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Abstract

We propose a new framework for imitation learning—treating imitation as a two-
player ranking-based game between a policy and a reward. In this game, the reward
agent learns to satisfy pairwise performance rankings between behaviors, while the
policy agent learns to maximize this reward. In imitation learning, near-optimal
expert data can be difficult to obtain, and even in the limit of infinite data cannot
imply a total ordering over trajectories as preferences can. On the other hand,
learning from preferences alone is challenging as a large number of preferences
are required to infer a high-dimensional reward function, though preference data is
typically much easier to collect than expert demonstrations. The classical inverse
reinforcement learning (IRL) formulation learns from expert demonstrations but
provides no mechanism to incorporate learning from offline preferences and vice
versa. We instantiate the proposed ranking-game framework with a novel ranking
loss giving an algorithm that can simultaneously learn from expert demonstrations
and preferences, gaining the advantages of both modalities. Our experiments show
that the proposed method achieves state-of-the-art sample efficiency and can solve
previously unsolvable tasks in the Learning from Observation (LfO) setting. Project
code and details can be found at https://hari-sikchi.github.io/rank-game

1 Introduction

Reinforcement learning relies on environmental reward feedback to learn meaningful behaviors.
Reward specification is a hard problem [1], thus motivating imitation learning (IL) as a technique
to bypass reward specification and learn from expert data, often via Inverse Reinforcement Learning
(IRL) techniques. Learning from expert information (imitation learning) alone can require efficient
exploration when the expert actions are unavailable as in LfO [2]. Incorporating preferences over
potentially suboptimal trajectories for reward learning can help reduce the exploration burden by
regularizing the reward function and providing effective guidance for policy optimization. Previous
literature in learning from preferences either assumes no environment interaction [3, 4] or assumes an
active query framework with a restricted reward class [5]. The classical IRL formulation suffers from
two issues: (1) Learning from expert demonstrations and learning from preferences/rankings provide
complementary advantages for increasing learning efficiency [5, 6]; however, existing IRL methods
that learn from expert demonstrations provide no mechanisms to incorporate offline preferences
and vice versa. (2) Optimization is difficult, making learning sample inefficient [7, 8] due to the
adversarial min-max game.

Our primary contribution is an algorithmic framework casting imitation learning as a rank-
ing game that addresses both of the above issues in IRL. This framework treats imita-
tion as a ranking game between two agents: a reward agent and a policy agent—the re-
ward agent learns to satisfy pairwise performance rankings between different behaviors rep-
resented as state-action or state visitations, while the policy agent maximizes its perfor-
mance under the learned reward function. The ranking game is detailed in Figure 1



IL Method Offline Expert Ranking Reward Active Human
Preferences Data Loss Function Query

MaxEntIRL, AdRIL,GAN-GCL,
✗ LfD supremum non-linear ✗GAIL,f -MAX, AIRL

BCO,GAIfO, DACfO,
✗ LfO supremum non-linear ✗OPOLO,f -IRL

TREX, DREX ✓ ✗ Bradley-Terry non-linear ✗
BREX ✓ ✗ Bradley-Terry linear ✗

DemPref ✓ LfO/LfD Bradley-Terry linear ✓
Ibarz et al[6] ✓ LfD Bradley-Terry non-linear ✓
rank-game ✓ LfO/LfD Lk non-linear ✗

Table 1: A summary of IL methods demonstrating the data modalities they can handle (expert data and/or
preferences), the ranking-loss functions they use, the assumptions they make on reward function, and whether
they require availability of an external agent to provide preferences during training. We highlight whether a
method enables LfD, LfO, or both when it is able to incorporate expert data.
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Figure 1: rank-game: The Policy agent maximizes
the reward function by interacting with the environment.
The Reward agent satisfies a set of behavior rankings
obtained from various sources: generated by the policy
agent (vanilla), automatically generated (auto), or offline
annotated rankings obtained from a human or offline
dataset (pref). Treating this game in the Stackelberg
framework leads to either Policy being a leader and
Reward being a follower, or vice-versa.

and is specified by three components: (1) The
dataset of pairwise behavior rankings, (2) A
ranking loss function, and (3) An optimization
strategy. This game encompasses a large subset
of both inverse reinforcement learning (IRL)
methods and methods that learn from subopti-
mal offline preferences. Popular IRL methods
such as GAIL, AIRL, f -MAX [8, 9, 10] are
instantiations of this ranking game in which
rankings are given only between the learning
agent and the expert, and a gradient descent
ascent (GDA) optimization strategy is used with
a ranking loss that maximizes the performance
gap between the behavior rankings.

