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ABSTRACT

This paper considers the problem of learning the reward function and constraints
of an expert from few demonstrations. This problem can be considered as a meta-
learning problem where we first learn meta-priors over reward functions and con-
straints from other distinct but related tasks and then adapt the learned meta-priors
to new tasks from only few expert demonstrations. We formulate a bi-level op-
timization problem where the upper level aims to learn a meta-prior over reward
functions and the lower level is to learn a meta-prior over constraints. We propose
a novel algorithm to solve this problem and formally guarantee that the algorithm
reaches the set of ϵ-stationary points at the iteration complexity O( 1

ϵ2 ). We also
quantify the generalization error to an arbitrary new task. Experiments are used
to validate that the learned meta-priors can adapt to new tasks with good perfor-
mance from only few demonstrations.

1 INTRODUCTION

Inverse reinforcement learning (IRL) has been receiving substantial research efforts due to its effec-
tiveness to recover a reward function from expert’s demonstrations that can well explain the expert’s
behavior. In practical applications, however, constraints are ubiquitous and a reward function com-
bined with a set of constraints can better explain complicated behaviors than a single reward function
(Malik et al., 2021). Therefore, inverse constrained reinforcement learning (ICRL) is proposed to
learn constraints from expert’s demonstrations. Current state-of-the-arts on IRL (Fu et al., 2018;
Imani & Ghoreishi, 2021) and ICRL (Scobee & Sastry, 2019) can either learn a reward function in
unconstrained environments or infer constraints with access to the ground truth reward but cannot
infer both. To solve this challenge, distributed ICRL (Liu & Zhu, 2022) is proposed to learn both
the reward function and constraints of the expert. In this paper, we follow the definition of ICRL in
(Liu & Zhu, 2022), which means learning both the reward function and constraints of the expert.

While the aforementioned literature can recover the reward function and constraints for single tasks,
they typically need large amounts of expert demonstrations (Yu et al., 2019). When it comes to
multiple related tasks that share common structural patterns, e.g., navigating to different locations
in a common environment (Xu et al., 2019), it could be expensive and inefficient to collect enough
demonstrations for each task and then learn the corresponding reward function and constraints sep-
arately. Meta-learning (Rajeswaran et al., 2019) has a potential to learn the reward functions and
constraints efficiently from few demonstrations. It can exploit the structural similarity of a group
of related tasks by learning meta-priors. The learned meta-priors allow for rapid adaptation to new
related tasks from only limited data. Therefore, it motivates us to leverage meta-learning to infer the
reward functions and constraints of the experts in new tasks from only few demonstrations.

Related works. IRL (Abbeel & Ng, 2004; Ziebart et al., 2008; Ziebart, 2010) and ICRL (Scobee
& Sastry, 2019; Malik et al., 2021; Liu & Zhu, 2022) have shown great success in recovering the
reward function and constraints from expert’s demonstrations. However, when it comes to multiple
related tasks, they all require large amounts of demonstrations for each task. Meta-learning (Finn
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et al., 2017; Rajeswaran et al., 2019; Xu & Zhu, 2023b) provides a way to learn from limited data by
learning the common structural patterns (i.e., meta-priors) of the related tasks and then optimizing
for rapid adaptation to unseen tasks from only few data. It has achieved state-of-the-art performance
in few-shot regression, classification (Finn et al., 2017), and reinforcement learning (Fallah et al.,
2021a; Xu & Zhu, 2022). Recently, several meta IRL algorithms are proposed to recover reward
functions from few demonstrations. In specific, (Yu et al., 2018; Xu et al., 2019) propose to learn a
reward parameter initialization that can be adapted to new tasks via only one or few gradient descent
step(s). (Yu et al., 2019; Seyed Ghasemipour et al., 2019) propose to learn a context-conditional
model that, given a new task, can encode the task and output the corresponding reward parameters.

However, the existing works on meta IRL have two limitations. (i) They do not explicitly deal
with constraints. Existing meta-learning algorithms can directly compute the gradient of the meta
objective (i.e., hyper-gradient) when only reward functions are learned (Xu et al., 2019), but cannot
compute the hyper-gradient when we also need to deal with constraints. (ii) They do not theoretically
guarantee the proposed algorithms’ convergence, and more importantly, adaptation performance
(i.e., generalization error) to new tasks. This paper proposes the first theoretical framework and
thereby an algorithm that can learn the reward function and constraints of a new task from only few
demonstrations by first learning meta-priors over reward functions and constraints. While there is
no meta IRL theoretical work, there are several theoretical works on other meta-learning problems.
We discuss our distinctions from other related meta-learning theoretical works in Appendix A.14.

Contribution statement. Our contributions are threefold. First, we extend ICRL (Liu & Zhu, 2022)
to a meta-learning setting where we learn meta-priors over reward functions and constraints in order
to adapt to new related tasks from few demonstrations. We formulate a novel bi-level optimization
problem to solve it. Second, we propose a novel “meta inverse constrained reinforcement learning”
(M-ICRL) algorithm, that can efficiently compute the hyper-gradient, to solve the problem. Third,
we provide the iteration complexity O( 1

ϵ2 ) of the algorithm reaching the set of ϵ-stationary points.
More importantly, we quantify the generalization error to an arbitrary new task. It is shown that the
generalization error can be sufficiently small if the new task is “close” to the training tasks.

2 PROBLEM FORMULATION

This section introduces the definition of a single task and then formulates the meta-learning problem.

2.1 SINGLE TASK: ICRL

In our problem, a single task Ti is an ICRL problem (Liu & Zhu, 2022) where a learner aims to
learn the reward function and constraints of an expert from the expert’s demonstrated trajectories.
The expert’s decision making is based on a constrained Markov decision process (CMDP). The task
Ti’s CMDP (S,A, γ, P0, P, ri, ci, bi) is defined via state set S, action set A, discount factor γ, and
initial state distribution P0. The probability of state transition to s′ from s by taking action a is
P (s′|s, a). The reward and cost functions of the expert are ri, ci : S × A → R. A trajectory of
the CMDP is a state-action sequence ζ = s0, a0, s1, a1, · · · and we use Pπ to denote the trajectory
distribution generated by an arbitrary policy π where the initial state is drawn from P0. Define
Jri(π) ≜ Eζ∼Pπ

[
∑∞

t=0 γ
tri(st, at)] as the expected cumulative reward under the policy π and

Jci(π) ≜ Eζ∼Pπ [
∑∞

t=0 γ
tci(st, at)] as the expected cumulative cost. The expert’s policy πi wants

to maximize Jri(π) subject to Jci(π) ≤ bi where bi is a pre-defined budget. The expert can roll out
πi to demonstrate a set of Di trajectories Di = {ζj}Di

j=1 where ζj = sj0, a
j
0, s

j
1, a

j
1, · · · .

A learner observes Di and aims to use parameterized models rθ and cω with parameters θ and ω to
learn the expert’s reward function ri and cost function ci by solving the following ICRL problem:

min
θ

Li(θ, ω
∗(θ)), s.t. ω∗(θ) = argmin

ω
Gi(ω; θ). (1)

The upper-level problem aims to learn a reward function rθ that can minimize the expected negative
log-likelihood Li(θ, ω) ≜ −Eζ∼Pπi

[
∑∞

t=0 γ
t log πω;θ(at|st)] where πω;θ is the constrained soft

Bellman policy (see the expression in Appendix A.2) (Liu & Zhu, 2022; 2024) under the reward
function rθ and cost function cω . The constrained soft Bellman policy is an extension of soft Bellman
policy (Ziebart et al., 2010; Zhou et al., 2017) to CMDPs. The soft Bellman policy is widely used
in soft Q-learning (Haarnoja et al., 2017) and soft actor-critic (Haarnoja et al., 2018).
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The lower-level function Gi(ω; θ) ≜ maxπ H(π) + Jrθ (π) − Jcω (π) + Jcω (πi) can be regarded
as an RL problem which aims to find the policy that maximizes the entropy-regularized cumulative
reward-minus-cost (i.e., H(π) + Jrθ (π)− Jcω (π)) where H(π) ≜ Eζ∼Pπ [−

∑∞
t=0 γ

t log π(at|st)]
is the causal entropy. Note that the likelihood Li is defined on the expert’s trajectory distribution Pπi

while H(π) is defined on the trajectory distribution of its current policy π. The last term Jcω (πi) in
Gi is constant w.r.t. π. It is proved (Liu & Zhu, 2022) that the constrained soft Bellman policy is the
optimal policy of the RL problem in Gi(ω; θ), i.e., πω;θ = argmaxπ H(π)+Jrθ (π)−Jcω (π). The
lower-level problem minω Gi(ω; θ) uses adversarial learning to find a cost function cω that makes
the best policy (i.e., πω;θ) perform the worst and the last term Jcω (πi) penalizes cost functions where
the expert has high cumulative cost. We discuss the formulation of (1) in detail in Appendix A.1.

Since problem (1) is defined in expectation but the learner only observes Di, in practice, the learner
solves an empirical problem defined on Di. Given a trajectory ζj = sj0, a

j
0, · · · , we define Ĵc(ζ

j) ≜∑∞
t=0 γ

tc(sjt , a
j
t ) as the empirical cumulative cost. Then the empirical problem the learner solves is

minθ L̂i(θ, ω̂
∗(θ),Di), s.t. ω̂∗(θ) = argminω Ĝi(ω; θ,Di) where the L̂i(θ, ω,Di) ≜ − 1

Di

∑Di

j=1∑∞
t=0 γ

t log πω;θ(a
j
t |s

j
t ) and Ĝi(ω; θ,Di) ≜ maxπ H(π) + Jrθ (π)− Jcω (π) +

1
Di

∑Di

j=1 Ĵcω (ζ
j).

2.2 MULTIPLE TASKS: M-ICRL

ICRL in (1) can successfully recover the reward and cost functions of the expert (Liu & Zhu, 2022;
2024). However, it typically needs a large data set for each task when it comes to multiple related
tasks. To learn the reward and cost functions from few demonstrations, we leverage meta-learning
which optimizes for the ability to learn efficiently on new tasks. It is typically assumed in meta-
learning that there is a set of m training tasks {Ti}mi=1 which share the CMDP. The difference of
tasks is that each task Ti has its own reward function ri, cost function ci, and budget bi. The goal of
meta-learning is to optimize for meta-priors of reward and cost functions over the m training tasks
{Ti}mi=1 such that the reward and cost functions adapted from the learned meta-priors have good
performance on new tasks even if the new tasks only have limited data.

When it comes to meta-learning, two of the state-of-the-arts are model agnostic meta-learning
(MAML) (Finn et al., 2017) and meta-learning with implicit gradients (iMAML) (Rajeswaran et al.,
2019). MAML is simple and widely implemented in RL (Fallah et al., 2021a) and IRL (Yu et al.,
2019), while iMAML shows better empirical performance (Rajeswaran et al., 2019) at the expense
of heavier computation in the lower level since MAML only needs one gradient descent but iMAML
needs to fully solve an optimization problem in the lower level. In M-ICRL, we aim to propose a
problem formulation that utilizes the advantages of both methods.

The proposed problem formulation (2)-(3) has a bi-level structure (Ji et al., 2021; Xu & Zhu, 2023a)
where we learn the reward meta-prior in the upper level and the cost meta-prior in the lower level.

min
θ,ω

1

m

m∑
i=1

Li(φi, η
∗
i (φi, ω)), (2)

s.t. η∗i (φi, ω) = argmin
η

Gi(η;φi) +
λ

2
||η − ω||2, (3)

where φi ≜ θ − α ∂
∂θLi(θ, η

∗
i (θ, ω)) is the task-specific reward adaptation and η∗i (φi, ω) is the

task-specific cost adaptation. Note that problem (2)-(3) reduces to the ICRL problem (1) if we only
consider one task and do not perform meta-learning on reward parameter θ nor cost parameter ω,
i.e., m = 1, α = 0, and λ = 0. In this case, we do not have task-specific adaptations (φi, η

∗
i ).

Problem (2)-(3) reduces to MAML if we only do meta-learning on the reward parameter θ and do
not perform meta-learning on the cost parameter ω, i.e., λ = 0. In this case, we only have the task-
specific reward adaptation φi. Problem (2)-(3) reduces to iMAML (explained in Appendix A.4) if
we only do meta-learning on the cost parameter ω and do not perform meta-learning on the reward
parameter θ, i.e., α = 0. In this case, we only have the task-specific cost adaptation η∗i .

Problem (2)-(3) can reduce to the MAML that only learns θ and the iMAML that only learns ω. It
utilizes iMAML but does not suffer from the extra computation burden usually caused by iMAML
because ICRL in (1) is already a bi-level formulation and we need to fully solve the lower-level
problem anyway. We do not use iMAML for θ because this will lead to a “three-level” problem.
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3 THE PROPOSED ALGORITHM

This section proposes a novel algorithm that solves problem (2)-(3). Following (Fallah et al., 2020),
we partition the data set Di of each training task Ti into three subsets Dtr

i , Deval
i , and Dh

i with sizes
Dtr

i , Deval
i , and Dh

i respectively. The training set Dtr
i with limited data is used to compute the task-

specific adaptations φi and η∗i , the evaluation set Deval
i with abundant data is used to compute the

hyper-gradients (i.e., the gradients of the upper-level loss function in (2) with respect to θ and ω),
and the set Dh

i is used to compute the second-order terms in the hyper-gradients.

For an arbitrary data set D with size D, we solve the empirical version (i.e., argminη Ĝi(η;φi,D)+
λ
2 ||η−ω||2) of the lower-level problem (3) using (K−1)-step gradient descent η̂i(φi, ω,D, k+1) =

η̂i(φi, ω,D, k)− τ [∇ηĜi(η̂i(φi, ω,D, k);φi,D)+λ(η̂i(φi, ω,D, k)−ω)] where τ is the step size.
We then use η̂i(φi, ω,D,K) as an approximation of η̂∗i (φi, ω,D) ≜ argminη Ĝi(η;φi,D)+ λ

2 ||η−
ω||2. We provide the expressions of all the gradients, including ∇ηĜi, in Appendix A.3.

Algorithm 1 Meta inverse constrained reinforcement learning (M-ICRL)
Input: Initialized reward meta-prior θ(0) and cost meta-prior ω(0), task batch size B, step size α
Output: Learned meta-prior θ(n) and cost meta-prior ω(n)

1: for n = 0, 1, · · · do
2: Samples a batch of training tasks {Ti}Bi=1 with size B
3: for all Ti do
4: Samples the demonstration set Dtr

i to compute η̂i(θ(n), ω(n),Dtr
i ,K) and φ̂i(n) = θ(n)−

α ∂
∂θ L̂i(θ(n), η̂i(θ(n), ω(n),Dtr

i ,K),Dtr
i )

5: Samples the demonstration sets Deval
i and Dh

i

6: ∇θ,i,∇ω,i = Hyper-gradient(θ(n), ω(n), φ̂i(n),Dtr
i ,Deval

i ,Dh
i )

7: end for
8: θ(n+ 1) = θ(n)− α(n)

B

∑B
i=1 ∇θ,i, ω(n+ 1) = ω(n)− α(n)

B

∑B
i=1 ∇ω,i

9: end for

At each iteration n in Algorithm 1, the learner samples B tasks from the set of training tasks {Ti}mi=1.
For each sampled training task Ti, the learner first uses the training set Dtr

i to compute η̂i and the
task-specific reward adaptation φ̂i (line 4). Then the learner uses the training set Dtr

i , evaluation set
Deval

i , and Dh
i to compute the hyper-gradients ∇θ,i and ∇ω,i (line 6). Finally, the learners utilizes

stochastic gradient descent to update the reward and cost meta-priors (line 8).

The computation of the hyper-gradients is critical to Algorithm 1. In the following context, we first
identify the difficulties of computing the hyper-gradients and then provide our solutions.

3.1 CHALLENGES OF COMPUTING THE HYPER-GRADIENTS

The hyper-gradients ∂Li(φi,η
∗
i (φi,ω))

∂θ and ∂Li(φi,η
∗
i (φi,ω))

∂ω of problem (2)-(3) are hard to compute.
Take ∂Li(φi,η

∗
i (φi,ω))

∂θ as an example (the derivation of the hyper-gradients is in Appendix A.5):

∂Li(φi, η
∗
i (φi, ω))

∂θ
=

[
I − α

∂2

∂θ2
Li(θ, η

∗
i (θ, ω))

]
·
[
∇φi

Li(φi, η
∗
i (φi, ω))

−∇2
φiηGi(η

∗
i (φi, ω);φi)[∇2

ηηGi(η
∗
i (φi, ω);φi) + λI]−1∇ηLi(φi, η

∗
i (φi, ω))

]
.

(i) The second-order term ∂2

∂θ2Li(θ, η
∗
i (θ, ω)) in the first bracket is intractable to compute since it

requires to compute ∇2
θθη

∗
i (θ, ω) which needs to calculate the gradient of an inverse-of-Hessian

term [∇2
ηηGi(η

∗
i (φi, ω);φi) + λI]−1.

