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Abstract

In-context learning (ICL) is a valuable capability exhibited by Transformers pretrained on
diverse sequence tasks. However, previous studies have observed that ICL often conflicts
with the models inherent in-weight learning (IWL) ability. By examining the representation
space learned by a toy model in synthetic experiments, we identify the shared encoding
space for context and samples in Transformers as a potential source of this conflict. To
address this, we modify the model architecture to separately encode the context and samples
into two distinct spaces: a task representation space and a sample representation space.
We model these two spaces under a simple yet principled framework, assuming a linear
representational structure and treating them as a pair of dual spaces. Both theoretical
analysis and empirical results demonstrate that our proposed architecture, CoQE, not only
enhances ICL performance through improved representation learning, but also successfully
reconciles ICL and IWL capabilities across all tested conditions.

1 Introduction

In recent years, large-scale models based on the Transformer architecture have demonstrated remarkable
capabilities across language (Brown et al., 2020; Guo et al., 2025), vision (Achiam et al., 2023; Maaz et al.,
2024), and robotics (Driess et al., 2023; Zitkovich et al., 2023). Among these capabilities, the in-context
learning (ICL) ability has drawn increasing attention, as it offers a general paradigm for task generalization.
ICL refers to the capability of a pretrained Transformer model to solve previously unseen tasks by using
demonstration examples in the promptwithout updating its parameters. In contrast, in-weight learning
(IWL) characterizes the conventional ability of a model to recall the memory stored in weights. An ideal
model would seamlessly integrate both capabilities: relying on memory to handle training tasks, while
adapting to new tasks through contextual cues.

However, recent studies suggest that there exists an inherent conflict between ICL and IWL (Park et al.,
2025; Nguyen & Reddy, 2025). This leads to a notable performance degradation when the demonstration
examples deviate from the training distribution (Chan et al., 2025), thereby limiting the generalization ability
of ICL. This conflict is closely related to training settings such as data distribution (Chan et al., 2022), model
size (Shi et al., 2024), and training time (Singh et al., 2025). Singh et al. (2023) hypothesize that it arises
from the competition between the two capabilities for the shared model circuits. Nguyen & Reddy (2025) on
the other hand, attributes this to the different relative learning rates of ICL and IWL. Furthermore, some
studies (Chan et al., 2022; Singh et al., 2023; Anand et al., 2025) have attempted to alleviate the tension
between ICL and IWL, but can only achieve a tradeoff under particular Zipfian data distributions. Hence,
it remains a valuable question to understand and eliminate the conflict between ICL and IWL.

In this work, we aim to understand why models tend to oscillate between ICL and IWL capabilities under
different settings from the perspective of representation learning. We observe that in models with strong IWL
performance, the learned representation space provides a sufficiently rich representation of the query samples
themselves. In contrast, models with strong ICL performance learn representation spaces that effectively
encode contextual information. However, these two desirable structures of representation are difficult to
acquire simultaneously, making it challenging to achieve strong ICL and IWL performance at the same time
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(see Figure 1 bottom). Motivated by this observation, we hypothesize that the ICL-IWL conflict can be
alleviated by encoding the context and query samples into separate spaces, thereby preventing interference
between the two types of information. We refer to these spaces as the task representation space and the
sample representation space, respectively. To provide a principled modeling of these two spaces, we build
upon the widely accepted linear representation hypothesis (Mikolov et al., 2013; Nanda et al., 2023; Park
et al., 2024) and propose to model the task representation space as the dual space of the sample representation
space. We prove the completeness of a sample representation space under sufficient training tasks, which
could facilitate task generalization by ICL. We also formalize the entangled nature of Transformers’ encoding
process – standard softmax attention does not support such a dual-space structure, highlighting a contrast
with linear attention mechanisms commonly adopted in recent theoretical analysis.

Furthermore, we propose a straightforward architectural design, CoQE, as an algorithmic exploration. Unlike
standard Transformers, CoQE employs separate pathways to encode context and query samples, aiming to
learn the task and sample representation space, respectively. The final model output is obtained by computing
the inner product between elements from the two spaces according to the Riesz representation theorem. Our
synthetic experimental results show that CoQE not only achieves lower ICL error in both in-distribution
and out-of-distribution scenarios, but also reconciles ICL and IWL under diverse training settings.

2 Related Work

Investigations on ICL Mechanisms. From the theoretical perspective, existing works have examined
how Transformers perform ICL across various scenarios (Zhang et al., 2024a; Li et al., 2023; Tian et al., 2023;
Nichani et al., 2024; Chen et al., 2024; Wu et al., 2024; Huang & Ge, 2024; Oko et al., 2024; Liang et al., 2025).
These studies typically analyze simplified architectures such as linear self-attention or query-key-combined
formulations, and many of them conduct analyses from the perspective of Bayesian model averaging (Zhang
et al., 2025b; Ye et al., 2024). From the empirical perspective, Garg et al. (2022) firstly demonstrated that
Transformer-based ICL can generalize effectively to out-of-distribution (OOD) tasks, leading to a surge of
interest in exploring its generalization behavior (Ahuja & Lopez-Paz, 2023; Kossen et al., 2024; Pan et al.,
2023; Fan et al., 2024; Xiong et al., 2025; Yadlowsky et al., 2023; Bu et al., 2025). Some work has shown
that LLM can implicitly encode task vectors during ICL (Hendel et al., 2023; Todd et al., 2024; Guo et al.,
2024; Yang et al., 2025; Han et al., 2025). Unlike these works that focus only on task information encoded
in the models representation space, we examine the relationship between task information and the intrinsic
information of the samples. From this perspective, we seek to explain the conflict between ICL and IWL.

Relationship between ICL and IWL. Beyond investigations on the ICL mechanisms, some studies
have found that ICL is not a guaranteed and stable capability of Transformers; rather, it competes with the
model’s inherent in-weight learning (IWL) ability, which relies on information stored in the weights (Chan
et al., 2022; Singh et al., 2023; Reddy, 2024; Panwar et al., 2024). Chan et al. (2022) examined the impact
of different training data distributions on both abilities, finding that only when the training data follows
a certain Zipfian distribution can both abilities coexist. Singh et al. (2023) further confirmed the transient
nature of ICL, observing that it always fades after emerging and gives way to IWL. Nguyen & Reddy
(2025) attributes this to the different relative learning rates of ICL and IWL, and conducted an analysis
on a simplified one-layer transformer model. Chan et al. (2025) proposed a simple theoretical model, which
is a linear combination of an in-weight learner and an in-context learner. Singh et al. (2025) empirically
discovered a more complex coopetition relationship between ICL and IWL. However, to date, no work has
truly achieved coexistence between ICL and IWL across varied training conditions.

Linearization in Latent Space. Beyond task-specific vectors, a line of work has examined how models
internally encode a variety of abstract concepts as linear vectors in latent space, giving rise to the commonly
accepted linear representation hypothesis (Mikolov et al., 2013; Nanda et al., 2023; Park et al., 2024). Several
studies have shown that concepts such as truthfulness (Marks & Tegmark, 2024), time and space (Gurnee
& Tegmark, 2024), and other semantic properties (Dalvi et al., 2022; Merullo et al., 2024; Ye et al., 2025)
can emerge in the model’s latent space, using linear probes as the primary tool. Additionally, larger models
tend to yield more disentangled and interpretable internal representations (Bricken et al., 2023; Cunningham
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et al., 2023), and this can be regarded as evidence of a world model within large models (Zhang et al., 2025a).
In this work, to provide a principled treatment of the encoding spaces of context and query samples, we
introduce the notion of a linear task representation space, grounded in the linear representation hypothesis.

3 Preliminaries

In-context learning setup. The basic setup for analyzing ICL was first introduced by Garg et al. (2022)
and has since been widely adopted (Yadlowsky et al., 2023; Pan et al., 2023). Consider a distribution DX
over an input space X ⊆ Rdx , and let F denote a class of functions over a distribution DF . For each prompt,
we first sample a task f ∼ DF , then draw a set of n input-output pairs {(xi, yi)}n

i=1, where xi
i.i.d.∼ DX and

yi = f(xi). These sample pairs serve as context demonstrations. Then, we independently generate a query
input xq ∼ DX . The final prompt is gathered as a sequence:

P =
(
x1, y1, . . . ,xn, yn,xq

)
.

The ICL capability of a pretrained model Mθ refers to its accuracy to produce predictions ŷq = Mθ(P) for
yq = f(xq), without having explicit knowledge of the current task f and without updating its parameters.

