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ABSTRACT

Metalearning of deep neural network (DNN) architectures and hyperparameters
has become an increasingly important area of research. Loss functions are a type
of metaknowledge that is crucial to effective training of DNNs, however, their
potential role in metalearning has not yet been fully explored. Whereas early
work focused on genetic programming (GP) on tree representations, this paper
proposes continuous CMA-ES optimization of multivariate Taylor polynomial
parameterizations. This approach, TaylorGLO, makes it possible to represent and
search useful loss functions more effectively. In MNIST, CIFAR-10, and SVHN
benchmark tasks, TaylorGLO finds new loss functions that outperform the standard
cross-entropy loss as well as novel loss functions previously discovered through
GP, in fewer generations. These functions serve to regularize the learning task by
discouraging overfitting to the labels, which is particularly useful in tasks where
limited training data is available. The results thus demonstrate that loss function
optimization is a productive new avenue for metalearning.

1 INTRODUCTION

As deep learning systems have become more complex, their architectures and hyperparameters have
become increasingly difficult and time-consuming to optimize by hand. In fact, many good designs
may be overlooked by humans with prior biases. Therefore, automating this process, known as
metalearning, has become an essential part of the modern machine learning toolbox. Metalearning
aims to solve this problem through a variety of approaches, including optimizing different aspects of
the architecture from hyperparameters to topologies, and by using different methods from Bayesian
optimization to evolutionary computation (Schmidhuber, 1987; Elsken et al., 2019; Miikkulainen
et al., 2019; Lemke et al., 2015).

Recently, loss-function discovery and optimization has emerged as a new type of metalearning.
Focusing on neural network’s root training goal it aims to discover better ways to define what is being
optimized. However, loss functions can be challenging to optimize because they have a discrete nested
structure as well as continuous coefficients. The first system to do so, Genetic Loss Optimization
(GLO; Gonzalez & Miikkulainen, 2020) tackled this problem by discovering and optimizing loss
functions in two separate steps: (1) representing the structure as trees, and evolving them with Genetic
Programming (GP; Banzhaf et al., 1998); and (2) optimizing the coefficients using Covariance-Matrix
Adaptation Evolutionary Strategy (CMA-ES; Hansen & Ostermeier, 1996). While the approach
was successful, such separate processes make it challenging to find a mutually optimal structure
and coefficients. Furthermore, small changes in the tree-based search space do not always result in
small changes in the phenotype, and can easily make a function invalid, making the search process
ineffective.

In an ideal case, loss functions would be mapped into fixed-length vectors in a Hilbert space. This
mapping should be smooth, well-behaved, well-defined, incorporate both a function’s structure
and coefficients, and should by its very nature exclude large classes of infeasible loss functions.
This paper introduces such an approach: Multivariate Taylor expansion-based genetic loss-function
optimization (TaylorGLO). With a novel parameterization for loss functions, the key pieces of
information that affect a loss function’s behavior are compactly represented in a vector. Such vectors
are then optimized for a specific task using CMA-ES. Special techniques can be developed to narrow
down the search space and speed up evolution.
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Loss functions discovered by TaylorGLO outperform the standard cross-entropy loss (or log loss) on
the MNIST, CIFAR-10, CIFAR-100, and SVHN datasets with several different network architectures.
They also outperform the Baikal loss, discovered by the original GLO technique, and do it with
significantly fewer function evaluations. The reason for the improved performance is that evolved
functions discourage overfitting to the class labels, thereby resulting in automatic regularization.
These improvements are particularly pronounced with reduced datasets where such regularization
matters the most. TaylorGLO thus further establishes loss-function optimization as a promising new
direction for metalearning.

2 RELATED WORK

Applying deep neural networks to new tasks often involves significant manual tuning of the network
design. The field of metalearning has recently emerged to tackle this issue algorithmically (Schmid-
huber, 1987; Lemke et al., 2015; Elsken et al., 2019; Miikkulainen et al., 2019). While much of the
work has focused on hyperparameter optimization and architecture search, recently other aspects,
such activation functions and learning algorithms, have been found useful targets for optimization
(Bingham et al., 2020; Real et al., 2020). Since loss functions are at the core of machine learning, it
is compelling to apply metalearning to their design as well.

Deep neural networks are trained iteratively, by updating model parameters (i.e., weights and biases)
using gradients propagated backward through the network (Rumelhart et al., 1985). The process
starts from an error given by a loss function, which represents the primary training objective of the
network. In many tasks, such as classification and language modeling, the cross-entropy loss (also
known as the log loss) has been used almost exclusively. While in some approaches a regularization
term (e.g. L2 weight regularization; Tikhonov, 1963) is added to the the loss function definition, the
core component is still the cross-entropy loss. This loss function is motivated by information theory:
It aims to minimize the number of bits needed to identify a message from the true distribution, using
a code from the predicted distribution.

In other types of tasks that do not fit neatly into a single-label classification framework different
loss functions have been used successfully (Gonzalez et al., 2019; Gao & Grauman, 2019; Kingma
& Welling, 2014; Zhou et al., 2016; Dong et al., 2017). Indeed, different functions have different
properties; for instance the Huber Loss (Huber, 1964) is more resilient to outliers than other loss
functions. Still, most of the time one of the standard loss functions is used without a justification;
therefore, there is an opportunity to improve through metalearning.

