
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS FAST GRAPH GENERATION
VIA AUTOREGRESSIVE FILTRATION MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph generative models often face a critical trade-off between learning com-
plex distributions and achieving fast generation speed. We introduce Autoregres-
sive Filtration Modeling (AFM), a novel approach that addresses both challenges.
AFM leverages filtration, a concept from topological data analysis, to transform
graphs into short sequences of monotonically increasing subgraphs. This enables
a structured autoregressive generation process, contrasting with the stochastic tra-
jectories of diffusion models. We propose a novel autoregressive graph mixer
model to learn this filtration process, coupled with a noise augmentation strat-
egy to mitigate exposure bias and a reinforcement learning approach to refine
the generative model. Extensive experiments on diverse synthetic and real-world
datasets demonstrate AFM’s superior performance compared to existing autore-
gressive models. Additionally, AFM achieves a 100-fold speedup in generation
time compared to state-of-the-art diffusion models while maintaining the qual-
ity of generated graphs. This work represents a significant advancement towards
high-throughput graph generation.

1 INTRODUCTION

Graphs are fundamental structures that model relationships in various domains, from social networks
and molecular structures to transportation systems and neural networks. The ability to generate re-
alistic and diverse graphs is crucial in many applications, such as drug discovery (Liu et al., 2018;
Vignac et al., 2023), network simulation (Yu & Gu, 2019), and protein design (Ingraham et al.,
2019). The space of drug-like molecules and protein conformations is, for practical purposes, in-
finite, limiting the effectiveness of in-silico screening of existing libraries (Polishchuk et al., 2013;
Levinthal, 1969). Consequently, high-throughput graph generation—the task of efficiently creating
new graphs that faithfully emulate properties similar to those observed in a given domain—has thus
emerged as a critical challenge in machine learning and generative artificial intelligence (Gangwal
et al., 2024; Grisoni et al., 2021).

While significant progress has been made in graph generation, existing approaches often face ex-
pressive or computational challenges. Classical methods, such as Erdős-Rényi models (Erdos et al.,
1960) or stochastic block models (Holland et al., 1983), are typically tailored to model specific graph
families, thus struggling to capture the heterogeneous structural properties of real-world graphs (You
et al., 2018b). More recent deep learning-based approaches, particularly autoregressive (You et al.,
2018b; Liao et al., 2019; Kong et al., 2023) and diffusion models (Vignac et al., 2023; Bergmeister
et al., 2024), have shown promise in generating increasingly realistic graphs. However, these meth-
ods often suffer from scalability issues when handling large graphs, primarily due to their quadratic
or higher computational complexity with respect to the number of nodes. Furthermore, many current
diffusion-based approaches rely on iterative refinement processes involving a large number of steps.
This computational burden not only limits the applicability of these models to large-scale graphs but
also hinders their potential for high-throughput applications (Gentile et al., 2022; Gómez-Bombarelli
et al., 2016; Polishchuk et al., 2013).

Recent work has explored the use of topological data analysis, particularly persistent homology and
filtration (Edelsbrunner et al., 2002; Zomorodian & Carlsson, 2005), for graph representation. A
filtration provides a multi-scale view of a given graph structure by constructing a nested sequence
of subgraphs. This approach has shown promise in various graph analysis tasks, including classifi-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

cation and similarity measurement (O’Bray et al., 2021; Schulz et al., 2022). In the context of gen-
erative modeling, filtration-based representations have been used to develop more expressive tools
for generative model evaluation (Southern et al., 2023). However, the application of filtration-based
methods for graph generation remains unexplored.

In this paper, we introduce Autoregressive Filtration Modeling (AFM), a novel approach to fast
graph generation that models filtration sequences autoregressively. To generate a graph, our method
produces a short sequence of increasingly dense and detailed subgraphs. Compared to diffusion
models (Vignac et al., 2023; Bergmeister et al., 2024), AFM requires fewer iterations during sam-
pling, resulting in significantly faster inference speed. Moreover, AFM incorporates advanced tech-
niques to mitigate exposure bias (Bengio et al., 2015), a common challenge in existing autoregres-
sive models, thereby improving sample quality. Our method offers a promising balance between
efficiency and accuracy in graph generation, addressing key limitations of current approaches.