(ii) The inverse-of-Hessian [∇2
ηηGi(η

∗
i (φi, ω);φi) + λI]−1 in the second bracket is expensive to

compute, especially when we use neural networks as parameterized models.
(iii) We cannot get η∗i but only its approximation since the optimization oracle is not guaranteed to
find the exact optimal solution. This will cause errors when we compute the hyper-gradients.
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3.2 MAIN IDEA TO SOLVE THE CHALLENGES

Solution to challenge (i) (Algorithm 2). The learner uses sampled data sets Dtr
i , Deval

i , and Dh
i to

approximate the hyper-gradients:

gθ,i ≜

[
I − α

∂2

∂θ2
L̂i(θ, η̂

∗
i (θ, ω,Dtr

i ),Dh
i )

]
∆θ,i, (4)

gω,i ≜ −α
∂2

∂ω∂θ
L̂i(θ, η̂

∗
i (θ, ω,Dtr

i ),Dh
i )∆θ,i +∆ω,i, (5)

where ∆θ,i and ∆ω,i are partial gradients of L̂i(φ̂i, η̂
∗
i (φ̂i, ω,Deval

i ),Deval
i ) with respect to φi

and ω. While the second-order terms (i.e., ∂2

∂θ2 L̂i and ∂2

∂ω∂θ L̂i) in the hyper-gradients (4)-(5)
are directly computed in many meta-learning works (Finn et al., 2017; Xu et al., 2019), in
our case, it is prohibitively hard to compute. To compute the second-order terms, we need to
calculate ∇2η̂∗i (θ, ω,Dtr

i ) which needs to calculate the gradient of an inverse-of-Hessian term
since ∇θη̂

∗
i (θ, ω,Dtr

i ) = −∇2
θηĜi(η̂

∗
i (θ, ω,Dtr

i ); θ,Dtr
i )[∇2

ηηĜi(η̂
∗
i (θ, ω,Dtr

i ); θ,Dtr
i ) + λI]−1 and

∇ω η̂
∗
i (θ, ω,Dtr

i ) = λ[∇2
ηηĜi(η̂

∗
i (θ, ω,Dtr

i ); θ,Dtr
i ) + λI]−1 (derived in Appendix A.5). To tackle

this challenge, we use the first-order approximation to approximate the products:

∂2

∂θ2
L̂i(θ, η̂

∗
i (θ, ω,Dtr

i ),Dh
i )∆θ,i ≈

1

2δ

[
∂

∂θ
L̂i(θ + δ∆θ,i, η̂

∗
i (θ + δ∆θ,i, ω,Dtr

i ),Dh
i )

− ∂

∂θ
L̂i(θ − δ∆θ,i, η̂

∗
i (θ − δ∆θ,i, ω,Dtr

i ),Dh
i )

]
, (6)

∂2

∂ω∂θ
L̂i(θ, η̂

∗
i (θ, ω,Dtr

i ),Dh
i )∆θ,i ≈

1

2δ

[
∂

∂ω
L̂i(θ + δ∆θ,i, η̂

∗
i (θ + δ∆θ,i, ω,Dtr

i ),Dh
i )

− ∂

∂ω
L̂i(θ − δ∆θ,i, η̂

∗
i (θ − δ∆θ,i, ω,Dtr

i ),Dh
i )

]
, (7)

where δ is perturbation magnitude. In Algorithm 2, the learner first approximates the partial gradi-
ents ∆θ,i and ∆ω,i (line 1 in Algorithm 2), and then computes the first-order approximation (lines
2-4 in Algorithm 2). The output of Algorithm 2 is the approximation of the hyper-gradients (4)-(5).

Solution to challenge (ii) (Algorithm 3). The partial gradients of L̂i(φ̂i, η̂
∗
i (φ̂i, ω,Deval

i ),Deval
i )

with respect to φi and ω are respectively:

∆θ,i = ∇φi
L̂i(φ̂i, η̂

∗
i (φ̂i, ω,Deval

i ),Deval
i )−∇2

φiηĜi(η̂
∗
i (φ̂i, ω,Deval

i ); φ̂i,Deval
i )·

[λI +∇2
ηηĜi(η̂

∗
i (φ̂i, ω,Deval

i ); φ̂i,Deval
i )]−1∇ηL̂i(φ̂i, η̂

∗
i (φ̂i, ω,Deval

i ),Deval
i ), (8)

∆ω,i = λ[λI +∇2
ηηĜi(η̂

∗
i (φ̂i, ω,Deval

i ); φ̂i,Deval
i )]−1∇ηL̂i(φ̂i, η̂

∗
i (φ̂i, ω,Deval

i ),Deval
i ). (9)

Note that the partial gradients (8)-(9) contain [λI+∇2
ηηĜi(η̂

∗
i (φ̂i, ω,Deval

i ); φ̂i,Deval
i )]−1∇ηL̂i(φ̂i,

η̂∗i (φ̂i, ω,Deval
i ),Deval

i ) where the inverse-of-Hessian term is expensive to compute. Therefore, we
solve the following optimization problem instead:

min
x

x⊤
[
λI+∇2

ηηĜi(η̂
∗
i (φ̂i, ω,Deval

i ); φ̂i,Deval
i )

]
x−[∇ηL̂i(φ̂i, η̂

∗
i (φ̂i, ω,Deval

i ),Deval
i )]⊤x. (10)

It is obvious that the optimal solution of problem (10) is [λI+∇2
ηηĜi(η̂

∗
i (φ̂i, ω,Deval

i ); φ̂i,Deval
i )]−1·

∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,Deval

i ),Deval
i ).

In Algorithm 3, the learner solves the problem (10) for (K̄ − 1)-step gradient descent to get an
approximation x(K̄) of the optimal solution of problem (10) (line 3 in Algorithm 3) and then use
x(K̄) to help approximate the partial gradients (8)-(9) (lines 5-6 in Algorithm 3).

Solution to challenge (iii). We cannot get η̂∗i (θ, ω,Dtr
i ) but an approximation η̂i(θ, ω,Dtr

i ,K). In
practice, we use this approximation to substitute for η̂∗i (θ, ω,Dtr

i ) in (4)-(5). Similarly, we use
the approximation η̂i(φ̂i, ω,Deval

i ,K) to substitute for η̂∗i (φ̂i, ω,Deval
i ) in (8)-(9). To quantify the
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approximation error of the hyper-gradients (4)-(5) caused by ||η̂i(·, ·, ·,K)− η̂∗i (·, ·, ·)||, we exploit
the Lipschitz continuity of the hyper-gradients with respect to η. In specific, we first prove the
Lipschitz continuity of the partial gradients (8)-(9) w.r.t. η in Appendix A.7 and then prove the
Lipschitz continuity of the first-order approximation (6)-(7) w.r.t. η in Appendix A.8. Then, we can
see the Lipschitz continuity of the hyper-gradients (4)-(5) w.r.t. η.

Algorithm 2 Hyper-gradient(θ, ω, φ̂i,Dtr
i ,Deval

i ,Dh
i )

Input: Reward parameter θ, cost parameter ω, task-specific reward adaptation φ̂i, training set Dtr
i ,

evaluation set Deval
i , the data set Dh

i to compute the second-order terms, perturbation δ

Output: Approximate hyper-gradients ∆̂θ,i − α∇θ,i, ∆̂ω,i − α∇ω,i

1: ∆̂θ,i, ∆̂ω,i = Partial-gradient(φ̂i, ω,Deval
i ,Deval

i )

2: ∆̂θ+,i, ∆̂ω+,i = Partial-gradient(θ + δ∆θ,i, ω,Dtr
i ,Dh

i )

3: ∆̂θ−,i, ∆̂ω−,i = Partial-gradient(θ − δ∆θ,i, ω,Dtr
i ,Dh

i )

4: ∇θ,i = (∆̂θ+,i − ∆̂θ−,i)/(2δ), ∇ω,i = (∆̂ω+,i − ∆̂ω−,i)/(2δ)

Algorithm 3 Partial-gradient(θ, ω,D1,D2)

Input: Reward parameter θ, cost parameter ω, data set D1, data set D2, step size β

Output: Approximate partial gradients ∆̂θ,i, ∆̂ω,i

1: Compute η̂i(θ, ω,D1,K) and initialize x(0)
2: for k̄ = 0, 1, · · · , K̄ − 1 do
3: x(k̄ + 1)

= x(k̄)− β

(
[λI +∇2

ηηĜi(η̂i(θ, ω,D1,K); θ,D1)]x(k̄)−∇ηL̂i(θ, η̂i(θ, ω,D1,K),D2)

)
4: end for
5: ∆̂θ,i = ∇θL̂i(θ, η̂i(θ, ω,D1,K),D2)−∇2

θηĜi(η̂i(θ, ω,D1,K); θ,D1)x(K̄)

6: ∆̂ω,i = λx(K̄)

4 THEORETICAL ANALYSIS

This section has two parts: the first part provides the convergence guarantee of Algorithm 1 and the
second part quantifies the generalization error to an arbitrary new task.

4.1 CONVERGENCE GUARANTEE

Compared to the standard stochastic gradient descent, the main difficulty of guaranteeing the con-
vergence of Algorithm 1 lies in quantifying the approximation error of the hyper-gradients. The
approximation error comes from three aspects which correspond to the three challenges in Subsec-
tion 3.1. (i) We cannot obtain the exact optimal solution η̂∗i (·, ·, ·) of the lower-level problem (3) but
an approximation η̂i(·, ·, ·,K). (ii) We cannot compute the inverse-of-Hessian term [λI+∇2

ηηĜi]
−1

but use an iterative method to approximate the product [λI +∇2
ηηĜi]

−1∇ηL̂i in Algorithm 3. This
will result in the error between the approximate partial gradients ∆̂θ,i, ∆̂ω,i (i.e., the output of Algo-
rithm 3) and the real partial gradients ∆θ,i,∆ω,i in (8)-(9). (iii) We use the first-order approximation
(6)-(7) in Algorithm 2 to approximate the real hyper-gradients (4)-(5).

In what follows, we first sequentially quantify the three approximation errors identified in the last
paragraph and then analyze the convergence of Algorithm 1. We start with the following assumption.

Assumption 1. (i) The parameterized reward function rθ satisfies |rθ(s, a)| ≤ Cr, ||∇θrθ(s, a)|| ≤
C̄r, and ||∇2

θθrθ(s, a)|| ≤ C̃r for any (s, a) ∈ S × A and any θ where Cr, C̄r, and C̃r are positive
constants; (ii) The parameterized cost function cω has similar properties with positive constants Cc,
C̄c, and C̃c; (iii) The third and fourth order gradients of the reward and cost functions with respect
to their parameters are bounded for any (s, a) and (θ, ω).
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Note that Assumptions 1 (i) and (ii) are standard in RL (Wang et al., 2019; Kumar et al., 2019;
Zhang et al., 2020; Zheng et al., 2023) and IRL (Guan et al., 2021). Assumption 1 (iii) is needed to
exploit the Lipschitz continuity of the hyper-gradients. Moreover, the bounded third order gradients
of the parameterized model in Assumption 1 (iii) are commonly assumed in meta RL (Fallah et al.,
2021a).

Approximation error (i). Proved in Appendix A.6, the function Gi and its empirical approximation
Ĝi using any data set are C∇2

ηηG
-smooth for any task Ti where C∇2

ηηG
is a positive constant whose

expression is in Appendix A.6. Therefore, the lower-level objective function in (3) becomes (λ −
C∇2

ηηG
)-strongly convex and (λ+ C∇2

ηηG
)-smooth if λ > C∇2

ηηG
. Choosing τ = 1

λ and following
the standard result for strongly-convex and smooth objective functions (Nesterov, 2003; Boyd &
Vandenberghe, 2004), we have ||η̂i(·, ·, ·,K)− η̂∗i (·, ·, ·)|| ≤ O((C∇2

ηη
G/λ)K).

Approximation error (ii). We next quantify the approximation error of the partial-gradients.
Lemma 1. Suppose Assumption 1 holds and let β = 1

λ where λ > C∇2
ηηG

, then the outputs of
Algorithm 3 satisfy:

||∆̂θ,i −∆θ,i|| ≤ O

((C∇2
ηη
G

λ

)K
+

(C∇2
ηη
G

λ

)K̄)
,

||∆̂ω,i −∆ω,i|| ≤ O

((C∇2
ηη
G

λ

)K
+

(C∇2
ηη
G

λ

)K̄)
.

Lemma 1 shows that the approximation error of the partial gradients diminishes if we increase the
iteration numbers of solving the lower-level problem and in Algorithm 3.

Approximation error (iii). With the approximation error of the partial gradients, we can quantify
the approximation error of the hyper-gradients.
Lemma 2. Suppose the conditions in Lemma 1 hold, then the outputs of Algorithm 2 satisfy:

||∆̂θ,i − α∇θ,i − gθ,i|| ≤ O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
,

||∆̂ω,i − α∇ω,i − gω,i|| ≤ O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
.

Lemma 2 indicates that the approximation error of the hyper-gradients can be arbitrarily small if we
solve the lower-level problem (3) for enough iterations, run Algorithm 3 for enough iterations, and
choose sufficiently small δ.

To reason about the convergence of Algorithm 1, we introduce ϵ-approximate first order stationary
point (ϵ-FOSP) (Fallah et al., 2020): the variable (θ, ω) is ϵ-FOSP if || 1m

∑m
i=1 ∇Li(φi, η

∗
i (φi, ω))||

≤ ϵ where ∇Li(φi, η
∗
i (φi, ω)) ≜ [( ∂

∂θLi(φi, η
∗
i (φi, ω)))

⊤, ( ∂
∂ωLi(φi, η

∗
i (φi, ω)))

⊤]⊤.
Theorem 1 (Convergence of Algorithm 1). Suppose the conditions in Lemma 2 hold. Let α ∈
[0, 1

D̃θ
] and α(n) = ᾱ

(n+1)ρ where ᾱ ∈ (0, 2
Cf+2 ], ρ ∈ ( 12 , 1), and D̃θ and Cf are positive constants

whose existence is proved in Appendices A.8 and A.9 respectively. Then Algorithm 1 reaches the set
of ϵ-FOSP, i.e.,

E

[∣∣∣∣∣∣∣∣ 1m
m∑
i=1

∇Li(φi(n), η
∗
i (φi(n), ω(n)))

∣∣∣∣∣∣∣∣],
≤ ϵ+O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ +

1

mini{
√
Dtr

i }mi=1

)
after at most N = min{C1,C2}

Bϵ2 iterations. The expressions of the positive constants C1 and C2 are
in Appendix A.9.

Theorem 1 shows that Algorithm 1 reaches the set of ϵ-FOSP at the iteration complexity O( 1
ϵ2 ).

Moreover, to reduce E[|| 1m
∑m

i=1 ∇Li||] and reach the set of ϵ-FOSP within fewer iterations in

7
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Algorithm 1, we have the following choices: (i) increase the iteration number K of solving the
lower-level problem (3) and the iteration number K̄ in Algorithm 3; (ii) choose smaller δ in the
first-order approximations (6)-(7); (iii) sample larger size B of training tasks at each iteration n in
Algorithm 1; (iv) choose larger size Dtr

i of training data of each training task Ti.

4.2 GENERALIZATION ANALYSIS

The goal of meta-learning is to learn good meta-priors such that the reward and cost functions
adapted from the learned meta-priors can have good performance on new tasks. Theorem 1 shows
that Algorithm 1 can find meta-priors (θ̄, ω̄) such that the average loss function of the m training
tasks can reach the set of ϵ-FOSP. However, it does not provide insights into how the task-specific
reward and cost adaptations (φ̂m+1, η̂

∗
m+1(φ̂m+1, ω̄,Dm+1)), adapted from the learned meta-priors

(θ̄, ω̄), perform on an arbitrary new task Tm+1 where Dm+1 is the small data set of the new task
Tm+1. Given that the loss function in our problem is the negative log-likelihood function Li, we
use Lm+1(θ, ω)|θ=φ̂m+1,ω=η̂∗

m+1(φ̂m+1,ω̄,Dm+1) as the metric to reason about the performance of the
task-specific adaptations (φ̂m+1, η̂

∗
m+1(φ̂m+1, ω̄,Dm+1)) on an arbitrary new task Tm+1.