Genetic Loss Optimization (GLO; Gonzalez & Miikkulainen, 2020) provided an initial approach
into metalearning of loss functions. As described above, GLO is based on tree-based representations
with coefficients. Such representations have been dominant in genetic programming because they are
flexible and can be applied to a variety of function evolution domains. GLO was able to discover
Baikal, a new loss function that outperformed the cross-entropy loss in image classification tasks.
However, because the structure and coefficients are optimized separately in GLO, it cannot easily
optimize their interactions. Many of the functions created through tree-based search are not useful
because they have discontinuities, and mutations can have disproportionate effects on the functions.
GLO’s search is thus inefficient, requiring large populations that are evolved for many generations.
Thus, GLO does not scale to the large models and datasets that are typical in modern deep learning.

The technique presented in this paper, TaylorGLO, aims to solve these problems through a novel
loss function parameterization based on multivariate Taylor expansions. Furthermore, since such
representations are continuous, the approach can take advantage of CMA-ES (Hansen & Ostermeier,
1996) as the search method, resulting in faster search.

3 LOSS FUNCTIONS AS MULTIVARIATE TAYLOR EXPANSIONS

Taylor expansions (Taylor, 1715) are a well-known function approximator that can represent dif-
ferentiable functions within the neighborhood of a point using a polynomial series. Below, the
common univariate Taylor expansion formulation is presented, followed by a natural extension to
arbitrarily-multivariate functions.
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Given a Ckmax smooth (i.e., first through kmax derivatives are continuous), real-valued function,
f(x) : R→ R, a kth-order Taylor approximation at point a ∈ R, f̂k(x, a), where 0 ≤ k ≤ kmax, can
be constructed as

f̂k(x, a) =

k∑
n=0

1

n!
f (n)(a)(x− a)n. (1)

Conventional, univariate Taylor expansions have a natural extension to arbitrarily high-dimensional
inputs of f . Given a Ckmax+1 smooth, real-valued function, f(x) : Rn → R, a kth-order Taylor
approximation at point a ∈ Rn, f̂k(x,a), where 0 ≤ k ≤ kmax, can be constructed. The stricter
smoothness constraint compared to the univariate case allows for the application of Schwarz’s
theorem on equality of mixed partials, obviating the need to take the order of partial differentiation
into account.

Let us define an nth-degree multi-index, α = (α1, α2, . . . , αn), where αi ∈ N0, |α| =
∑n
i=1 αi,

α! =
∏n
i=1 αi!. xα =

∏n
i=1 x

αi
i , and x ∈ Rn. Multivariate partial derivatives can be concisely

written using a multi-index

∂αf = ∂α1
1 ∂α2

2 · · · ∂αn
n f =

∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
. (2)

Thus, discounting the remainder term, the multivariate Taylor expansion for f(x) at a is

f̂k(x,a) =
∑

∀α,|α|≤k

1

α!
∂αf(a)(x− a)α. (3)

The unique partial derivatives in f̂k and a are parameters for a kth order Taylor expansion. Thus, a
kth order Taylor expansion of a function in n variables requires n parameters to define the center,
a, and one parameter for each unique multi-index α, where |α| ≤ k. That is: #parameters(n, k) =

n+
(
n+k
k

)
= n+ (n+k)!

n! k! .

The multivariate Taylor expansion can be leveraged for a novel loss-function parameterization. Let an
n-class classification loss function be defined as LLog = − 1

n

∑n
i=1 f(xi, yi). The function f(xi, yi)

can be replaced by its kth-order, bivariate Taylor expansion, f̂k(x, y, ax, ay). More sophisticated loss
functions can be supported by having more input variables beyond xi and yi, such as a time variable
or unscaled logits. This approach can be useful, for example, to evolve loss functions that change as
training progresses.

For example, a loss function in x and y has the following third-order parameterization with parameters
θ (where a = 〈θ0, θ1〉):

L(x,y) = − 1

n

n∑
i=1

[
θ2 + θ3(yi − θ1) + 1

2θ4(yi − θ1)2 + 1
6θ5(yi − θ1)3 + θ6(xi − θ0)

+θ7(xi − θ0)(yi − θ1) + 1
2θ8(xi − θ0)(yi − θ1)2 + 1

2θ9(xi − θ0)2

+ 1
2θ10(xi − θ0)2(yi − θ1) + 1

6θ11(xi − θ0)3
] (4)

Notably, the reciprocal-factorial coefficients can be integrated to be a part of the parameter set by
direct multiplication if desired.

As will be shown in this paper, the technique makes it possible to train neural networks that are more
accurate and learn faster than those with tree-based loss function representations. Representing loss
functions in this manner confers several useful properties:

• It guarantees smooth functions;
• Functions do not have poles (i.e., discontinuities going to infinity or negative infinity) within

their relevant domain;
• They can be implemented purely as compositions of addition and multiplication operations;
• They can be trivially differentiated;
• Nearby points in the search space yield similar results (i.e., the search space is locally

smooth), making the fitness landscape easier to search;
• Valid loss functions can be found in fewer generations and with higher frequency;
• Loss function discovery is consistent and not dependent on a specific initial population; and
• The search space has a tunable complexity parameter (i.e., the order of the expansion).
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These properties are not necessarily held by alternative function approximators. For instance:

Fourier series are well suited for approximating periodic functions (Fourier, 1829). Consequently,
they are not as well suited for loss functions, whose local behavior within a narrow domain
is important. Being a composition of waves, Fourier series tend to have many critical
points within the domain of interest. Gradients fluctuate around such points, making
gradient descent infeasible. Additionally, close approximations require a large number of
terms, which in itself can be injurious, causing large, high-frequency fluctuations known as
“ringing”, due to Gibb’s phenomenon (Wilbraham, 1848).