In summary, our contributions are as follows:

• We propose a novel autoregressive graph generation framework that leverages graph filtra-
tion to enable fast, high-throughput sampling.

• We introduce a specialized autoregressive model architecture designed to learn the unique
properties of filtration sequences, incorporating both structural and temporal information
about filtration.

• We identify exposure bias as a potential challenge in autoregressive graph generation and
propose noise augmentation and adversarial fine-tuning as effective strategies to mitigate
this issue.

• We conduct comprehensive ablation studies to evaluate the impact of different components
within our framework, demonstrating that noise augmentation and adversarial fine-tuning
substantially improve performance.

• Our empirical results highlight the strong performance and efficiency of our model com-
pared to recent baselines. Notably, our model achieves inference speed 100 times faster
than existing diffusion-based models.

2 RELATED WORK

AFM builds on the concept of graph filtration and is fine-tuned via reinforcement learning. In the
following, we provide a brief overview of related graph generative models, training schemes, and
applications of graph filtrations.

Graph Generation. Historically, simple statistical models (Erdos et al., 1960; Holland et al.,
1983) have been used to model distributions of graphs. While these approaches lend themselves
to theoretical investigation, they are typically insufficient to model datasets seen in real-world ap-
plications. GraphRNN (You et al., 2018b) made advances towards deep generative graph models
by autoregressively generating nodes and their incident edges to build up an adjacency matrix. In
a similar fashion, DeepGMG (Li et al., 2018) iteratively builds a graph node-by-node. Liao et al.
(2019) proposed a more efficient autoregressive model by generating multiple nodes at a time in
a block-wise fashion, leveraging mixtures of multivariate Bernoulli distributions in a similar way
to us. These models share the fact that they build graphs via node-addition and therefore require
some choice of node ordering, analogous to the choice of edge ordering that we make in our work
via a filtration function. To avoid an arbitrary choice, OM (Chen et al., 2021) and GraphArm (Kong
et al., 2023) learn node orderings, where the latter uses reinforcement learning to jointly learn the or-
dering policy alongside the generative model. In contrast to autoregressive node-addition methods,
approaches by Goyal et al. (2020) and Bacciu et al. (2020) generate graphs through edge-addition
following a pre-defined edge ordering. While this strategy bears similarities to our proposed filtra-
tion method, our approach distinctly differs by modeling sequences of graphs and allowing for edge
deletion as well as addition. Graph variational autoencoders (Kipf & Welling, 2016; Simonovsky
& Komodakis, 2018) generate all edges at one time, thereby reducing computational costs during
inference. However, these methods struggle to model complicated distributions and may fail in the
presence of isomorphic nodes (Zhang et al., 2021). Generative adversarial networks (GANs) (Bo-
jchevski et al., 2018; Cao & Kipf, 2018; Martinkus et al., 2022) are likelihood-free and avoid the
node-orderings and graph matching algorithms required in autoregressive models and VAEs. Graph
diffusion models such as EDP-GNN (Niu et al., 2020) and GDSS (Jo et al., 2022), based on score