Chan et al. (2022) extend this setting by introducing few-shot image classification tasks. In this setup, x
represents an encoded image, and F , as a set of classifiers, maps X to a finite label set Y. The ICL capability
refers to the model’s ability to correctly classify a query image xq based on the demonstrations.

Transformer model. A standard single-head self-attention (SA) layer (Vaswani et al., 2017) operates on
an input matrix Z ∈ Rde×L, where L is the sequence length and de the embedding dimension. Let Q = WQZ,
K = WKZ, V = WV Z with WQ,WK ∈ Rdk×de and WV ∈ Rdv×de . The attention output is

SA(Z) = Z +WO V · softmax
(
K>Q√
dk

)
,

where WO ∈ Rde×dv and the softmax is applied column-wise.

For the theoretical analysis of ICL, the prompt P is typically re-organized into an embedding matrix:

Z =
(

x1 . . . xn xq

y1 . . . yn 0

)
∈ R(dx+1)×(n+1),

where dx is the input feature dimension. Moreover, they often use a linear self-attention (LSA) variant
obtained by removing the softmax and merging parameters:

LSA(Z) = Z + 1
n
WOV ZZ

>WKQZ,

where WOV = WOWV ,WKQ = W>
KWQ ∈ R(dx+1)×(dx+1) are trainable, and 1/n is a scaling constant. The

model prediction ŷq for the query is taken as the bottom-right entry of LSA(Z).

Dual space. Before formally introducing our dual-space modeling framework, we first present the general
mathematical definition of the dual space.
Definition 3.1 (Dual space). Let V be a finite-dimensional inner product space over a field F (typically R
or C) with inner product 〈·, ·〉. The dual space of V , denoted V ∗, is the set of all linear functionals from V
to F:

V ∗ ≜ {f : V → F | f is linear}. (1)

For every f ∈ V ∗, there exists a unique vector ω ∈ V , called the Riesz representation of f , such that
f(v) = 〈ω, v〉,∀v ∈ V . Let {e1, . . . , en} be the basis of V . The dual basis {e1, . . . , en} ⊂ V ∗ is defined by
ei(ej) = δij , 1 ≤ i, j ≤ n, where δij is the Kronecker delta.

In the following, we will show that this dual-space formulation can be used to model the relationship between a
task representation space and the models sample representation space. Moreover, by the Riesz representation
theorem, elements from the two spaces can be composed via inner product.
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Figure 1: (Top left) Overview of our synthetic task setup. (Top right) ICL and IWL performances under
different training settings (E, L, Pbursty, α). The Transformers fluctuate between ICL and IWL capabilities,
whereas our CoQE models robustly reconcile the two capabilities. (Bottom) Representation visualization of
ten classes on distinct context conditions. We observe that good clusters for samples and good clusters for
contexts are hard to achieve simultaneously. Detailed discussions are presented in Section 4.

4 Representation Space Analysis

In this section, we train and evaluate Transformers on synthetic datasets (Figure 1 top left) under a range of
training conditions. By examining the learned representation spaces, we investigate how models with good
ICL performance differ from those that excel in IWL.

4.1 Synthetic Task Setup

We use a synthetic few-shot classification task based on the Omniglot dataset (Lake et al., 2015). The
dataset contains 1, 623 character classes, each with 20 samples. We construct prompt sequences that each
consists of eight image-label pairs followed by a query image (Chan et al., 2022; Singh et al., 2023; 2025). We
use a ResNet to encode images input, and the training objective minimizes the cross-entropy loss between
the model’s prediction and the correct label for the query image.

Training sequences have two key properties that affect the tradeoff between ICL and IWL: burstiness and
Zipfian exponent. In bursty sequences, three out of the eight image-label pairs in the context share the same
class as the query sample. This setup allows the model to infer the correct label based on context alone,
which has been found to incentivize ICL while suppressing IWL (Chan et al., 2022). To avoid repetition
biases, bursty sequences additionally include three image-label pairs from a distinct distractor class. Pbursty
denotes the proportion of bursty sequences in the training set, while the rest are generated via random
sampling. The second factor is the Zipfian exponent, which controls the frequency distribution of different
classes. Under the Zipfian distribution, the class probability is defined as p(R = r) ∝ 1/rα, where R is the
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Figure 2: (Left) For three training settings and four training checkpoints (3k, 10k, 50k, 100k steps), there
are clear positive correlations between ICL performance and CSC, and between IWL performance and SSC.
(Right) Through various experiments, we observe that larger E improves IWL but causes ICL to disappear,
and larger L consistently enhances ICL while slightly harming IWL. Different colors and line styles represent
different training settings. Detailed results are provided in Table 3.

rank of the class, and α is the Zipfian exponent. When α = 0, the distribution becomes uniform. Chan et al.
(2022) observe that when α = 1, a sweet spot emerges, where the model reaches a tradeoff for both ICL and
IWL. During training, we keep image-label mappings fixed.

Test sequences are divided into two kinds, corresponding respectively to the evaluation of ICL and IWL
capability. For ICL, we use sequences with four images from each of two classes, and we set the class labels
to either 0 or 1 randomly for each sequence. Accuracy on this evaluator is measured across 0 and 1 as
possible outputs, and chance-level accuracy is 50%. As these labels are not associated with these images
during training, the only way to achieve above-chance accuracy is to refer back to the context. For IWL, we
use sequences where none of the context images come from the same class as the query, but all of the image-
label mappings are the same as during training. In this case, ICL is not useful, as there are no matching
images in context, so the model must rely on mappings stored in weights.

4.2 Observations and Analysis

During training, we consider four factors: the ResNet embedding dimension E, the number of Transformer
layers L, the bursty proportion Pbursty, and the Zipfian exponent α. The training outcomes under different
combinations of these factors are shown in the red region of Figure 1 top right. We also collect and visualize
the query sample representations of three models on the boundary of the red region, corresponding to the
configurations (64, 12, 0.9, 2), (64, 12, 0.9, 0), and (64, 12, 0.9, 1). Specifically, we examine the token embed-
dings of xq under three different context conditions: (1) when four images of the same class as xq appear in
the context and are labeled as 0, (2) when they are labeled as 1, and (3) when no image of the same class
appears in the context. For the choice of token embedding layer, we empirically find that different layers
yield consistent qualitative results; therefore, we directly use the final layer embeddings. We focus on the
ten most common query classes, and the UMAP visualizations are shown in the Figure 1 bottom.

Observation 1: ICL corresponds to good representations for context, while IWL corresponds to
good representations for samples. The two are difficult to achieve simultaneously. As shown
in Figure 1 bottom, the first model forms well-clustered representations of query samples from different
categories (points with different colors), but fails to capture the label distinctions provided in the context
demonstrations (the squares and circles of the same color overlap). This indicates that the learned repre-
sentation space sufficiently encodes intrinsic information of samples but lacks a clear encoding of the task
information contained in the demonstrations. Consequently, the model achieves high IWL accuracy but ex-
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hibits almost no ICL capability. In contrast, the second model shows the opposite behavior: it fails to form
distinct clusters for samples from different categories but demonstrates sensitivity to contextual information
(the squares and circles of the same color are shifted apart). So the model has little IWL ability but possesses
some ICL capability. The third model achieves a tradeoff between the sample information and contextual
information in its representation space, thereby realizing a tradeoff between ICL and IWL performance as
well. However, the training conditions are rather restrictive, and both abilities remain suboptimal.

To further support our observation, we employ two quantitative metrics derived from the standard silhouette
coefficient, which evaluates cluster cohesion and separation. The silhouette score s(x) measures how similar
a sample x is to its own cluster compared to other clusters. Using Euclidean distance d(·, ·), we define a(x)
as the average distance between x and all other points in its own cluster Cx, and b(x) as the average distance
to the nearest neighboring cluster Ck (where k 6= x).

a(x) = 1
|Cx| − 1

∑
x′∈Cx,x′ 6=x

d(x, x′), b(x) = min
Ck 6=Cx

(
1

|Ck|
∑

x′∈Ck

d(x, x′)

)

The silhouette score is then given by:

s(x) = b(x) − a(x)
max{a(x), b(x)}

The first metric we employ is context silhouette coefficient (CSC). It measure whether the model learns
"good representations for context". For a fixed object class c ∈ {1, . . . , N} (with N = 10), we treat the
samples as two distinct clusters based on their contextual labels (0 or 1). Here, a(z) measures the distance
to samples with the same context label, while b(z) measures the distance to the opposite context label. We
average the scores within each class c and then across all N classes:

CSC = 1
N

N∑
c=1

1
|Zc|

∑
z∈Zc

s(z).