The ranking loss used by the prior IRL
approaches is specific to the comparison of
optimal (expert) vs. suboptimal (agent) data
and precludes the incorporation of comparisons
among suboptimal behaviors. In this work, we
instantiate the ranking game by proposing a new
ranking loss (Lk) that facilitates incorporation
of rankings over suboptimal trajectories for
reward learning. Our theoretical analysis
reveals that the proposed ranking loss results
in a bounded performance gap with the expert that depends on a controllable hyperparameter. Our
ranking loss can also ease policy optimization by supporting data augmentation to make the reward
landscape smooth and allowing control over the learned reward scale. Finally, viewing our ranking
game in the Stackelberg game framework (see Section 3)—an efficient setup for solving general-sum
games—we obtain two algorithms with complementary benefits in non-stationary environments
depending on which agent is set to be the leader.

In summary, this paper formulates a new framework rank-game for imitation learning that allows
us to view learning from preferences and demonstrations under a unified perspective. We instantiate
the framework with a principled ranking loss that can naturally incorporate rankings provided by di-
verse sources. Finally, by incorporating additional rankings—auto-generated or offline—our method:
(a) outperforms state-of-the-art methods for imitation learning in several MuJoCo simulated domains
by a significant margin and (b) solves complex tasks like imitating to reorient a pen with dextrous ma-
nipulation using only a few observation trajectories that none of the previous LfO baselines can solve.

2 Related Work
Imitation learning methods are broadly divided into two categories: Behavioral cloning [11, 12] and
Inverse Reinforcement Learning (IRL) [8, 9, 13, 14, 15, 16, 17]. Our work focuses on developing a
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new framework in the setting of IRL through the lens of ranking. Table 1 shows a comparison of the
proposed rank-game method to prior works.

Classical Imitation Game for IRL: The classical imitation game for IRL aims to solve the adversarial
min-max problem of finding a policy that minimizes the worst-case performance gap between the agent
and the expert. A number of previous works [9, 10, 18] have focused on analyzing the properties of
this min-max game and its relation to divergence minimization. Under some additional regularization,
this min-max objective can be understood as minimizing a certain f -divergence [8, 9, 10] between the
agent and expert state-action visitation. More recently, [18] showed that all forms of imitation learning
(BC and IRL) can be understood as performing moment matching under differing assumptions. In this
work, we present a new perspective on imitation in which the reward function is learned using a dataset
of behavior comparisons, generalizing previous IRL methods that learn from expert demonstrations
and additionally giving the flexibility to incorporate rankings over suboptimal behaviors.

Learning from Preferences and Suboptimal Data: Learning from preferences and suboptimal data
is important when expert data is limited or hard to obtain. Preferences [5, 19, 20, 21, 22] have the
advantage of providing guidance in situations expert might not get into, and in the limit provides full
ordering over trajectories which expert data cannot. A previous line of work [3, 4, 23, 24] has studied
this setting and demonstrated that offline rankings over suboptimal behaviors can be effectively
leveraged to learn a reward function. [5, 6, 22] studied the question of learning from preferences
in the setting when a human is available to provide online preferences1 (active queries), while [5]
additionally assumed the reward to be linear in known features. Our work makes no such assumptions
and allows for integrating offline preferences and expert demonstrations under a common framework.

Learning from Observation (LfO): LfO is the problem setting of learning from expert observations.
This is typically more challenging than the traditional learning from demonstration setting (LfD),
because actions taken by the expert are unavailable. LfO is broadly formulated using two objectives:
state-next state marginal matching [25, 26, 27] and direct state marginal matching [28, 29]. Some
prior works [30, 31, 32] approach LfO by inferring expert actions through a learned inverse dynamics
model. These methods assume injective dynamics and suffer from compounding errors when the
policy is deployed. A recently proposed method OPOLO [26] derives an upper bound for the LfO
objective which enables it to utilize off-policy data and increase sample efficiency. Our method
outperforms baselines including OPOLO, by a significant margin.

