional
memory overhead. KV Cache quantization presents a promising solution, strik-
ing a good balance between memory usage and accuracy. Previous research has
shown that the Keys are distributed by channel, while the Values are distributed by
token. Consequently, the common practice is to apply channel-wise quantization
to the Keys and token-wise quantization to the Values. However, our further inves-
tigation reveals that a small subset of unusual tokens exhibit unique characteristics
that deviate from this pattern, which can substantially impact quantization accu-
racy. Furthermore, these tokens often have higher attention scores, exacerbating
their quantization errors. To address this, we develop a simple yet effective method
to identify these tokens accurately during the decoding process and exclude them
from quantization, significantly improving overall accuracy. Extensive experi-
ments show that our method achieves significant accuracy improvements under
2-bit quantization and can deliver a 6.4× reduction in memory usage and a 2.3×
increase in throughput. Our code will be released upon acceptance.

1 INTRODUCTION

Large language models (LLMs) have significantly impacted various industries due to their powerful
capabilities (Achiam et al., 2023; Touvron et al., 2023a;b; Dubey et al., 2024; Jiang et al., 2023).
However, their auto-regressive nature makes the generation process slow. While using KV Cache
can reduce decoding complexity from O(n2) to O(n) by storing the Keys and the Values computed
during inference, it introduces substantial memory overhead. This overhead scales with sequence
length, batch size, and hidden dim, often creating a memory bottleneck and placing considerable
pressure on resources during deployment. As a result, optimizing KV Cache management to enhance
resource utilization and improve model throughput remains a critical challenge.

KV Cache affects throughput in two primary ways. First, its memory usage limits the scalability of
batch sizes, reducing parallelism during decoding and thus lowering throughput. Second, attention
computation is delayed while waiting for the KV Cache to be transferred from memory to the com-
putation unit. As the KV Cache size grows, the transmission time increases, decreasing throughput.
Existing approaches mainly address this issue by optimizing hardware scheduling (Aminabadi et al.,
2022; Dao et al., 2022; Sheng et al., 2023; Kwon et al., 2023) and reducing the size of the KV Cache
(Liu et al., 2024b; Hooper et al., 2024; Kang et al., 2024; Zhang et al., 2023; Xiao et al., 2024). In
this paper, we focus on the latter approach—KV Cache compression.

One method to reduce the size of the KV Cache is to reduce the number of values that need to be
stored. The shape of the KV Cache is [num layers, batch size, num heads, sequence length,
head dim]. There are various compressing methods across each dimension, including layer-wise
KV Cache sharing (Wu & Tu, 2024; Brandon et al., 2024; Zuhri et al., 2024; Mu et al., 2024), prefix
sharing (Juravsky et al., 2024; Zhu et al., 2024), head-wise KV Cache sharing (Shazeer, 2019;
Ainslie et al., 2023), token eviction (Xiao et al., 2024; Zhang et al., 2023; Ge et al.), and low-rank
projection (Wang et al., 2024; Yu et al., 2024; Chang et al., 2024; Liu et al., 2024a).

Another strategy for reducing the size of KV Cache is quantization. However, unlike weight quan-
tization, KV Cache quantization poses unique challenges due to the uneven distribution of the Keys

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and Values (Kang et al., 2024). To enhance quantization accuracy, various methods have been
proposed, including using low-rank matrices to approximate the error before and after quantiza-
tion (Kang et al., 2024), smoothing Key distributions through specific mappings (Ashkboos et al.,
2024; Chang et al., 2024), channel-wise Key and token-wise Value asymmetric quantization (Liu
et al., 2024b; Hooper et al., 2024), non-uniform quantization (Hooper et al., 2024; Dettmers et al.,
2022), mixed-precision quantization (Dong et al., 2024), and Block Floating Point (BFP) quantiza-
tion (Trukhanov & Soloveychik, 2024). Among these methods, channel-wise Key and token-wise
Value asymmetric quantization has garnered much attention for its high accuracy and tuning-free
nature. This technique operates under the assumption that some channels of the Keys have huge
magnitudes and that the distribution of the Keys within the same channel is relatively uniform.

However, our further exploration reveals that a few unusual tokens deviate from this assumption.
Moreover, we find that these tokens exhibit remarkably high attention scores—often referred to as
attention sinks (Xiao et al., 2024). Notably, unlike previous studies, we find that these attention
sinks can occur at any position within a sentence rather than being confined to the initial positions.
Based on these observations, we propose Sink-aware KV Cache Quantization (SinkQ), a simple
yet effective method that identifies these tokens and excludes them from the quantization process,
thereby improving quantization accuracy. With hardware-friendly implementation, SinkQ achieves
significant accuracy improvements under 2-bit quantization, resulting in a 6.4× reduction in memory
usage and a 2.3× increase in throughput.

Overall, our contributions are summarized as follows:

• We investigate the outlier channels of the KV Cache and identify that some tokens deviate
from the previous assumptions.

• We introduce Sink-aware KV Cache Quantization (SinkQ), a simple yet effective method to
dynamically identify and exclude these tokens during quantization, thus improving overall
quantization accuracy.

• Our method achieves significant accuracy improvements under 2-bit quantization, yielding
a 6.4× reduction in memory usage and a 2.3× increase in throughput, thereby enhancing
model efficiency.