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

matching, or DiGress (Vignac et al., 2023), based on discrete denoising diffusion (Austin et al.,
2021), have emerged as powerful generators. Unfortunately, they require many iterative denois-
ing steps, making them slow during sampling. Some efforts have been made to increase inference
speed. Improvements were achieved in autoregressive models by generating multiple graph features
in a single step (Liao et al., 2019; Kong et al., 2023) while hierarchical approaches allowed scal-
ing diffusion models (Bergmeister et al., 2024) and autoregressive models (Karami, 2024) to larger
graphs. Additional efficiency gains have been achieved in diffusion models by using absorbing state
processes (Chen et al., 2023).
Reinforcement Learning Finetuning. Ranzato et al. (2016) demonstrated that reinforcement
learning (RL) allows optimizing non-differentiable sequence-level metrics in autoregressive mod-
eling and argued that training in free-running mode mitigates exposure bias (Bengio et al., 2015).
SeqGAN (Yu et al., 2017), which is most relevant to our work, avoids any extrinsic metrics by using
a discriminator to provide feedback to the generative model. In the context of graph learning, You
et al. (2018a) train a generative model for molecules via reinforcement learning, combining adver-
sarial and domain-specific rewards. In contrast to our work, they do not consider general graphs and
do not use any autoregressive pre-training. Taiga (Mazuz et al., 2023) uses reinforcement learning
to optimize chemical properties of molecules obtained from a language model that is pre-trained on
SMILES strings. Even graph diffusion models have been shown to be amenable to RL finetuning,
allowing extrinsic non-differentiable metrics to be optimized (Liu et al., 2024).
Graph Filtration. Filtration is commonly used in the field of persistent homology (Edelsbrun-
ner et al., 2002) to extract features of geometric data structures at different resolutions. Previously,
graph filtration has mostly been used to construct graph kernels (Zhao & Wang, 2019; Schulz et al.,
2022) or extract graph representations that can be leveraged in downstream tasks such as classifi-
cation (O’Bray et al., 2021). While filtration has also been used for evaluating graph generative
models (Southern et al., 2023), to the best of our knowledge, our work presents the first model that
directly leverages filtration for generation.

3 METHOD

In this section, we present the Autoregressive Filtration Modeling (AFM) approach for graph genera-
tion. We begin with the notion of filtration and present various filtration strategies in Sec 3.1. Then,
we introduce our autoregressive model in Sec. 3.2. Finally, in Sec. 3.3, we propose a two-staged
training scheme for AFM.

In the following, we consider unlabeled and undirected graphs, denoted by G = (V,E), where V
is the set of vertices and E ⊆ V × V is the set of edges. Without loss of generality, we assume
V = {1, 2, . . . , n} and denote by eij the edge between nodes i, j ∈ V . We assume that only
connected graphs are presented to our model during training and filter training sets if necessary. Our
approach is fundamentally based on the concept of graph filtration.

3.1 GRAPH FILTRATION

A filtration of a graph G is defined as a nested sequence of subgraphs:

G = GT ⊇ GT−1 ⊇ · · · ⊇ G1 ⊇ G0 = (V, ∅) (1)

where each Gt = (V,Et) is a graph sharing the same node set as GT := G. The filtration satisfies
the following properties: (1) Et ⊆ Et′ for all t < t′ and (2) G0 is the completely disconnected
graph, i.e., E0 = ∅. In our experiments, we choose T = 15 or T = 30, depending on the dataset.

A convenient method to define a filtration of G involves specifying two key components (O’Bray
et al., 2021): a filtration function defined on the edge set f : E → R and a non-decreasing sequence
of scalars (a0, a1, . . . , aT ) with −∞ = a0 ≤ a1 ≤ · · · ≤ aT−1 ≤ aT = +∞. Given these
components, we can define the edge sets Ei as nested sub-levels of the function f :

Et := f−1((−∞, at]) = {e ∈ E : f(e) ≤ at} ∀ t = 1, . . . , T − 1. (2)

The sequence (at)
T
t=0 is referred to as the filtration schedule sequence. The choice of the filtration

function and the schedule sequence plays a crucial role in the effectiveness of graph filtration for
generation. We present a visual example of the filtration process in Figure 1a. In the following, we
will discuss several strategies for the filtration function and schedule.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) A filtration sequence

Noise Noise Noise

Autoregressive Graph Mixer

Noise

(b) Training stage I (teacher-forcing)

Generator

Discriminator

 Fake Graphs 

 Real Graphs 

 Reward 

 Loss 

(c) Training stage II (adversarial fine-tuning)

Figure 1: Top: A graph is transformed into a sequence of subgraphs (filtration) via edge-deletion.
Bottom left: the generator is trained via teacher-forcing to reverse the filtration process. Bottom
right: the generator is fine-tuned in free-running mode via reinforcement learning based on a reward
signal output by a discriminator in a SeqGAN-like framework (c.f. details in Appendix A.18).