3 Background

We consider a learning agent in a Markov Decision Process (MDP) [33, 34] which can be defined
as a tuple: M = (S,A, P,R, γ, ρ0), where S and A are the state and action spaces; P is the state
transition probability function, with P (s′|s, a) indicating the probability of transitioning from s to s′

when taking action a; R : S × A → R is the reward function bounded in [0, Rmax]; We consider
MDPs with infinite horizon, with the discount factor γ ∈ [0, 1], though our results extend to finite
horizons as well; p0 is the initial state distribution. We use Π andR to denote the space of policies
and reward functions respectively. A reinforcement learning agent aims to find a policy π : S → A
that maximizes its expected return, J(R;π) = 1

1−γE(s,a)∼ρπ(s,a)[R(s, a)], where ρπ(s, a) is the
stationary state-action distribution induced by π. In imitation learning, we are provided with samples
from the state-action visitation of the expert ρπE (s, a) but the reward function of the expert is
unknown. We will use ρE(s, a) as a shorthand for ρπE (s, a).

Classical Imitation Learning: The goal of imitation learning is to close the imitation gap J(R;πE)−
J(R;π) defined with respect to the unknown expert reward function R. Several prior works [8, 18,
28, 35] tackle this problem by minimizing the imitation gap on all possible reward hypotheses. This
leads to a zero-sum (min-max) game formulation of imitation learning in which a policy is optimized
with respect to the reward function that induces the largest imitation gap:

imit-game(π) = argmin
π∈Π

sup
f∈R

EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]. (1)

Here, the imitation gap is upper bounded as follows (∀π):
J(R;πE)− J(R;π) ≤ sup

f∈R
EρE(s,a)[f(s, a)]− Eρπ(s,a)[f(s, a)]. (2)

1We will use preferences and ranking interchangebly
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Note that, when the performance gap is maximized between the expert πE and the agent π, we can
observe that the worst-case reward function fπ induces a ranking between policy behaviors based
on their performance: ρE ⪰ ρπ := EρE(s,a)[fπ(s, a)] ≥ Eρπ(s,a)[fπ(s, a)], ∀π. Therefore, we can
regard the above loss function that maximizes the performance gap (Eq. 2) as an instantiation of the
ranking-loss. We will refer to the implicit ranking between the agent and the expert ρE ⪰ ρπ as
vanilla rankings and this variant of the ranking-loss function as the supremum-loss.

Stackelberg Games: A Stackelberg game is a general-sum game between two agents where one agent
is set to be the leader and the other a follower. The leader in this game optimizes its objective under the
assumption that the follower will choose the best response for its own optimization objective. More
concretely, assume there are two players A and B with parameters θA, θB and corresponding losses
LA(θA, θB) and LB(θA, θB). A Stackelberg game solves the following bi-level optimization when
A is the leader and B is the follower: minθA LA(θA, θ

∗
B(θA)) s.t θ∗B(θA) = argminθ LB(θA, θ).

[36] showed that casting model-based RL as an approximate Stackelberg game [37] leads to
performance benefits and reduces training instability in comparison to the commonly used GDA [38]
and Best Reponse (BR) [39] methods. [40, 41] prove convergence of Stackelberg games under
smooth player cost functions and show that they reduce the cycling behavior to find an equilibrium
and allow for better convergence.

4 A Ranking Game for Imitation Learning

In this section, we first formalize the notion of the proposed two-player general-sum ranking game
for imitation learning. We then propose a practical instantiation of the ranking game through a
novel ranking-loss (Lk). The proposed ranking game gives us the flexibility to incorporate additional
rankings—both auto-generated (a form of data augmentation mentioned as ‘auto’ in Fig. 1) and
offline (‘pref’ in Fig. 1)—which improves learning efficiency. Finally, we discuss the Stackelberg
formulation for the two-player ranking game and discuss two algorithms that naturally arise depending
on which player is designated as the leader.