2 BACKGROUND

Implementation of KV Cache. Transformer-based (Vaswani, 2017) LLMs typically utilize KV
cache to prevent the redundant calculation of the attention scores and accelerate auto-regressive
decoding. The generation process of LLMs with KV cache is divided into the prefill phase and
the decoding phase (Patel et al., 2024). Given a prompt X = {x0, x1, . . . , xn−1} and tensor X ∈
Rb×n×d after embedding, where b is the batch size, n is the length of the prompt, and d represents
the hidden size, we will briefly describe the calculation process of the attention block, and we omit
the number of heads in the multi-head attention mechanism.

i) During the prefill phase, the Keys K<n and Values V<n are computed and cached by transforming
X through the Key and Value weight matrices Wk,Wv ∈ Rd×d of each layer, which can be
formulated as:

K<n = XWk, V<n = XWv.

ii) During the decoding phase, only the Keys and Values of the new token xn need to be calculated,
which are then combined with the cached Keys and Values to compute the new attention scores and
outputs. For the current input tensor Xn ∈ Rb×1×d, we update the KV cache as follows:

K = K<n∥Kn, V = V<n∥Vn,

where Kn = XnWk and Vn = XnWv . We calculate the new attention output ATT as follows:

Qn = XnWq, ATT = Softmax
(
QnK

⊤
√
dk

)
V, (1)

where Wq is the query weight matrix in the corresponding layer and
√
dk is the normalization factor.

Necessity of compression. While KV cache reduces the computational complexity from O(n2) to
O(n), it introduces substantial GPU memory overhead, particularly with long sequence lengths and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

large batch sizes. For example, in the case of LLaMA3-8B (Dubey et al., 2024), where the number
of layers nlayers is 32, the number of heads h is 8, the head dimension d is 512, the input length l is
8192, and the batch size b is 64, performing inference with fp16 precision (which uses 2 bytes per
value) requires 4bhdlnlayers bytes to store the KV cache—equivalent to 256GB of memory. Thus,
effectively compressing the KV cache is crucial to reducing GPU memory usage.

Uniform Quantization. In this paper, we focus on compressing the KV cache by reducing the
bit-width needed to represent cached tensors. A straightforward approach is Uniform Quantization
(Jacob et al., 2018), which maps continuous numerical data to a discrete domain. Specifically, to
quantize a high-precision matrix (e.g., float32) X to a matrix X ′ with b-bit precision, we first
determine the quantization step size q. Each element Xi,j ∈ X can then be quantized to Q(Xi,j) as
follows:

Q(Xi,j) = ⌊(Xi,j −Xmin)/q⌋, q = (Xmax −Xmin)/(2
b − 1), (2)

where ⌊·⌋ is the rounding function.

Group Quantization. However, Uniform Quantization does not fully exploit the distribution
characteristics of the data, which can lead to significant quantization errors, especially when there
are outliers. A more advanced technique is Group Quantization (Yao et al., 2022), which divides
the matrix into multiple groups, expecting the data within each group to share similar distribution
characteristics. Unlike Uniform Quantization, Group Quantization allows each group to have dif-
ferent quantization parameters, such as step size. This flexibility enables the method to better adapt
to the local characteristics of the data, thereby reducing quantization errors while maintaining a low
bit-width. The channel-wise Key quantization and token-wise Value quantization proposed by KIVI
(Liu et al., 2024b) is a type of Group Quantization.

3 METHOD

In this section, we propose Sink-Aware KV Cache Quantization (SinkQ). We start with a preliminary
exploration of the Keys and Values before introducing our method.

3.1 EXPLORATION OF THE KEYS AND VALUES.

We conduct a series of preliminary experiments to gain a deeper understanding of the Keys and
Values. For illustration, we take a sentence generated by LLaMA-2-7b-chat-hf 1 as an example.
Table 5 in the Appendix presents the prompt and the generated context.

Distribution of the Keys and Values. Figure 1a and Figure 1d display the magnitude of the Keys
and Values from layer 10, head 17. Notably, some channels exhibit exceptionally large Keys, and
within these channels, the distribution of the Keys appears relatively uniform. In contrast, the Values
have no distinct characteristics. These observations are consistent with those reported in KIVI (Liu
et al., 2024b).

Distribution in outlier channels. We further investigate the distribution of these outlier channels.
Figure 1b shows the Keys in an outlier channel from layer 10, head 17 (we plot the first 100 tokens).
While the Keys generally exhibit a uniform distribution, a few tokens are notable exceptions. This
pattern becomes clearer after sorting, as shown in Figure 1e, where some Keys have very small
values while others are significantly larger. These exceptions can substantially increase Xmax −
Xmin in Equation 2 during quantization, ultimately diminishing quantization accuracy.

Identifying Outlier Tokens. Intuitively, tokens with very small magnitude of the Keys in outlier
channels are also likely to have smaller magnitude overall. To test this hypothesis, we plot the Keys
from an outlier channel and the magnitude of the Keys across all channels (we plot the first 300
tokens). As shown in Figure 4 in the Appendix, the results confirm our assumption, suggesting that
we can efficiently and accurately identify these outlier tokens with the magnitude of the Keys.

Outlier Tokens & Attention scores. We further explore the attention scores of the outlier tokens
and find that these tokens tend to have exceptionally high attention scores. To visualize this, we
compare the overlap between the N tokens with the smallest magnitude of the Keys and the N
tokens with the highest attention scores (we plot the first 300 tokens). Figure 1c presents our results.

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

3

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 200 400 600Token 0 50100

Column

05
1015

(a)

0 20 40 60 80 100Index
2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0

(b)

0 50 100 150 200 250 300N
40
50
60
70
80
90

100

Over
lap (

%)

(c)

0 200 400 600Token 0 50100

Column

0.00.51.01.52.0

(d)

0 20 40 60 80 100Sorted index
2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0

(e)

0 10 20 30 40 50N
3.253.503.754.004.254.504.755.00

L1 L
oss (

×100
) largestrandomsmallestsmallest+exclude

(f)

Figure 1: Observations from preliminary experiments: (a) The Keys are distributed by channel
and have some outlier channels. (d) The distribution of the Values does not exhibit any notable
characteristics. (b) In certain outlier channels, a few tokens with low magnitude of Keys disrupt
the originally uniform distribution within these channels. (e) Visualization of the sorted Keys in an
outlier channel shows a rapid increase from a low value to very high values. (c) There is a significant
overlap between the smallest N Keys and the largest N attention scores when N is small. (f) The
L1 loss of attention output before and after quantization by retaining full-precision tokens based on
different criteria. The best result is retaining full-precision tokens with the smallest magnitude of
the Keys and excluding these tokens during quantization.