Filtration Function. In principle, any real-valued function defined on the set of node pairs can be
used as the filtration function. For graph generation, an effective filtration function should satisfy
two key criteria: diversity and structural consistency. Specifically, diversity means that the func-
tion should assign distinguishable values to different edges, facilitating a more granular filtration
sequence. Structural consistency describes that edges with similar structural properties or proximity
in the graph should receive similar weights from the filtration function. Based on these criteria, we
propose the following filtration functions:

• Line Fiedler function fFiedler: This function is derived from the second smallest eigenvec-
tor (Fiedler vector) of the symmetrically normalized Laplacian of the line graph L(G).
In L(G), nodes represent edges in the original graph G, and two nodes are connected if
their corresponding edges in G share a common vertex. This vector is not unique due to
multiplicities of eigenvalues and sign flip preservation (i.e., its negative is also an eigen-
vector with the same eigenvalue). We thus choose it arbitrarily with a random sign choice
per graph. This function captures global structural information and tends to assign similar
values to neighboring edges.

• Centrality functions fbetween and fremote: Following (Anthonisse, 1971; Brandes, 2008), we
utilize the concept of betweenness-centrality to quantify the importance of an edge in fa-
cilitating communication between different parts of the graph. We refer to Appendix A.16
for details.

Our empirical comparison (detailed in Appendix A.16) demonstrates that the line Fiedler function
generally outperforms the other two options. Consequently, we primarily utilize this function in
our experiments. By employing our proposed filtration function, we can effectively guide the graph
generation process. While we focus on pre-determined filtration functions, it is worth noting that
learning edge weights dynamically, in a similar fashion as in Kong et al. (2023), presents an intrigu-
ing avenue for future research.

Filtration Schedule Sequence. Analogous to noise schedules in diffusion models (Nichol &
Dhariwal, 2021), our filtration schedule governs the rate at which edges are added during sam-
pling or removed during filtration. We model this process using a continuous scheduling function
γ : [0, 1] → [0, 1] where γ(0) = 0 and γ(1) = 1. Given a graph, the discretized schedule sequence
(at)

T
t=0 can then be defined as follows:

at := inf
{
a ∈ R : |f−1((−∞, at])| ≥ |E| · γ(t/T )

}
∀ 0 ≤ t ≤ T, (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where f is the filtration function and T is the total number of steps. We note that the discretized
schedule (at)

T
t=0 is defined per graph, as it depends on f and the cardinality |E|.

Drawing inspiration from noise scheduling in diffusion models, we propose three scheduling func-
tions:

• Linear schedule γ(t) := t: This schedule intends to add approximately the same of number
of edges in each step. Assuming mostly distinct edge weights, this results in a roughly
linear increase in the density of graphs Gt over time.

• Convex schedule γ(t) := 1 − cos(πt/2): This schedule adds more edges in later steps,
potentially offering finer control over the graph generation process in its earlier stages.

• Concave schedule γ(t) := sin(πt/2): This schedule adds more edges during the initial
steps, which may help establish the overall graph structure more quickly while leaving
room for finer adjustments over structural details in the later stages.

We conducted an empirical comparison of these schedules on a planar graph dataset in Ap-
pendix A.16. Our findings indicate that no single variant consistently outperforms the others across
all evaluation metrics. However, the concave schedule achieves the highest validity score. In the
experiments we present in the main paper, we use the linear schedule for simplicity.

3.2 AUTOREGRESSIVE MODELING OF THE FILTRATION SEQUENCE

Our objective is to develop a generative model that reverses the graph filtration process in Eqn. (1).
Given a node set V , we aim to generate a sequence of graphs G0, G1, . . . , GT on V , where each
subsequent graph contains an increasing number of edges. The final graph GT should plausibly
represent a sample from the target data distribution. We formulate this generative process using an
autoregressive model, expressing the joint likelihood as follows:

pθ(GT , . . . , G0) = p(G0)

T∏
t=1

pθ(Gt|Gt−1, . . . , G0), (4)

where p(G0) represents the initial distribution, which we define as a point mass on the fully dis-
connected graph (V, ∅). In the following sections, we will detail our implementation of the autore-
gressive model pθ, including the architecture and training procedure. While existing autoregressive
models typically utilize RNNs (You et al., 2018b; Liao et al., 2019; Goyal et al., 2020; Bacciu
et al., 2020) or a first-order autoregressive structure (Kong et al., 2023), our model architecture for
implementing pθ is a novel and efficient design inspired by MLP-Mixers (Tolstikhin et al., 2021).