4.1 The Two-Player Ranking Game Formulation

We present a new framework, rank-game, for imitation learning which casts it as a general-sum
ranking game between two players — a reward and a policy.

argmaxπ∈ΠJ(R;π)︸ ︷︷ ︸
Policy Agent

argminR∈RL(Dp;R)︸ ︷︷ ︸
Reward Agent

In this formulation, the policy agent maximizes the reward by interacting with the environment, and
the reward agent attempts to find a reward function that satisfies a set of pairwise behavior rankings
in the given dataset Dp; a reward function satisfies these rankings if Eρπi [R(s, a)] ≤ Eρπj [R(s, a)],

∀ρπi ⪯ ρπ
j ∈ Dp, where ρπ

i

, ρπ
j

can be state-action or state vistitations.

The dataset of pairwise behavior rankings Dp can be comprised of the implicit ‘vanilla’ rankings
between the learning agent and the expert’s policy behaviors (ρπ ⪯ ρE), giving us the classical
IRL methods when a specific ranking loss function – supremum-loss is used [8, 9, 10]. If rankings
are provided between trajectories, they can be reduced to the equivalent ranking between the corre-
sponding state-action/state visitations. In the case when Dp comprises purely of offline trajectory
performance rankings then, under a specific ranking loss function (Luce-shepard), the ranking game
reduces to prior reward inference methods like T-REX [3, 4, 23, 24]. Thus, the ranking game affords
us a broader perspective of imitation learning, going beyond only using expert demonstrations.

4.2 Ranking Loss Lk for the Reward Agent

We use a ranking-loss to train the reward function—an objective that minimizes the distortion [42]
between the ground truth ranking for a pair of entities {x, y} and rankings induced by a parameterized
function R : X → R for a pair of scalars {R(x), R(y)}. One type of such a ranking-loss is the
supremum-loss in the classical imitation learning setup.
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Algorithm 1 Meta algorithm: rank-game (vanilla) for imitation

1: Initialize policy π0
θ , reward funtion Rϕ, empty dataset Dπ . empirical expert data ρ̂E

2: for t = 1..T iterations do
3: Collect empirical visitation data ρ̂π

t
θ with πt

θ in the environment. Set Dπ = {(ρ̂π ⪯ ρ̂E)}
4: Train reward Rϕ to satisfy rankings in Dπ using ranking loss Lk in equation 3.
5: Optimize policy under the reward function: πt+1

θ ← argmaxπ′J(Rϕ;π
′)

6: end for

We propose a class of ranking-loss functions Lk that attempt to induce a performance gap of k for all
behavior preferences in the dataset. Formally, this can be implemented with the regression loss:

Lk(Dp;R) = E(ρπi ,ρπj
)∼Dp

[
Es,a∼ρπi

[
(R(s, a)− 0)2

]
+ Es,a∼ρπj

[
(R(s, a)− k)2

]]
. (3)

where Dp contains behavior pairs (ρπ
i

, ρπ
j

) s.t ρπ
i ⪯ ρπ

j

.

The proposed ranking loss allows for learning bounded rewards with user-defined scale k in the agent
and the expert visitations as opposed to prior works in Adversarial Imitation Learning [8, 9, 17].
Reward scaling has been known to improve learning efficiency in deep RL; a large reward scale can
make the optimization landscape less smooth [43, 44] and a small scale might make the action-gap
small and increase susceptibility to extrapolation errors [45]. In contrast to the supremum loss, Lk

can also naturally incorporate rankings provided by additional sources by learning a reward function
satisfying all specified pairwise preferences. The following theorem characterizes the equilibrium of
the rank-game for imitation learning when Lk is used as the ranking-loss.
Theorem 4.1. (Performance of the rank-game equilibrium pair) Consider an equilibrium of the
imitation rank-game (π̂, R̂), such that the ranking loss Lk generalization error is bounded by
2R2

maxϵr and the policy is near-optimal with J(R̂; π̂) ≥ J(R̂;π)− ϵπ ∀π, then at this equilibrium
pair under the expert’s unknown reward function Rgt bounded in [0, RE

max]:

∣∣J(Rgt, π
E)− J(Rgt, π̂)

∣∣ ≤
4RE

max

√
(1−γ)ϵπ+4Rmax

√
ϵr

k

1− γ
(4)

If reward is a state-only function and only expert observations are available, the same bound applies
to the LfO setting.