Padé approximants can be more accurate approximations than Taylor expansions; indeed, Taylor
expansions are a special case of Padé approximants where M = 0 (Graves-Morris, 1979).
However, unfortunately Padé approximants can model functions with one or more poles,
which valid loss functions typically should not have. These problems still exist, and
are exacerbated, for Chisholm approximants (a bivariate extension; Chisholm, 1973) and
Canterbury approximants (a multivariate generalization; Graves-Morris & Roberts, 1975).

Laurent polynomials can represent functions with discontinuities, the simplest being x−1. While
Laurent polynomials provide a generalization of Taylor expansions into negative exponents,
the extension is not useful because it results in the same issues as Padé approximants.

Polyharmonic splines can represent continuous functions within a finite domain, however, the
number of parameters is prohibitive in multivariate cases.

The multivariate Taylor expansion is therefore a better choice than the alternatives. It makes it
possible to optimize loss functions efficiently in TaylorGLO, as will be described next.
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Figure 1: The TaylorGLO method. Start-
ing with a population of initially unbiased
loss functions, CMA-ES optimizes their Tay-
lor expansion parameters in order to maxi-
mize validation accuracy after partial train-
ing. The candidate with the highest accuracy
is chosen as the final, best solution.

TaylorGLO (Figure 1) aims to find the optimal param-
eters for a loss function represented as a multivariate
Taylor expansion. The parameters for a Taylor ap-
proximation (i.e., the center point and partial deriva-
tives) are referred to as θf̂ : θf̂ ∈ Θ, Θ = R#parameters .
TaylorGLO strives to find the vector θ∗

f̂
that parameter-

izes the optimal loss function for a task. Because the
values are continuous, as opposed to discrete graphs
of the original GLO, it is possible to use continuous
optimization methods.

In particular, Covariance Matrix Adaptation Evolution-
ary Strategy (CMA-ES Hansen & Ostermeier, 1996)
is a popular population-based, black-box optimization
technique for rugged, continuous spaces. CMA-ES
functions by maintaining a covariance matrix around
a mean point that represents a distribution of solutions.
At each generation, CMA-ES adapts the distribution
to better fit evaluated objective values from sampled
individuals. In this manner, the area in the search space that is being sampled at each step grows,
shrinks, and moves dynamically as needed to maximize sampled candidates’ fitnesses. TaylorGLO
uses the (µ/µ, λ) variant of CMA-ES (Hansen & Ostermeier, 2001), which incorporates weighted
rank-µ updates (Hansen & Kern, 2004) to reduce the number of objective function evaluations needed.

In order to find θ∗
f̂

, at each generation CMA-ES samples points in Θ. Their fitness is determined
by training a model with the corresponding loss function and evaluating the model on a validation
dataset. Fitness evaluations may be distributed across multiple machines in parallel and retried a
limited number of times upon failure. An initial vector of θf̂ = 0 is chosen as a starting point in the
search space to avoid bias.

Fully training a model can be prohibitively expensive in many problems. However, performance near
the beginning of training is usually correlated with performance at the end of training, and therefore
it is enough to train the models only partially to identify the most promising candidates. This type of
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approximate evaluation is common in metalearning (Grefenstette & Fitzpatrick, 1985; Jin, 2011). An
additional positive effect is that evaluation then favors loss functions that learn more quickly.

For a loss function to be useful, it must have a derivative that depends on the prediction. Therefore,
internal terms that do not contribute to ∂

∂yLf (x,y) can be trimmed away. This step implies that any
term t within f(xi, yi) with ∂

∂yi
t = 0 can be replaced with 0. For example, this refinement simplifies

Equation 4, providing a reduction in the number of parameters from twelve to eight:

L(x,y) = − 1

n

n∑
i=1

[
θ2(yi − θ1) + 1

2θ3(yi − θ1)2 + 1
6θ4(yi − θ1)3 + θ5(xi − θ0)(yi − θ1)

+ 1
2θ6(xi − θ0)(yi − θ1)2 + 1

2θ7(xi − θ0)2(yi − θ1)
]
.

(5)

5 EXPERIMENTAL SETUP

This section presents the experimental setup that was used to evaluate the TaylorGLO technique.

Domains: MNIST (LeCun et al., 1998) was included as simple domain to illustrate the method and
to provide a backward comparison with GLO; CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100
(Krizhevsky & Hinton, 2009), and SVHN (Netzer et al., 2011) were included as more modern
benchmarks. Improvements were measured in comparison to the standard cross-entropy loss function
LLog = − 1

n

∑n
i=1 xi log(yi), where x is sampled from the true distribution, y is from the predicted

distribution, and n is the number of classes.

Evaluated architectures: A variety of architectures were used to evaluate TaylorGLO: the basic
CNN architecture evaluated in the GLO study (Gonzalez & Miikkulainen, 2020), AlexNet (Krizhevsky
et al., 2012), AllCNN-C (Springenberg et al., 2015), Preactivation ResNet-20 (He et al., 2016a),
which is an improved variant of the ubiquitous ResNet architecture (He et al., 2016b), and Wide
ResNets of different morphologies (Zagoruyko & Komodakis, 2016). Networks with Cutout (DeVries
& Taylor, 2017) and CutMix (Yun et al., 2019) were also evaluated, to show that TaylorGLO provides
a different, complementary approach to regularization.