We start our analysis with the definition of stationary state-action distribution. For a given policy π,
the corresponding stationary state-action distribution is µπ(s, a) ≜ (1− γ)

∑∞
t=0 γ

tPπ
t (s, a) where

Pπ
t (s, a) is the probability of policy π visiting (s, a) at time t. We then define the distance between

two tasks Ti and Tj as d(µπi , µπj ) ≜
∫
s∈S

∫
a∈A |µπi(s, a) − µπj (s, a)|dads. Recall that πi is the

expert’s policy in task Ti.
Remark on the definition of the task distance. While it seems natural to use the distance between
the reward functions and the distance between the cost functions to define the distance between dif-
ferent tasks, this kind of definition can cause ambiguity because different reward and cost functions
may result in the same task. For example, in an unconstrained environment, multiplying the reward
function by a constant does not change the task because this will lead to the same optimal policy.
Proposition 1. For any new task Tm+1 and any parameters (θ, ω), the following relation holds:
|| 1m

∑m
i=1 ∇Li(θ, ω)−∇Lm+1(θ, ω)|| ≤ O

(
d
(

1
m

∑m
i=1 µ

πi , µπm+1
))

.
Theorem 2. For an arbitrary new task Tm+1, the task-specific reward and cost adaptations
(φ̂m+1, η̂

∗
m+1(φ̂m+1, ω̄,Dm+1)) adapted from the learned meta-priors (θ̄, ω̄) have the property:

E

[
||∇Lm+1(θ, ω)|θ=φ̂m+1,ω=η̂∗

m+1(φ̂m+1,ω̄,Dm+1)||
]
,

≤ O

(
ϵ+

1

m

m∑
i=1

d(µπi , µπm+1) + d(
1

m

m∑
i=1

µπi , µπm+1)

)
.

Theorem 2 shows that if the new task’s stationary state-action distribution is sufficiently close to the
training tasks’, the task-specific adaptations (φ̂m+1, η̂

∗
m+1) are near-stationary.

Theorem 3. If the learned meta-priors (θ̄, ω̄) of Algorithm 1 satisfy E[ 1m
∑m

i=1Li(φ̄i, η
∗
i (φ̄i, ω̄))]

−minθ,ω
1
m

∑m
i=1 Li(φi, η

∗
i (φi, ω)) ≤ ϵ where φ̄i = θ̄ − α ∂

∂θLi(θ̄, η
∗
i (θ̄, ω̄)), then it holds that

E[Lm+1(φ̂m+1, η̂
∗
m+1(φ̂m+1, ω̄,Dm+1))]−min

θ,ω
Lm+1(θ, ω),

≤ ϵ+O

(
1

m

m∑
i=1

d(µπi , µπm+1) + d(
1

m

m∑
i=1

µπi , µπm+1)

)
.

Theorem 3 shows that if the learned meta-priors (θ̄, ω̄) are ϵ-optimal and the new task is close to the
training tasks, the task-specific adaptations (φ̂m+1, η̂

∗
m+1) are near-optimal.

If the reward and cost functions are linear, we have the following stronger results:
Theorem 4. If the expert’s reward and cost functions and the parameterized reward and cost
functions rθ, cω are linear, we have that (i) E[|Jrm+1

(πη̂∗
m+1;φ̂m+1

) − Jrm+1
(πm+1)|] ≤ O(ϵ +

1
m

∑m
i=1 d(µ

πi , µπm+1)+d( 1
m

∑m
i=1 µ

πi , µπm+1)); (ii) E[|Jcm+1
(πη̂∗

m+1;φ̂m+1
)−Jcm+1

(πm+1)|] ≤
O(ϵ+ 1

m

∑m
i=1 d(µ

πi , µπm+1) + d( 1
m

∑m
i=1 µ

πi , µπm+1)).
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Theorem 4 shows that (i) the cumulative reward difference and (ii) the cumulative cost difference
between the adapted policy πφ̂m+1;η̂∗

m+1
and the expert’s policy πm+1 on an arbitrary new task Tm+1

can be sufficiently small if the new task is close to the training tasks.

5 EXPERIMENT

This section includes two classes of experiments to validate the effectiveness of M-ICRL. The first
experiment is conducted on a physical drone and the second experiment is conducted in Mujoco.
Due to space limit, the experiment details are included in Appendix B.

5.1 DRONE NAVIGATION WITH OBSTACLES

Figure 1: Drone navigation

We conduct a navigation experiment on an AR. Drone 2.0 (Fig-
ure 1) where the drone (in the yellow box) needs to navigate to
the destination (in the green box) while avoiding collision with
the obstacles (in the red box). We use an indoor motion capture
system “Vicon” to record the trajectories of the drone. For dif-
ferent tasks, we vary the locations of the goal and the obstacles.
Given that there is no ground truth reward in this experiment, we
use two metrics “constraint violation rate” (CVR) and “success
rate” (SR) where CVR is the percentage of the learned policy col-
liding with any obstacle and SR is the percentage of the learned
policy reaching the destination and avoiding obstacles. We use
50 training tasks and 10 test tasks where each test task has only one demonstration. We use three
baselines for comparisons: ICRL (Liu & Zhu, 2022) which does not have meta-priors and directly
learns from one demonstration without meta-priors, ICRL(pre) which naively pre-trains meta-priors
by maximizing the likelihood across all the demonstrations of all the training tasks, Meta-IRL (Xu
et al., 2019) which only learns a reward meta-prior using MAML. We include the experiment results
in the second row of Table 1. The experiment details are included in Appendix B.

5.2 MUJOCO EXPERIMENT

We also conduct three experiments in Mujoco: Swimmer, HalfCheetah, and Walker. Given that
Mujoco can output the ground truth reward, we use cumulative reward (CR) to replace the metric
SR. Since there are no constraints in the original Mujoco environments, we add several constraints
to the three Mujoco environments. The experiment details are in Appendix B.

Table 1: Experiment results.

Task Metric M-ICRL ICRL ICRL(pre) Meta-IRL Expert

Drone SR 0.96± 0.02 0.62± 0.07 0.71± 0.06 0.45± 0.10 1.00± 0.00
CVR 0.02± 0.02 0.16± 0.10 0.11± 0.08 0.33± 0.12 0.00± 0.00

Swimmer CR 322.56± 48.68 76.44± 18.26 199.03± 53.24 113.66± 32.51 376.10± 51.51
CVR 0.04± 0.02 0.22± 0.13 0.16± 0.06 0.35± 0.18 0.00± 0.00

HalfCheetah CR 228.78± 54.23 60.74± 32.63 156.89± 50.47 108.05± 36.89 264.00± 165.56
CVR 0.03± 0.01 0.28± 0.19 0.20± 0.11 0.31± 0.10 0.00± 0.00

Walker CR 712.40± 96.53 144.79± 66.37 311.86± 56.99 165.86± 70.08 752.40± 84.71
CVR 0.00± 0.00 0.26± 0.18 0.22± 0.09 0.42± 0.26 0.00± 0.00

From Table 1, we observe that M-ICRL achieves the best performance in all the four experiments.
Meta-IRL has much higher constraint violation rate than the other three algorithms. This shows the
benefits of learning both the reward function and constraints. ICRL(pre), which simply learns meta-
priors across all the demonstrations of all the tasks, performs poorly. This illustrates the benefits of
our meta-learning design for M-ICRL. We discuss the experiment results in detail in Appendix B.
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6 CONCLUSION AND FUTURE WORKS

We propose M-ICRL, the first theoretical framework that can learn reward and cost functions of the
expert from few demonstrations by first learning meta-priors from other related tasks. It is shown
both theoretically and empirically that M-ICRL is effective to adapt to new tasks from few demon-
strations. Despite its benefits, one limitation is that M-ICRL assumes that the states and actions are
fully observable, however, this may not hold in some real-world problems due to practical issues
such as noise. A future direction is to extend M-ICRL to partially observable MDPs (POMDPs).
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A APPENDIX

This section includes the proof and simulation details. At the beginning, we define the empirical
cumulative reward. Given a trajectory ζ, the empirical cumulative reward is defined as Ĵr(ζ) ≜∑∞

t=0 γ
tr(st, at).

A.1 THE DERIVATION OF PROBLEM (1)

The derivation of problem (1) is first introduced in (Liu & Zhu, 2022). For the sake of better
understanding, we include it here. The fundamental idea of the ICRL problem (1) is to learn a
reward function in the upper level and learn the corresponding policy and constraints in the lower
level. In the following, we first introduce the lower-level problem and then introduce the bi-level
problem formulation.

The lower-level optimization problem. Given a reward function rθ, the lower-level problem aims
to learn the corresponding policy (and constraints). Therefore, we formulate the following con-
strained RL problem (11):

max
π

H(π) + Jrθ (π), s.t. µci(π) = µci(πi), (11)

where µci(π) ≜ Eζ∼Pπ
[
∑∞

t=0 γ
tϕci(st, at)] is the expected cumulative cost feature of policy π and

ϕci is the cost feature of task Ti. Problem (11) aims to find a policy that maximizes the entropy-
regularized cumulative reward H(π)+Jrθ (π) subject to the constraint of cost expectation matching.
The cost feature expectation matching follows the idea of “feature expectation matching” in (Abbeel
& Ng, 2004; Ziebart et al., 2008; 2010).

We cannot directly solve problem (11) because it is non-convex. Therefore, we use dual methods
and solve its dual problem. The dual problem of problem (11) is (Liu & Zhu, 2022)

min Gi(ω; θ) = H(πω;θ) + Jrθ (πω;θ) + ω⊤(µci(πi)− µci(π)), (12)

where ω is the dual variable and πω;θ is the constrained soft Bellman policy. Since (Liu & Zhu,
2022) studies linear cost functions, ω⊤µci(π) = Jcω (π). Here, we extend the domain from linear
cost functions to non-linear cost functions and directly use Jcω (π). We use the dual problem (12) as
the lower-level problem in (1).

The bi-level optimization problem. (Liu & Zhu, 2022) has proved that the optimal solution of
the primal problem (11) is πω∗(θ);θ where ω∗(θ) = argminω Gi(ω; θ). The upper-level problem
aims to learn a reward function rθ such that the corresponding policy (i.e., the optimal solution of
problem (11)) can minimize the negative log-likelihood of the expert’s trajectories:

min
θ

Li(θ, ω
∗(θ)) ≜ Eζ∼Pπ

[−
∞∑
t=0

γt log πω∗(θ);θ(at|st)],

s.t. ω∗(θ) = argmin
ω

Gi(ω; θ).

Then we reach the problem formulation in (1).

A.2 NOTIONS AND NOTATIONS

Define Jπ
rθ
(s) ≜ Eζ∼Pπ

[
∑∞

t=0 γ
trθ(st, at)|s0 = s] and Jπ

rθ
(s, a) ≜ Eζ∼Pπ

[
∑∞

t=0 γ
trθ(st, at)|s0

= s, a0 = a]. Similarly, we can define Jπ
cω (s) and Jπ

cω (s, a).

Define Hπ(s, a) ≜ −Eζ∼Pπ [
∑∞

t=0 γ
t log π(at|st)|s0 = s, a0 = a] and Hπ(s) ≜ −Eζ∼Pπ [

∑∞
t=0

γt log π(at|st)|s0 = s].

The constrained soft Bellman policy (Liu & Zhu, 2022) is

πω;θ(a|s) =
exp(Qsoft

ω;θ(s, a))

exp(V soft
ω;θ (s))

,

Qsoft
ω;θ(s, a) = rθ(s, a)− cω(s, a) + γ

∫
s′∈S

P (s′|s, a)V soft
ω;θ (s

′)ds′,

13
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V soft
ω;θ (s) = log

(∫
a∈A

exp(Qsoft
ω;θ(s, a))da

)
.

We can approximate the constrained soft Bellman policy using soft Q-learning or soft actor-critic by
treating (rθ − cω) as the reward function.

Lemma 3. We have that

∇θ log πω;θ(a|s) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)|s0 = s, a0 = a]

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)|s0 = s],

∇ω log πω;θ(a|s) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)|s0 = s]

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)|s0 = s, a0 = a].

Proof.

∇θQ
soft
ω;θ(s, a) = ∇θrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)∇θV
soft
ω;θ (s

′)ds′,

= ∇θrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)
∇θ

∫
a′∈A exp(Qsoft

ω;θ(s
′, a′))da′

exp(V soft
ω;θ (s

′))
ds′,

= ∇θrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

exp(Qsoft
ω;θ(s

′, a′))∇θQ
soft
ω;θ(s

′, a′)

exp(V soft
ω;θ (s

′))
da′ds′,

(a)
= ∇θrθ(s, a) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

πω;θ(a|s)∇θQ
soft
ω;θ(s

′, a′)da′ds′,

where (a) follows the definition of πω;θ. Keep the expansion, we can see that

∇θQ
soft
ω;θ(s, a) = Eζ∼Pπω;θ

[

∞∑
t=0

γt∇θrθ(st, at)|s0 = s, a0 = a],

∇θV
soft
ω;θ (s) = Eζ∼Pπω;θ

[

∞∑
t=0

γt∇θrθ(st, at)|s0 = s].

Therefore, we can see that

∇θ log πω;θ(a|s) = ∇θQ
soft
ω;θ(s, a)−∇θV

soft
ω;θ (s),

= Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)|s0 = s, a0 = a]− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)|s0 = s].

Similarly, we can get

∇ω log πω;θ(a|s) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)|s0 = s]

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)|s0 = s, a0 = a].

14
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Lemma 4. We have the following relations:

∇ωH
πω;θ (s, a)

= −∇ω log πω;θ(a|s) + Eζ∼Pπω;θ

[ ∞∑
t=1

γt∇ω log πω;θ(at|st)[Hπω;θ (st, at)− 1]

∣∣∣∣s0 = s, a0 = a

]
,

∇ωH
πω;θ (s) = Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇ω log πω;θ(at|st)[Hπω;θ (st, at)− 1]

∣∣∣∣s0 = s

]
,

∇ωJ
πω;θ
cω (s, a) = ∇ωcω(s, a)

+ Eζ∼Pπω;θ

[ ∞∑
t=1

γt[∇ωcω(st, at) +∇ω log πω;θ(at|st) · J
πω;θ
cω (st, at)]

∣∣∣∣s0 = s, a0 = a

]
,

∇ωJ
πω;θ
cω (s) = Eζ∼Pπω;θ

[ ∞∑
t=0

γt[∇ωcω(st, at) +∇ω log πω;θ(at|st) · J
πω;θ
cω (st, at)]

∣∣∣∣s0 = s

]
,

∇ωJ
πω;θ
rθ (s, a) = Eζ∼Pπω;θ

[ ∞∑
t=1

γt∇ω log πω;θ(at|st) · J
πω;θ
rθ (st, at)

∣∣∣∣s0 = s, a0 = a

]
,

∇ωJ
πω;θ
rθ (s) = Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇ω log πω;θ(at|st) · J
πω;θ
rθ (st, at)

∣∣∣∣s0 = s

]
.

Proof.

∇ωH
πω;θ (s, a) = −∇ω log πω;θ(a|s) + γ

∫
s′∈S

P (s′|s, a) · ∇ωH
πω;θ (s′)ds′,

= −∇ω log πω;θ(a|s) + γ

∫
s′∈S

P (s′|s, a) · ∇ω

∫
a′∈A

πω;θ(a
′|s′)Hπω;θ (s′, a′)da′ds′,

= −∇ω log πω;θ(a|s) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

[
∇ωπω;θ(a

′|s′) ·Hπω;θ (s′, a′)

+ πω;θ(a
′|s′) · ∇ωH

πω;θ (s′, a′)

]
da′ds′,

= −∇ω log πω;θ(a|s) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

πω;θ(a
′|s′) ·

[
∇ω log πω;θ(a

′|s′) ·Hπω;θ (s′, a′)

+∇ωH
πω;θ (s′, a′)

]
da′ds′.

Keep the expansion, we have that

∇ωH
πω;θ (s, a)

= −∇ω log πω;θ(a|s) + Eζ∼Pπω;θ

[ ∞∑
t=1

γt∇ω log πω;θ(at|st)[Hπω;θ (st, at)− 1]

∣∣∣∣s0 = s, a0 = a

]
,

∇ωH
πω;θ (s) = Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇ω log πω;θ(at|st)[Hπω;θ (st, at)− 1]

∣∣∣∣s0 = s

]
.

Similarly, we can see that

∇ωJ
πω;θ
cω (s, a) = ∇ωcω(s, a) + γ

∫
s′∈S

P (s′|s, a) · ∇ωJ
πω;θ
cω (s′)ds′,

= ∇ωcω(s, a) + γ

∫
s′∈S

P (s′|s, a) · ∇ω

∫
a′∈A

πω;θ(a
′|s′)Jπω;θ

cω (s′, a′)da′ds′,

= ∇ωcω(s, a) + γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

πω;θ(a
′|s′)

[
∇ω log πω;θ(a

′|s′) · Jπω;θ
cω (s′, a′)
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+∇ωJ
πω;θ
cω (s′, a′)

]
da′ds′.

Keep the expansion, we can get

∇ωJ
πω;θ
cω (s, a) = ∇ωcω(s, a)

+ Eζ∼Pπω;θ

[ ∞∑
t=1

γt[∇ωcω(st, at) +∇ω log πω;θ(at|st) · J
πω;θ
cω (st, at)]

∣∣∣∣s0 = s, a0 = a

]
,

∇ωJ
πω;θ
cω (s) = Eζ∼Pπω;θ

[ ∞∑
t=0

γt[∇ωcω(st, at) +∇ω log πω;θ(at|st) · J
πω;θ
cω (st, at)]

∣∣∣∣s0 = s

]
.