Proof. We defer the proof to Appendix A.

Figure 2: Figure shows learned reward
function when agent and expert has a
visitation shown by pink and black markers
respectively. rank-game (auto) results in
smooth reward functions more amenable to
gradient-based policy optimization compared
to GAIL.

Theoretical properties: We now discuss some theoretical
properties of Lk. Theorem 1 shows that rank-game
has an equilibrium with bounded performance gap with
the expert. An optimization step by the policy player,
under a reward function optimized by the reward player,
is equivalent to minimizing an f -divergence with the
expert. Equivalently, at iteration t in Algorithm 1:
maxπt Eρπt [R∗

t ] − EρπE [R∗
t ] = minπt Df (ρ

πt∥ρπE

).
We elaborate on the regret of this idealized algorithm
in Appendix A. Theorem 1 suggests that large values of
k can guarantee the agent’s performance is close to the
expert. In practice, we observe intermediate values of
k also preserve imitation equilibrium optimality with a
benefit of promoting sample efficient learning (as an effect of reward scaling described earlier).
We discuss this observation further in Appendix D.9. rank-game naturally extends to the LfO
regime under a state-only reward function where Theorem 4.1 results in a divergence bound between
state-visitations of the expert and the agent. A state-only reward function is also a sufficient and
necessary condition to ensure that we learn a dynamics-disentangled reward function [17].

Lk can incorporate additional preferences that can help learn a regularized/shaped reward function
that provides better guidance for policy optimization, reducing the exploration burden and increasing
sample efficiency for IRL. A better-guided policy optimization is also expected to incur a lower ϵπ.
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However, augmenting the ranking dataset can lead to a decrease in the intended performance gap
(keff < k) between the agent and the expert (Appendix A). This can loosen the bound in Eq 4 and
lead to non-optimal imitation learning. We hypothesize that given informative preferences, decreased
ϵπ can compensate for potentially decreased intended performance gap keff to ensure near optimal
imitation. In our experiments, we observe this hypothesis holds true; we enjoy sample efficiency ben-
efits without losing any asymptotic performance. To leverage these benefits, we present two methods
for augmenting the ranking dataset below and defer the implementation details to Appendix B.

4.2.1 Augmenting the Ranking Dataset

Reward loss w/ automatically generated rankings (auto): In this method, we assume access to the
behavior-generating trajectories in the ranking dataset. For each pairwise comparison ρi ⪯ ρj present
in the dataset, Lk sets the regression targets for states in ρi to be 0 and for states visited by ρj to be
k. Equivalently, we can rewrite minimizing Lk as regressing an input of trajectory τi to vector 0, and
τj to vector k1 where τi, τj are trajectories that generate the behavior ρi, ρj respectively. We use the
comparison ρi ⪯ ρj to generate additional behavior rankings ρi ⪯ ρλ1,ij ⪯ ρλ2,ij .. ⪯ ρλP ,ij ⪯ ρj
where 0 < λ1 < λ2 < ... < λP < 1. The behavior ρλp,ij is obtained by independently sampling
the trajectories that generate the behaviors ρi, ρj and taking convex combinations i.e τλp,ij =
λpτi + (1− λp)τj and their corresponding reward regressions targets are given by λp0+ (1− λp)k1.

This form of data augmentation can be interpreted as mixup [46] regularization in the trajectory
space. Mixup has been shown to improve generalization and adversarial robustness [46, 47] by
regularizing the first and second-order gradients of the parameterized function. Following the general
principle of using a smoothed objective with respect to inputs to obtain effective gradient signals,
explicit smoothing in the trajectory space can also help reduce the policy optimization error ϵπ. A
didactic example showing rewards learned using this method is shown in Figure 2. In a special case
when the expert’s unknown reward function is linear in observations, these rankings reflect the true
underlying rankings of behaviors.