When N is small, the overlap is initially high but quickly diminishes to a minimum before gradually
increasing again. Notably, the tokens selected when N is small correspond to the outlier tokens,
indicating that outlier tokens generally have high attention scores.

Removing Outlier Tokens. From our analysis, outlier tokens significantly impact the effectiveness
of quantization. These outlier tokens typically exhibit high attention scores, indicating that even
minor quantization errors can result in considerable losses in attention output. By retaining these
outlier tokens with full precision, we can greatly reduce the loss of attention output. To investigate
this further, we retain different numbers of full-precision tokens based on different selection criteria
and compare the L1 loss of attention outputs before and after quantization. The results (Figure 1f)
reveal that retaining tokens with the largest keys yields the worst performance, while retaining those
with the smallest Keys provides the best results, aligning with our previous findings. Furthermore,
outlier tokens contribute to an increase in Xmax − Xmin within outlier channels, thus affecting
quantization accuracy. To address this issue, we exclude these outlier tokens during quantization,
leading to even better results.

3.2 SinkQ: SINK-AWARE KV CACHE QUANTIZATION

From these observations, we note that a few outlier tokens exhibit exceptionally high attention
scores, consistent with the findings from StreamingLLM (Xiao et al., 2024). These tokens are
referred to as attention sinks, and we will use this term later. Previous work suggesting that attention
sinks occur only in the initial tokens; however, our observations reveal that they can appear at any
position within a sentence. Moreover, the distribution of the Keys of attention sinks differs signifi-
cantly from that of other tokens, which can substantially impact overall quantization performance.

Based on the insights above, we propose Sink-aware KV Cache Quantization (SinkQ). Figure 2 il-
lustrates an overview of our method. SinkQ consists of two components: quantization and decoding.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Query K_Sink

K_Quant*N

K_Full

Matmul
Att score

Concat
V_Sink

V_Quant*N

V_Full

Matmul
Att output

Add

(Fused matmul) (Fused matmul)

K_Full
channel-wise

K_Quant
quantization V_FullV_Quant

token-wise

quantization

V_SinkK_Sink

full-precision tensor

low-precision tensor

hidden states

Figure 2: Overview of SinkQ. Top: Decoding stage. Multiply the Query by each type of the Keys
and concatenate the results to obtain the attention scores. Multiply the attention scores by each type
of the Values and sum the results to get the attention output. Bottom: Quantization stage. Before
quantization, process the sinks first, then quantize the Keys by channel and the Values by token.

Quantization We define a fixed-size sink pool with a capacity of sink num to store the Keys
and Values of the attention sinks. To fulfill group quantization, we quantize KV Cache every G
steps, which means group size, a hyper-parameter in group quantization. When the group is full,
tokens selected for quantization will obtain a position in the sink pool based on the rules described in
Section 3.1. Once selected, the Keys and Values of these tokens are replaced with the mean values of
all tokens to eliminate their impact on quantization. We adopt the quantization strategy from KIVI,
applying channel-wise quantization for the Keys and token-wise quantization for the Values.

Decoding We maintain three types of KV Cache: the quantized KV Cache, the full-precision KV
Cache, and the KV Cache stored in the sink pool. First, the Query is multiplied by all three types
of Keys, and we concatenate the results to produce the attention scores. Next, we multiply these
scores by their corresponding Values from each type and sum them to generate the final attention
output. To enhance decoding efficiency, we utilize a CUDA fused kernel to multiply full-precision
and quantized matrices efficiently.

Following KIVI, we have group tokens and recent tokens. We trigger a new quantization step when
the full-precision KV Cache reaches a certain length (necessary for channel-wise key quantization).
When the group is not full, we must keep these group tokens in full-precision. KIVI also maintain
the local tokens in full-precision because these tokens are found important in many studies, we
follow this operation and call these tokens recent tokens.

4 EXPERIMENTS

4.1 SETTINGS

Baselines and Models. In this paper, we focus on tuning-free KV Cache quantization methods.
To our knowledge, KIVI is currently the strongest tuning-free baseline with the best compression
efficiency and accuracy. Therefore, to assess the effectiveness of our method, we compare SinkQ
with KIVI (Liu et al., 2024b) and vanilla FP16 implementation using greedy decoding across two
famous model families: LLaMA (Touvron et al., 2023b; Dubey et al., 2024) and Mistral (Jiang et al.,
2023). Specifically, we select LLaMA2-7B-chat-hf, LLaMA2-13B-chat-hf, LLaMA3-8B-Instruct,
and Mistral-7B-Instruct-v0.2. Additional experiment results on other baselines and models can be
found in Appendix B.

Tasks. We evaluate our methods on two benchmarks according to the length of input texts. For
normal context length evaluation, we use arithmetic reasoning task Gsm8k (Cobbe et al., 2021),
mainstream language and symbolic reasoning task BBH (Suzgun et al., 2023), and code completion
task HumanEval (Chen et al., 2021) with different settings. For long context length evaluation, we
choose four types of tasks in LongBench (Bai et al., 2024) including Document QA (Qasper), Sum-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Results of the performance on GSM8K, BBH, and HumanEval (HE). Bold indicates the
best results. We report accuracy for Gsm8k, BBH and Pass@k for HumanEval. Pass@k (p@k)
refers to running each test question k times and calculating the average pass rate of the generated
code. SinkQ outperforms KIVI across all tasks, achieving the best results.