∇ωJ
πω;θ
rθ (s, a) = γ

∫
s′∈S

P (s′|s, a) · ∇ωJ
πω;θ
rθ (s′)ds′,

= γ

∫
s′∈S

P (s′|s, a) · ∇ω

∫
a′∈A

πω;θ(a
′|s′)Jπω;θ

rθ (s′, a′)da′ds′,

= γ

∫
s′∈S

P (s′|s, a) ·
∫
a′∈A

[
∇ωπω;θ(a

′|s′) · Jπω;θ
rθ (s′, a′) + πω;θ(a

′|s′) · ∇ωJ
πω;θ
rθ (s′, a′)

]
da′ds′,

= γ

∫
s′∈S

P (s′|s, a)
∫
a′∈A

πω;θ(a
′|s′)∇ω log πω;θ(a

′|s′) · Jπω;θ
rθ (s′, a′)da′ds′,

= Eζ∼Pπω;θ

[ ∞∑
t=1

γt∇ω log πω;θ(at|st) · J
πω;θ
rθ (st, at)

∣∣∣∣s0 = s, a0 = a

]
.

Therefore, we can get that

∇ωJ
πω;θ
rθ (s) = Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇ω log πω;θ(at|st) · J
πω;θ
rθ (st, at)

∣∣∣∣s0 = s

]
.

A.3 EXPRESSIONS OF GRADIENTS

We provide the expressions of all the gradients below:

∇ωGi(ω; θ) = ∇ωJcω (πi)− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)],

∇ωĜi(ω; θ,D) =
1

D

D∑
j=1

∇ωĴcω (ζ
j)− Eζ∼Pπω;θ

[

∞∑
t=0

γt∇ωcω(st, at)],

∇θGi(ω; θ) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)]−∇θJrθ (πi),

∇θĜi(ω; θ,D) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)]−
1

D

D∑
j=1

∇θĴrθ (ζ
j),

∇2
ωωGi(ω; θ) = ∇2

ωωĜi(ω; θ,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
Covω(st) +∇2

ωωcω(st, at)

)]
,

∇2
ωθGi(ω; θ) = ∇2

ωθĜi(ω; θ,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇θ log πω;θ(a|s)(∇ωJ
π
cω (s, a)|π=πω;θ

)⊤
]
,

∇θLi(θ, ω) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)]−∇θJrθ (πi),

∇θL̂i(θ, ω,D) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)]−
1

D

D∑
j=1

∇θĴrθ (ζ
j),
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∇ωLi(θ, ω) = ∇ωJcω (πi)− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)],

∇ωL̂i(θ, ω,D) =
1

D

D∑
j=1

∇ωĴcω (ζ
j)− Eζ∼Pπω;θ

[

∞∑
t=0

γt∇ωcω(st, at)],

∇2
ωωLi(θ, ω) = ∇2

ωωL̂i(θ, ω,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
Covω(st) +∇2

ωωcω(st, at)

)]
,

∇2
ωθLi(θ, ω) = ∇2

ωθL̂i(θ, ω,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇θ log πω;θ(a|s)(∇ωJ
π
cω (s, a)|π=πω;θ

)⊤
]
,

where the expression of Covω(s) is in (14).

Proof. Derivation of ∇ωGi and ∇ωĜi.

Since πω;θ = argmaxπ H(π) + Jrθ (π)− Jcω (π), the following holds for any (s, a) ∈ S ×A:

∂

∂πt(a|s)

(
H(π) + Jrθ (π)− Jcω (π)

)∣∣∣∣
πt=πω;θ

= 0,

where we change policy to be time-dependent but force it to be stationary i.e., πt = π. Therefore,
we have that

∂

∂πt(a|s)

(
H(π) + Jrθ (π)− Jcω (π)

)∣∣∣∣
π=πω;θ

,

= −γtPπω;θ

t (s)(log πω;θ(a|s) + 1) + Pπω;θ

t (s)Eζ∼Pπω;θ
[

∞∑
τ=t+1

−γτ log πω;θ(aτ |sτ )|st = s, at = a]

+ Pπω;θ

t (s)

(
γtrθ(s, a)− γtcω(s, a) + Eζ∼Pπω;θ

[

∞∑
τ=t+1

γτ (rθ(st, at)− cω(st, at))|st = s, at = a]

)
,

= γtPπω;θ

t (s)

[
Hπω;θ (s, a)− 1 + J

πω;θ
rθ (s, a)− J

πω;θ
cω (s, a)

]
= 0. (13)

Recall that Gi(ω; θ) = H(πω;θ) + Jrθ (πω;θ)− Jcω (πω;θ) + Jcω (πi). Therefore, we have that

∇ωGi(ω; θ) =

∫
s0∈S

P0(s0) ·
[
∇ωH

πω;θ (s0) +∇ωJ
πω;θ
rθ (s0)−∇ωJ

πω;θ
cω (s0)

]
ds0 +∇ωJcω (πi),

(a)
=

∫
s0∈S

P0(s0) · Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
∇ω log πω;θ(at|st)·

(
Hπω;θ (st, at)− 1 + J

πω;θ
rθ (st, at)− J

πω;θ
cω (st, at)

)
−∇ωcω(st, at)

)]
ds0 +∇ωJcω (πi),

(b)
= ∇ωJω(πi)− Eζ∼Pπω;θ

[

∞∑
t=0

γt∇ωcω(st, at)],

where (a) follows Lemma 4 and (b) follows (13). With similar derivation, we can get

∇ωĜi(ω; θ,D) =
1

D

D∑
j=1

∇ωĴcω (ζ
j)− Eζ∼Pπω;θ

[

∞∑
t=0

γt∇ωcω(st, at)].

Derivation of ∇2
ωωGi and ∇2

ωωĜi.
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We know that ∇ωJ
π
cω (s, a)|π=πω;θ

= ∇ωEζ∼Pπω;θ
[
∑∞

t=0 γ
t∇ωcω(st, at)|s0 = s, a0 = a] and

∇ωJ
π
cω (s)|π=πω;θ

= ∇ωEζ∼Pπω;θ
[
∑∞

t=0 γ
t∇ωcω(st, at)|s0 = s].

∇2
ωωGi(ω; θ) = −∇ωEζ∼Pπω;θ

[

∞∑
t=0

γt∇ωcω(st, at)],

= −
∫
s0∈S

P0(s0)∇ω

∫
a0∈A

πω;θ(a0|s0) · ∇ωJ
π
cω (s0, a0)|π=πω;θ

da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ωπω;θ(a0|s0) · ∇ωJ

π
cω (s0, a0)|π=πω;θ

+ πω;θ(a0|s0) · ∇ω(∇ωJ
π
cω (s0, a0)|π=πω;θ

)

]
da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ωπω;θ(a0|s0) · ∇ωJ

π
cω (s0, a0)|π=πω;θ

+ πω;θ(a0|s0) · ∇ω(∇ωcω(s0, a0) +

∫
s1∈S

P (s1|s0, a0)∇ωJ
π
cω (s1)|π=πω;θ

ds1)

]
da0ds0.

Keep the expansion, we can get that

∇2
ωωGi(ω; θ) = −

∫
s∈S

µπω;θ (s)

1− γ

∫
a∈A

πω;θ(a|s)∇ω log πω;θ(a|s)∇ω(J
π
cω (s, a)|π=πω;θ

)⊤dads

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇2
ωωcω(st, at)].

Define the covariance

Covω(s) ≜
∫
a∈A

πω;θ(a|s)∇ω log πω;θ(a|s)(∇ωJ
π
cω (s, a)|π=πω;θ

)⊤da,

(c)
=

∫
a∈A

πω;θ(a|s)
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da, (14)

where (c) follows Lemma 3. Therefore, we have that

∇2
ωωGi(ω; θ) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
Covω(st) +∇2

ωωcω(st, at)

)]
,

and similarly we can get

∇2
ωωĜi(ω; θ,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
Covω(st) +∇2

ωωcω(st, at)

)]
.

Derivation of ∇2
ωθGi and ∇2

ωθĜi

∇2
ωθGi(ω; θ) = −∇θEζ∼Pπω;θ

[

∞∑
t=0

γt∇ωcω(st, at)],

= −
∫
s0∈S

P0(s0)∇θ

∫
a0∈A

πω;θ(a0|s0) · ∇ωJ
π
cω (s0, a0)|π=πω;θ

da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

[
∇θπω;θ(a0|s0) · ∇ωJ

π
cω (s0, a0)|π=πω;θ

+ πω;θ(a0|s0) · ∇θ(∇ωcω(s0, a0) +

∫
s1∈S

P (s1|s0, a0)∇ωJ
π
cω (s1)|π=πω;θ

ds1)

]
da0ds0.

Keep the expansion, we can get

∇2
ωθGi(ω; θ) = −

∫
s∈S

µπω;θ (s)

1− γ

∫
a∈A

πω;θ(a|s)∇θ log πω;θ(a|s)(∇ωJ
π
cω (s, a)|π=πω;θ

)⊤dads,
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= −Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇θ log πω;θ(a|s)(∇ωJ
π
cω (s, a)|π=πω;θ

)⊤
]
,

and similarly we can get

∇2
ωθĜi(ω; θ,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇θ log πω;θ(a|s)(∇ωJ
π
cω (s, a)|π=πω;θ

)⊤
]
.

Derivation of ∇θLi and ∇θL̂i.

∇θLi(θ, ω) = −Eζ∼Pπ [

∞∑
t=0

∇θ log πω;θ(at|st)],

= −Eζ∼Pπ

[ ∞∑
t=0

γt

(
Eζ∼Pπω;θ

[

∞∑
t=0

γt∇θrθ(St, At)|S0 = st, A0 = at]

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(St, At)|S0 = st]

)]
,

= −Eζ∼Pπ

[ ∞∑
t=0

γt

(
∇θrθ(st, at) + Eζ∼Pπω;θ

[

∞∑
t=1

γt∇θrθ(St, At)|S0 = st, A0 = at]

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(St, At)|S0 = st]

)]
,

= −Eζ∼Pπ

[ ∞∑
t=0

γt

(
∇θrθ(st, at) + γEζ∼Pπω;θ

[

∞∑
t=0

γt∇θrθ(St, At)|S0 = st+1]

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(St, At)|S0 = st]

)]
,

= −Eζ∼Pπ

[ ∞∑
t=0

γt∇θrθ(st, at)− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(St, At)|S0 = s0]

]
,

= Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)]−∇θJrθ (πi).

Similarly, we can get

∇θL̂i(θ, ω,D) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)]−
1

D

D∑
j=1

∇θĴrθ (ζ
j).

Derivation of ∇ωLi and ∇ωL̂i.

The derivation follows the similar steps of the derivation of ∇θLi and ∇θL̂i, thus we omit it.

Derivation of ∇2
ωωLi and ∇2

ωωL̂i.

We know that ∇ωLi = ∇ωGi and thus ∇2
ωωLi = ∇2

ωωGi.

A.4 THE REDUCTION OF (2)-(3) TO IMAML

From A.3, we can see that ∇θGi(ω; θ) = ∇θLi(θ, ω) and ∇ωGi(ω; θ) = ∇ωLi(θ, ω). Therefore,
we know that Li(θ, ω) = Gi(ω; θ)+c where c is a constant, and thus Gi can also serve as a negative
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log-likelihood function. When α = 0, problem (2)-(3) becomes:

min
θ,ω

1

m

m∑
i=1

Li(θ, η
∗
i (θ, ω)), s.t. η∗i (θ, ω) = argmin

η
Gi(η; θ) +

λ

2
||η − ω||2,

which is equivalent to

min
θ,ω

1

m

m∑
i=1

Li(θ, η
∗
i (θ, ω)), s.t. η∗i (θ, ω) = argmin

η
Li(θ; η) +

λ

2
||η − ω||2.

If we ignore the reward parameter θ, this is the standard formulation of iMAML (Rajeswaran et al.,
2019) for the cost parameter ω.

A.5 THE DERIVATION OF THE HYPER-GRADIENTS

From implicit function theorem, we can get that

∇θη
∗
i (θ, ω) = −[∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1∇2

ηθGi(η
∗
i (θ, ω); θ),

∇ωη
∗
i (θ, ω) = λ[∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1.

Therefore using the chain rule, we can derive the partial gradients:

∂

∂θ
Li(θ, η

∗
i (θ, ω)) = ∇θLi(θ, η

∗
i (θ, ω)) + [(∇ηLi(θ, η

∗
i (θ, ω)))

⊤∇θη
∗
i (θ, ω)]

⊤,

= ∇θLi(θ, η
∗
i (θ, ω))−∇2

θηGi(η
∗
i (θ, ω); θ)[∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1∇ηLi(θ, η

∗
i (θ, ω)),

∂

∂ω
Li(θ, η

∗
i (θ, ω)) = [(∇ηLi(θ, η

∗
i (θ, ω)))

⊤∇ωη
∗
i (θ, ω)]

⊤,

= λ[∇2
ηηGi(η

∗
i (θ, ω); θ) + λI]−1∇ηLi(θ, η

∗
i (θ, ω)).

With the partial gradients, we can derive the hyper-gradients:

∂Li(φi, η
∗
i (φi, ω))

∂θ
=

∂φi

∂θ
· ∂

∂φ
Li(φi, η

∗
i (φi, ω)),

=

[
I − α

∂2

∂θ2
Li(θ, η

∗
i (θ, ω))

]
· ∂

∂φi
Li(φi, η

∗
i (φi, ω)),

=

[
I − α

∂2

∂θ2
Li(θ, η

∗
i (θ, ω))

]
·
[
∇φLi(φi, η

∗
i (φi, ω))

−∇2
θηGi(η

∗
i (φi, ω);φi)[∇2

ηηGi(η
∗
i (φi, ω);φi) + λI]−1∇ηLi(φi, η

∗
i (φi, ω))

]
,

∂Li(φi, η
∗
i (φi, ω))

∂ω
= [(

∂Li(φi, η
∗
i (φi, ω))

∂φ
)⊤

∂φi

∂ω
]⊤ + [(

∂Li(φi, η
∗
i (φi, ω))

∂η
)⊤

∂η∗i (φi, ω)

∂ω
]⊤,

= −α
∂2

∂ω∂θ
Li(θ, η

∗
i (θ, ω)) ·

∂Li(φi, η
∗
i (φi, ω))

∂φ

+ λ[∇2
ηηGi(η

∗
i (θ, ω); θ) + λI]−1∇ηLi(θ, η

∗
i (θ, ω)).

A.6 THE SMOOTHNESS OF Gi AND Ĝi

From Lemma A.3, we know that

∇2
ωωGi(ω; θ) = ∇2

ωωĜi(ω; θ,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
Covω(st) +∇2

ωωcω(st, at)

)]
,

Covω(st) =

∫
a∈A

πω;θ(a|s)
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da.
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Assumption 1 (ii) assumes that ||∇ωcω(s, a)|| ≤ C̄c and ||∇2
ωωcω(s, a)|| ≤ C̃c for any (s, a) ∈

S ×A. Therefore, we have that

||∇ωJ
π
cω (s, a)|π=πω;θ

|| ≤ C̄c

1− γ
, ||∇ωJ

π
cω (s, a)|π=πω;θ

|| ≤ C̃c

1− γ
,

||Eζ∼Pπω;θ
[

∞∑
t=0

γt∇2
ωωcω(st, at)]|| ≤

C̃c

1− γ
.

Then, we know that

||∇2
ωωGi(ω; θ)|| = ||∇2

ωωĜi(ω; θ,D)|| ≤ 2C̄c

1− γ
· 2C̄c

1− γ
+

2C̃c

1− γ
≜ C∇2

ηηG
.

Similarly, we can prove that there exists constants C∇2
ηθG

and C∇2
θθG

such that ||∇2
ωθGi(ω; θ)|| =

||∇2
ωθĜi(ω; θ,D)|| ≤ C∇2

ηθG
and ||∇2

θθGi(ω; θ)|| = ||∇2
θθĜi(ω; θ,D)|| ≤ C∇2

θθG
.

From Appendix A.3, we can see that ∇ωL̂i = ∇ωĜi and ∇θL̂i = ∇θĜi. Therefore, the second-
order terms of L̂i can also be bounded by these constants.
Lemma 5. There are positive constant C∇3

ηηηGi
, C∇3

ηηθGi
, and C∇3

ηθθGi
such that

||∇3
ηηηGi(η; θ)|| = ||∇3

ηηηĜi(η; θ,D)|| ≤ C∇3
ηηηG

, ||∇3
ηηθGi(η; θ)|| = ||∇3

ηηθĜi(η; θ,D)|| ≤
C∇3

ηηθG
, and ||∇3

ηθθGi(η; θ)|| = ||∇3
ηθθĜi(η; θ,D)|| ≤ C∇3

ηθθG
for any (η, θ) and any task Ti.

Proof. From Lemma A.3, we know that

∇2
ωωGi(ω; θ) = ∇2

ωωĜi(ω; θ,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
Covω(st) +∇2

ωωcω(st, at)

)]
,

Covω(st) =

∫
a∈A

πω;θ(a|s)
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da.