Reward loss w/ offline annotated rankings (pref): Another way of increasing learning efficiency
is augmenting the ranking dataset containing the vanilla ranking (ρπ ⪯ ρE) with offline annotated
rankings. These rankings may be provided by a human observer or obtained using an offline
dataset of behaviors with annotated reward information, similar to the datasets used in offline
RL [48, 49]. We combine offline rankings by using a weighted loss between Lk for satisfying vanilla
rankings (ρπ ⪯ ρE) and offline rankings, grounded by an expert. Providing offline rankings alone
that are sufficient to explain the reward function of the expert [3] is often a difficult task and the
number of offline preferences required depends on the complexity of the environment. In the LfO
setting, learning from an expert’s state visitation alone can be a hard problem due to exploration
requirements [2]. This ranking-loss combines the benefits of using preferences to shape the reward
function and guide policy improvement while using the expert to guarantee near-optimal performance.

4.3 Optimizing the Two-Player General-Sum Ranking Game as a Stackelberg Game

Solving the ranking-game in the Stackelberg setup allows us to propose two different algorithms
depending on which agent is set to be the leader and utilize the learning stability and efficiency
afforded by the formulation as studied in [36, 40, 41].

Policy as leader (PAL): Choosing policy as the leader implies the following optimization:

max
π

{
J(R̂;π) s.t. R̂ = argmin

R
L(Dπ;R)

}
(5)

Reward as leader (RAL): Choosing reward as the leader implies the following optimization:

min
R̂

{
L(Dπ; R̂) s.t π = argmax

π
J(R̂;π)

}
(6)

We follow the first order gradient approximation for leader’s update from previous work [36] to de-
velop practical algorithms. This strategy has been proven to be effective and avoids the computational
complexity of calculating the implicit Jacobian term (dθ∗B/dθA). PAL updates the reward to near con-
vergence on datasetDπ (Dπ contains rankings generated using the current policy agent only π ⪯ πE)
and takes a few policy steps. Note that even after the first-order approximation, this optimization
strategy differs from GDA as often only a few iterations are used for training the reward even in hyper-
parameter studies like [50]. RAL updates the reward conservatively. This is achieved through aggregat-
ing the dataset of implicit rankings from all previous policies obtained during training. PAL’s strategy
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of using on-policy data Dπ for reward training resembles that of methods including GAIL [8, 51],
f -MAX [9], and f -IRL [28]. RAL uses the entire history of agent visitation to update the reward
function and resembles methods such as apprenticeship learning and DAC [14, 52]. PAL and RAL
bring together two seemingly different algorithm classes under a unified Stackelberg game viewpoint.

5 Experimental Results

We compare rank-game against state-of-the-art LfO and LfD approaches on MuJoCo benchmarks
having continuous state and action spaces. The LfO setting is more challenging since no actions are
available, and is a crucial imitation learning problem that can be used in cases where action modalities
differ between the expert and the agent, such as in robot learning. We focus on the LfO setting in this
section and defer the LfD experiments to Appendix D.2. We denote the imitation learning algorithms
that use the proposed ranking-loss Lk from Section 4.2 as RANK-{PAL, RAL}. We refer to the
rank-game variants which use automatically generated rankings and offline preferences as (auto)
and (pref) respectively following Section 4.2. In all our methods, we rely on an off-policy model-free
algorithm, Soft Actor-Critic (SAC) [53], for updating the policy agent.

We design experiments to answer the following questions:
1. Asymptotic Performance and Sample Efficiency: Is our method able to achieve near-expert

performance given a limited number (1) of expert observations? Can our method learn using fewer
environment interactions than prior state-of-the-art imitation learning (LfO) methods?

2. Utility of preferences for imitation learning: Current LfO methods struggle to solve a number
of complex manipulation tasks with sparse success signals. Can we leverage offline annotated
preferences through rank-game in such environments to achieve near-expert performance?

3. Choosing between PAL and RAL methods: Can we characterize the benefits and pitfalls of each
method, and determine when one method is preferable over the other?

4. Ablations for the method components: Can we establish the importance of hyperparameters and
design decisions in our experiments?