Dataset
LLaMA2-7B-chat-hf LLaMA2-13B-chat-hf LLaMA3-8B-Instruct Mistral-7B-Instruct

Fp16 KIVI Ours Fp16 KIVI Ours Fp16 KIVI Ours Fp16 KIVI Ours

Gsm8k (8) 21.99 16.30 21.38 36.54 28.51 36.09 74.91 63.15 72.55 42.91 37.38 41.17

+ CoT 21.30 17.51 18.20 37.00 31.77 36.92 76.72 66.79 75.06 42.99 37.45 41.39

+ 0-CoT 24.11 21.61 22.59 32.60 29.19 31.31 40.64 37.54 42.68 40.18 33.81 37.98

BBH (3) 33.34 32.48 33.36 37.61 36.20 37.43 45.77 44.19 45.60 42.10 40.29 42.02

+ CoT 40.21 34.00 35.17 47.38 41.02 44.37 68.18 47.38 60.31 51.33 36.42 41.93

+ 0-CoT 35.00 33.30 34.25 35.86 33.57 34.80 51.37 44.19 48.89 41.74 37.83 40.19

HE (p@1) 12.19 9.75 11.58 7.92 7.31 7.92 40.24 28.05 40.85 40 .24 32.92 35.36

HE (p@10) 17.07 12.19 14.63 13.41 11.58 15.24 69.51 56.09 67.68 54.87 50.00 54.26

Average 25.65 22.14 23.90 31.04 28.14 30.51 58.42 48.16 56.70 44.55 38.26 41.79

marization (GovReport, MultiNews), Few-shot Learning (TriviaQA, SamSum, TREC) and Code
completion (LCC, RepoBench-P). We focus on downstream task performance rather than language
modeling abilities such as perplexity (PPL).

Details. We implement both KIVI and SinkQ under 2-bit quantization. For KIVI, the group size (G)
and residual length (R) are set to 128. For SinkQ, we use G = 128, R = 32, and set sink num to 3.
Notably, we set sink num to 0 for the first and second layers because we find that shallow layers
have no attention sinks (Ablation in Section 4.4). Regarding the sinks that have been eliminated
from the sink pool, we do not put these tokens back in their original positions, but still keep a full
precision window to store these sinks for easier implementation. Our experiments find that a very
small window can retain all the eliminated sinks, and we set it to 32. GSM8K and BBH are tested
under the LM Eval (Gao et al., 2024) framework. Humaneval follows the settings from InstructEval2.
Additionally, we use a CUDA fused kernel from (Dettmers et al., 2022) for efficient multiplication
of full-precision and quantized matrices in both KIVI and SinkQ. All the experiments are conducted
on NVIDIA A100 40G GPUs unless otherwise specified.

4.2 RESULTS

4.2.1 NORMAL CONTEXT LENGTH EVALUATION

Table 1 presents the results of the normal context length evaluation across different models and
methods. For Gsm8k and BBH, we report accuracy in the setting of few-shot, few-shot CoT, and
zero-shot CoT. For HumanEval, we report pass@1 and pass@10 in the zero-shot setting. The results
illustrate that our method significantly outperforms KIVI across all settings. Notably, on BBH (3-
CoT, LLaMA3-8B-Instruct), SinkQ achieves a 12.93% improvement over KIVI. Compared to FP16,
SinkQ incurs minor accuracy loss in most settings. The largest accuracy drop occurs on BBH (3-
CoT, Mistral-7B-Instruct), likely due to the high complexity of the task and the long generation
length required. Overall, SinkQ can achieve significant performance improvements over the best
existing baseline.

4.2.2 LONG CONTEXT LENGTH TASKS EVALUATION

The main results of long context length evaluation are in table 2. Our method outperforms KIVI
in most settings, with only a tiny performance gap compared to the FP16 baseline. While KIVI

2https://github.com/declare-lab/instruct-eval

6

https://github.com/declare-lab/instruct-eval


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Main results on LongBench. We report accuracy for TREC, Rouge-L for GovReport
and SamSum, edit similarity (Levenshtein distance (Svyatkovskiy et al., 2020)) for LCC and Re-
poBenchP, and F1 score for the other tasks. Bold indicates the best results for each setting. SinkQ
demonstrates superior performance on average and exhibits nearly lossless compression accuracy.

Model Qasper GovReport MultiNews TREC TriviaQA SamSum LCC RepoBench-P Avg

LLaMA2-7B-chat-hf

Fp16 20.04 25.08 23.02 59.67 85.39 39.28 59.59 48.04 45.01

KIVI 20.43 19.97 19.82 59.67 85.16 37.70 58.73 47.24 43.59

Ours 19.95 21.56 20.81 59.67 85.00 39.10 59.44 48.51 44.26

LLaMA2-13B-chat-hf

Fp16 17.42 25.65 23.35 64.00 86.52 40.49 49.80 47.13 44.30

KIVI 20.10 20.65 21.10 63.67 86.39 39.51 49.10 43.95 43.06

Ours 18.81 22.29 21.69 64.00 86.81 40.35 51.14 47.71 44.10

LLaMA3-8B-Instruct

Fp16 37.54 31.04 25.58 69.67 89.85 40.50 56.58 51.01 50.22

KIVI 34.88 28.43 24.78 69.33 89.57 40.09 44.42 45.54 47.13

Ours 36.75 30.74 24.94 69.67 89.74 40.39 52.37 48.82 49.18

Mistral-7B-Instruct

Fp16 24.35 33.05 25.77 67.00 86.84 40.95 57.24 49.84 48.13

KIVI 24.20 30.98 25.10 66.33 85.40 41.05 55.70 48.18 47.12

Ours 23.78 31.37 25.35 66.33 86.18 41.25 55.89 48.32 47.31

maintains good accuracy on most tasks, it occasionally experiences significant performance drops
(e.g., LLaMA3-8B Instruct, LCC: 56.58% → 44.42%). However, SinkQ does not encounter this
situation, which suggests that our method achieves higher quantization accuracy than KIVI.