Now we take a look at the term Covω(st) +∇2
ωωcω(st, at).

||Covω(st) +∇2
ωωcω(st, at)|| ≤ ||Covω(st)||+ ||∇2

ωωcω(st, at)||,
≤ ||∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

|| · ||∇ωJ
π
cω (s, a)|π=πω;θ

||+ ||∇2
ωωcω(st, at)||,

≤ 2C̄c

1− γ
· C̄c

1− γ
+ C̃c, (15)

∇ωCovω(st)

= ∇ω

∫
a∈A

πω;θ(a|s)
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da,

≤
∫
a∈A

∇ωπω;θ(a|s) ·
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da

(16)

+

∫
a∈A

πω;θ(a|s)∇ω

[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
· (∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da

(17)

+

∫
a∈A

πω;θ(a|s)
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
∇ω(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da.

(18)

Now, we bound each term (16)-(18).

First, we bound the term (16)∫
a∈A

∇ωπω;θ(a|s) ·
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da,
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=

∫
a∈A

πω;θ(a|s)∇ω log πω;θ(a|s)·[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da,

(a)
=

∫
a∈A

πω;θ(a|s)
[
Eζ∼Pπω;θ

[

∞∑
t=0

γt∇ωcω(st, at)|s0 = s]

− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)|s0 = s, a0 = a]

]
·[

∇ωJ
π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da,

where (a) follows Lemma 3. Therefore, we can see that

||
∫
a∈A

∇ωπω;θ(a|s) ·
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da||,

≤ 2C̄c

1− γ
· 2C̄c

1− γ
· C̄c

1− γ
. (19)

Second, we bound the term (17)

∇ωJ
π
cω (s, a)|π=πω;θ

= ∇ωEζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)] = −∇2
ωωGi(ω; θ). (20)

Therefore, ||∇ωJ
π
cω (s, a)|π=πω;θ

|| = ||∇2
ωωGi(ω; θ)||

(b)

≤ C∇2
ηηG

where (b) follows A.6. Similarly,
we can see that ||∇ωJ

π
cω (s)|π=πω;θ

|| ≤ C∇2
ηηG

. Then we have

||
∫
a∈A

πω;θ(a|s)∇ω

[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
· (∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da||,

≤ 2C∇2
ηη
G · C∇2

ηη
G. (21)

Third, we bound the term (18)

||
∫
a∈A

πω;θ(a|s)
[
∇ωJ

π
cω (s, a)|π=πω;θ

−∇ωJ
π
cω (s)|π=πω;θ

]
∇ω(∇ωJ

π
cω (s, a)|π=πω;θ

)⊤da||,

≤ 2C̄c

1− γ
· C∇2

ηηG
. (22)

Therefore, we can see that

||∇ωCovω(st)||
(c)

≤ 2C̄c

1− γ
· 2C̄c

1− γ
· C̄c

1− γ
+ 2C∇2

ηη
G · C∇2

ηη
G+

2C̄c

1− γ
· C∇2

ηηG
, (23)

where (c) follows (19)-(22).

Define Covωω(s, a) ≜ Eζ∼Pπω;θ
[
∑∞

t=0 γ
t(Covω(st) + ∇2

ωωcω(st, at))|s0 = s, a0 = a] and

Covωω(s) ≜ Eζ∼Pπω;θ
[
∑∞

t=0 γ
t(Covω(st) +∇2

ωωcω(st, at))|s0 = s]. We can see that

||Covωω(s, a)||
(d)

≤ 1

1− γ

(
2C̄2

c

(1− γ)2
+ C̃c

)
, (24)

where (d) follows (15).

Therefore,

∇2
ωωGi(ω; θ) = −

∫
s0∈S

P0(s0)∇ω

∫
a0∈A

πω;θ(a0|s0)Covωω(s0, a0)da0ds0,
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= −
∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ωπω;θ(a0|s0) · Covωω(s0, a0)

+ πω;θ(a0|s0)∇ωCovωω(s0, a0)

]
da0ds0,

= −
∫
s0∈S

P0(s0)

∫
a0∈A

[
∇ωπω;θ(a0|s0) · Covωω(s0, a0) + πω;θ(a0|s0)·

∇ω

(
Covω(s0, a0) +∇2

ωωcω(s0, a0) + γ

∫
s1∈S

P (s1|s0, a0)Covωω(s1)ds1

)]
da0ds0.

Keep the expansion, we can see that

∇2
ωωGi(ω; θ) = Eζ∼Pπω;θ

[ ∞∑
t=0

γt

(
∇ω log πω;θ(at|st) · Covωω(st, at)

+∇ωCovω(st, at) +∇3
ωωωcω(st, at)

)]
,

(e)

≤ 1

1− γ
· 2C̄c

1− γ
· 1

1− γ

(
2C̄2

c

(1− γ)2
+ C̃c

)
+ Eζ∈πω;θ

[
∇ωCovω(st, at) +∇3

ωωωcω(st, at)

]
,

(f)

≤ 1

1− γ
· 2C̄c

1− γ
· 1

1− γ

(
2C̄2

c

(1− γ)2
+ C̃c

)
+

2C̄c

1− γ
· 2C̄c

1− γ
· C̄c

1− γ
+ 2C∇2

ηη
G · C∇2

ηη
G+

2C̄c

1− γ
· C∇2

ηηG
+ Eζ∈πω;θ

[
∇3

ωωωcω(st, at)

]
,

where (e) follows Lemma 3 and (24) and (f) follows (23). Assumption 1 (iii) assumes that
||∇3

ωωωcω(s, a)|| is bounded for any (s, a) ∈ S,A, therefore, there is a positive constant
C∇3

ηηηGi
such that ||∇3

ηηηG(η; θ)|| ≤ C∇3
ηηηG

for any (η, θ) and any task Ti. We can also get

||∇3
ηηηĜi(η; θ,D)|| ≤ C∇3

ηηηG
.

Similarly, we can prove the existence of C∇3
ηηθG

and C∇3
ηθθG

.

Lemma 6. There are positive constants C∇4
ηηηηG

, C∇4
ηηηθG

, C∇4
ηηθθG

, C∇4
ηθθθG

, and C∇4
θθθθG

such

that ||∇4
ηηηηGi(η; θ)|| = ||∇4

ηηηηĜi(η; θ,D)|| ≤ C∇4
ηηηηG

, ||∇4
ηηηθGi(η; θ)|| = ||∇4

ηηηθĜi(η; θ,

D)|| ≤ C∇4
ηηηθG

, ||∇4
ηηθθGi(η; θ)|| = ||∇4

ηηθθĜi(η; θ,D)|| ≤ C∇4
ηηθθG

, ||∇4
ηθθθGi(η; θ)|| =

||∇4
ηθθθĜi(η; θ,D)|| ≤ C∇4

ηθθθG
, and ||∇4

θθθθGi(η; θ)|| = ||∇4
θθθθĜi(η; θ,D)|| ≤ C∇4

θθθθG
.

Proof. We can derive the constants following the proof idea of Lemma 5 and thus we omit the
proof.

A.7 PROOF OF LEMMA 1

Following the standard results for (λ−C∇2
ηηG

)-strongly convex and (λ+C∇2
ηηG

)-smooth objective
functions (Nesterov, 2003; Boyd & Vandenberghe, 2004), we know that

||x(K̄)− [λI +∇2
ηηĜi(η̂i(φ̂i, ω,Deval

i ,K); φ̂i,Deval
i )]−1∇ηL̂i(φ̂i, η̂i(φ̂i, ω,Deval

i ,K),Deval
i )||,

≤ O

(
(
C∇2

ηηG

λ
)K̄

)
. (25)

Define H(η;φi) ≜ λI +∇2
ηηĜi(η;φi,Deval

i ), therefore λ − C∇2
ηηG

≤ ||H(η;φi)|| ≤ λ + C∇2
ηηG

and ||∇ηH(η;φi)|| = ||∇3
ηηηĜi(η;φi,Deval

i )||
(a)

≤ C∇3
ηηηG

where (a) follows Lemma 5. Therefore,

||[H(η1, φi)]
−1 − [H(η2, φi)]

−1||,
= ||[H(η2;φi)]

−1{H(η2;φi)−H(η1;φi)}[H(η1;φi)]
−1||,
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≤ ||[H(η2;φi)]
−1|| · ||[H(η1;φi)]

−1|| · ||H(η2;φi)−H(η1;φi)||,

≤
C∇3

ηηηG

(λ− C∇2
ηηG

)2
||η1 − η2||. (26)

We know that ||∇ηηL̂i(θ, η,D)|| (b)
= ||∇2

ηηĜi(η; θ,D)||
(c)

≤ C∇2
ηηG

where (b) follows A.3 and (c)

follows A.6, and ||∇ηL̂i(θ, η,D)||
(d)

≤ C̄c

1−γ where (d) follows A.3. Therefore we have the following

||[H(η1;φi)]
−1∇ηL̂i(φi, η1,D)− [H(η2;φi)]

−1∇ηL̂i(φi, η2,D)||,
≤ ||[H(η1;φi)]

−1∇ηL̂i(φi, η1,D)− [H(η2;φi)]
−1∇ηL̂i(φi, η1,D)||

+ ||[H(η2;φi)]
−1∇ηL̂i(φi, η1,D)− [H(η2;φi)]

−1∇ηL̂i(φi, η2,D)||,
≤ ||[H(η1;φi)]

−1 − [H(η2;φi)]
−1|| · ||∇ηL̂i(φi, η1,D)||

+ ||∇ηL̂i(φi, η1,D)−∇ηL̂i(φi, η2,D)|| · ||[H(η̂∗i ;φi)]
−1||,

(e)

≤
C∇3

ηηηG
C̄c

(1− γ)(λ− C∇2
ηηG

)2
||η1 − η2||+

C∇2
ηηG

λ− C∇2
ηηG

||η1 − η2||, (27)

where (e) follows (26). Therefore, we have that

||x(K̄)− [H(η̂∗i (φ̂i, ω,Deval
i ); φ̂i)]

−1∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,Deval

i ),Deval
i )||,

≤ ||x(K̄)− [H(η̂i(φ̂i, ω,Deval
i ,K); φ̂i)]

−1∇ηL̂i(φ̂i, η̂i(φ̂i, ω,Deval
i ,K),Deval

i )||
+ ||[H(η̂i(φ̂i, ω,Deval

i ,K); φ̂i)]
−1∇ηL̂i(φ̂i, η̂i(φ̂i, ω,Deval

i ,K),Deval
i )

− [H(η̂∗i (φ̂i, ω,Deval
i ); φ̂i)]

−1∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,Deval

i ),Deval
i )||,

(f)

≤ O

(
(
C∇2

ηηG

λ
)K̄ + (

C∇2
ηηG

λ
)K

)
, (28)

where (f) follows (25) and (27).

From A.3, we know that

∇2
ωθGi(ω; θ) = ∇2

ωθĜi(ω; θ,D) = −Eζ∼Pπω;θ

[ ∞∑
t=0

γt∇θ log πω;θ(a|s)(∇ωJ
π
cω (s, a)|π=πω;θ

)⊤
]
.

Therefore, ||∇2
ωθĜi(ω; θ,D)||

(g)

≤ 1
1−γ · 2C̄r

1−γ · C∇2
ηηG

where (g) follows Lemma 3 and (20).

Then we have that

||∆̂θ,i −∆θ,i|| ≤ ||∇θL̂i(θ, η̂i(θ, ω,D,K),D)−∇θL̂i(θ, η̂
∗
i (θ, ω,D),D)||

+ ||∇2
θηĜi(η̂i(θ, ω,D,K); θ,D)x(K̄)

−∇2
θηĜi(η̂

∗
i (θ, ω,D); θ,D)[H(η̂∗i (φ̂i, ω,D); φ̂i)]

−1∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,D),D)||,

(h)

≤ C̄r

1− γ
||η̂i(θ, ω,D,K)− η̂∗i (θ, ω,D)||

+ ||∇2
θηĜi(η̂i(θ, ω,D,K); θ,D)x(K̄)

−∇2
θηĜi(η̂i(θ, ω,D,K); θ,D)[H(η̂∗i (φ̂i, ω,D); φ̂i)]

−1∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,D),D)||

+ ||∇2
θηĜi(η̂i(θ, ω,D,K); θ,D)[H(η̂∗i (φ̂i, ω,D); φ̂i)]

−1∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,D),D)

−∇2
θηĜi(η̂

∗
i (θ, ω,D); θ,D)[H(η̂∗i (φ̂i, ω,D); φ̂i)]

−1∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,D),D)||,

≤ C̄r

1− γ
||η̂i(θ, ω,D,K)− η̂∗i (θ, ω,D)||

+ ||∇2
θηĜi(η̂i(θ, ω,D,K); θ,D)|| · ||x(K̄)− [H(η̂∗i (φ̂i, ω,D); φ̂i)]

−1·
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∇ηL̂i(φ̂i, η̂
∗
i (φ̂i, ω,D),D)||+ ||∇2

θηĜi(η̂i(θ, ω,D,K); θ,D)−∇2
θηĜi(η̂

∗
i (θ, ω,D); θ,D)||·

||[H(η̂∗i (φ̂i, ω,D); φ̂i)]
−1∇ηL̂i(φ̂i, η̂

∗
i (φ̂i, ω,D),D)||,

(i)

≤ C̄r

1− γ
||η̂i(θ, ω,D,K)− η̂∗i (θ, ω,D)||+O

(
(
C∇2

ηηG

λ
)K̄ + (

C∇2
ηηG

λ
)K

)
+ ||∇2

θηĜi(η̂i(θ, ω,D,K); θ,D)−∇2
θηĜi(η̂

∗
i (θ, ω,D); θ,D)||·

||[H(η̂∗i (φ̂i, ω,D); φ̂i)]
−1∇ηL̂i(φ̂i, η̂

∗
i (φ̂i, ω,D),D)||,

(j)

≤ C̄r

1− γ
||η̂i(θ, ω,D,K)− η̂∗i (θ, ω,D)||+O

(
(
C∇2

ηηG

λ
)K̄ + (

C∇2
ηηG

λ
)K

)
+ C∇3

ηηθG

1

λ− C∇2
ηηG

· C̄c

1− γ
||η̂i(θ, ω,D,K)− η̂∗i (θ, ω,D)||,

≤ O

(
(
C∇2

ηηG

λ
)K̄ + (

C∇2
ηηG

λ
)K

)
.

where (h) follows A.3, (i) follows A.6 and (28), and (j) follows Lemma 5.

||∆̂ω,i −∆ω,i|| = λ||x(K̄)− [H(η̂∗i (θ, ω,D); θ)]−1∇ηL̂i(θ, η̂
∗
i (θ, ω,D),D)||,

(k)

≤ O

(
(
C∇2

ηηG

λ
)K̄ + (

C∇2
ηηG

λ
)K

)
,

where (k) follows (28).

A.8 PROOF OF LEMMA 2

We first provide the approximation error of the first-order approximation and then provide the ap-
proximation error of the hyper-gradients.

Claim 1. There are positive constants D̃θ, Dθ and Dω such that || ∂2

∂θ2Li(θ, η
∗
i (θ, ω))|| =

|| ∂2

∂θ2 L̂i(θ, η
∗
i (θ, ω),D)|| ≤ D̃θ, || ∂3

∂θ3Li(θ, η
∗
i (θ, ω))|| = || ∂3

∂θ3 L̂i(θ, η
∗
i (θ, ω),D)|| ≤ Dθ, and

|| ∂3

∂ω∂θ∂θLi(θ, η
∗
i (θ, ω))|| = || ∂3

∂ω∂θ∂θ L̂i(θ, η
∗
i (θ, ω),D)|| ≤ Dω .

Proof. We first show that || ∂2

∂θ2Li(θ, η
∗
i (θ, ω))|| is bounded and the boundedness of || ∂3

∂θ3Li(θ, η
∗
i (θ,

ω))|| follows the similar idea.

∂2

∂θ2
Li(θ, η

∗
i (θ, ω)) = ∇2

θθLi(θ, η
∗
i (θ, ω)) + 2(∇θη

∗
i (θ, ω))

⊤∇2
ηθLi(θ, η

∗
i (θ, ω))

+ (∇2
θθη

∗
i (θ, ω))

⊤∇ηLi(θ, η
∗
i (θ, ω)) + (∇θη

∗
i (θ, ω))

⊤∇2
ηηLi(θ, η

∗
i (θ, ω))∇θη

∗
i (θ, ω). (29)

To show that || ∂2

∂θ2Li(θ, η
∗
i (θ, ω))|| is bounded, we need to show that each term in (29) is bounded.

From A.3, we know that ∇ωGi = ∇ωLi and ∇θGi = ∇θLi, and thus Gi = Li + C where C is a
constant. Therefore, we know that ||∇2

θθLi||, ||∇2
ηθLi||, and ||∇2

ηηLi|| are bounded from Appendix

A.6. Moreover, ||∇ηLi|| ≤ C̄c

1−γ .

Then, we only need to show that ||∇θη
∗(θ, ω)|| and ||∇2

θθη
∗(θ, ω)|| are bounded next. From

A.5, we know that ∇θη
∗
i (θ, ω) = −[∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1∇2

ηθGi(η
∗
i (θ, ω); θ). Therefore,

||∇θη
∗
i (θ, ω)||

(a)

≤
C∇2

ηθ
G

λ−C∇2
ηηG

where (a) follows A.6.