The second metric is sample silhouette coefficient (SSC). SSC adapts the metric to measure "good represen-
tations for samples" without context support. In this setting, the clusters are defined by the N ground-truth
object classes. For a sample i with class yi, a(i) is the intra-class distance, and b(i) is the distance to the
closest distinct class. The final metric is the average across all M samples of all classes:

SSC = 1
M

M∑
i=1

s(i).

In Figure 2 left, we report how ICL performance correlates with CSC, and how IWL performance correlates
with SSC. Both show a clear positive correlation, providing quantitative evidence for our observation that
the structure of the learned representation space is tightly linked to the models ICL and IWL behavior.

Observation 2: Model size also affects the ICL-IWL tradeoff. We make another new finding that
model size also strongly affects the ICL-IWL tradeoff in standard Transformers (Figure 2 right). We observe
that, under the same conditions, a 12-layer Transformer exhibits stronger ICL but weaker IWL compared to
a 4-layer Transformer. We suppose that this is due to the Transformers inductive bias toward attending to
context, compared to just memorizing context-irrelevant sample information. We also observe that increasing
the ResNet embedding dimension from 64 to 512 nearly eliminates the models ICL ability while substantially
enhancing IWL. Notably, we connect a fully connected layer after the ResNet to reduce the dimension back
to 64 before inputting to the Transformer, ensuring that the latters role remains unchanged. We speculate
that the larger ResNet increases the expressivity of individual sample tokens, and when a single token is
sufficiently expressive to solve the task, the model tends to ignore the context. This is consistent with
Observation 1 that sample information and contextual information are difficult to coexist during training.
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5 Dual-Space Modeling of Task and Sample Repressentations

We have shown that the conflict between ICL and IWL originates from the difficulty of simultaneously en-
coding sample information and contextual information within the same representation space of Transformers.
We aim to reconcile ICL and IWL by encoding the context and the query samples into separate represen-
tation spaces, thereby addressing their incompatibility within a single space. This raises a new question:
how can we provide a principled modeling of these two spaces such that they can interact in a coherent and
meaningful way? To this end, we start from the simple yet powerful assumption of a linear representational
structure and propose our dual-space modeling framework. All proofs are provided in the Appendix A.

5.1 Task Representation Space

We begin with the widely acknowledged linear representation hypothesis (Mikolov et al., 2013; Nanda et al.,
2023; Park et al., 2024), which is the idea that models internally encode abstract semantics of samples as
linear vectors in latent space. And because tasks are inherently semantic, this hypothesis can be formalized
from a measurement perspective according to Park et al. (2024).
Definition 5.1 (Linear sample representation space). Let X ⊆ Rdx denote the input space and Y the label
set. A linear sample representation space M ⊆ Rd is a finite-dimensional inner product space equipped with
a mapping ϕ : X → M, such that

1. (Learnability) ϕ is parameterized by a model M and can be learned from data;

2. (Linear Measurement) In the case of regression with Y ⊆ R, there exists a linear transformation ω
such that, given any (x, y) pair, the label can be expressed as

y = 〈ω, ϕ(x)〉. (2)

In the case of classification with Y = {0, 1}, the label probability is given by

logitP(y = 1 | x) = 〈ω, ϕ(x)〉. (3)

Definition 5.1 formalizes the notion of a sample representation space under the linear representation hypoth-
esis in the single-task setting. It can be straightforwardly extend to the multi-task case, assuming that there
exists a shared linear sample representation space across different ICL tasks. Note that this assumption has
been implicitly embedded in a wide range of theoretical and algorithmic work (Garg et al., 2022; Hu et al.,
2023; Kim & Suzuki, 2024; Zhang et al., 2024b). Based on this assumption, we define the corresponding
linear task transformation space. Without loss of generality, we consider only the regression case.
Definition 5.2 (Linear task transformation space). Let F = {f : X → R} denote a task function space
defined over the input space X . We assume that there exists a sample representation space MF ⊆ Rd, together
with a mapping ϕF , such that MF is linear with respect to X and each label set Yf = {f(x) | x ∈ X }, ∀f ∈ F .
A linear task transformation space is then defined as a linear functional space T = {t : MF → R}, equipped
with a mapping ψ : F → T such that for any f ∈ F , ψ(f) = t satisfying

f(x) = t(ϕF (x)), ∀x ∈ X . (4)

Building upon this foundation, our key theoretical contribution is that we find the task transformation space
can be modeled as the dual space of the sample representation space. See Appendix A.1 for the proof.
Proposition 5.3 (Task-sample duality). Let X be the input space and Yf the multiple label sets corre-
sponding to each task f ∈ F . Under Definition 5.2, there exists a linear sample representation space MF
and a linear task transformation space T , where T is the dual space of MF , i.e. T = M∗

F .
Definition 5.4 (Task representation space). Under Proposition 5.3, for each task f ∈ F , ψ(f) ∈ T admits
a unique Riesz representation ωf . The task representation space WF is defined as the set of all such Riesz
representations. Then for any f ∈ F , we have

f(x) = 〈ωf , ϕF (x)〉, ∀x ∈ X . (5)
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In summary, we map various nonlinear ICL tasks to vectors in the task representation space, leveraging the
linear representation hypothesis, the dual-space formulation, and the Riesz representation theorem. From
the above formulation, we can further define basis representations and basis transformations.
Definition 5.5 (Basis task representations). Under Proposition 5.3, let {m1, . . . ,md} be a basis of the sample
representation space MF , and let {t1, . . . , td} be the corresponding dual basis of the task transformation
space T . The basis task representations are defined as the Riesz representations of {t1, . . . , td}, denoted by
{ω1, . . . , ωd}, which satisfy

〈ωi,mj〉 = δij , 1 ≤ i, j ≤ d. (6)

Thus, every sample representation ϕF (x) can decompose uniquely as ϕF (x) =
∑d

i=1 αi(x)mi, and every task
representation ωf can decompose uniquely as ωf =

∑d
j=1 βjωj . The output can be given by

〈ωf , ϕF (x)〉 =
d∑

i=1
αi(x)βi.

Our next Theorem 5.6 shows that, under the dual-space modeling framework, a sufficient set of ICL tasks
guarantees a basis-covering sample representation space. See Appendix A.2 for the proof.
Theorem 5.6 (Completeness of basis representations under task traversal). Under Proposition 5.3, we
assume that a learner with sample representation mapping ϕθ is presented with a task traversal curriculum C
such that: span

{
t | t ∈ C

}
= T . Then, if the learner achieves zero empirical error, the learned representation

mapping ϕθ satisfies: span
{
ϕθ(x) | x ∈ X

}
= MF .

It can be expected that, by promoting a basis-covering sample representation space, our dual-space modeling
framework could enhance ICL capability. We empirically validate this in Section 7.1.

5.2 ICL Formulation under Dual-Space Modeling

In this section, we formulize ICL under our dual-space modeling framework.
Definition 5.7 (Context-induced task representation in ICL). In the ICL setting, the task representation
can be specified jointly by two components: (1) context demonstration of labeled examples z1:n = (z1, . . . , zn)
with zi = (xi, yi) ∈ X × Y, and (2) a representation mapping ϕ : X → Rd. That is

ωf ≜ ωf (z1:n, ϕ). (7)

Definition 5.7 formalizes that in the ICL setting, the task specified by a prompt is determined by its context
portion. Thus, the encoding space of context naturally serves as the task representation space. We further
show that existing theoretical analyses of ICL based on LSA (Zhang et al., 2024a; Kim & Suzuki, 2024; Wu
et al., 2024) are fully compatible with our framework, from which we can derive a closed form of ωf .
Proposition 5.8 (Closed form of ωf under simplified LSA). Consider an LSA layer applied after a feature
encoder ϕ : X → Rd implemented by an MLP. Suppose the LSA projection matrices WKQ and WOA are
initialized such that

WOV =
(

∗ ∗
0>

d 1

)
, WKQ =

(
Θ 0d

0>
d ∗

)
.

Then the final prediction takes the form ŷ = 〈ωf (z1:n, ϕ), ϕ(xq)〉, where

ωf (z1:n, ϕ) = 1
n

n∑
i=1

yiΘ>ϕ(xi). (8)

Proposition 5.8 can explain the effectiveness of LSA simplification in analyzing ICL: it implicitly performs our
dual-space modeling between the task representation space and the sample representation space. However,
we argue that it fails to capture the entanglement of standard Transformers encoding progress, which use the
original, unsimplified SA. As we will show in the next theorem, SA cannot realize such dual-space modeling.
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Figure 3: Comparison of Transformer and CoQE architectures. Unlike the Transformer, which encodes
both context-level and sample-level information into the same representation space, CoQE implements dual
representation spaces encoding that explicitly distinguishes between context and samples.