Baselines: We compare RANK-PAL and RANK-RAL against 6 representative LfO approaches that
covers a spectrum of on-policy and off-policy model-free methods from prior work: GAIfO [8, 51],
DACfO [52], BCO [30], f -IRL [28] and recently proposed OPOLO [26] and IQLearn [54]. We do
not assume access to expert actions in this setting. Our LfD experiments compare to the IQLearn [54],
DAC [52] and BC baselines. Detailed description for baselines can be found in Appendix D.2.

5.1 Asymptotic Performance and Sample Efficiency

In this section, we compare RANK-PAL(auto) and RANK-RAL(auto) to baselines on a set of MuJoCo
locomotion tasks of varying complexities: Swimmer-v2, Hopper-v2, HalfCheetah-v2,
Walker2d-v2, Ant-v2 and Humanoid-v2. In this experiment, we provide one expert trajec-
tory for all methods and do not assume access to any offline annotated rankings.

Env Hopper HalfCheetah Walker Ant Humanoid
BCO 20.10±2.15 5.12±3.82 4.00±1.25 12.80±1.26 3.90±1.24
GaIFO 81.13± 9.99 13.54±7.24 83.83±2.55 20.10±24.41 3.93±1.81
DACfO 94.73±3.63 85.03±5.09 54.70±44.64 86.45±1.67 19.31±32.19
f -IRL 97.45± 0.61 96.06±4.63 101.16±1.25 71.18±19.80 77.93±6.372
OPOLO 89.56±5.46 88.92±3.20 79.19±24.35 93.37± 3.78 24.87±17.04
RANK-PAL(ours) 87.14± 16.14 94.05±3.59 93.88±0.72 98.93±1.83 96.84±3.28
RANK-RAL(ours) 99.34±0.20 101.14±7.45 93.24±1.25 93.21±2.98 94.45±4.13
Expert 100.00± 0 100.00± 0 100.00± 0 100.00± 0 100.00± 0
(|S|, |A|) (11, 3) (17, 6) (17, 6) (111, 8) (376, 17)

Table 2: Asymptotic normalized performance of LfO methods at 2 million timesteps on MuJoCo locomotion
tasks. The standard deviation is calculated with 5 different runs each averaging over 10 trajectory returns. For
unnormalized score and more details, check Appendix D. We omit IQlearn due to poor performance.

Asymptotic Performance: Table 2 shows that both rank-game methods are able to reach near-
expert asymptotic performance with a single expert trajectory. BCO shows poor performance which
can be attributed to the compounding error problem arising from its behavior cloning strategy. GAIfO
and DACfO use GDA for optimization with a supremum loss and show high variance in their
asymptotic performance whereas rank-game methods are more stable and low-variance.
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Figure 3: Comparison of performance on OpenAI gym benchmark tasks. The shaded region represents the
standard deviation across 5 random runs. RANK-PAL and RANK-RAL substantially outperform the baselines
in sample efficiency. Complete set of results can be found in Appendix D.1

Sample Efficiency: Figure 3 shows that RANK-RAL and RANK-PAL are among the most sample
efficient methods for the LfO setting, outperforming the recent state-of-the-art method OPOLO [26]
by a significant margin. We notice that IQLearn fails to learn in the LfO setting. This experiment
demonstrates the benefit of the combined improvements of the proposed ranking-loss with automati-
cally generated rankings. Our method is also simpler to implement than OPOLO, as we require fewer
lines of code changes on top of SAC and need to maintain fewer parameterized networks compared
to OPOLO which requires an additional inverse action model to regularize learning.

5.2 Utility of Preferences in Imitation
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Figure 4: Offline annotated preferences can help solve
LfO tasks in the complex manipulation environments
Pen-v0 and Door, whereas prior LfO methods fail. Black
dotted line shows the asymptotic performance of RANK-
PAL (auto) method.