∇2
θθη

∗
i (θ, ω) = −[∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1[(∇θη

∗
i (θ, ω))

⊤∇3
ηηηGi(η

∗
i (θ, ω); θ)

+∇3
ηηθGi(η

∗
i (θ, ω); θ)] · [∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1∇2

ηθGi(η
∗
i (θ, ω); θ)

− [∇2
ηηGi(η

∗
i (θ, ω); θ) + λI]−1∇3

ηθθGi(η
∗
i (θ, ω); θ).
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We can see that ||∇2
θθη

∗
i (θ, ω)|| is bounded because all its terms are bounded. In specific, A.6 shows

that the second-order terms of Gi are bounded and Lemma 5 shows that the third-order terms of Gi

are bounded. Therefore, D̃θ exists.

From A.3, we know that ∇ωGi = ∇ωLi and ∇θGi = ∇θLi, and thus Gi = Li + C where C is a
constant. Therefore, we know that ||∇3

ηηηLi||, ||∇3
ηηθLi||, and ||∇3

ηθθLi|| are bounded from Lemma

5. Then we can get the boundedness of || ∂3

∂θ3Li(θ, η
∗
i (θ, ω))|| once we prove the boundedness of

||∇3
θθθη

∗
i (θ, ω)||.

∇3
θθθη

∗
i (θ, ω) = −2[∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1[(∇θη

∗
i (θ, ω))

⊤∇3
ηηηGi(η

∗
i (θ, ω); θ)

+∇3
ηηθGi(η

∗
i (θ, ω); θ)] · [∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1[(∇θη

∗
i (θ, ω))

⊤∇3
ηηηGi(η

∗
i (θ, ω); θ)

+∇3
ηηθGi(η

∗
i (θ, ω); θ)][∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1∇2

ηθGi(η
∗
i (θ, ω); θ)− [∇2

ηηGi(η
∗
i (θ, ω); θ)

+ λI]−1[(∇2
θθη

∗
i (θ, ω))

⊤∇3
ηηηGi(η

∗
i (θ, ω); θ) + (∇θη

∗
i (θ, ω))

⊤ · [(∇θη
∗
i (θ, ω))

⊤·
∇4

ηηηηGi(η
∗
i (θ, ω); θ) +∇4

ηηηθGi(η
∗
i (θ, ω); θ) + (∇θη

∗
i (θ, ω))

⊤∇4
ηηηθGi(η

∗
i (θ, ω); θ)

+∇4
ηηθθGi(η

∗
i (θ, ω); θ)][∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1∇2

ηθGi(η
∗
i (θ, ω); θ)

− [∇2
ηηGi(η

∗
i (θ, ω); θ) + λI]−1[(∇θη

∗
i (θ, ω))

⊤∇3
ηηηGi(η

∗
i (θ, ω); θ) +∇3

ηηθGi(η
∗
i (θ, ω); θ)]·

[∇2
ηηGi(η

∗
i (θ, ω); θ) + λI]−1∇3

ηθθGi(η
∗
i (θ, ω); θ)− [∇2

ηηGi(η
∗
i (θ, ω); θ) + λI]−1·

[∇4
ηθθθGi(η

∗
i (θ, ω); θ) + (∇θη

∗
i (θ, ω))

⊤∇4
ηθθηGi(η

∗
i (θ, ω); θ)].

Even if the expression looks complicated, we can conclude that ||∇3
θθθη

∗
i (θ, ω)|| is bounded because

each term in the expression is bounded. In speicifc, the fourth-order terms of Gi are bounded
(Lemma 6) .Then Dθ exists and similarly Dω exists.

Then, we have the following inequality:

∂

∂θ
Li(θ + δ∆θ, η

∗
i (θ + δ∆θ, ω))

≤ ∂

∂θ
Li(θ, η

∗
i (θ, ω)) +

∂2

∂θ2
Li(θ, η

∗
i (θ, ω))δ∆θ +

Dθ

2
||δ∆θ||2,

∂

∂θ
Li(θ − δ∆θ, η

∗
i (θ − δ∆θ, ω))

≥ ∂

∂θ
Li(θ, η

∗
i (θ, ω))−

∂2

∂θ2
Li(θ, η

∗
i (θ, ω))δ∆θ −

Dθ

2
||δ∆θ||2,

⇒ ∂

∂θ
Li(θ + δ∆θ, η

∗
i (θ + δ∆θ, ω))−

∂

∂θ
Li(θ − δ∆θ, η

∗
i (θ − δ∆θ, ω))

≤ 2∂2

∂θ2
Li(θ, η

∗
i (θ, ω))δ∆θ +Dθ||δ∆θ||2;

∂

∂θ
Li(θ + δ∆θ, η

∗
i (θ + δ∆θ, ω))

≥ ∂

∂θ
Li(θ, η

∗
i (θ, ω)) +

∂2

∂θ2
Li(θ, η

∗
i (θ, ω))δ∆θ −

Dθ

2
||δ∆θ||2,

∂

∂θ
Li(θ − δ∆θ, η

∗
i (θ − δ∆θ, ω))

≤ ∂

∂θ
Li(θ, η

∗
i (θ, ω))−

∂2

∂θ2
Li(θ, η

∗
i (θ, ω))δ∆θ +

Dθ

2
||δ∆θ||2,

⇒ ∂

∂θ
Li(θ + δ∆θ, η

∗
i (θ + δ∆θ, ω))−

∂

∂θ
Li(θ − δ∆θ, η

∗
i (θ − δ∆θ, ω))

≥ 2∂2

∂θ2
Li(θ, η

∗
i (θ, ω))δ∆θ −Dθ||δ∆θ||2.

Therefore, we can conclude that∣∣∣∣∣∣∣∣ 12δ
[
∂

∂θ
Li(θ + δ∆θ, η

∗
i (θ + δ∆θ, ω))−

∂

∂θ
Li(θ − δ∆θ, η

∗
i (θ − δ∆θ, ω))

]
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− ∂2

∂θ2
Li(θ, η

∗
i (θ, ω))∆θ

∣∣∣∣∣∣∣∣ ≤ Dθδ

2
||∆θ||2. (30)

Similarly, we can find that the approximation error of ∂2

∂ω∂θLi(θ, η
∗
i (θ, ω))∆θ is upper bounded by

Dωδ
2 ||∆θ||2.

||∆̂θ,i − α∇θ,i − gθ,i||

≤ ||∆̂θ,i −∆θ,i||+ α||∇θ,i −
∂2

∂θ2
L̂i(θ, η̂

∗
i (θ, ω,Dh

i ))∆θ,i||,

(a)

≤ O

(
(
C∇2

ηηG

λ
)K̄ + (

C∇2
ηηG

λ
)K

)
+

αDθδ

2
||∆θ,i||2,

= O

(
(
C∇2

ηηG

λ
)K̄ + (

C∇2
ηηG

λ
)K + δ

)
,

where (a) follows Lemma 1 and (30).

Similarly, we can get ||∆̂ω,i − α∇ω,i − gω,i|| ≤ O

(
(
C∇2

ηηG

λ )K̄ + (
C∇2

ηηG

λ )K + δ

)
.

A.9 PROOF OF THEOREM 1

We define a function fi(θ, ω) such that ∇θfi(θ, ω) = ∆̂θ,i−α∇θ,i and ∇ωfi(θ, ω) = ∆̂ω,i−α∇ω,i.

Recall that

∆̂θ,i = ∇φL̂i(φ̂i, η̂i(φ̂i, ω,Deval
i ,K),Deval

i )−∇2
φηĜi(η̂i(φ̂i, ω,Deval

i ,K); φ̂i,Deval
i )·

[λI +∇2
ηηĜi(η̂i(φ̂i, ω,Deval

i ,K); φ̂i,Deval
i )]−1∇ηL̂i(φ̂i, η̂i(φ̂i, ω,Deval

i ,K),Deval
i ),

∆̂ω,i = λ[λI +∇2
ηηĜi(η̂i(φ̂i, ω,Deval

i ); φ̂i,Deval
i ,K)]−1∇ηL̂i(φ̂i, η̂i(φ̂i, ω,Deval

i ,K),Deval
i ).

Therefore, we can see that ||∆̂θ,i|| and ||∆̂ω,i|| are bounded because the second-order terms of Gi

are bounded (A.6) and the first-order terms of Li are also bounded (see the expressions in A.3).
Since ∆θ,i and ∆ω,i are first-order approximations using partial gradients, ||∆θ,i|| and ||∆ω,i|| are
bounded. Therefore, there exists positive constants C∇θf and C∇ωf such that ||∇θfi(θ, ω)|| ≤
C∇θf and ||∇ωfi(θ, ω)|| ≤ C∇ωf .

There are m training tasks and we denote the distribution of the training tasks by PT . We define
f(θ, ω) ≜ Ei∼PT [fi(θ, ω)] and thus we have:

Ei∼PT

[
∇θf(θ, ω)−∇θfi(θ, ω)

]
= 0, Ei∼PT

[
||∇θf(θ, ω)−

1

B

B∑
i=1

∇θfi(θ, ω)||2
]
≤

C2
∇θf

B
,

(31)

Ei∼PT

[
∇ωf(θ, ω)−∇ωfi(θ, ω)

]
= 0, Ei∼PT

[
||∇ωf(θ, ω)−

1

B

B∑
i=1

∇ωfi(θ, ω)||2
]
≤

C2
∇ωf

B
.

(32)

Claim 2. The gradient ∇θfi(θ, ω) is Cθ-Lipschitz continuous in (θ, ω) and ∇ωfi(θ, ω) is Cω-
Lipschitz continuous in (θ, ω) for any task Ti. Thus fi is Cf -smooth.

Proof. To prove the existence of Cθ, it suffices to show that ||∇2
θθfi(θ, ω)|| and ||∇2

θωfi(θ, ω)|| are
bounded. We know that ||∇2

θθfi(θ, ω)|| ≤ || ∂
∂θ ∆̂θ,i|| + α|| ∂

∂θ∇θ,i||. Since ∇θ,i is the first-order
approximation, || ∂

∂θ∇θ,i|| ≤ || ∂
∂θ ∆̂θ,i||/δ. Therefore, it suffices to show that || ∂

∂θ ∆̂θ,i|| is bounded.

∂

∂θ
∆̂θ,i,

= ∇2
θθL̂i(θ, η̂(·, ·, ·,K))−∇3

θθηGi(η̂(·, ·, ·,K); θ)x(K̄)−∇2
θηGi(η̂(·, ·, ·,K); θ)∇θx(K̄).
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We know that the second-order terms of Li and Gi (Appendix A.6) and the third-order terms of Gi

are bounded (Lemma 5). Therefore, it suffices to show that ||x(K̄)|| and ||∇θx(K̄)|| are bounded.

x(k̄ + 1),

= x(k̄)− β

(
[λI +∇2

ηηĜi(η̂i(θ, ω,D1,K); θ,D1)]x(k̄)−∇ηL̂i(θ, η̂i(θ, ω,D1,K),D2)

)
We know that ||[λI + ∇2

ηηĜi(η̂i(θ, ω,D1,K); θ,D1)]|| and ||∇ηL̂i(θ, η̂i(θ, ω,D1,K),D2)|| are
bounded. Therefore, ||x(K̄)|| is bounded because K̄ is a finite number.

We define g(k̄) ≜ [λI + ∇2
ηηĜi(η̂i(θ, ω,D1,K); θ,D1)]x(k̄) − ∇ηL̂i(θ, η̂i(θ, ω,D1,K),D2).

Then, we know ||∇θx(0)|| and ||∇θg(0)|| are bounded. Suppose ||∇θx(k̄)|| and ||∇θg(k̄)|| are
bounded, then ||∇θx(k̄ + 1)|| ≤ ||∇θx(k̄)|| + β||∇θg(k̄)|| is bounded and ||∇θg( ¯k + 1)|| ≤
||∇2

ηηθĜi(η̂i(θ, ω,D1,K); θ,D1)|| · ||x(k̄)||+ ||λI+∇2
ηηĜi(η̂i(θ, ω,D1,K); θ,D1)|| · ||∇θx(k̄)||+

||∇2
ηθL̂i(θ, η̂i(θ, ω,D1,K),D2)|| is bounded because the second-order terms of Li and Gi are

bounded (Appendix A.6) and the third-order terms of Gi are bounded (Lemma 5). By induction
and given that K̄ is a finite number, we know that ||∇θx(K̄)|| is bounded.

Therefore, Cθ exists and similarly we can prove that Cω exists. Thus, we can conclude the existence
of Cf .

From Claim 2, we can also see that f is Cf -smooth. Therefore

f(θ(n+ 1), ω(n+ 1)) ≤ f(θ(n), ω(n)) + [∇θf(θ(n), ω(n))]
⊤[θ(n+ 1)− θ(n)]

+ [∇ωf(θ(n), ω(n))]
⊤[ω(n+ 1)− ω(n)] +

Cf

2
[||θ(n+ 1)− θ(n)||2 + ||ω(n+ 1)− ω(n)||2],

= f(θ(n), ω(n))− α(n)

B

B∑
i=1

[∇θf(θ(n), ω(n))]
⊤∇θfi(θ(n), ω(n))

− α(n)

B

B∑
i=1

[∇ωf(θ(n), ω(n))]
⊤∇ωfi(θ(n), ω(n))

+
Cf (α(n))

2

2

[
|| 1
B

B∑
i=1

∇θfi(θ(n), ω(n))||2 + || 1
B

B∑
i=1

∇ωfi(θ(n), ω(n))||2
]
.

Take expectation over training task distribution PT on both sides, we get that

E[f(θ(n+ 1), ω(n+ 1))],

≤ E[f(θ(n), ω(n))] + E

{
Ei∼PT

[
−α(n)

(
||∇θf(θ(n), ω(n))||2 + ||∇ωf(θ(n), ω(n))||2

)
+

Cf (α(n))
2

2

(
||∇θf(θ(n), ω(n))||2 + ||∇ωf(θ(n), ω(n))||2

)
+

Cf (α(n))
2

2

(
||∇θf(θ(n),

ω(n))− 1

B

B∑
i=1

∇θfi(θ(n), ω(n))||2 + ||∇ωf(θ(n), ω(n))−
1

B

B∑
i=1

∇ωfi(θ(n), ω(n))||2
)]}

,

(a)

≤ E[f(θ(n), ω(n))] +

(
Cf (α(n))

2

2
− α(n)

)
E[||∇f(θ(n), ω(n))||2]

+
Cf (α(n))

2

2B
(C2

∇θf
+ C2

∇ωf ),

⇒
N−1∑
n=0

(
α(n)− Cf (α(n))

2

2

)
E[||∇f(θ(n), ω(n))||2],

≤ E[f(θ(0), ω(0))− f(θ(N), ω(N))] +

N−1∑
n=0

Cf (α(n))
2

2B
(C2

∇θf
+ C2

∇ωf ),
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⇒
N−1∑
n=0

ᾱα(n)E[||∇f(θ(n), ω(n))||2] ≤
N−1∑
n=0

(
α(n)− Cf (α(n))

2

2

)
E[||∇f(θ(n), ω(n))||2],

≤ E[f(θ(0), ω(0))− f(θ(N), ω(N))] +

N−1∑
n=0

Cf (α(n))
2

2B
(C2

∇θf
+ C2

∇ωf ),

⇒
N−1∑
n=0

ᾱ2

Nρ
E[||∇f(θ(n), ω(n))||2] ≤

N−1∑
n=0

ᾱα(n)E[||∇f(θ(n), ω(n))||2],

≤ E[f(θ(0), ω(0))− f(θ(N), ω(N))] +

N−1∑
n=0

Cf (α(n))
2

2B
(C2

∇θf
+ C2

∇ωf ),

⇒ 1

N

N−1∑
n=0

E[||∇f(θ(n), ω(n))||2],

≤ 1

ᾱ2N1−ρ
E

[
f(θ(0), ω(0))− f(θ(N), ω(N))

]
+

1

ᾱ2N

N−1∑
n=0

Cf (α(n))
2

2B
(C2

∇θf
+ C2

∇ωf ).

where (a) follows (31)-(32) and ᾱ ≤ 2
2+Cf

. Therefore, we have that

1

N

N−1∑
n=0

E[||∇f(θ(n), ω(n))||] ≤

√√√√ 1

N

N−1∑
n=0

E||∇f(θ(n), ω(n))||2] ≤
√

C1

N1−ρ
+

C2

BN
, (33)

where C1 ≜ 1
ᾱ2E

[
f(θ(0), ω(0)) − f(θ(N), ω(N))

]
and C2 ≜ 1

ᾱ2

∑N−1
n=0

Cf (α(n))
2

2 (C2
∇θf

+

C2
∇ωf ). Note that

∑∞
n=0(α(n))

2 is finite because α(n) ∝ 1
(n+1)ρ and ρ ∈ ( 12 , 1).