TaylorGLO setup: CMA-ES was instantiated with population size λ = 28 on MNIST and λ = 20
on all other datasets, and an initial step size σ = 1.2. These values were found to work well in
preliminary experiments. The candidates were third-order (i.e., k = 3) TaylorGLO loss functions
(Equation 5). Such functions were found experimentally to have a better trade-off between evolution
time and performance compared to second- and fourth-order TaylorGLO loss functions, although the
differences were relatively small.

Further experimental setup and implementation details are provided in Appendix A.

6 RESULTS
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Figure 2: The process of discovering loss func-
tions in MNIST. Red dots mark generations
where new improved loss functions were found.
TaylorGLO discovers good functions in very
few generations. The best had a 2000-step vali-
dation accuracy of 0.9948, compared to 0.9903
with the cross-entropy loss, averaged over ten
runs. This difference translates to a similar im-
provement on the test set, as shown in Table 1.

This section illustrates the TaylorGLO process
and demonstrates how the evolved loss func-
tions can improve performance over the standard
cross-entropy loss function, especially on reduced
datasets. A summary of results on three datasets
across a variety of models are shown in Table 1.

6.1 THE TAYLORGLO DISCOVERY PROCESS

Figure 2 illustrates the evolution process over 60
generations, which is sufficient to reach conver-
gence on the MNIST dataset. TaylorGLO is able to
discover highly-performing loss functions quickly,
i.e. within 20 generations. Generations’ average
validation accuracy approaches generations’ best
accuracy as evolution progresses, indicating that
population as a whole is improving. Whereas
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Table 1: Test-set accuracy of loss functions discovered by TaylorGLO compared with that of the
cross-entropy loss. The TaylorGLO results are based on the loss function with the highest validation
accuracy during evolution. All averages are from ten separately trained models and p-values are from
one-tailed Welch’s t-Tests. Standard deviations are shown in parentheses. TaylorGLO discovers loss
functions that perform significantly better than the cross-entropy loss in almost all cases, including
those that include Cutout, suggesting that it provides a different form of regularization.

Task and Model Avg. TaylorGLO Acc. Avg. Baseline Acc. p-value

MNIST
Basic CNN 1 0.9951 (0.0005) 0.9899 (0.0003) 2.95×10−15

CIFAR-10
AlexNet 2 0.7901 (0.0026) 0.7638 (0.0046) 1.76×10−10

AlexNet + Cutout 6 0.7786 (0.0022) 0.7741 (0.0040) 0.0049
AlexNet + CutMix 7 0.7928 (0.0027) 0.7856 (0.0026) 8.13×10−6

PreResNet-20 4 0.9169 (0.0014) 0.9153 (0.0021) 0.0400
AllCNN-C 3 0.9271 (0.0013) 0.8965 (0.0021) 0.42×10−17

AllCNN-C 3 + Cutout 6 0.9329 (0.0022) 0.8911 (0.0037) 1.60×10−14

AllCNN-C 3 + CutMix 7 0.9327 (0.0014) 0.8749 (0.0042) 1.89×10−13

Wide ResNet 16-8 5 0.9558 (0.0011) 0.9528 (0.0012) 1.77×10−5

Wide ResNet 16-8 5 + Cutout 6 0.9618 (0.0010) 0.9582 (0.0011) 2.55×10−7

Wide ResNet 28-5 5 0.9548 (0.0015) 0.9556 (0.0011) 0.0984
Wide ResNet 28-5 5 + Cutout 6 0.9621 (0.0013) 0.9616 (0.0011) 0.1882

CIFAR-100
PyramidNet 110a48 8 0.7409 (0.0040) 0.7523 (0.0037) 3.87×10−6

PyramidNet 110a48 8 + Cutout 6 0.7708 (0.0029) 0.7674 (0.0036) 0.0189

SVHN
Wide ResNet 16-8 5 0.9658 (0.0007) 0.9597 (0.0006) 1.94×10−13

Wide ResNet 16-8 5 + Cutout 6 0.9714 (0.0010) 0.9673 (0.0008) 9.10×10−9

Wide ResNet 28-5 5 0.9657 (0.0009) 0.9634 (0.0006) 6.62×10−6

Wide ResNet 28-5 5 + Cutout 6 0.9727 (0.0006) 0.9709 (0.0006) 2.96×10−6

Network architecture references: 1 Gonzalez & Miikkulainen (2020) 2 Krizhevsky et al. (2012) 3 Springenberg et al. (2015)
4 He et al. (2016a) 5 Zagoruyko & Komodakis (2016) 6 DeVries & Taylor (2017) 7 Yun et al. (2019) 8 Han et al. (2017)

GLO’s unbounded search space often results in pathological functions, every TaylorGLO train-
ing session completed successfully without any instabilities.

Figure 3 shows the shapes and parameters of each generation’s highest-scoring loss function. In
Figure 3a the functions are plotted as if they were being used for binary classification, i.e. the loss
for an incorrect label on the left and for a correct one on the right (Gonzalez & Miikkulainen, 2020).
The functions have a distinct pattern through the evolution process. Early generations include a
wider variety of shapes, but they later converge towards curves with a shallow minimum around
y0 = 0.8. In other words, the loss increases near the correct output—which is counterintuitive.
This shape is also strikingly different from the cross-entropy loss, which decreases monotonically
from left to right, as one might expect all loss functions to do. The evolved shape is effective
most likely because can provide an implicit regularization effect: it discourages the model from
outputting unnecessarily extreme values for the correct class, and therefore makes overfitting less
likely (Gonzalez & Miikkulainen, 2020). This is a surprising finding, and demonstrates the power of
machine learning to create innovations beyond human design.