4.3 EFFICIENCY COMPARISON

50 100 150 200 250
Batch Size

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

FP16
KIVI(G=32)
KIVI(G=128)
SinkQ(G=32)
SinkQ(G=128)

(a) System throughput

0 50 100 150 200 250
Batch Size

0

10

20

30

40

50

60

70

M
em

or
y 

(G
B)

FP16
KIVI(G=32)
KIVI(G=128)
SinkQ(G=32)
SinkQ(G=128)

(b) Memory Usage by batch size

0 25 50 75 100 125 150 175
Sequence Length (K)

10

15

20

25

30

35

40

M
em

or
y 

(G
B)

r=0.990
r=0.198

r=0.153r=0.199 r=0.154

FP16
KIVI(G=32)
KIVI(G=128)
SinkQ(G=32)
SinkQ(G=128)

(c) Memory Usage by length

Figure 3: Experiments on throughput and memory: (a) Comparison of throughput (tokens/s) for
different methods across different batch sizes on NVIDIA A800 80G. (b) Peak memory usage (in-
cluding model weights and other components) at different batch sizes on NVIDIA A800 80G. (c)
Peak memory usage (including model weights and other components) at different sequence lengths
when batch size = 1 on NVIDIA A100 40G. SinkQ achieves a peak memory reduction of up to 6.4×
and a throughput increase of 2.3×.

Additionally, to validate the memory reduction and throughput improvements achieved by SinkQ,
we conduct three experiments: a throughput test, a memory test, and a longest sentence test. The
throughput test measures the number of tokens generated per second as the batch size varies while
keeping the input and output lengths fixed. The memory test tracks memory usage as the batch size
changes, also with fixed input and output lengths. The longest sentence test assesses the memory
required for inference as the output length increases infinitely (until out-of-memory), with a fixed
batch size of 1 and an input length of 1. We use the LLaMA2-7B-chat-hf model for our experiments,
and set the input length to 64 and the output length to 384 for both the throughput and memory tests.
Figure 3 illustrates the results.

Figure 3a shows that when the batch size is small, SinkQ performs slightly slower than the FP16
baseline. However, as the batch size increases, SinkQ demonstrates a significant speed advantage.
Compared to KIVI, SinkQ is slightly slower at G = 32 but significantly faster at G = 128. This

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Ablation study of SinkQ by combining possible group sizes G and residual lengths R. The
settings in the main experiment are indicated with underlines.

G R Gsm8k(8) Gsm8k(8-CoT) G R Gsm8k(8) Gsm8k(8-CoT) G R Gsm8k(8) Gsm8k(8-CoT)

32 0 70.05 73.16 64 0 68.92 72.63 128 0 70.96 73.54

32 8 71.95 74.22 64 8 70.05 73.01 128 8 72.51 74.15

32 16 72.78 74.83 64 16 70.89 73.84 128 16 72.93 74.37

32 32 72.78 74.53 64 32 72.40 75.06 128 32 72.55 75.06

32 64 74.00 76.88 64 64 73.69 76.42 128 64 73.24 75.36

32 128 73.77 77.33 64 128 74.68 76.42 128 128 73.24 76.65

variation can be attributed to the difference in their handling of recent tokens and factors such as
quantization timing and sequence length. From Figure 3b, it is evident that quantization can signif-
icantly reduce memory usage compared to the FP16 baseline. While SinkQ requires slightly more
memory than KIVI, this can also be attributed to differences in their management of recent tokens.
Additionally, with larger group sizes, more full-precision tokens must be retained when the group is
not full, leading to increased memory requirements. This phenomenon becomes more pronounced
with large batch sizes and short sequence lengths. Figure 3c allows us to observe the compression
ratio (the slope of each line) of the KV Cache more clearly. When the sequence length is sufficiently
large, the influences of the group and recent tokens become negligible. Notably, when G = 32, the
compression ratio is approximately 5.0 times; at G = 128, it reaches about 6.4 times.

4.4 ABLATION

Group size and residual length. Group size and residual length are critical hyperparameters in
SinkQ. Theoretically, a larger group size allows more values to be quantized at each step, which
can reduce quantization accuracy due to the increased range of Xmax −Xmin. On the other hand,
a larger group size decreases memory usage by requiring fewer quantization coefficients to be re-
tained. Conversely, increasing the residual length requires more memory since a more full-precision
KV Cache must be retained, but it also improves accuracy. Thus, selecting an appropriate group size
and residual length is critical to balancing memory usage and accuracy.

We explore the impact of group size and residual length with group sizes of {32, 64, 128} and
residual lengths of {0, 8, 16, 32, 64, 128}. Table 3 reports the results for LLaMA3-8B-Instruct
on Gsm8k 8-shot and 8-shot CoT under different configurations. When the group size is fixed,
we observe a clear upward trend in accuracy as the residual length increases. However, when the
residual length is fixed, the effect of group size shows no clear pattern, likely because the token
distribution is relatively uniform, meaning that increasing group size has a limited impact. Since
increasing the group size can improve the compression ratio (if not consider the group tokens), we
tend to choose a larger group size. For our main experiments, we choose a group size of 128 and a
residual length of 32 to balance performance and compression ratio.

The number of sinks. We explore the effect of varying the number of sinks (sink num) from 0
to 6, keeping all other settings unchanged. Table 4 presents the results for LLaMA3-8B-Instruct
on Gsm8k (8-shot and 8-shot CoT). The results show that retaining even a single sink can signif-
icantly improve performance, but further increases in sink num yield diminishing returns, even-
tually plateauing performance. However, the increase in sink num may result in more memory
overhead, leading to a decrease in compression ratio. Considering that a small sink num is already
sufficient to significantly improve the accuracy, we set sink num = 3 for our main experiments,
which is also consistent with our previous explorations.

Sinks in shallow layers. We observe that there are no attention sinks in the shallow layers (see
Figure 5 and Figure 6 in Appendix, the Keys shallow layers does not exhibit the characteristics
discussed in Section 3.1.), suggesting that sink num should be set to 0 in these layers. To explore
this further, we set sink num to 0 in consecutive shallow layers and evaluate the performance on
Gsm8k (8-shot and 8-shot CoT) using LLaMA3-8B-Instruct. For example, “0 ∼ 2” means that
sink num is set to 0 for the first three layers of the model. Table 4 shows that the impact is minimal

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation study of sink num. The settings in the main experiment are indicated with
underlines. (left) Results on Gsm8k with different sink num. (right) Results on Gsm8k with
sink num = 0 in shallow layers.

sink num Gsm8k(8) Gsm8k(8-CoT)

0 62.09 68.31

1 71.80 75.74

2 71.57 75.06

3 72.55 75.06

4 72.25 75.97

5 72.18 75.74

6 72.18 75.89

Layers Gsm8k(8) Gsm8k(8-CoT)

None 72.48 75.59

0 72.78 75.44

0,1 72.55 75.06

0 ∼ 2 71.49 74.68

0 ∼ 3 71.80 73.64

0 ∼ 4 70.96 74.53

0 ∼ 5 69.60 74.00

in the shallowest layers but becomes more significant as we move deeper into the model. Based on
these results, we set sink num = 0 for the first two layers in all models for our main experiments.