We have the convergence of f , the next step is to quantify ||E[∇θf ]−Ei∼PT [
∂
∂θLi(φi, η

∗
i (φi, ω))]||

and ||E[∇ωf ]− Ei∼PT [
∂
∂ωLi(φi, η

∗
i (φi, ω))]||.

Claim 3. There exist positive constants D̄θ and D̄ω such that || ∂
∂θLi(φi, η

∗
i (φi, ω))|| ≤ D̄θ and

|| ∂
∂ωLi(φi, η

∗
i (φi, ω))|| ≤ D̄ω .

Proof. From the proof of Claim 1, we know that || ∂
∂θLi(θ, η

∗
i (θ, ω))|| is bounded. From Appendix

A.3 we know ∇θθLi = ∇θθGi and from Appendix A.6 we know ||∇θθGi|| is bounded, therefore
|| ∂
∂θLi(φi, η

∗
i (φi, ω))|| ≤ ||I − α ∂2

∂θ∂θLi(θ, η
∗
i (θ, ω))|| · || ∂

∂φLi(φi, η
∗
i (φi, ω))|| is bounded. Thus,

D̄θ exists and similarly we can prove that D̄ω exists.

E

[∣∣∣∣∣∣∣∣EDtrain
i ,Deval

i ,Dh
i

[
∇θf(θ(n), ω(n))− Ei∼PT [

∂

∂θ
Li(φi(n), η

∗
i (φi(n), ω(n)))]

]∣∣∣∣∣∣∣∣],
≤ E

[∣∣∣∣∣∣∣∣EDtrain
i ,Deval

i ,Dh
i
Ei∼PT [∇θfi(θ(n), ω(n))− gθ,i]

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣EDtrain
i ,Deval

i ,Dh
i
Ei∼PT [gθ,i −

∂

∂θ
Li(φi(n), η

∗
i (φi(n), ω(n)))]

∣∣∣∣∣∣∣∣],
(b)

≤ O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
+ E

[∣∣∣∣∣∣∣∣EDtrain
i ,Deval

i ,Dh
i
Ei∼PT [gθ,i −

∂

∂θ
Li(φi(n), η

∗
i (φi(n), ω(n)))]

∣∣∣∣∣∣∣∣],
(c)

≤ O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
+

αD̄2
θ

mini{
√
Dtr

i }mi=1

, (34)
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where (b) follows Lemma 2 and (c) follows Lemma 5.10 in (Fallah et al., 2020) if α ∈ [0, 1
D̃θ

].
Similarly, we can get

E

[∣∣∣∣∣∣∣∣EDtrain
i ,Deval

i ,Dh
i
Ei∼PT [∇ωfi(θ(n), ω(n))−

∂

∂ω
Li(φi(n), η

∗
i (φi(n), ω(n)))]

∣∣∣∣∣∣∣∣],
≤ O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
+

αD̄2
ω

mini{
√
Dtr

i }mi=1

. (35)

With (34) and (35), we have that

E

[∣∣∣∣∣∣∣∣EDtrain
i ,Deval

i ,Dh
i
Ei∼PT [∇fi(θ(n), ω(n))−∇Li(φi(n), η

∗
i (φi(n), ω(n)))]

∣∣∣∣∣∣∣∣],
≤ O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
+

α(D̄2
θ + D̄2

ω)

mini{
√

Dtr
i }mi=1

. (36)

Therefore, we have that

E

[∣∣∣∣∣∣∣∣ 1m
m∑
i=1

∇Li(φi(n), η
∗
i (φi(n), ω(n)))

∣∣∣∣∣∣∣∣] = E

[∣∣∣∣∣∣∣∣Ei∼PT [∇Li(φi(n), η
∗
i (φi(n), ω(n)))]

∣∣∣∣∣∣∣∣],
≤ E

[
EDtrain

i ,Deval
i ,Dh

i
[||∇f(θ(n), ω(n))||]

]
+ E

[∣∣∣∣∣∣∣∣EDtrain
i ,Deval

i ,Dh
i
Ei∼PT [∇ωfi(θ(n), ω(n))−

∂

∂ω
Li(φi(n), η

∗
i (φi(n), ω(n)))]

∣∣∣∣∣∣∣∣],
(d)

≤ E

[
EDtrain

i ,Deval
i ,Dh

i
||∇f(θ(n), ω(n))||

]
+O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
+

α(D̄2
θ + D̄2

ω)

mini{
√
Dtr

i }mi=1

,

≤ 1

N

N−1∑
n=1

E

[
EDtrain

i ,Deval
i ,Dh

i
[||∇f(θ(n), ω(n))||]

]
+O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
+

α(D̄2
θ + D̄2

ω)

mini{
√
Dtr

i }mi=1

,

(e)

≤
√

C1

N1−ρ
+

C2

BN
+

α(D̄2
θ + D̄2

ω)

mini{
√
Dtr

i }mi=1

+O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ

)
,

≤ ϵ+O

((C∇2
ηη
G

λ

)K
+
(C∇2

ηη
G

λ

)K̄
+ δ +

1

mini{
√

Dtr
i }mi=1

)
,

where (d) follows (36) and (e) follows (33). To find the iteration number N , we have that√
C1

N1−ρ
+

C2

BN
≤ ϵ, ,

⇒ ϵ2 ≥ C1

N1−ρ
+

C2

BN
≥ C1

BN1−ρ
+

C2

BN
≥ min{C1, C2}

BN
,

N ≥ min{C1, C2}
Bϵ2

.

A.10 PROOF OF PROPOSITION 1

From Appendix A.3, we know that

∇θLi(θ, ω) = Eζ∼Pπω;θ
[

∞∑
t=0

γt∇θrθ(st, at)]−∇θJrθ (πi),
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∇ωLi(θ, ω) = ∇ωJcω (πi)− Eζ∼Pπω;θ
[

∞∑
t=0

γt∇ωcω(st, at)].

Note that ∇θJrθ (πi) = Eζ∼Pπ
[
∑∞

t=0 γ
t∇θrθ(st, at)] =

1
1−γ

∫
s∈S

∫
a∈A µπi(s, a)∇θrθ(s, a)dads

and ∇ωJcω (πi) = Eζ∼Pπ [
∑∞

t=0 γ
t∇ωcω(st, at)] =

1
1−γ

∫
s∈S

∫
a∈A µπi(s, a)∇ωcω(s, a)dads.

Therefore, we have that

|| 1
m

m∑
i=1

∇Li(θ, ω)−∇Lm+1(θ, ω)||,

≤ || 1
m

m∑
i=1

∇θLi(θ, ω)−∇θLm+1(θ, ω)||+ || 1
m

m∑
i=1

∇ωLi(θ, ω)−∇ωLm+1(θ, ω)||,

≤ || 1
m

m∑
i=1

∇θJrθ (πi)−∇θJrθ (πm+1)||+ || 1
m

m∑
i=1

∇θJcω (πi)−∇θJcω (πm+1)||,

≤ 1

1− γ

∣∣∣∣∣∣∣∣∫
s∈S

∫
a∈A

(
1

m

m∑
i=1

µπi(s, a)− µπm+1(s, a)

)
∇θrθ(s, a)dads

∣∣∣∣∣∣∣∣
+

1

1− γ

∣∣∣∣∣∣∣∣∫
s∈S

∫
a∈A

(
1

m

m∑
i=1

µπi(s, a)− µπm+1(s, a)

)
∇ωcω(s, a)dads

∣∣∣∣∣∣∣∣
(a)

≤ 1

1− γ

∣∣∣∣∫
s∈S

∫
a∈A

(
1

m

m∑
i=1

µπi(s, a)− µπm+1(s, a)

)
dads

∣∣∣∣(C̄r + C̄c),

≤ C̄r + C̄c

1− γ

∫
s∈S

∫
a∈A

∣∣∣∣ 1m
m∑
i=1

µπi(s, a)− µπm+1(s, a)

∣∣∣∣dads,
=

C̄r + C̄c

1− γ
d(

1

m

m∑
i=1

µπi , µπm+1) = O
(
d(

1

m

m∑
i=1

µπi , µπm+1)
)
,

where (a) follows Assumption 1 (i) (ii).

A.11 PROOF OF THEOREM 2

From Theorem 1, we know that we can find meta-priors (θ̄, ω̄) such that

E

[∣∣∣∣∣∣∣∣ 1m
m∑
i=1

∇Li(φ̄i, η
∗
i (φ̄i, ω̄))

∣∣∣∣∣∣∣∣] ≤ ϵ,

where φ̄i = θ̄ − α ∂
∂θLi(θ̄, η

∗
i (θ̄, ω̄)). From (4)-(5), we know that

∂

∂θ
Li(φ̄i, η

∗
i (φ̄i, ω̄)) =

[
I − α

∂2

∂θ2
Li(θ̄, η

∗
i (θ̄, ω̄))

]
· ∂

∂φ
Li(φ̄i, η

∗
i (φ̄i, ω̄)),

∂

∂ω
Li(φ̄i, η

∗
i (φ̄i, ω̄)) = −α

∂2

∂ω∂θ
Li(θ̄, η

∗
i (θ̄, ω̄)) ·

∂

∂φ
Li(φ̄i, η

∗
i (φ̄i, ω̄)) +

∂

∂ω
Li(φ̄i, η

∗
i (φ̄i, ω̄)).

From Appendix A.6, we know that the second-order terms of Li are bounded. From the expression
of ∇θLi in Appendix A.3, we can see that ||∇θLi|| is bounded. Therefore, we know that

|| ∂
∂φ

Li(φ̄i, η
∗
i (φ̄i, ω̄))|| = O(|| ∂

∂θ
Li(φ̄i, η

∗
i (φ̄i, ω̄))||),

|| ∂
∂ω

Li(φ̄i, η
∗
i (φ̄i, ω̄))|| = O(|| ∂

∂ω
Li(φ̄i, η

∗
i (φ̄i, ω̄))||).

Therefore, we can see that

||∇Li(θ, η
∗
i (θ, ω))|θ=φ̄i,ω=ω̄||2 ≤ || ∂

∂φ
Li(φ̄i, η

∗
i (φ̄i, ω̄))||2 + || ∂

∂ω
Li(φ̄i, η

∗
i (φ̄i, ω̄))||2,
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= O(|| ∂
∂θ

Li(φ̄i, η
∗
i (φ̄i, ω̄))||2 + || ∂

∂ω
Li(φ̄i, η

∗
i (φ̄i, ω̄))||2),

= O(||∇Li(φ̄i, η
∗
i (φ̄i, ω̄))||2),

⇒ ||∇Li(θ, η
∗
i (θ, ω))|θ=φ̄i,ω=ω̄|| ≤ O(||∇Li(φ̄i, η

∗
i (φ̄i, ω̄))||),

⇒ E[|| 1
m

m∑
i=1

∇Li(θ, η
∗
i (θ, ω))|θ=φ̄i,ω=ω̄||] ≤ O(E[|| 1

m

m∑
i=1

∇Li(φ̄i, η
∗
i (φ̄i, ω̄))||]) ≤ O(ϵ).

(37)

From Appendix A.6, we know that there exists a positive constant C∇2L such that ||∇2Li(θ, ω)|| ≤
C∇2L. Therefore, we have that

E[|| 1
m

m∑
i=1

∇Li(θ, η)|θ=φ̄i,η=η∗
i (φ̄i,ω̄) −∇Li(θ, η)|θ=φ̂m+1,η=η̂∗

m+1
||],

= E[|| 1
m

m∑
i=1

∇Li(θ, η)|θ=φ̄i,η=η∗
i (φ̄i,ω̄) −∇Li(θ, η)|θ=φ̄m+1,η=η∗

m+1(φ̄m+1,ω̄)||],

≤ C∇2L

m

m∑
i=1

E

[
||φ̄i − φ̄m+1||+ ||η∗i (φ̄i, ω̄)− η∗m+1(φ̄m+1, ω̄)||

]
,

(a)
= O(

1

m

m∑
i=1

d(µπi , µπm+1)), (38)

where (a) follows Claim 4.

Claim 4. 1
m

∑m
i=1 ||φ̄i − φ̄m+1|| ≤ O( 1

m

∑m
i=1 d(µ

πi , µπm+1)) and 1
m

∑m
i=1 ||η∗i (φ̄i, ω̄) −

η∗m+1(φ̄m+1, ω̄)|| ≤ O( 1
m

∑m
i=1 d(µ

πi , µπm+1)).

Proof. Follow the proof of Claim 1, we can see that that there exists a positive constant Cθη such
that || ∂2

∂θ∂ηLi(θ, η
∗
i (θ, ω))|| ≤ Cθη. Moreover, we know that there exists a constant C̄ such that

||∇2
θηGi[∇ηηGi + λI]−1|| ≤ C̄ because the second-order terms of Gi are bounded (Appendix

A.6).

1

m

m∑
i=1

||φ̄i − φ̄m+1|| =
α

m

m∑
i=1

|| ∂
∂θ

Lm+1(θ, η
∗
m+1(θ, ω))−

∂

∂θ
Li(θ, η

∗
i (θ, ω))||,

=
α

m

m∑
i=1

[
|| ∂
∂θ

Lm+1(θ, η
∗
m+1(θ, ω))−

∂

∂θ
Lm+1(θ, η

∗
i (θ, ω))||

+ || ∂
∂θ

Lm+1(θ, η
∗
i (θ, ω))−

∂

∂θ
Li(θ, η

∗
i (θ, ω))||

]
,

≤ αCθη

m

m∑
i=1

||η∗m+1(θ, ω))− η∗i (θ, ω))||

+
α

m

m∑
i=1

|| ∂
∂θ

Lm+1(θ, η
∗
i (θ, ω))−

∂

∂θ
Li(θ, η

∗
i (θ, ω))||,

≤ αCθη

m
||η∗m+1(θ, ω))− η∗i (θ, ω))||+

α

m

m∑
i=1

[
||∇θLm+1(θ, η

∗
i (θ, ω))

−∇θLi(θ, η
∗
i (θ, ω))||+ C̄||∇ηLm+1(θ, η

∗
i (θ, ω))−∇ηLi(θ, η

∗
i (θ, ω))||

]
,

(b)

≤ αCθη

m

m∑
i=1

||η∗m+1(θ, ω)− η∗i (θ, ω)||+
αC̄

m

m∑
i=1

d
(
µπi , µπm+1

)
,

where (b) follows Proposition 1. Now, we bound the term ||η∗m+1(θ, ω)− η∗i (θ, ω)||.
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We know that

∇η

[
Gm+1(η

∗
m+1(θ, ω); θ) +

λ

2
||η∗m+1(θ, ω)− ω||2

]
= 0,

⇒ η∗m+1(θ, ω) =
1

λ

[
ω −∇ηGm+1(η

∗
m+1(θ, ω); θ)

]
.

Therefore, we can get that

||η∗m+1(θ, ω)− η∗i (θ, ω)|| =
1

λ
||∇ηGm+1(η

∗
m+1(θ, ω); θ)−∇ηGi(η

∗
i (θ, ω); θ)||,

= O(||∇ηJcηm+1
(πm+1)−∇ηJcηi (πi)||),

≤ C̄cO(d(µπi , µπm+1)).

Therefore, we can see that 1
m

∑m
i=1 ||φ̄i − φ̄m+1|| ≤ O( 1

m

∑m
i=1 d(µ

πi , µπm+1)) and similarly we
can get 1

m

∑m
i=1 ||η∗i (φ̄i, ω̄)− η∗m+1(φ̄m+1, ω̄)|| ≤ O( 1

m

∑m
i=1 d(µ

πi , µπm+1)).

Therefore, we have that
E[||∇Lm+1(θ, ω)|θ=φ̂m+1,ω=η̂∗

m+1
||],

≤ E

[
||∇Lm+1(θ, ω)|θ=φ̂m+1,ω=η̂∗

m+1
− 1

m

m∑
i=1

∇Li(θ, ω)|θ=φ̂m+1,ω=η̂∗
m+1

||

+ || 1
m

m∑
i=1

∇Li(θ, ω)|θ=φ̄i,ω=η∗
i (φ̄i,ω̄) −∇Li(θ, ω)|θ=φ̂m+1,ω=η̂∗

m+1
||

+ || 1
m

m∑
i=1

∇Li(θ, ω)|θ=φ̄i,ω=η∗
i (φ̄i,ω̄)||

]
,

(c)

≤ O(
1

m

m∑
i=1

d(µπi , µπm+1) + d(
1

m

m∑
i=1

µπi , µπm+1) + ϵ),

where (c) follows (38), (37), and Proposition 1.

A.12 PROOF OF THEOREM 3

The proof is similar to the proof in Appendix A.11. The key step is to find the relation similar to
Proposition 1 which is the following claim.
Claim 5. For a given (θ, ω), it holds that

|| 1
m

m∑
i=1

Li(θ, ω)− Lm+1(θ, ω)|| ≤ O(d(
1

m

m∑
i=1

µπi , µπm+1)).

Proof. Recall that

Li(θ, ω) = −Eζ∼Pπi
[

∞∑
t=0

log πω;θ(at|st)] = −
∫
s∈S

∫
a∈A

µπi(s, a) log πω;θ(a|s)dads.