6.2 PERFORMANCE COMPARISONS

Over 10 fully-trained models, the best TaylorGLO loss function achieved a mean testing accuracy of
0.9951 (stddev 0.0005) in MNIST. In comparison, the cross-entropy loss only reached 0.9899 (stddev
0.0003), and the "BaikalCMA" loss function discovered by GLO, 0.9947 (stddev 0.0003) (Gonzalez
& Miikkulainen, 2020); both differences are statistically significant (Figure 5). Notably, TaylorGLO
achieved this result with significantly fewer generations. GLO required 11,120 partial evaluations
(i.e., 100 individuals over 100 GP generations plus 32 individuals over 35 CMA-ES generations),
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(a) Best discovered functions over time
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Figure 3: The best loss functions (a) and their respective parameters (b) from each generation of
TaylorGLO on MNIST. The functions are plotted in a binary classification modality, showing loss for
different values of the network output (y0 in the horizontal axis) when the correct label is 1.0. The
functions are colored according to their generation from blue to red, and vertically shifted such that
their loss at y0 = 1 is zero (the raw value of a loss function is not relevant; the derivative, however,
is). TaylorGLO explores varying shapes of solutions before narrowing down on functions in the
red band; this process can also be seen in (b), where parameters become more consistent over time,
and in the population plot of Appendix B. The final functions decrease from left to right, but have a
significant increase in the end. This shape is likely to prevent overfitting during learning, which leads
to the observed improved accuracy.

Figure 4: Accuracy basins for AllCNN-C models trained with both cross-entropy and TaylorGLO
loss functions. The TaylorGLO basins are both flatter and lower, indicating that they are more robust
and generalize better (Keskar et al., 2017), which results in higher accuracy.

while the top TaylorGLO loss function only required 448 partial evaluations, i.e. 4.03% as many.
Thus, TaylorGLO achieves improved results with significantly fewer evaluations than GLO.

Due to the very large number evaluations required by GLO, TaylorGLO is only compared to GLO on
MNIST. GLO is not practically applicable to deeper models with longer training times. For example,
even a relatively small deep network, PreResNet-20 He et al. (2016a), would require over 171 GPU
days of computation, assuming the same number of evaluations as above on MNIST.

The large reduction in evaluations during evolution compared to GLO allows TaylorGLO to tackle
harder problems, including models that have millions of parameters. On CIFAR-10, CIFAR-100, and
SVHN, TaylorGLO was able to outperform cross-entropy baselines consistently on a variety models,
as shown in Table 1. These increases in accuracy are greater than what is possible through implicit
learning rate adjustment alone (detailed in Appendix E). TaylorGLO also provides further improve-
ment on architectures that use Cutout (DeVries & Taylor, 2017), suggesting that its mechanism of
avoiding overfitting is different from other regularization techniques.

In addition, TaylorGLO loss functions result in more robust trained models. In Figure 4, accuracy
basins for two AllCNN-C models, one trained with the TaylorGLO loss function and another with the
cross-entropy loss, are plotted along a two-dimensional slice [−1, 1] of the weight space (a technique
due to Li et al., 2018). The TaylorGLO loss function results in a flatter, lower basin. This result
suggests that the model is more robust, i.e. its performance is less sensitive to small perturbations in
the weight space, and it also generalizes better (Keskar et al., 2017).
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(a) Accuracy (b) Evaluations

Figure 5: (a) Mean test accuracy across ten
runs on MNIST. The TaylorGLO loss func-
tion with the highest validation score signifi-
cantly outperforms the cross-entropy loss (p =
2.95×10−15 in a one-tailed Welch’s t-test) and
the BaikalCMA loss (Gonzalez & Miikkulainen,
2020) (p = 0.0313). (b) Required partial train-
ing evaluations for GLO and TaylorGLO on
MNIST. The TaylorGLO loss function was dis-
covered with 4% of the evaluations that GLO
required to discover BaikalCMA.
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Figure 6: Accuracy with reduced portions of the
MNIST dataset. Progressively smaller portions of
the dataset were used to train the models (averag-
ing over ten runs). The TaylorGLO loss function
provides significantly better performance than the
cross-entropy loss on all training dataset sizes, and
particularly on the smaller datasets. Thus, its abil-
ity to discourage overfitting is particularly useful in
applications where only limited data is available.

6.3 PERFORMANCE ON REDUCED DATASETS

The performance improvements that TaylorGLO provides are especially pronounced with reduced
datasets. For example, Figure 6 compares accuracies of models trained for 20,000 steps on different
portions of the MNIST dataset (similar results were obtained with other datasets and architectures).
Overall, TaylorGLO significantly outperforms the cross-entropy loss. When evolving a TaylorGLO
loss function and training against 10% of the training dataset, with 225 epoch evaluations, TaylorGLO
reached an average accuracy across ten models of 0.7595 (stddev 0.0062). In contrast, only four out
of ten cross-entropy loss models trained successfully, with those reaching a lower average accuracy of
0.6521. Thus, customized loss functions can be especially useful in applications where only limited
data is available to train the models, presumably because they are less likely to overfit to the small
number of examples.