Theorem 5.9 (Entangled structure under general SA). For a standard SA model with softmax-based atten-
tion weights, there does NOT exist a pair of ϕ0 and ω0(z1:n, ϕ0), such that the model prediction admits the
following decomposition:

ŷq = 〈ω0(z1:n, ϕ0), ϕ0(xq)〉. (9)

From our dual-space modeling perspective, Theorem 5.9 formalizes the entangled nature of how Trans-
formers encode context and sample-level information. See Appendix A.4 for the proof. We posit that this
entanglement is the underlying reason for the observed conflict between ICL and IWL.

6 CoQE: A Transformer with Separate Context-Query Encoding

We have established a principled modeling framework for the task representation space and the sample
representation space. Next, we propose a straightforward yet effective architectural modification: CoQE, a
Transformer with separate Context-Query Encoding.

The CoQE model consists of two modules: a shared sample encoder ϕθ and a dedicated task encoder ωθ,
as shown in Figure 3 (b). The sample encoder generates general-purpose representations for all samples,
including the query. We implement it with a token-wise module, for it should process samples independently
without considering context. The task encoder, on the other hand, operates on the general representations
of the context and focuses on producing the representation of the current task. Thus this module should be
contextual and has the capability to condense sequential information. Finally, the prediction output is ob-
tained by computing the inner product between the task representation and the query sample representation.
Taking the regression task as an example, the formalization of CoQE output is as follows:

ŷq = 〈 ωθ (ϕθ(z1:n) ), ϕθ(xq) 〉. (10)

Figure 3 compares the architectures of the Transformer and CoQE. The Transformer also contains token-
wise components like feed-forward networks, and contextual components like multi-head attention modules.
When stacked, these modules collectively exhibit contextual behavior, and the final token output intertwines
with the context information in a complex manner during the forward pass. In contrast, CoQE explicitly
separates the contextual and token-wise parts, which are responsible for learning the task representation
space and the sample representation space, respectively. The two spaces interact through a well-defined
inner product according to the Riesz representation theorem.

9
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We aim to evaluate our model on regression tasks for ICL performance, and few-shot classification tasks for
ICL-IWL performance. In the following, we will give the specific implementation of CoQE. Notably, due to
their different properties, the task encoder constructs the task representation space in distinct ways.

6.1 Implementation for Regression.

Transformer

class vectors (modified)

label 0 1 2 3 4 5 6 7

“2” “2” “6”

context embed

Task 
Encoder

class vectors

label 0 1 2 3 4 5 6 7

static

dynamic

noise

Figure 4: Construction and training of the task Rep-
resentation space for few-shot classification.

We employ a two-layer ReLU network as the sample
encoder of CoQE, and a GPT-2style Transformer as
the task encoder. We take the final output token of
the task encoder directly as the task representation
induced by the context. The regression output is
then computed as the inner product between it and
the query sample representation. For fair compari-
son, the baseline Transformer is also equipped with
the same two-layer ReLU embedding module. See
Appendix B.2 for more implementation details.

6.2 Implementation for Few-shot Classification.

We use a ResNet as CoQE’s sample encoder, and
a Transfromer as the task encoder. The task repre-
sentation space is constructed in a distinct way from
regression. A multi-class classification task can be
regarded as a collection of sub-tasks that identify
each class. Thus, we let it correspond to a set of task
representations, each of which is associated with one
class. ICL requires producing the task representations corresponding to the classes in the context, whereas
IWL requires static memorization of all classes. To construct a task representation set compatible with both,
we assign a parameterized vector to each class, representing a static version of its task representation.

In each forward pass, the classes appearing in the context are encoded by the task encoder to obtain
their corresponding task representations, as illustrated in Figure 4. These dynamic vectors replace the
corresponding static class vectors, and modified class vectors are used to compute logits for prediction. The
resulting training loss is denoted as Lmod. Additionally, to accelerate the training of the static class vectors,
we compute an additional set of logits from the unmodified class vectors during training, with the resulting
classification loss denoted as Lorig. These logits are not used during testing. Therefore, the total training loss
is Lmod +Lorig. During experiments, we observed that Lmod tends to converge to Lorig, which means the task
encoder fails to dynamically encode the context over training, and the learning of the task representation
space is restricted to the set of static class vectors. To prevent the task representation space from collapsing
during training, we add Gaussian noise ϵ to the modified logits during training, with the variance increasing
over training steps. The initial noise follows N (µ0, 1). This trick can be interpreted as indirectly performing
random sampling in the task representation space, that is, 〈ωf , ϕ(x)〉 + ϵ = 〈ωf + ϵ′, ϕ(x)〉. Through it we
maintain a dynamic task representation space. See Section 7.2 for experimental results and ablation studies.

7 Experiments

In this section, we evaluate the ICL performance of CoQE on regression tasks, as well as ICL-IWL perfor-
mance and compatibility on the synthetic classification tasks used in Section 4.

7.1 Regression

Setup. We adopt a general framework for training models to perform ICL over a function class F . To
construct training prompts, we first sample a task function f ∼ Dtrain

F , then draw k i.i.d. inputs x1, . . . ,xk ∼
Dtrain

X . The prompt is formed as P = (x1, f(x1), . . . ,xk, f(xk)). Let Pi denotes the prefix containing the first
i input-output examples and the (i+1)th input: Pi = (x1, f(x1), . . . ,xi, f(xi),xi+1). The training objective

10
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Figure 5: Results of ICL regression. We provide optimal baselines for test settings except for combination
functions. CoQE consistently achieves lower ICL error than the Transformer in both ID and OOD scenarios.

of a model Mθ minimizes the expected loss over all possible prefixes:

min
θ

EP

[
1
k

k−1∑
i=0

ℓ
(
Mθ(Pi), f(xi+1)

)]
,

where ℓ(·, ·) is a mean squared error (MSE) loss function. At test time, we first sample a test function
f ∼ Dtest

F , then draw j ≤ k − 1 inputs x1, . . . ,xj ∼ Dtest
X , and xq from Dquery to construct the test prompt:

Pj
test = (x1, f(x1), . . . ,xj , f(xj),xq). Then we measure the MSE between Mθ(Pj

test) and f(xq).

To compare ICL capability of CoQE with the standard Transformer, we consider two major evaluation
scenarios: in-distribution (ID) testing and out-of-distribution (OOD) testing. For ID testing, we set Dtrain

X =
Dtest

X = Dquery, and Dtrain
F = Dtest

F . Specifically, we use the following four classes of functions F : linear
functions, sparse linear functions, two-layer ReLU networks and combination functions. The latter two classes
of nonlinear functions allow the model to reduce ICL difficulty by learning task-invariant representations.
Through them, we can empirically validate Theorem 5.6, which shows the benefits of dual-space modeling
for representation learning. For OOD testing, we consider four different cases of distribution shifts under
linear functions. See Appendix B.2 for more setup details.

Results. In the ID scenario, CoQE consistently achieves lower ICL error than the Transformer (Figure 5
(a)). For regression on more challenging combination functions, the Transformer exhibits substantial fluc-
tuations, whereas CoQE attains much smaller error variance. We attribute this to CoQEs more effective
learning of the sample representation space, and present further results in Appendix B.2. In the OOD
scenario, CoQE also achieves substantially lower error than the Transformer across all four tested cases
(Figure 5 (b)). Notably, the second case is adapted from Mittal et al. (2025), who similarly aims to enforce
the model to explicitly learn task variables. However, they found no improvement in OOD performance,
contrary to our results. This indicates that simply introducing task variables is insufficient and highlights
the value of our proposed dual-space modeling and corresponding architecture design.
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(a) Results under different burstiness (b) Results under different Zipfian distribution

CoQE

Transformer

CoQE

Transformer

Figure 6: Learning curves of synthetic few-shot classification under different data distribution factors.

Table 1: Results under different noises. We
use µ0 = 5 as default noise magnitude.

ICL IWL

Noise-free 55.12 99.62
µ0 = 3 81.91 95.31
µ0 = 5 91.15 89.30
µ0 = 7 88.22 77.70
µ0 = 9 86.01 72.62

Table 2: Results of using language token embeddings.