5 RELATED WORK

Efficient Inference of LLMs. Large Language Models often have enormous parameters, leading
to significant computational costs during inference. To address this, some researchers have em-
ployed parameter pruning techniques to eliminate redundant or less important parameters, thereby
compressing LLMs (Ma et al., 2023; Xia et al., 2024; Frantar & Alistarh, 2023). Other studies have
focused on quantizing model weights, reducing their size and the number of arithmetic operations
required for inference. For example, GPTQ (Frantar et al., 2022) uses second-order information to
quantize models to 3 or 4-bit precision while maintaining accuracy. AWQ (Lin et al., 2024) preserves
critical weights based on the activation distribution, quantizing the remaining weights to lower bit
precision. These methods can be combined with KV Cache compression to achieve a better memory
usage and a higher throughput.

KV Cache Compression. KV Cache compression can significantly reduce the size of KV Cache
with minimal accuracy loss. Liu et al. (2024b) find that some outlier channels in the Keys have
very large magnitudes, resulting in a significant loss when quantifying Keys by token. They further
discover that Keys are distributed by channel, while Values are distributed by token. Based on these
observations, they introduce KIVI, a tuning-free 2-bit quantization method that improve quantization
accuracy by applying channel-wise quantization to the Key cache and token-wise quantization to
the Value cache. Hooper et al. (2024) find that quantizing the Key cache before applying rotary
positional embeddings reduces the negative impact of quantization. GEAR (Kang et al., 2024)
compensates for compression-induced errors by combining low-rank and sparse matrices, achieving
near-lossless results in 4-bit quantization, but it will bring additional calculations due to the low-rank
matrix calculation. Additionally, evicting some tokens during inference helps reduce the excessive
memory usage caused by storing KV Cache. Xiao et al. (2024) propose StreamingLLM, which
retains the initial and final tokens of the input, leveraging the concept of the attention sink. Moreover,
Zhang et al. (2023) consider that only a minority of tokens significantly influence the output and that
these critical tokens are positively correlated with their frequency of occurrence. They propose H2O,
which retains recent tokens while dynamically evicting less important ones.

6 CONCLUSION

In this paper, we start from the assumptions of KIVI and further explore the distribution of the
Keys in the outlier channels. We observe that several unusual tokens deviate from the assumptions
of KIVI and exhibit exceptionally high attention scores. Quantizing these tokens has detrimental
effects, as it increases the quantization errors of other tokens, and their high attention scores lead to
more significant quantization errors reflected in the attention output. Building on these observations,
we propose Sink-Aware KV Cache quantization (SinkQ), which leverages the magnitude of the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Keys to dynamically track these tokens during decoding, excluding them from the quantization
process while retaining their full-precision values. Extensive experiments show that our method
achieves significant improvements in accuracy, along with substantial reductions in memory usage
and increases in throughput.

7 LIMITATIONS & FUTURE WORK

Although SinkQ has achieved excellent results, there are still some limitations:

• Due to the presence of the group and recent tokens, we cannot ensure that all tokens are
quantized at every moment. When the sequence length is very short and the batch size is
very large, the compression ratio of SinkQ is reduced. In extreme cases, when the sequence
length is shorter than the group size, SinkQ does not perform any compression.

• SinkQ occasionally still incurs a little loss on specific datasets under 2-bit quantization.
This may be related to the difficulty of the datasets and the required generation length.
When the generation length is very long, SinkQ may face an unacceptable risk of loss due
to error accumulation.

Additionally, there are still some points worth exploring:

• Mitigating error accumulation: When the generation length is excessively long, KV Cache
quantization may lead to unacceptable errors due to error accumulation. Developing tech-
niques to alleviate this issue is a promising direction.

• Combining with other KV Cache compression techniques: KV Cache quantization is com-
patible with other compression methods. Combining it with other KV Cache compression
techniques could achieve State-of-the-art results.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4895–4901, 2023.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A
bilingual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pp. 3119–3137. Association for Computational Linguistics, 2024. URL
https://aclanthology.org/2024.acl-long.172.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

10

https://aclanthology.org/2024.acl-long.172


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, and Kai-Chiang Wu. Palu: Compressing kv-cache with low-rank
projection. arXiv preprint arXiv:2407.21118, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm
kv cache. arXiv preprint arXiv:2403.04643, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 10323–10337. PMLR, 2023. URL https://proceedings.mlr.press/
v202/frantar23a.html.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022. doi: 10.
48550/ARXIV.2210.17323. URL https://doi.org/10.48550/arXiv.2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. In The Twelfth International Conference
on Learning Representations.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length LLM inference
with KV cache quantization. CoRR, abs/2401.18079, 2024. doi: 10.48550/ARXIV.2401.18079.
URL https://doi.org/10.48550/arXiv.2401.18079.