Our experiments on complex manipulation
environments—door opening with a parallel-jaw
gripper [55] and pen manipulation with a dex-
terous adroit hand [56] – reveal that none of the
prior LfO methods are able to imitate the expert
even under increasing amounts of expert data.
This failure of LfO methods can be potentially
attributed to the exploration requirements of LfO
compared to LfD [2], coupled with the sparse
successes encountered in these tasks, leading
to poorly guided policy gradients. In these
experiments, we show that rank-game can
incorporate additional information in the form
of offline annotated rankings to guide the agent
in solving such tasks. These offline rankings are
obtained by uniformly sampling a small set of trajectories (10) from the replay buffer of SAC [53]
labeled with a ground truth reward function. We use a weighted ranking loss (pref) from Section 4.2.

Figure 4 shows that RANK-PAL/RAL(pref) method leveraging offline ranking is the only method that
can solve these tasks, whereas prior LfO methods and RANK-PAL/RAL(auto) with automatically
generated rankings struggle even after a large amount of training. We also point out that T-REX, a
method that learns using the preferences alone is unable to achieve near-expert performance, thereby
highlighting the benefits of learning from expert demonstrations alongside a set of offline preferences.

5.3 Comparing PAL and RAL

PAL uses the agent’s current visitation for reward learning, whereas RAL learns a reward con-
sistent with all rankings arising from the history of the agent’s visitation. These properties can
present certain benefits depending on the task setting. To test the potential benefits of PAL
and RAL, we consider two non-stationary imitation learning problems, similar to [56] – one in
which the expert changes it’s intent and the other where dynamics of the environment change
during training in the Hopper-v2 locomotion task. For changing intent, we present a new set of
demonstrations where the hopper agent hops backward rather than forward. For changing envi-
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ronment dynamics, we increase the mass of the hopper agent by a factor of 1.2. Changes are
introduced at 1e5 time steps during training at which point we notice a sudden performance drop.
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Figure 5: We compare the relative strengths of PAL and
RAL. Left plot shows a comparison when the goal is
changed, and right plot shows a comparison when the
dynamics of the environment is changed. These changes
occur at 1e5 timesteps into training. PAL adapts faster
to changing intent and RAL adapts faster to changing
dynamics.

In Figure 5 (left), we notice that PAL adapts
faster to intent changes, whereas RAL needs to
unlearn the rankings obtained from the agent’s
history and takes longer to adapt. Figure 5
(right) shows that RAL adapts faster to the
changing dynamics of the system, as it has
already learned a good global notion of the
dynamics-disentangled reward function in the
LfO setting, whereas PAL only has a local under-
standing of reward as a result of using ranking
obtained only from the agent’s current visitation.

Ablation of Method Components: Ap-
pendix D contains eight additional experiments
to study the importance of hyperparameters and
design decisions. Our ablations validate the im-
portance of using automatically generated rank-
ings, the benefit of ranking loss over supremum loss, and sensitivity to hyperparameters like the
intended performance gap k, policy iterations, and the reward regularizer.

6 Conclusion

In this work, we present a new framework for imitation learning that treats imitation as a two-player
ranking-game between a policy and a reward function. Unlike prior works in imitation learning, the
ranking game allows incorporation of rankings over suboptimal behaviors to aid policy learning. We
instantiate the ranking game by proposing a novel ranking loss which guarantees agent’s performance
to be close to expert for imitation learning. Our experiments on simulated MuJoCo tasks reveal that
utilizing additional ranking through our proposed ranking loss leads to improved sample efficiency
for imitation learning, outperforming prior methods by a significant margin and solving some tasks
which were unsolvable by previous LfO methods.

Limitations and Negative Societal Impacts: Preferences obtained in the real world are usually
noisy [57, 58, 59] and one limitation of rank-game is that it does not suggest a way to handle noisy
preferences. Second, rank-game proposes modifications to learn a reward function amenable to
policy optimization but these hyperparameters are set manually. Future work can explore methods to
automate learning such reward functions. Third, despite learning effective policies we observed that
we do not learn reusable robust reward functions [28]. Negative Societal Impact: Imitation learning
can cause harm if given demonstrations of harmful behaviors, either accidentally or purposefully.
Furthermore, even when given high-quality demonstrations of desirable behaviors, our algorithm
does not provide guarantees of performance and thus could cause harm if used in high-stakes domains
without sufficient safety checks on learned behaviors.
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