Token Embedding Model ICL IWL

Llama-3.1-8B
Transformer 50.12 96.65
CoQE 65.35 93.96

Llama-3.2-3B
Transformer 49.33 98.81
CoQE 75.01 96.57

Llama-3.2-1B
Transformer 49.95 99.12
CoQE 80.08 97.34

7.2 Synthetic Few-shot Classification

Results. Figure 1 top right presents the ICL and IWL accuracies of Transformers and CoQE under various
factors after 100k training steps. The Transformers fluctuate between ICL and IWL capabilities across
different conditions, whereas our models robustly occupy the upper-right blue region, indicating a Pareto
improvement in both abilities. Figure 6 shows the learning curves under different values of Pbursty and Zipfian
exponent. We could observe that CoQE’s ICL accuracy rises rapidly at the beginning, but declines slightly
between 10k and 30k steps. This behavior aligns with prior findings on ICL strategy: it emerges quickly
and then gradually fades (Singh et al., 2023). However, under our algorithm, the model quickly restrains
this fading trend and continues to recover steadily. We also discuss the effect of parameter scale, showing
that CoQE outperforms the standard Transformer under the same parameter budget, and its performance
continues to improve as the model size increases, as presented in Appendix B.3.

Ablation study. We study the effect of Gaussian noise on the model performance, as shown in Table 1.
Without any noise, the model’s ICL ability ultimately yields entirely to IWL. When µ0 = 5, the model
achieves maximal ICL performance while retaining high IWL capability. This is the default noise magnitude
used in our experiments. See Appendix B.3 for more analysis and details.

7.3 Extending to Language Model Token Embeddings

To further verify the generality of our approach and explore its potential extension to natural language pro-
cessing (NLP) tasks, we are inspired by Singh et al. (2023) and extend our few-shot classification experiments
from images to token embeddings of large language models (LLMs). we construct a fixed token embedding
dataset through selection and clustering for token embedding matrix of Llama series (Dubey et al., 2024),
see Appendix B.4 for details. Compared with Omniglot images, this dataset has larger intra-class variability
and preserves meaningful semantic information relevant to NLP tasks. We fix the training data distribution
parameters at Pbursty = 0.9 and Zipfian exponent α = 1, to approximate natural language distributions.
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Condition: 15 + 23 = 38. 43 + 43 = 86. 17 + 5 = 22.

Question: Chef cooked 17 steaks and 5 burgers. 

How many dishes did he cook? Answer: __

22

Condition: 15 + 23 = 38. Y + F = C. 17 + 5 = 22.

Question: Chef cooked Y steaks and F burgers. 

How many dishes did he cook? Answer: __

Prompt of  Fine-Tuning and IWL Eval

Prompt of  ICL Eval

Conditional Pseudo-Arithmetic Task

Generate with 
info in weights

C

Generate without 
prior info in weights

Figure 7: (Left) Overview of our conditional pseudo-arithmetic task. (Right) Training curves of CoQE and
three baselines. The IWL accuracy of CoQE improves more slowly, because its learning paradigm differs
from the models original autoregressive pre-training. However, after fine-tuning, all methods achieve nearly
100% IWL performance, and CoQE achieves substantially higher ICL accuracy.

The results in Table 2 show that the Transformer almost fails to acquire ICL ability, consistent with Singh
et al. (2023). In contrast, CoQE achieves substantially better ICL capability while maintaining strong IWL
performance. We believe these results demonstrate that our dual spaces encoding can enhance ICL capability
and mitigate the ICL–IWL conflict in NLP scenarios where semantic information is richer.

7.4 Conditional Pseudo-Arithmetic Task

To further verify the generalization ability of our algorithm on generative tasks and pretrained models, we
designed a conditional pseudo-arithmetic task, inspired by Anand et al. (2025) and Chen et al. (2025). We
construct sequences consisting of arithmetic conditions followed by a word problem, as shown in Figure 7.
Here, the question can be answered solely based on the given conditions. We fine-tune GPT-2 on 5,000 such
sequences and evaluate its accuracy on the same distribution, which we interpret as its IWL performance.
After fine-tuning, we then construct sequences that mix standard arithmetic with pseudo-arithmetic over
letters. In this case, the model must rely on the contextual relation given in the sequence (rather than
memorized weights) to answer correctly, which we use to measure ICL performance. In this setup, xi and
xq are generalized from single tokens to sequence-level inputs.

We extend CoQE to the pretrained GPT-2 as follows. During fine-tuning, we modify the attention mask
so that tokens in the Question field cannot attend to the Condition field, thereby implementing separate
ContextQuery Encoding. On the output side, we largely follow the implementation for few-shot classification.
The difference is that we do not introduce Lorig or noise injection, because we observe that fine-tuning
pretrained GPT-2 on this dataset is fast and stable. Besides standard fine-tuning, we introduce two more
baselines that were proposed to alleviate the tension between ICL and IWL: L2 regularization (Singh et al.,
2023) and probabilistic temporary forgetting (Anand et al., 2025). All models are fine-tuned for 300 steps.
The training curves are shown in Figure 7 right.

After fine-tuning, all methods achieve nearly 100% IWL performance, while CoQE achieves substantially
higher ICL accuracy than the other three baselines. A typical failure mode we observe is using the wrong
condition, for example: "Condition: 42 + 4 = 46. 31 + 20 = 51. L + Y = E. Question: I read L pages
yesterday and Y pages today. How many pages did I read? Answer: 51." This indicates that the model is
still limited in leveraging the correct in-context relation in this scenario. Moreover, L2 regularization and
probabilistic temporary forgetting perform even worse than vanilla fine-tuning. This demonstrate limitations
of their design: regularization can take effect at very large training steps (e.g., 107), and probabilistic
temporary forgetting targets ICL settings that involve random-vector inputs, which differs from our pseudo-
arithmetic setting. Overall, this simple autoregressive experiment further validates the effectiveness and
transferability of CoQE on generative tasks and pretrained models.
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8 Discussion
Our analyses and experiments primarily focus on small models. A natural question is whether large models
exhibit similar imbalance between ICL and IWL. Piantadosi (2014) showed that a Zipfian distribution of
α = 1 closely approximates the empirical distribution of natural language, which serves as a sweet spot for
the tradeoff between ICL and IWL (Chan et al., 2022). Nevertheless, Chan et al. (2025) pointed out that
LLMs can still experience conflicts between ICL and IWL when demonstration examples deviate from the
training distribution. Beyond this, the growing demand for multimodal large models (e.g., VLMs, VLAs)
trained on increasingly diverse data distributions, as well as the emergence of new architectures, makes it
less tenable to rely on the fortunate coincidence of natural language statistics to balance ICL and IWL.
These considerations underscore the importance of our exploration in this direction.

Limitations. Theoretically, a limitation of our work is that our modeling is built upon the linear represen-
tation hypothesis. Although this assumption also underlies many other theoretical and empirical studies,
its applicability to complex NLP tasks like multi-step reasoning still requires further evidence. Another
limitation is that our dual-space formulation currently assumes that the answer y is a value or label rather
than a sequence. Extending the theoretical modeling to handle open-ended generation tasks is valuable.

Emperically, the main limitation is that the evaluation of our algorithm has so far been confined to structural
synthetic experiments. For tasks where such a contextquery decomposition is not available or not well defined,
our current algorithm does not yet provide an effective way to apply dual-space modeling. Extending our
algorithm to broader general NLP or multimodal settings is also an important direction for our future work.

Broader Impact Statement
Reconciling ICL and IWL under diverse conditions is crucial for the robustness of large models as data
distributions grow more varied and architectures evolve. This work aims to enhance generalization and
reliability of large models, contributing to safer and more equitable deployment in real-world applications.
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A Proofs of Theoretical Results

A.1 Proof of Proposition 5.3

For ease of presentation, we first restate the proposition and then introduce its proof.
Proposition A.1 (Task-sample duality). Let X be the input space and Yf the multiple label sets corre-
sponding to each task f ∈ F . Under Definition 5.2, there exists a linear sample representation space MF
and a linear task transformation space T , where T is the dual space of MF , i.e. T = M∗

F .

Proof. To prove the proposition, we must show that the linear task transformation space T is equivalent
to the dual space of the linear sample representation space MF , denoted as M∗

F . The proof proceeds by
demonstrating mutual inclusion: (1) T ⊆ M∗

F and (2) M∗
F ⊆ T .

Step 1: Proof of T ⊆ M∗
F . Let t be an arbitrary element in the task transformation space T . According

to Definition 5.2, t is a linear function such that

t(m) = 〈ωt,m〉, ∀m ∈ MF .

Since t is a linear functional on MF , it is by definition an element of M∗
F . As t was an arbitrary element

of T , it follows that every element in T corresponds to a unique linear functional in M∗
F . Thus, we have

established that T ⊆ M∗
F .