Backbone Architecture. The filtration sequence can be viewed as a dynamic graph with a con-
stant node set but evolving edge sets. Our backbone architecture operates on this structure by alter-
nating between two types of information processing layers. The first type, called structural mixing,
consists of a GNN that processes graph structures G0, . . . , Gt−1 independently, with weights shared
across time steps. The second type, called temporal mixing, consists of a transformer decoder that
processes node representations along the temporal axis, with weights shared across nodes. Formally,
given input node representations v

(t)
i ∈ RD for nodes i ∈ V and time steps t ∈ [T − 1], a single

mixing operation in our backbone model produces new representations v̂(t)i and is defined as:

Structural mixing:
(
ṽ
(t)
i

)|V |

i=1
:= GNNθ

((
v
(t)
i

)|V |

i=1
, Et, t

)
∀ t = 0, . . . , T − 1,

Temporal mixing:
(
v̂
(t)
i

)T

t=1
:= TransformerDecoderθ

((
ṽ
(t)
i

)T

t=1

)
∀ i = 1, . . . , |V |.

For the structural mixing, we use a Structure-Aware-Transformer layer (Chen et al., 2022). Ad-
ditionally, we incorporate both the timestep t and cycle counts in Gt using FiLM (Perez et al.,
2018). These structural features were used previously in other graph generative models such as
DiGress (Vignac et al., 2023). Multiple mixing operations are stacked to form the backbone model.

Edge Decoder. To model pθ(Gt|Gt−1, . . . , G0), we produce a distribution over possible edge sets
of Gt. We use a mixture of multivariate Bernoulli distributions to capture dependencies between

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

edges, similar to previous works (Liao et al., 2019; Kong et al., 2023). Given K ≥ 1 mixture com-
ponents, we infer K Bernoulli parameters for each node pair i, j ∈ V from the node representations
vi produced by the backbone model:

p
(i,j)
k := Dk,θ(vi, vj) ∈ [0, 1], ∀ i, j ∈ V, ∀ 1 ≤ k ≤ K. (5)

where D·,θ is some neural network. We enforce that p(i,j)k is symmetric and that the probability of
self-loops is zero. In addition, we produce a mixture distribution π ∈ RK in the K − 1 dimensional
probability simplex from pooled node representations: π := Dmix,θ

(
(vi)

|V |
i=1

)
∈ ∆K−1. The

architectural details of D·,θ are provided in Appendix A.7. The final likelihood is defined as:

pθ(Et|Gt−1, . . . , G0) :=

K∑
k=1

πk

∏
i<j

{
p
(i,j)
k if eij ∈ Et

1− p
(i,j)
k else

}
. (6)

In contrast to existing autoregressive graph generators (You et al., 2018b; Liao et al., 2019; Goyal
et al., 2020; Bacciu et al., 2020; Kong et al., 2023), our model introduces a key innovation: the
ability to generate non-monotonic graph sequences. This means it can both add and delete edges.
We argue that this capability is crucial for mitigating error accumulation during sampling. Consider,
for instance, the task of generating tree structures. If a cycle is inadvertently introduced into an
intermediate graph Gt (where t < T ), traditional autoregressive approaches would be unable to
rectify this error. Our model, however, can potentially delete the appropriate edges in subsequent
timesteps, thus recovering from such mistakes. In Sec. 3.3.1, we introduce a data augmentation
technique to train AFM on non-monotonic sequences that contain erroneous edges and we show
empirically in Sec. 4.4 that this augmentation substantially improves model performance.

Input Node Representations. The initialization of node representations is a crucial step preceding
the forward pass through the mixer architecture above. We compute initial node representations
from positional and structural features in a similar fashion as Vignac et al. (2023). Moreover, we
add learned positional embeddings based on a node ordering derived from the filtration function.
We refer to Appendix A.6 for further details.