Therefore, we have that

|| 1
m

m∑
i=1

Li(θ, ω)− Lm+1(θ, ω)||,

≤
∫
s∈S

∫
a∈A

| 1
m

m∑
i=1

µπi(s, a)− µπm+1(s, a)| · || log πω;θ(a|s)||dads,

(a)

≤ O(d(
1

m

m∑
i=1

µπi , µπm+1)),

where (a) follows that fact that (θ, ω) is fixed and thus there is a positive constant D such that
|| log πω;θ(a|s)|| ≤ D for any (s, a) ∈ S ×A.
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Remark 1. Note that Claim 5 does not hold for any (s, a) ∈ S×A, it only holds for given (specific)
(θ, ω). However, this is enough because we only need to use Claim 5 at several specific points, e.g.,
(φ̄i, η

∗
i (φ̄i, ω̄)) and (φ̂m+1, η̂

∗
m+1).

We can see that

E[Lm+1(φ̂m+1, η̂
∗
m+1(φ̂m+1, ω̄,Dm+1))]−min

θ,ω
Lm+1(θ, ω),

= E[Lm+1(φ̄m+1, η
∗
m+1(φ̄m+1, ω̄))]−min

θ,ω
Lm+1(θ, ω),

≤ E

[
Lm+1(φ̄m+1, η

∗
m+1(φ̄m+1, ω̄))−

1

m

m∑
i=1

Li(φ̄m+1, η
∗
m+1(φ̄m+1, ω̄))

]

+ E

[
1

m

m∑
i=1

Li(φ̄m+1, η
∗
m+1(φ̄m+1, ω̄))−

1

m

m∑
i=1

Li(φ̄i, η
∗
i (φ̄i, ω̄))

]

+ E

[
1

m

m∑
i=1

Li(φ̄i, η
∗
i (φ̄i, ω̄))

]
− 1

m

m∑
i=1

min
θ,ω

Li(φi, η
∗
i (φi, ω))

+
1

m

m∑
i=1

min
θ,ω

Li(φi, η
∗
i (φi, ω))−min

θ,ω
Lm+1(θ, ω).

The first and fourth terms are bounded by O(d( 1
m

∑m
i=1 µ

πi , µπm+1)) (Claim 5), and the third term
is bounded by ϵ. Now, we look at the second term. Since ||∇θLi(θ, ω)|| and ||∇ωLi(θ, ω)|| are
both bounded (see the expressions in Appendix A.3), there is a positive constant C∇L such that
||∇L(θ, ω)|| ≤ C∇L.

E

[
1

m

m∑
i=1

Li(φ̄m+1, η
∗
m+1(φ̄m+1, ω̄))−

1

m

m∑
i=1

Li(φ̄i, η
∗
i (φ̄i, ω̄))

]
,

≤ C∇L

m

m∑
i=1

[
||φ̄m+1 − φ̄i||+ ||η∗m+1(φ̄m+1, ω̄))− η∗i (φ̄i, ω̄))||

]
,

(b)

≤ O(
1

m

m∑
i=1

d(µπi , µπm+1)),

where (b) follows Claim 4. Therefore, we have that

E[Lm+1(φ̂m+1, η̂
∗
m+1(φ̂m+1, ω̄,Dm+1))]−min

θ,ω
Lm+1(θ, ω),

≤ ϵ+O(
1

m

m∑
i=1

d(µπi , µπm+1) + d(
1

m

m∑
i=1

µπi , µπm+1))

A.13 PROOF OF THEOREM 4

If the reward functions and cost functions are linear, there are reward and cost feature vectors
ϕr(·, ·) and ϕc(·, ·) defined over state-action space. The expert’s reward function of the new
task Tm+1 are rm+1 = θ⊤Eϕr and cm+1 = ω⊤

Eϕc. The parameterized reward and cost func-
tions are respectively rθ = θ⊤ϕr and cω = ω⊤(ϕc). We define the expected cumulative re-
ward feature as µr(π) ≜ Eζ∼Pπ [

∑∞
t=0 γ

tϕr(st, at)] and expected cumulative cost feature as
µc(π) ≜ Eζ∼Pπ

[
∑∞

t=0 γ
tϕc(st, at)]. Therefore, from Appendix A.3, we can see that for any (θ, ω)

and any task Ti:

∇θLi(θ, ω) = µr(πω;θ)− µr(πi), ∇ωLi(θ, ω) = µc(πi)− µc(πω;θ).

Therefore, we know that

E[||∇θLm+1(θ, ω)|θ=φ̂m+1,ω=η̂∗
m+1(φ̂m+1,ω̄,Dm+1)||],

≤ E[||∇Lm+1(θ, ω)|θ=φ̂m+1,ω=η̂∗
m+1(φ̂m+1,ω̄,Dm+1)||],
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≤ O(ϵ+
1

m

m∑
i=1

d(µπi , µπm+1) + d(
1

m

m∑
i=1

µπi , µπm+1)).

Thus we have that

E[|Jrm+1(πη̂∗
m+1;φ̂m+1)− Jrm+1(πm+1)|],

≤ E[||θE || · ||µr(πη̂∗
m+1;φ̂m+1

)− µr(πm+1)||],

= O

(
E[||µr(πη̂∗

m+1;φ̂m+1)− µr(πm+1)||]
)
,

= O

(
E[||∇Lm+1(θ, ω)|θ=φ̂m+1,ω=η̂∗

m+1(φ̂m+1,ω̄,Dm+1)||]
)
,

≤ O(ϵ+
1

m

m∑
i=1

d(µπi , µπm+1) + d(
1

m

m∑
i=1

µπi , µπm+1)).

Similarly, we can get

E[|Jcm+1
(πη̂∗

m+1;φ̂m+1
)−Jcm+1

(πm+1)|] ≤ O(ϵ+
1

m

m∑
i=1

d(µπi , µπm+1)+d(
1

m

m∑
i=1

µπi , µπm+1)).

A.14 OUR DISTINCTIONS FROM RELATED META-LEARNING THEORETICAL WORKS

Although there is no theoretical work on meta IRL, there are theoretical works on general meta-
learning problems that study convergence and generalization. In specific, (Fallah et al., 2020) studies
the convergence of MAML, (Fallah et al., 2021b) studies the generalization of MAML, and (Denevi
et al., 2019) studies the generalization of iMAML. In this section, we discuss our significant distinc-
tions from these works from three perspectives: problem, algorithm, and theoretical analysis.

Problem: Neither MAML nor iMAML can be directly applied to solve our problem even if we
reduce their general problem formulation to the context of IRL. Therefore, we propose the novel
problem formulation (2)-(3) to learn both the reward and cost meta-priors.

Algorithm: A key step of both MAML and iMAML is to compute the hyper-gradient. In MAML,
the hyper-gradient is assumed to be directly computed. In iMAML, they use conjugate gradient to
help compute the hyper-gradient. In our case, we have an additional challenge to compute the hyper-
gradient, i.e., Challenge (i) mentioned in Subsection 3.1, that does not occur in MAML or iMAML.
To solve this new challenge, we design an additional algorithm (i.e., Algorithm 2) that uses the
first-order approximation (6)-(7). Moreover, instead of using conjugate gradient to solve Challenge
(ii) mentioned in Subsection 3.1, we use a new algorithm (Algorithm 3) to solve it. Compared to
iMAML (Rajeswaran et al., 2019) that assumes to find a δ′-approximate, Algorithm 3 enables us to
guarantee the finite-time approximation error in Lemma 1 and Lemma 2.

Theoretical analysis: We first talk about the convergence guarantee and then talk about the gen-
eralization analysis. For the convergence guarantee, first, we have additional algorithms (i.e., Al-
gorithms 2-3) to tackle the additional challenges and thus we need additional analysis (Subsections
A.7-A.8) to justify Lemmas 1-2. Note that Lemmas 1-2 and the corresponding proof are novel com-
pared to (Fallah et al., 2020; 2021b; Denevi et al., 2019). Moreover, for the proof of Theorem 1 in
Subsection A.9, we use a novel technique to prove the convergence, i.e., we first construct a new
function fi and provide the convergence of fi. Then the convergence of Li can be derived by using
the error between fi and Li. This technique can simplify the analysis and is totally different from
(Fallah et al., 2020).

For the generalization analysis, Proposition 1 and its proof is novel compared to (Fallah et al., 2021b;
Denevi et al., 2019) since we leverage a unique property (i.e., distance between tasks and bounded
gradient of the parameterized models rθ and cω) of our problem to prove this. Similarly, Theorems
2-3 require to leverage the special property of our problem to prove. Theorem 4 quantifies the
cumulative reward and cost difference between the adapted policy and the expert policy, which is
definitely novel.
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A.15 COMPARISON TO META CONSTRAINED REINFORCEMENT LEARNING (KHATTAR
ET AL., 2023)

First, (Khattar et al., 2023) studies a different problem. (Khattar et al., 2023) studies meta con-
strained RL where the constraint (cost function) is given while we study meta ICRL where the cost
function needs to be learned.

For dealing with the constraint, (Khattar et al., 2023) has a constrained RL problem to solve for
each task. It uses a constrained RL algorithm called CRPO (Xu et al., 2021) to solve the constrained
RL problem and get a corresponding task-specific policy. We have a cost learning problem in the
lower level and we use gradient descent to obtain a corresponding task-specific cost adaptation. One
similarity between ((Khattar et al., 2023) and our work is that we both do not require the exact task-
specific adaptation and this makes the theoretical analysis of the meta learning performance more
challenging.

For dealing with meta-learning, (Khattar et al., 2023) studies an online setting where at each online
iteration, a new task is input and a corresponding task-specific policy adaptation is computed. At
each online iteration, it updates the policy meta-prior by minimizing the KL divergence between the
policy meta-prior and the current task-specific policy adaptation via one or multiple online gradient
descent steps. In contrast, we utilize a bi-level optimization framework where we learn the meta-
priors in the upper level such that the corresponding task-specific adaptations can maximize the
likelihood of the demonstrations of each task. In order to optimize for the meta-priors, we need
to compute the hyper-gradient which is very challenging in our case. We propose several novel
approximation methods and algorithm designs to approximate the hyper-gradient. In conclusion,
the meta-prior in our case is learned such that the task-specific adaptations adapted from the meta-
prior have good performance on each specific task while the meta-prior in (Khattar et al., 2023) is
learned such that the meta-prior is close to task-specific adaptations according to the metric of KL
divergence.

B EXPERIMENT DETAILS

This section includes the experiment details. It has two subsections where the first subsection in-
cludes the experiment details of the drone experiment and the second subsection includes the exper-
iment details of the Mujoco experiment. We first explain the four baselines in detail.

• The baseline ICRL does not have meta-priors and directly learn from one trajectory from
scratch.

• The baseline ICRL(pre) naively learns meta-priors across all demonstrations of all the
training tasks. In specific, ICRL(pre) first solves minθ

1
m

∑m
i=1 L̂i(θ, ω

∗(θ),Di), s.t. ω∗(θ)

= argminω
1
m

∑m
i=1 Ĝi(ω; θ,Di) where Di ≜ {Dtr

i ,Deval
i ,Dh

i}. The obtained
results of this problem (i.e., θ and ω∗(θ)) are the meta-priors of ICRL(pre).
ICRL(pre) then uses these meta-priors as initializations to solve the problem
minθ L̂m+1(θ, ω

∗(θ),Dm+1), s.t. ω∗(θ) = argminω Ĝm+1(ω; θ,Dm+1) for an arbitrary
new task Tm+1.

• The baseline Meta-IRL is from (Xu et al., 2019) which is a combination of maximum
entropy IRL (Ziebart et al., 2008) and MAML (Finn et al., 2017).

B.1 DRONE NAVIGATION WITH OBSTACLES

RL has been applied to many applications, including wireless network Huang et al. (2023) and
motion planning Liu & Zhu (2024). Here, we study a motion planning problem. For the drone
experiment, we cannot directly train the algorithm on the physical drone because this may cause
damage to the drone. In specific, given learned reward and cost parameters (θ, ω), we need to use
soft Q learning or soft actor-critic to find the corresponding constrained soft Bellman policy. This
RL step requires the drone to interact with the environment and thus improves its policy. During the
learning process, the drone may inevitably execute some dangerous behaviors, such as colliding with
obstacles or the wall. To avoid the damage of the drone, we build a simulator in Gazebo (Figure 2)
that imitates the physical environment with the scale 1 : 1. We train the algorithm on the simulated
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drone in the simulator and the empirical results, i.e., CVR and SR, are counted in the simulator.
Once we obtain a learned policy that has good performance in the simulator, we implement the
policy on the physical drone.

Figure 2: Simulator

Discussion of the sim-to-real problem. In some cases, the models that
have good performance in the simulator may not have good performance in
the real world due to the reason that the simulator cannot 100% precisely
imitate the physical world Sun et al. (2023); Wang & Cao (2024). However,
in our case, the sim-to-real issue is not significant because of two reasons: (i)
the simulated drone is built according to the dynamics of a real Ar. Drone 2.0
(Huang & Sturm, 2014); (ii) the states and actions are just the coordinates of
the location and the heading direction of the drone instead of some low-level
control such as the motor’s velocity, etc. Given that Vicon can output precise
pose of the physical drone and the simulator is built on the 1 : 1 scale. If
a learned trajectory can succeed in the simulator, it can succeed in the real
world given that the low-level control of both the simulated and physical
drones are given.

In this experiment, the state of the drone is its 3-D coordinate (x, y, z) and
the action of the drone is also a 3-D coordinate (dx, dy, dz) which captures
the heading direction of the drone. We fix the length of each step as 0.1 and thus the next state is
(x+ dx

10
√

(dx)2+(dy)2+(dz)2
, y+ dy

10
√

(dx)2+(dy)2+(dz)2
, z+ dz

10
√

(dx)2+(dy)2+(dz)2
). In this experiment,

we do not need the drone to change its height so that we usually fix the value of z and set dz = 0.
The goal is an 1× 1 square. Denote the coordinate of the center of the goal as (xgoal, ygoal), then for
all the different tasks, xgoal ∈ (0.5, 6.5) and ygoal ∈ (10, 11). The obstacle is a 3× 1 square. Denote
the coordinate of the lower left end of the obstacle as (xobstacle, yobstacle), the for the different tasks,
xobstacle ∈ (0, 4) and yobstacle ∈ (4, 5).

Note that we do not need features to help learn the reward function. Even if features can be learned
Wu et al. (2024); Chen et al. (2023), the extra requirement of needing features can be impractical in
various scenarios. We use neural networks to parameterize the reward and cost functions. In specific,
the neural networks have two layers where the activation functions are relu and each layer has 64
neurons. For each training task, the training set only has one demonstration and the evaluation set
has 50 demonstrations. We set Dh

i = Deval
i . The result in table 1 shows the mean and the standard

deviation over the 10 training tasks.

B.2 MUJOCO EXPERIMENT

(a) Swimmer (b) HalfCheetah (c) Walker2D

Figure 3: The three Mujoco environments.

For all the three Mujoco experiments, we consider the random velocity task (Seyed Ghasemipour
et al., 2019). In specific, the robots (i.e., swimmer, halfcheetah, and walker) need to reach and
sustain at a target velocity. For different tasks, the target velocity is different. The design of the
reward function is that the robots will receive reward +1 if they are at the target velocity and reward
0 otherwise. The neural networks of all the three experiments have two hidden layers, and each
layer has 256 neurons. The activation function of the first hidden layer is relu and the activation
function of the second hidden layer is tanh. For all the three Mujoco experiments, we have 50
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training tasks and 10 test tasks. Each test task only has one demonstration. For the training tasks,
the training set has one demonstration and the evaluation set has 64 demonstrations. Similar to the
drone experiment, we set Dh

i = Deval
i .

The target velocity of the three experiments is designed in a similar way. In specific, the target
velocity v ∈ [0.5, 3.5]. For a given target velocity v, the reward is +1 if the velocity is within
[v, v + 0.3] and 0 otherwise. For the constraint, the Swimmer experiment constrains all the states
whose front tip angle is larger than a0 where a0 ∈ [0.9, 1.2]. The HalfCheetah experiment constrains
all the states whose front tip height is larger than h0 where h0 ∈ [0.5, 1.0]. The Walker experiment
constrains all the states whose top height is smaller than h1 where h1 ∈ [0.6, 0.9].

Discussion of the experiment results in Table 1. From Table 1, we can observe that M-ICRL
achieves similar SR/CR and CVR with the expert. ICRL has much worse SR/CR performance
because it only has one demonstration for each test task, and it does not have meta-priors. Meta-IRL
has the worst CVR performance because it only learns a reward function and it is difficult for a single
reward function to capture the function of both the ground truth reward function and ground truth
constraints. The bad CVR performance will also result in bad performance of SR and CVR even if
Meta-IRL may estimate the ground truth reward function well, because the episode terminates if any
constraint is violated. ICRL(pre) has the second-best performance because it has abundant training
data and it learns both the reward function and constraints. However, ICRL(pre) has much worse
performance than M-ICRL because ICRL(pre) only naively trains over all the data of all the training
tasks.
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