7 DISCUSSION AND FUTURE WORK

TaylorGLO was applied to the benchmark tasks using various standard architectures with standard
hyperparameters. These setups have been heavily engineered and manually tuned by the research
community, yet TaylorGLO was able to improve them. Interestingly, the improvements were more
substantial with wide architectures and smaller with narrow and deep architectures such as the
Preactivation ResNet. While it may be possible to further improve upon this result, it is also possible
that loss function optimization is more effective with architectures where the gradient information
travels through fewer connections, or is otherwise better preserved throughout the network. An
important direction of future work is therefore to evolve both loss functions and architectures together,
taking advantage of possible synergies between them.

As illustrated in Figure 3a, the most significant effect of evolved loss functions is to discourage
extreme output values, thereby avoiding overfitting. It is interesting that this mechanism is apparently
different from other regularization techniques such as dropout (as shown by Gonzalez & Miikkulainen,
2020) and data augmentation with Cutout (as seen in Table 1). Dropout and Cutout improve
performance over the baseline, and loss function optimization improves it further. This result suggests
that regularization is a multifaceted process, and further work is necessary to understand how to best
take advantage of it.

Another important direction is to incorporate state information into TaylorGLO loss functions, such
as the percentage of training steps completed. TaylorGLO may then find loss functions that are best
suited for different points in training, where, for example, different kinds of regularization work best
(Golatkar et al., 2019). Unintuitive changes to the training process, such as cycling learning rates
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(Smith, 2017), have been found to improve performance; evolution could be used to find other such
opportunities automatically. Batch statistics could help evolve loss functions that are more well-tuned
to each batch; intermediate network activations could expose information that may help tune the
function for deeper networks like ResNet. Deeper information about the characteristics of a model’s
weights and gradients, such as that from spectral decomposition of the Hessian matrix (Sagun et al.,
2017), could assist the evolution of loss functions that adapt to the current fitness landscape. The
technique could also be adapted to models with auxiliary classifiers (Szegedy et al., 2015) as a means
to touch deeper parts of the network.

8 CONCLUSION

This paper proposes TaylorGLO as a promising new technique for loss-function metalearning.
TaylorGLO leverages a novel parameterization for loss functions, allowing the use of continuous
optimization rather than genetic programming for the search, thus making it more efficient and more
reliable. TaylorGLO loss functions serve to regularize the learning task, outperforming the standard
cross-entropy loss significantly on MNIST, CIFAR-10, CIFAR-100, and SVHN benchmark tasks
with a variety of network architectures. They also outperform previously loss functions discovered in
prior work, while requiring many fewer candidates to be evaluated during search. Thus, TaylorGLO
results in higher testing accuracies, better data utilization, and more robust models, and is a promising
new avenue for metalearning.
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A EXPERIMENTAL SETUP

The following subsections cover specific experimental setup details. The three evaluated datasets are
detailed in how they were used, along with implementation details.

A.1 MNIST

The first domain was MNIST Handwritten Digits, a widely used dataset where the goal is to classify
28 × 28 pixel images as one of ten digits. MNIST has 55,000 training samples, 5,000 validation
samples, and 10,000 testing samples. The dataset is well understood and relatively quick to train, and
forms a good foundation for understanding how TaylorGLO evolves loss functions.

The basic CNN architecture evaluated in the GLO study (Gonzalez & Miikkulainen, 2020) can also be
used to provide a direct point of comparison with prior work on MNIST. Importantly, this architecture
includes a dropout layer (Hinton et al., 2012) for explicit regularization. As in GLO, training is based
on stochastic gradient descent (SGD) with a batch size of 100, a learning rate of 0.01, and, unless
otherwise specified, occurred over 20,000 steps.

A.2 CIFAR-10 AND CIFAR-100

To validate TaylorGLO in a more challenging context, the CIFAR-10 (Krizhevsky & Hinton, 2009)
dataset was used. It consists of small 32 × 32 pixel color photographs of objects in ten classes.
CIFAR-10 traditionally consists of 50,000 training samples, and 10,000 testing samples; however
5,000 samples from the training dataset were used for validation of candidates, resulting in 45,000
training samples.

Models were trained with their respective hyperparameters from the literature. Inputs were normalized
by subtracting their mean pixel value and dividing by their pixel standard deviation. Standard data
augmentation techniques consisting of random horizontal flips and croppings with two pixel padding
were applied during training.

CIFAR-100 is a similar, though significantly more challenging, dataset where a different set of 60,000
images is divided into 100 classes, instead of 10. The same splits for training, validation, and testing
were used for CIFAR-100 as for CIFAR-10, and evaluate TaylorGLO further.

A.3 SVHN

The Street View House Numbers (SVHN; Netzer et al., 2011) dataset is another image classification
domain that was used to evaluate TaylorGLO, consisting of 32 × 32 pixel images of numerical
digits from Google Street View. SVHN consists of 73,257 training samples, 26,032 testing samples,
and 531,131 supplementary, easier training samples. To reduce computation costs, supplementary
examples were not used during training; this fact explains why presented baselines may be lower
than other SVHN baselines in the literature. Since a validation set is not in the standard splits, 26,032
samples from the training dataset were used for validation of candidates, resulting in 47,225 training
samples.

As with CIFAR-10, models were trained with their respective hyperparameters from the literature
and with the same data augmentation pipeline.