Step 2: Proof of M∗
F ⊆ T . Conversely, let t′ be an arbitrary linear functional in the dual space M∗

F . By
Definition 5.1, MF is a finite-dimensional inner product space. By the Riesz representation theorem, for any
linear functional t′ ∈ M∗

F , there exists a unique vector, let’s call it ωt′ ∈ MF , such that for all m ∈ MF :

t′(m) = 〈ωt′ ,m〉.

Now, let us define a function ft′ : X → R using this functional t′:

ft′(x) = t′(ϕF (x)) = 〈ωt′ , ϕF (x)〉.

This function ft′ has the exact mathematical form of a task function as specified in Definition 5.2. Therefore,
ft′ can be considered a valid task belonging to the task function space F . Definition 5.2 states that for any
such task ft′ ∈ F , there exists a unique linear task representation vector, which we denote ωf , that represents
it. This means:

ft′(x) = 〈ωf , ϕF (x)〉.

By equating the two expressions for ft′(x), we obtain:

〈ωt′ , ϕF (x)〉 = 〈ωf , ϕF (x)〉, ∀x ∈ X

This implies that 〈ωt′ −ωf ,m〉 = 0 for all m in the image of ϕF . Since the sample representation space MF
is spanned by the image of ϕF , this condition holds for all m ∈ MF . The only vector orthogonal to every
vector in an inner product space is the zero vector. Therefore:

〈ωt′ − ωf ,m〉 = 0 =⇒ ωt′ = ωf .

Since ωf corresponds to an element of T , it follows that ωt′ is also corresponds to an element of T , and thus
t′ ∈ T . As our choice of t′ was arbitrary, we have shown that every linear functional in M∗

F corresponds to
an element in T . Thus, we have established that M∗

F ⊆ T .

A.2 Proof of Theorem 5.6

For ease of presentation, we first restate the theorem and then introduce its proof.
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Theorem A.2 (Completeness of basis representations under task traversal). Under Proposition 5.3, we
assume that a learner with sample representation mapping ϕθ is presented with a task traversal curriculum C
such that: span

{
t | t ∈ C

}
= T . Then, if the learner achieves zero empirical error, the learned representation

mapping ϕθ satisfies: span
{
ϕθ(x) | x ∈ X

}
= MF .

Proof. By Proposition 5.3, fix a basis {mi}d
i=1 of MF and its dual basis {ti}d

i=1 ⊂ T , satisfying ti(mj) =
〈ωi,mj〉 = δij . For any m ∈ MF write the unique decomposition m =

∑d
i=1 αi(m)mi and for any t ∈ T

write t =
∑d

i=1 βi(t) ti. The bilinear pairing then reduces to

t(m) =
d∑

i=1
αi(m)βi(t). (11)

Let ϕF : X → MF denote the sample representation guaranteed by Definition 5.2, and define the coordinate
vectors

αθ(x) ≜ (α1(ϕθ(x)), . . . , αd(ϕθ(x))) ∈ Rd, α∗(x) ≜ (α1(ϕF (x)), . . . , αd(ϕF (x))) ∈ Rd.

Zero empirical error on every curriculum task t ∈ C means

t(ϕθ(x)) = t(ϕF (x)) for all t ∈ C and all training x.

By linearity of Equation 11 this equality holds for any linear combination of curriculum tasks; hence it holds
for all t ∈ span(C) = T :

t(ϕθ(x)) = t(ϕF (x)), ∀ t ∈ T . (12)
Take in Equation 12 the particular choice t = ti (the i-th dual basis functional). Using ti(m) = αi(m) from
Equation 11, we obtain for every x and every i ∈ [d],

αi(ϕθ(x)) = ti(ϕθ(x)) = ti(ϕF (x)) = αi(ϕF (x)).

Thus αθ(x) = α∗(x) pointwise for all (training) x. Consequently ϕθ(x) and ϕF (x) have identical coordinates
in the basis {mi}d

i=1 for all x, so

span{ϕθ(x) | x ∈ X } = span{ϕF (x) | x ∈ X }.

Without loss of generality, take MF = span{ϕF (x) | x ∈ X }. Therefore span{ϕθ(x) | x ∈ X } = MF ,
proving the claim.

A.3 Proof of Proposition 5.8

For ease of presentation, we first restate the proposition and then introduce its proof.
Proposition A.3 (Closed form of ωf under simplified LSA). Consider an LSA layer applied after a feature
encoder ϕ : X → Rd implemented by an MLP. Suppose the LSA projection matrices WKQ and WOA are
initialized such that

WOV =
(

∗ ∗
0>

d 1

)
, WKQ =

(
Θ 0d

0>
d ∗

)
.

Then the final prediction takes the form ŷ = 〈ωf (z1:n, ϕ), ϕ(xq)〉, where

ωf (z1:n, ϕ) = 1
n

n∑
i=1

yiΘ>ϕ(xi). (13)

Proof. According to Kim & Suzuki (2024), under the conditions of Proposition 5.8, the expression of ŷ is
given as follows:

ŷ = 1
n

n∑
i=1

yiϕ(xi)>Θϕ(xq). (14)

Hence, Proposition 5.8 is readily proved.
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A.4 Proof of Theorem 5.9

For ease of presentation, we first restate the theorem and then introduce its proof.
Theorem A.4 (Entangled structure under general SA). For a standard SA model with softmax-based at-
tention weights, there does NOT exist a pair of ϕ0 and ω0(z1:n, ϕ0), such that the model prediction admits
the following decomposition:

ŷq = 〈ω0(z1:n, ϕ0), ϕ0(xq)〉. (15)

Proof. We argue by contradiction. Assume there exists a finite-dimensional feature map ϕ0 and a context-
only coefficient vector ω0(z1:n, ϕ0) such that the identity holds for all contexts and queries.

Step 1: From SA equations to a ratio of exponentials in xq. Let the sequence length be L = n+1.
Stack token embeddings as Z = [z1, . . . , zn, zq] ∈ Rd×L. A single-head self-attention (SA) layer computes

Q = WQZ, K = WKZ, V = WV Z,

with Q,K ∈ Rdk×L, V ∈ Rdv×L. Denote the i-th key/value columns by ki := K:i = WKzi, vi := V:i = WV zi,
and the query column at position q by q := Q:L = WQzq. The attention weights for the query position form
a probability vector α(q) ∈ ∆n with coordinates

αi(q) =
exp

(
〈ki, q〉/

√
dk

)∑L
j=1 exp

(
〈kj , q〉/

√
dk

), i = 1, . . . , L. (16)

In the theoretical analysis of ICL, it is common to set zq = [xq, 0]. Without loss of generality, we assume
that the query token embedding depends affinely on the input feature xq ∈ Rdx :

zq = Exxq + rq,

where Ex ∈ Rd×dx is a fixed embedding matrix and rq ∈ Rd could collect position encodings and other
context-independent parts at position q. Then the query vector is also affine in xq:

q = WQzq = WQEx xq +WQrq = Uxq + u0,

with U := WQEx ∈ Rdk×dx and u0 := WQrq ∈ Rdk . Plugging q = Uxq + u0 into the logits in Equation 16
yields, for each key i,

〈ki, q〉√
dk

= 〈ki, Uxq〉√
dk

+ 〈ki, u0〉√
dk

= a>
i xq + bi(z),

where we define the (queryinput) slope and the (context) offset by

ai := U>ki√
dk

∈ Rdx , bi(z) := 〈ki, u0〉√
dk

∈ R.

Hence, for a fixed context z1:n (which fixes all ki and u0), the attention weights are softmax of affine functions
of xq:

αi(xq; z) =
exp

(
a>

i xq + bi(z)
)∑L

j=1 exp
(
a>

j xq + bj(z)
), i = 1, . . . , L. (17)

The SA output at the query position is hq = zq +WO

∑L
i=1 αi(xq; z) vi. For a fixed linear predictor w ∈ Rd

(or equivalently choosing a fixed output coordinate), the scalar prediction is

ŷq(xq) = w>hq = w>zq︸ ︷︷ ︸
affine in xq

+
L∑

i=1

(
w>WOvi

)︸ ︷︷ ︸
:= γi(z)

αi(xq; z). (18)

If we choose w orthogonal to Im(Ex) (always possible unless Ex = 0), then w>zq = w>(Exxq + rq) = w>rq

is a context-only constant; denote c(z) := w>rq. With γ(z) := (γ1(z), . . . , γL(z))>, Equation 18 simplifies to

ŷq(xq) = c(z) + γ(z)>α(xq; z), (19)

where α(·; z) is given by the ratio-of-exponentials form in Equation 17. This exhibits the claimed dependence
of ŷq on xq through a softmax over affine functions of xq.
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Step 2: A two-key reduction yields a linearly independent logistic family. Specialize to dx = 1
and one context keys (n = 1) with a1 6= a2. Choose WO, V so that c(z) ≡ 0 and γ1(z) = 1, γ2(z) = 0. Then
Equation 19 reduces to

ŷq(xq) = exp(a1xq + b1(z))
exp(a1xq + b1(z)) + exp(a2xq + b2(z))

= 1
1 + t(z) e−axq

,

where a := a1 − a2 6= 0 and t(z) := exp
(
b2(z) − b1(z)

)
> 0. As the context varies, t(z) can take arbitrarily

many distinct positive values, so SA realizes the one-parameter family of functions

F =
{
ft(x) := 1

1 + te−ax : t > 0
}
.