11

https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://doi.org/10.48550/arXiv.2210.17323
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://doi.org/10.48550/arXiv.2401.18079


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 2704–
2713. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00286. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Jacob_Quantization_and_Training_CVPR_2018_paper.html.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.
doi: 10.48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.
06825.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia
Mirhoseini. Hydragen: High-throughput llm inference with shared prefixes. arXiv preprint
arXiv:2402.05099, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. GEAR: an efficient KV cache compression recipe for near-lossless generative inference
of LLM. CoRR, abs/2403.05527, 2024. doi: 10.48550/ARXIV.2403.05527. URL https:
//doi.org/10.48550/arXiv.2403.05527.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantiza-
tion for on-device LLM compression and acceleration. In Phillip B. Gibbons, Gennady Pekhi-
menko, and Christopher De Sa (eds.), Proceedings of the Seventh Annual Conference on Ma-
chine Learning and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024. mlsys.org,
2024. URL https://proceedings.mlsys.org/paper_files/paper/2024/
hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024b. URL https://openreview.net/forum?id=L057s2Rq8O.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural prun-
ing of large language models. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
44956951349095f74492a5471128a7e0-Abstract-Conference.html.

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong Wang, Hengyu Li, Qiaozhi He, Murun Yang,
Tong Xiao, and Jingbo Zhu. Cross-layer attention sharing for large language models. arXiv
preprint arXiv:2408.01890, 2024.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp. 118–
132. IEEE, 2024.

12

http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2403.05527
https://doi.org/10.48550/arXiv.2403.05527
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://openreview.net/forum?id=L057s2Rq8O
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/44956951349095f74492a5471128a7e0-Abstract-Conference.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 13003–13051. Association for Computational
Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.824. URL https://doi.org/
10.18653/v1/2023.findings-acl.824.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM joint meeting on European
software engineering conference and symposium on the foundations of software engineering, pp.
1433–1443, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Nikita Trukhanov and Ilya Soloveychik. Accurate block quantization in llms with outliers. arXiv
preprint arXiv:2403.20137, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Y Wang, D Ma, and D Cai. With greater text comes greater necessity: Inference-time training helps
long text generation. arXiv preprint arXiv:2401.11504, 2024.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637, 2024.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=09iOdaeOzp.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=NG7sS51zVF.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transform-
ers. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm.
arXiv preprint arXiv:2406.07056, 2024.

13

https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=NG7sS51zVF
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html.

Lei Zhu, Xinjiang Wang, Wayne Zhang, and Rynson WH Lau. Relayattention for efficient large
language model serving with long system prompts. arXiv preprint arXiv:2402.14808, 2024.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Al-
ham Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding.
arXiv preprint arXiv:2406.09297, 2024.

14

http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL FIGURES AND TABLES.

Input:
[INST]Which methods did Socrates employ to challenge the prevailing thoughts of his

time?
[/INST]

Output:
[INST]Which methods did Socrates employ to challenge the prevailing thoughts of his

time?
[/INST] Socrates employed several methods to challenge the prevailing thoughts of his

time, including:
1. Questioning: Socrates used questioning as a primary method to challenge the beliefs

of others. He would ask probing questions to expose the contradictions and inconsistencies
in their arguments, and to lead them to a deeper understanding of their own beliefs.

2. Dialogue: Socrates believed in the power of dialogue to promote critical thinking and
understanding. He would engage in conversations with others, using his questions and their
responses to challenge their beliefs and to encourage them to think more deeply about their
ideas.

3. Irony: Socrates often used irony to challenge the beliefs of others. By using irony,
he could expose the flaws in their arguments and lead them to see things from a different
perspective.

4. Paradox: Socrates often used paradoxical statements to challenge the prevailing be-
liefs of his time. By presenting seemingly contradictory statements, he could encourage his
interlocutors to think more critically about their beliefs and to question their assumptions.

5. Maieutics: Socrates believed in the power of midwifery, or maieutics, to bring forth
new ideas and insights. He would use his questions and dialogue to help others discover new
truths and to challenge their existing beliefs.

6. Analogy: Socrates often used analogies to help others understand complex ideas and
to challenge their beliefs. By using comparisons and contrasts, he could help his interlocutors
to see things from a different perspective and to develop a deeper understanding of the issues
at hand.

7. Refutation: Socrates was skilled at refuting the arguments of others by exposing their
flaws and inconsistencies. He would use his questions and dialogue to challenge the beliefs
of others and to lead them to a deeper understanding of the issues at hand.

8. Affirmation: Socrates also used affirmation to challenge the prevailing thoughts of
his time. By affirming the beliefs of others and building on them, he could encourage them
to think more deeply about their ideas and to develop a more nuanced understanding of the
issues at hand.

9. Silence: Socrates believed that sometimes the best way to challenge the prevailing
thoughts of his time was through silence. By remaining silent in the face of foolish or false
arguments, he could encourage others to think more critically about their beliefs and to ques-
tion their assumptions.

Overall, Socrates employed a wide range of methods to challenge the prevailing thoughts
of his time, including questioning, dialogue, irony, paradox, maieutics, analogy, refutation,
affirmation, and silence. Through these methods, he was able to encourage critical thinking
and to promote a deeper understanding of the issues at hand.

Table 5: Example generated by LLaMA-2-7B-chat-hf.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2.5
0.0
2.5
5.0
7.5

10.0
12.5
15.0

0 50 100 150 200 250 300Index0.0
0.2
0.4
0.6
0.8
1.0

Figure 4: The Keys in an outlier channel (up) and the magnitude of the Keys overall (down).

Layer 0 key cache

0 200 400 600Token 0 50100

Column

01
23

Layer 0 value cache

0 200 400 600Token 0 50100

Column

0.0
0.2
0.4

Layer 10 key cache

0 200 400 600Token 0 50100
Column

05
1015

Layer 10 value cache

0 200 400 600Token 0 50100

Column

0.00.51.01.52.0

Layer 20 key cache

0 200 400 600Token 0 50100

Column

05
1015

Layer 20 value cache

0 200 400 600Token 0 50100

Column

0.00.51.01.52.0

Layer 31 key cache

0 200 400 600Token 0 50100

Column

0
5
10

Layer 31 value cache

0 200 400 600Token 0 50100
Column

0
1
2

Figure 5: Magnitude of the keys and Values for Llama-2-7B-chat-hf in head 17.

2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

0 50 100 150 200 250 300Index
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

Figure 6: The Keys in an outlier channel (up) and the sorted Keys in an outlier channel (down).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENT RESULTS.