A.4 CANDIDATE EVALUATION DETAILS

During candidate evaluation, models were trained for 10% of a full training run on MNIST, equal to
2,000 steps (i.e., four epochs). An in-depth analysis on the technique’s sensitivity to training steps
during candidate evaluation is provided in Appendix D—overall, the technique is robust even with
few training steps. However, on more complex models with abrupt learning rate decay schedules,
greater numbers of steps provide better fitness estimates.
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Figure 7: A visualization of all TaylorGLO loss function candidates using t-SNE (Maaten & Hinton,
2008) on MNIST. Colors map to each candidate’s generation. Loss function populations show
an evolutionary path and focus over time towards functions that perform well, consistent with the
convergence and settling in Figure 3.

A.5 STATISTICAL TESTING

Statistical significance tests define a null hypothesis and reject it if a p-value is below a predefined
significance level, typically 0.05. A p-value is the probability of obtaining extreme results at the same
level or greater than the results observed given that the null hypothesis is true.

When comparing results in this paper, a one-tailed null hypothesis is typically used:

H0 : ¬ (µ1 < µ2) , (6)

where µ1 and µ2 are mean values from two separate sets of training sessions. The rejection of this
null hypothesis implies that µ2 is statistically significantly larger than µ1. Thus, the change between
the two sets of training sessions is robust to training stochasticity, such as from varying weight
initializations.

Throughout this paper, Welch’s t-Test Welch (1947) is used to determine statistical significance when
comparing sets of results which may not have equal variances. It is also a better fit than Student’s
t-Test due to its higher robustness and statistical power Ruxton (2006).

A.6 IMPLEMENTATION DETAILS

Due to the number of partial training sessions that are needed to evaluate TaylorGLO loss function
candidates, training was distributed across the network to a cluster, composed of dedicated machines
with NVIDIA GeForce GTX 1080Ti GPUs. Training itself was implemented with TensorFlow (Abadi
et al., 2016) in Python. The primary components of TaylorGLO (i.e., the genetic algorithm and CMA-
ES) were implemented in the Swift programming language which allows for easy parallelization.
These components run centrally on one machine and asynchronously dispatch work to the cluster.

Training for each candidate was aborted and retried up to two additional times if validation accuracy
was below 0.15 at the tenth epoch. This method helped reduce computation costs.

B ILLUSTRATING THE EVOLUTIONARY PROCESS

The TaylorGLO search process can be illustrated with t-SNE dimensionality reduction (Maaten &
Hinton, 2008) on every candidate loss function within a run (Figure 7). The initial points (i.e. loss
functions) are initially widespread on the left side, but quickly migrate and spread to the right as
CMA-ES explores the parameter space, and eventually concentrate in a smaller region of dark red
points. This pattern is consistent with the convergence and settling in Figure 3.

C TOP MNIST LOSS FUNCTION

The best loss function obtained from running TaylorGLO on MNIST was found in generation 74.
This function, with parameters θ = 〈11.9039,−4.0240, 6.9796, 8.5834,−1.6677, 11.6064, 12.6684,
−3.4674〉 (rounded to four decimal-places), achieved a 2k-step validation accuracy of 0.9950 on its
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single evaluation, higher than 0.9903 for the cross entropy loss. This loss function was a modest
improvement over the previous best loss function from generation 16, which had a validation accuracy
of 0.9958.

D MNIST EVALUATION LENGTH SENSITIVITY

200-step TaylorGLO is surprisingly resilient when evaluations during evolution are shortened to
200 steps (i.e., 0.4 epochs) of training. With so little training, returned accuracies are noisy and
dependent on each individual network’s particular random initialization. On a 60-generation run with
200-step evaluations, the best evolved loss function had a mean testing accuracy of 0.9946 across ten
samples, with a standard deviation of 0.0016. While slightly lower, and significantly more variable,
than the accuracy for the best loss function that was found on the main 2,000-step run, the accuracy
is still significantly higher than that of the cross-entropy baseline, with a p-value of 6.3 × 10−6.
This loss function was discovered in generation 31, requiring 1,388.8 2,000-step-equivalent partial
evaluations. That is, evolution with 200-step partial evaluations is over three-times less sample
efficient than evolution with 2,000-step partial evaluations.

20,000-step On the other extreme, where evaluations consist of the same number of steps as a full
training session, one would expect better loss functions to be discovered, and more reliably, because
the fitness estimates are less noisy. Surprisingly, that is not the case: The best loss function had a
mean testing accuracy of 0.9945 across ten samples, with a standard deviation of 0.0015. While also
slightly lower, and also significantly more variable, than the accuracy for the best loss function that
was found on the main 2,000-step run, the accuracy is significantly higher than the cross-entropy
baseline, with a p-value of 5.1× 10−6. This loss function was discovered in generation 45, requiring
12,600 2,000-step-equivalent partial evaluations. That is, evolution with 20,000-step full evaluations
is over 28-times less sample efficient than evolution with 2,000-step partial evaluations.

These results thus suggest that there is an optimal way to evaluate candidates during evolution,
resulting in lower computational cost and better loss functions. Notably, the best evolved loss
functions from all three runs (i.e., 200-, 2,000-, and 20,000-step) have similar shapes, reinforcing the
idea that partial-evaluations can provide useful performance estimates.

E LEARNING RATE SENSITIVITY

Loss functions can embody different learning rates implicitly. This section shows that TaylorGLO
loss functions’ benefits come from more than just metalearning such learning rates. Increases in
performance that result from altering the base learning rate with cross-entropy loss are significantly
smaller than those that TaylorGLO provides.