Fix distinct t1, . . . , tm > 0. Suppose there exist scalars λ1, . . . , λm with
∑m

i=1 λifti(x) ≡ 0 for all x ∈ R.
Multiplying both sides by

∏m
i=1(1 + tie

−ax) and letting s = e−ax gives the polynomial identity

m∑
i=1

λi

∏
j 6=i

(1 + tjs) ≡ 0 for all s > 0.

A polynomial that vanishes on an infinite set is identically zero; hence the identity holds for all s ∈ R.
Evaluating at s = −1/tk yields

λk

∏
j 6=k

(
1 − tj

tk

)
= 0.

Since the ti are distinct, each product is nonzero, forcing λk = 0 for all k. Thus ft1 , . . . , ftm
are linearly

independent. Consequently, the linear span of F is infinite-dimensional.

Step 3: Contradiction with any finite-dimensional bilinear decomposition. If the bilinear decom-
position ŷq(xq) = 〈ω0(z), ϕ0(xq)〉 held with a fixed feature map ϕ0 : R → Rd (independent of the context),
then for all contexts the functions xq 7→ ŷq(xq) would lie in the d-dimensional linear span of the coordinate
functions of ϕ0. However, Step 2 shows that by varying the context, SA realizes an infinite set F of pairwise
linearly independent functions in x, which cannot be contained in any finite-dimensional linear subspace.
This contradiction rules out the existence of such (ϕ0, ω0).

B Experimental Details and Additional Results

In this part of the appendix, we provide detailed descriptions of the experiments in the main text and include
additional experimental results.

B.1 Representation Visualization

To further illustrate the training dynamics in Figure 2 left, we visualize the evolution of representations
for three common classes during training under training settings (64, 12, 0.9, 2) and (64, 12, 0.9, 0), as shown
in Figure 8. We find that under different data distributions, the model’s representation space diverges
significantly from the very beginning of training and eventually converges to distinct structure. This clearly
reflects that the balance of sample-level and context-level information is highly sensitive to the training
distribution.

B.2 Regression

Implementation details. We use Transformer architectures from the GPT-2 family (Radford et al.,
2018) as implemented by HuggingFace (Wolf et al., 2020). Specifically, the Transformer baseline we use is
configured with an embedding dimension of 64, 3 layers, and 2 attention heads, resulting in a total of 0.2M
parameters. The task encoder of CoQE uses the exact same Transformer configuration. The representation
encoder of CoQE consists of a two-layer ReLU network, implemented as a linear projection, followed by a
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Figure 8: The uncropped visualization results of training dynamics.

ReLU activation, a LayerNorm, and a second linear layer. For fair comparison, the baseline Transformer’s
embedding module uses the exact same two-layer ReLU network. During training across the four classes of
functions, we use a batch size of 64 and a learning rate of 5e − 5. For the three tasks except combination
functions, models are trained for 1 × 105 steps, while the combination task is trained for 2 × 105 steps due
to its increased difficulty. All experiments are conducted on an NVIDIA RTX 4090 GPU.

Setup details. We consider two major evaluation scenarios for regression: in-distribution (ID) testing and
out-of-distribution (OOD) testing. In the ID scenario, we set Dtrain

X = Dtest
X = Dquery, and Dtrain

F = Dtest
F .

Specifically, we use the following four classes of functions F :
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• Linear functions: F = {f | f(x) = w>x, w ∈ Rd}, where d = 10. We sample x1, . . . ,xj ,xq and
w independently from the isotropic Gaussian distribution N (0, Id), then compute f(xi) = w>xi to
construct the prompt. In this setting we use the least squares estimator as the optimal baseline.

• Sparse linear functions: F = {f | f(x) = w>x, w ∈ Rd, ‖w‖0 ≤ s}, where d = 10 and s = 3. We
also sample x1, . . . ,xj ,xq and w independently from N (0, Id), and then zero out all but s coordinates
of w uniformly at random. We use the least squares estimator and Lasso, which leverages sparsity
with an ℓ1-norm regularizer as baselines.

• Two-layer ReLU neural networks: F = {f | f(x) =
∑h

i=1 ai σ(w>
i x), ai ∈ R, wi ∈ Rd}, where

σ(z) = max{0, z} is the ReLU activation function, and d = 5, h = 10. We sample xis and xq from
N (0, Id), along with network parameters ais from N (0, 2/h). We sample wis from N (0, Id), and
share them across all tasks in F . The baseline is a two-layer neural network of the same architecture
trained on in-context examples using Adam.

• Combination functions: F = {f | f(x) = w>Φ(x), w ∈ R5}, where Φ is an element-wise combina-
tion function. For x = [ x1, x2, x3, x4, x5 ], Φ(x) = [ |x1|, x2

2, x3
3, cos(πx4), e0.2 x5 ]>. We sample xis,

xq and w from N (0, I5) independently. In this setting, there is no naturally optimal baseline, so we
compare only with the Transformer.

The latter two classes of nonlinear functions allow the model to reduce ICL difficulty through representation
learning, by learning task-invariant wis or Φ.

In the OOD scenario, we consider four different cases of distributional shifts under linear functions.

• Dtrain
X 6= Dtest

X = Dquery. We consider the setting where the prompt inputs xis’ scale between training
and testing is different. We scale them by a factor of 0.8 or 1.2.

• Dtrain
X = Dtest

X 6= Dquery. We sample the context examples from the same distribution as at training
time, but sample xq from a Gaussian distribution with 3× higher standard deviation.

• Dtest
X 6= Dtrain

X = Dquery. We fix the sign of each coordinate to be randomly positive or negative for
all prompt inputs xis, and draw xq from N (0, I) as before.

• Dtrain
F 6= Dtest

F . We consider scaling the weight vector by a factor of 0.8 or 1.2, to capture shifts of
task functions.

Through the above diverse evaluation settings, we comprehensively demonstrate that CoQE consistently
exhibits stronger ICL capability than a standard Transformer of comparable size on regression tasks.

Additional results on representation learning. Our Theorem 5.6 shows that under the dual-space
modeling framework, a sufficient set of tasks guarantees a basis-covering sample representation space that the
model learns. For empirical validation, we design the task type of two-layer ReLU networks and combination
functions, whose different task functions share a common sample representation space in their construction.
Figure 5 (a) shows that CoQE indeed achieves a smaller ICL error on these tasks. Furthermore, under the
combination functions task, we set the sample representation space dimension of CoQE to 5, matching that
of Φ, and directly visualize the 5-dimensional sample representation space learned by CoQE after training
(Figure 9). From the figure, we can observe that the five dimensions appear to differentiate in a manner close
to the respective transformations of the five dimensions of Φ. Although, due to the equivalence of sample
representation spaces under linear transformations, i.e., f = w>Φ(x) = w>H−1 · HΦ(x) where H denotes
an arbitrary invertible matrix, it is essentially impossible for the model to learn Φ with perfectly identical
scale and shape. The current differentiation can be regarded as another empirical proof of Theorem 5.6 that
our dual-modeling could facilitate learning of the basis-covering sample representation space.
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Figure 9: The 5-dimensional sample representation space learned by CoQE for the combination functions.

B.3 Synthetic Few-shot Classification

Implementation details. In our experiments, we employ ResNets of three sizes (with embedding di-
mensions E = 64, E = 256 and E = 512) to encode images. All architectures consist of four groups,
each containing two residual blocks. The difference lies in the embedding dimensions of each group: for
the E = 64 ResNet, the four groups produce embeddings of sizes 16, 32, 32, and 64, respectively; for the
E = 256 ResNet, the sizes are 64, 128, 128, and 256; for the E = 512 ResNet, the sizes are 64, 128, 256,
and 512. Then a fully connected layer is appended to the E = 256 and E = 512 ResNet to project the final
embedding dimension back to 64 before feeding it into the Transformer. Larger embedding dimension of
Resnets clearly possesses a stronger capacity for extracting visual sample representations. As a result, the
resulting embedding tokens are more expressive. For CoQE, we find that the E = 64 ResNet is insufficient
for the sample encoder. We also employ two Transformer configurations with different layers: L = 4 and
L = 12. Both variants use an embedding dimension of 64 and 8 attention heads. We have shown that CoQE
with only an L = 4 Transformer in the task encoder, can match the ICL and IWL performance of an L = 12
Transformer. In our experiments, a baseline Transformer with E = 64 and L = 12 contains approximately
0.9M parameters, CoQE with E = 256 and L = 4 has 1.0M parameters, while CoQE with E = 512 and
L = 4 has 2.0M parameters.