B.1 EXPERIMENTS ON LLAMA-2-70B-CHAT-HF.

70b-chat-hf Gsm8k(8) Gsm8k(8-cot) Gsm8k(0-cot) BBH(3) HE(p@1) Avg

FP16 56.03 55.04 48.98 47.09 16.46 44.72

KIVI 51.63 50.49 46.40 46.08 14.02 41.72

Ours 52.92 52.54 49.05 46.48 15.85 43.37

Table 6: Experiments on LLaMA-2-70b-chat-hf

To validate the performance on larger models, we conducte some additional experiments on
LLaMA-2-70b-chat-hf. Due to time and computational limitations, we only add experimental re-
sults from a portion of the dataset on our main experiments. The experimental setup is completely
consistent with the main experiment. The result shows that SinkQ can still achieve higher accuracy
advantages on larger models based on KIVI.

B.2 COMPARISON WITH TOKEN EVICTION METHODS.

Llama2-7b-chat Qasper GovReport MultiNews TREC TriviaQA SamSum LCC Repobench-P Avg

FP16 20.04 25.08 23.02 59.67 85.39 39.28 59.59 48.04 45.01

KIVI 20.43 19.97 19.82 59.67 85.16 37.7 58.73 47.24 43.59

SnapKV 18.96 18.73 19.64 59 84.84 38.22 60.5 50.08 43.75

H2O 17.51 18.85 19.88 50 84.22 38.09 58.23 49.66 42.05

Streaming 15.31 19.39 18.99 51 83.11 36.8 57.57 47.33 41.19

Ours 19.95 21.56 20.81 59.67 85 39.1 59.44 48.51 44.26

Table 7: Experiments on three additional eviction-based methods on LLaMA-2-7b-chat-hf.

We add some comparisons with the token eviction methods. The previous token eviction methods
are mostly evaluated on LongBench, so we also conduct experiments on LongBench using LLaMA-
2-7b-chat-hf. The input length of LongBench is relatively long, while the output length is relatively
short, which may be more conducive to the performance of the token eviction methods. The base-
lines include StreamingLLM, H2O, and SnapKV. In order to maintain the simplicity and consistency
of the settings for comparison, we only perform token eviction in the prefill stage, and retain all KV
caches in the decode stage. In addition, we make some adjustments to H2O based on SnapKV’s
strategy, selecting only the queries in the sliding window for attention score selection (which was
later verified to be superior to H2O’s strategy). In order to maintain the overall compression ratio
consistent with SinkQ, we choose to evict 84% of the tokens in the prefill stage, which have the
closest compression ratio to SinkQ. For H2O, the number of recent tokens and heavy hitters is the
same. For StreamingLLM, we do not adjust its position id during decoding phase. So, the process
of token eviction is as follows:

• In the prefill stage, use queries in the sliding window to calculate the attention score with
other tokens, and perform token eviction according to the strategies of StreamingLLM,
H2O, and SnapKV respectively.

• During the decode phase, attention calculation is performed directly without token eviction.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Among these methods, SnapKV achieves the best results. But even under more favorable settings,
the result is still slightly lower than SinkQ.

B.3 COMPARISON WITH ADDITIONAL BASELINES.

Llama2-7b-chat Gsm8k(8) 8-cot 0-cot BBH(3) 3-cot 0-cot HE(p@1) p@10 Avg

FP16 21.99 21.3 24.11 33.34 40.21 35.00 12.19 17.07 45.01

KIVI 16.3 17.51 21.61 32.48 34 33.30 9.75 12.19 43.59

Ours 19.86 19.33 22.52 33.33 34.43 33.74 11.58 14.63 43.75

ZipCache 15.92 17.74 20.02 32.85 33.9 32.35 9.45 15.24 42.05

Table 8: Experiments on other baselines.

We add ZipCache as our baseline, and in order to maintain consistent compression rates, we set
20% of the tokens to 4-bit quantization and 80% to 2-bit quantization. The other hyper-parameters
in ZipCache are the same. We conduct our experiments on GSM8K, BBH and HumanEval with
LLaMA-2-7b-chat-hf. The results show that ZipCache is weaker than KIVI and SinkQ.

C ADDITIONAL TIME ANALYSIS.

18%

13%

14%

55%

sink qkv_linear quant_matmul other

Figure 7: The time proportion of each part in the attention block.

We provide a more detailed analysis of the time cost. Firstly, we analyze the compression stage.
In the compression stage, we calculate the magnitude of each token’s key, perform threshold com-
parison, select the index, and quantify it. In the compress phase, the cost of the sink operation is
relatively high compared to quantization, but the compress operation is only performed every G steps
(128 in the main experiment), so this time cost can be almost negligible. In the attention calculation
stage, we need to calculate the query, key and value in the sink pool and cover the attention score
according to the sink index, which has a certain cost. We have drawn the main time overhead in
Figure 9, and the sink operation accounts for about 18% of the time in the attention block. However,
considering the pre-processing, post-processing and FFN calculation in the entire forward step, the
time proportion of sink operations is very small overall.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ACCUMULATIVE ATTENTION SCORE.

In order to more intuitively display the proportion of attention scores of attention sinks, we sort the
accumulative attention scores and plot them on a graph. Due to the significant difference, we also
plot the results after log2 mapping.

Figure 8: Accumulated attention score.

Figure 9: Accumulated attention score (log2).

19


	Introduction
	Background
	Method
	Exploration of the Keys and Values.
	SinkQ: Sink-aware KV Cache Quantization

	Experiments
	Settings
	Results
	Normal context length evaluation
	Long context length tasks evaluation

	Efficiency comparison
	Ablation

	Related work
	Conclusion
	Limitations & Future work
	Additional Figures and Tables.
	Additional experiment results.
	Experiments on LLaMA-2-70b-chat-hf.
	Comparison with token eviction methods.
	Comparison with additional baselines.

	Additional time analysis.
	Accumulative attention score.