More specifically, Figure 8 quantifies the effect of varying learning rates on the final testing accuracy
of AllCNN-C models trained on CIFAR-10. AllCNN-C was chosen for this analysis since it exhibits
the largest variations in performance, making this effect more clear. While learning rates larger than
0.01 (the standard learning rate for AllCNN-C) reach slightly higher accuracies, this effect comes at
the cost of less stable training. The majority of models trained with these higher learning rates failed
to train. Thus, the standard choice of learning rate for AllCNN-C is appropriate for the cross-entropy
loss, and TaylorGLO loss functions are able to improve upon it.

F TAYLOR APPROXIMATIONS OF THE CROSS-ENTROPY LOSS

While TaylorGLO’s performance originates primarily from discovering better loss functions, it is
informative to analyze what role the accuracy of the Taylor approximation plays in it. One way
to characterize this effect is to analyze the performance of various Taylor approximations of the
cross-entropy loss.

Table 2 provides results from such a study. Bivariate approximations to the cross-entropy loss,
centered at a = 〈0.5, 0.5〉, with different orders k were used to train AllCNN-C models on CIFAR-10.
Third-order approximations and above are trainable. Approximations’ performance is within a few
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Figure 8: Effect of varying learning rates in AllCNN-C when trained with the cross-entropy loss on
CIFAR-10. For each learning rate, ten models were trained, with up to ten retries if training failed.
The majority of training attempts failed for learning rates larger than 0.01. The 0.01 learning rate used
in the experiments in this paper results in best stable performance. Overall, the small performance
differences that can result from adjusting the learning rate, regardless of stability, are much smaller
than those that result from training with TaylorGLO. Thus, TaylorGLO provides a mechanism for
improvement beyond implicit adjustments of the learning rate.

Table 2: Performance of Taylor approximations of the cross-entropy loss function on AllCNN-C
with CIFAR-10. Approximations of different orders, with a = 〈0.5, 0.5〉, are presented. Presented
accuracies are the mean from ten runs. The baseline is the standard cross-entropy loss. Higher-order
approximations are better, suggesting a potential (although computationally expensive) opportunity
for improvement in the future.

Loss Function Mean Accuracy (stddev)

k = 2 0.1034 (0.0101)
k = 3 0.8451 (0.0043)
k = 4 0.8592 (0.0032)
k = 5 0.8649 (0.0042)
Cross-Entropy 0.8965 (0.0021)

percentage points of the cross-entropy loss, with higher-order approximations yielding progressively
better accuracies, as expected.

The results thus show that third-order TaylorGLO loss functions cannot represent the cross-entropy
baseline loss accurately. One possibility for improving TaylorGLO is thus to utilize higher order
approximations. However, it is remarkable that TaylorGLO can still find loss functions that outperform
the cross-entropy loss. Also, the increase in the number of parameters—and the corresponding
increase in computational requirements—may in practice outweigh the benefits from a finer-grained
representation. This effect was seen in preliminary experiments, and the third-order approximations
(used in this paper) deemed to strike a good balance.

G TAYLORGLO EXPERIMENT DURATIONS AND ENVIRONMENTAL IMPACT

The infrastructure that ran the experiments in this paper is located in California, which is estimated to
have had an estimated carbon dioxide equivalent total output emission rate of 226.21 kgCO2eq/kWh
in 2018 (epa, 2020). This quantity can be used to calculate the climate impact of compute-intensive
experiments.

Table 3 provides estimates of durations and total emissions for various TaylorGLO experiments.
Emissions were calculated using the Machine Learning Impact calculator (Lacoste et al., 2019),
assuming that no candidates failed evaluation (which would result in slightly lower estimates).
Presented values can thus be thought of as being an upper bound.
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Table 3: Estimated TaylorGLO experiment durations and total emissions. The estimates assume
populations of 20 concurrent candidates and 50 generation runs. Emission values are upper bounds
reported in equivalent kilograms of carbon dioxide, thus accounting for other gases of interest.
Overall, experiments are short enough that they can each be run over a few days.

TaylorGLO Experiment Duration (hours) Total Emissions (kgCO2eq)

AlexNet on CIFAR-10 3.60 4.07
ResNet-20 on CIFAR-10 10.24 11.58
Pre ResNet-20 on CIFAR-10 9.26 10.48
AllCNN-C on CIFAR-10 17.06 19.30
PyramidNet 110a48 on CIFAR-10 73.86 83.53
Wide ResNet 28-5 on CIFAR-10 42.90 48.52
Wide ResNet 16-8 on CIFAR-10 36.08 40.80
Wide ResNet 28-10 on CIFAR-10 105.30 119.10

Overall, experiment durations are short enough that TaylorGLO can be practically applied to different
tasks to find customized loss functions.

16


	Introduction
	Related work
	Loss Functions as Multivariate Taylor expansions
	The TaylorGLO method
	Experimental setup
	Results
	The TaylorGLO discovery process
	Performance comparisons
	Performance on reduced datasets

	Discussion and future work
	Conclusion
	Experimental setup
	MNIST
	CIFAR-10 and CIFAR-100
	SVHN
	Candidate evaluation details
	Statistical testing
	Implementation details

	Illustrating the evolutionary process
	Top MNIST loss function
	MNIST evaluation length sensitivity
	Learning rate sensitivity
	Taylor approximations of the cross-entropy loss 
	TaylorGLO experiment durations and environmental impact