When training CoQE, we add Gaussian noise to the modified logits to prevent the task encoder’s output from
collapsing to a static vector. Specifically, the initial noise is sampled from N (µ0, 1), and both the mean and
standard deviation are incremented by 1 every 104 training steps. During training of baseline Transformers
and CoQE, we use a batch size of 24, a learning rate of 1e − 4, and train for 1 × 105 steps. All experiments
are conducted on 8× NVIDIA V100 GPUs.

Detailed results of all settings and baselines. In Table 3, we report the ICL and IWL performance
across all model scales, training settings, and algorithms. In Table 4, we report the effect of appropriately
scaling both the Transformer and CoQE. These results demonstrates that CoQE can robustly reconcile ICL
and IWL

Ablation study. We present the training curves of CoQE under different levels of noise (Figure 10). It is
evident that, in the absence of noise, the model’s ICL capability rapidly decays after an initial emergence,
accompanied by a similarly rapid increase in IWL performance. Although this observation is not made
under a standard Transformer model, we hypothesize that the underlying phenomenon extends beyond
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Table 3: Performance comparison of different Transformer variants and baselines. All values are presented as
percentages. The maximum and second-largest values are indicated by boldface and underline, respectively.

Model Config Metric
Settings (Pbursty, α)

Avg.
(0.9, 1) (0.9, 0) (0.9, 2) (0.5, 0) (0.1, 0)

Transformer

E = 64, L = 12 ICL 84.2 73.1 49.7 64.5 50.5 64.4
#Param: 0.9M IWL 65.1 4.1 98.0 17.8 51.5 47.3

E = 64, L = 8 ICL 74.4 67.2 50.2 57.5 50.3 59.9
#Param: 0.6M IWL 65.2 8.1 97.9 21.4 57.9 50.1

E = 64, L = 4 ICL 50.0 50.5 50.1 50.2 50.4 50.2
#Param: 0.4M IWL 66.2 15.1 98.1 27.3 63.1 54.0

E = 256, L = 12 ICL 49.8 51.4 50.0 50.2 50.5 50.4
#Param: 1.4M IWL 72.3 20.1 98.4 58.1 75.4 64.9

E = 256, L = 8 ICL 50.8 50.7 50.2 49.9 50.7 50.5
#Param: 1.2M IWL 73.1 28.7 98.4 60.2 78.5 67.8

E = 256, L = 4 ICL 50.0 50.3 50.6 49.9 50.7 50.3
#Param: 1.0M IWL 74.4 38.8 98.6 63.4 81.1 71.3

E = 512, L = 12 ICL 50.5 50.5 50.3 50.1 50.5 50.4
#Param: 2.4M IWL 79.6 36.0 98.9 98.4 99.0 82.4

E = 512, L = 8 ICL 50.4 49.8 50.3 50.2 51.0 50.3
#Param: 2.2M IWL 81.0 49.3 99.0 98.9 99.1 85.5

E = 512, L = 4 ICL 49.9 50.0 51.0 49.5 51.0 50.3
#Param: 2.0M IWL 82.5 62.5 99.1 99.4 99.2 88.5

Transformer E = 64, L = 12 ICL 80.0 70.3 49.9 59.8 50.1 62.0
+ Noise #Param: 0.9M IWL 60.4 1.2 91.3 8.9 49.9 42.3

Transformer E = 64, L = 12 ICL 80.5 64.2 50.2 67.8 53.1 63.2
+ Regularization #Param: 0.9M IWL 64.9 3.1 63.2 36.4 98.5 53.2

Transformer E = 64, L = 12 ICL 50.4 51.0 49.8 50.5 51.0 50.5
+ Temporary Forgetting #Param: 0.9M IWL 54.8 0.8 97.1 7.2 38.5 39.7

Linear Transformer
E = 64, L = 12 ICL 51.3 51.0 50.0 50.1 50.3 50.5
#Param: 0.8M IWL 68.3 8.0 98.4 21.0 53.5 49.8

CoQE

E = 256, L = 4 ICL 90.3 89.2 85.8 88.0 90.3 88.7
#Param: 1.0M IWL 82.0 81.0 63.1 82.0 87.9 79.2

E = 512, L = 4 ICL 92.1 91.2 88.0 90.2 92.0 90.7
#Param: 2.0M IWL 90.0 89.4 67.9 91.0 95.4 86.7

26



Under review as submission to TMLR

Table 4: The effect of appropriately scaling both the Transformer and CoQE.

Model Config ICL IWL

Trans. (E = 64, H = 64)
L = 12 84.2 65.1
L = 14 86.5 62.9
L = 16 73.0 62.9

CoQE (E = 256, H = 64)
L = 4 90.3 82.0
L = 6 89.3 84.7
L = 8 89.7 85.2

Model Config ICL IWL

Trans. (E = 64, L = 12)
H = 64 84.2 65.1
H = 72 51.0 67.4
H = 80 51.0 68.1

CoQE (E = 256, L = 4)
H = 64 90.3 82.0
H = 72 92.6 83.0
H = 80 90.1 82.2

model architecture, reflecting the intrinsic properties of the two strategies. ICL is a lightweight, dynamic
strategy, whereas IWL is more training-intensive but ultimately more stable. In standard Transformers,
where the two strategies are difficult to co-exist, training often leads to a transition from ICL to IWL. In
contrast, CoQE enables robust coexistence of both strategies through explicit modeling and learning of the
task representation space, as well as the use of Gaussian noise to isolate the task-transformations associated
with each strategy.

0 20 40 60 80 100
# Steps (k)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 = 0
0 = 3
0 = 5
0 = 7
0 = 9

(a) ICL accuracy

0 20 40 60 80 100
# Steps (k)

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

0 = 0
0 = 3
0 = 5
0 = 7
0 = 9

(b) IWL accuracy

Figure 10: Learning curves under different noise levels

B.4 Llama Based Synthetic Few-shot Classification

Datasets construction. We saved the token embedding matrices of the Llama-3.2-1B, Llama-3.2-3B, and
Llama-3.1-8B models. Each embedding matrix has a shape of 128,256 × dmodel, where dmodel = 2048, 3072,
and 4096 for the 1B, 3B, and 8B models, respectively. To construct “classes” for our few-shot classification
experiments from these raw token embeddings, we apply the following three processing steps:

1. Subselection: Among the 128,256 tokens, many correspond to special symbols or non-English text.
We selected all tokens consisting solely of English letters A-Z, a-z and underscores, resulting in
33,588 tokens.

2. Clustering: We applied spherical clustering using FAISS, performing 2,400-way clustering and re-
taining all clusters containing more than 10 tokens. From these, we randomly selected 1,200 clusters.

3. Cluster Sampling: Many clusters contained more than 10 tokens. To maximize intra-class variability,
we selected the 10 tokens farthest from each cluster center. Consequently, we obtained 1,200 classes,
each containing 10 samples.

Compared with Omniglot images, this construction produces classes with greater intra-class variability while
reflecting semantic relations more relevant to NLP tasks. Some sample clusters from Llama-3.2-3B are shown
below:
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English | edish | apanese | French | Chinese | orean | California | Russian | frican | ustralian

Class | _class | addClass | _CLASS | className | removeClass | classList | Classifier | hasClass | getClass

ellow | green | Green | iolet | orange | urple | agenta | purple | Pink | greens | _YELLOW

Implementation details. We trained both the Transformer and CoQE models on the constructed dataset
following the same procedure described in the main text, fixing the data distribution parameters to Pbursty =
0.9 and Zipfian exponent α = 1 to approximate the natural language distribution. In terms of model
architecture, for both Transformer and CoQE, we used a three-layer MLP instead of a ResNet as the sample
encoder, with hidden dimensions of 512, 256, and 64, respectively. The Transformer consists of 12 layers,
while the task encoder in CoQE contains 4 layers, resulting in fewer parameters for CoQE compared with
the Transformer. All other training hyperparameters such as learning rate and batch size, are set identical
to those used in the image few-shot classification experiments.
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