Asymptotic Complexity. We provide a detailed analysis of the asymptotic runtime complexity
of our method in Appendix A.2. Asymptotically, AFM’s complexity of sampling a graph with N
nodes is O(T 2N + TN3). Even though cubic in the number of nodes, we found that the efficiency
of AFM is largely driven by our ability to use a small T (T ≤ 30), while diffusion-based models
generally require a much larger number of iterations.

3.3 TRAINING ALGORITHM

We employ the teacher-forcing approach (Williams & Zipser, 1989) to train our generative model
pθ in a first training stage. We illustrate this training scheme in Figure 1b. Teacher-forcing allows
the model to learn from complete sequences of graph evolution, providing a good initialization for
subsequent reinforcement learning-based fine-tuning (second training stage). Given a dataset of
graphs D, we convert it into a dataset of filtration sequences, denoted as D̃. Our objective is to
maximize the log-likelihood of these sequences under our model:

L(θ) := E(G0,...,GT )∼D̃ [log pθ(G0, . . . , GT )] . (7)

In practice, this objective is implemented as a cross-entropy loss. While the teacher-forcing approach
is efficient, it can lead to exposure bias (Bengio et al., 2015; Yu et al., 2017; Ranzato et al., 2016),
where the model’s performance during inference degrades due to a distribution shift caused by its
reliance on its own predictions. We propose two strategies to address this issue, namely noise
augmentation and adversarial fine-tuning with reinforcement learning.

3.3.1 MITIGATING EXPOSURE BIAS

Noise Augmentation. To mitigate exposure bias in autoregressive modeling, previous works have
proposed data augmentation schemes to make models more robust to the distribution-shift occuring

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

during inference (Bengio et al., 2015). We propose a simpler yet effective strategy: namely, ran-
domly perturbing intermediate graphs in a filtration sequence G0, . . . , GT during the above teacher-
forcing training phase to expose the model to erroneous transitions. For each intermediate graph Gt

with 0 < t < T , we generate a perturbed edge set Ẽt by including each possible edge e indepen-
dently with probability

P[e ∈ Ẽt] :=

{
(1− λt) + λtρt if e ∈ Et

λtρt else

}
, (8)

where λt ∈ [0, 1] controls stochasticity and ρt := |Et|/(|V |
2 ) is the density of Gt. In practice, we

decrease λt affinely as t increases and include multiple perturbations of each filtration sequence in
the training dataset D̃. Regarding the choice of these hyper-parameters, we refer to Appendix A.8.

Adversarial Fine-tuning with Reinforcement Learning. While the above noise augmentation
technique substantially improves the overall quality of generated graphs, it still falls short in gener-
ating graphs with high structural fidelity. To address this, we propose a reinforcement learning based
fine-tuning stage to refine the model trained with teacher-forcing. Adapting the SeqGAN frame-
work (Yu et al., 2017), we implement a generator-discriminator architecture where the generator (our
mixer model) operates in inference mode as a stochastic policy and is thereby exposed to its own
predictions during training. The discriminator is a graph transformer, namely GraphGPS (Rampásek
et al., 2022). During training, the generator produces graph samples, which the discriminator evalu-
ates for plausibility. The generator is updated using Proximal Policy Optimization (PPO) (Schulman
et al., 2017) based on the discriminator’s feedback, while the discriminator is trained adversarially
to distinguish between generated and training set graphs. This training scheme is illustrated in Fig-
ure 1c. It is worth noting that only the final generated graph GT is presented to the discriminator,
instead of the full sequence of graphs. Therefore, the generator is trained to maximize a terminal
reward without constraints on intermediate graphs. We provide the pseudo-code in Appendix A.18.

4 EXPERIMENTS

We empirically evaluate our method on synthetic and real-world datasets. In Sec. 4.1, we first
present results on the commonly used small benchmark datasets (Martinkus et al., 2022), comparing
our method to a variety of baselines. We then demonstrate in Sec. 4.2 that we can improve upon
these results by using a more realistic setting with more training examples. Additionally, we present
results for inference efficiency. Finally, in Sec. 4.3, we demonstrate that our model is applicable
to real-world data, namely larger protein graphs (Dobson & Doig, 2003). In Sec. 4.4, we present
ablation studies demonstrating the efficacy of noise augmentation and adversarial fine-tuning.

Evaluation. We follow established practices from previous works (You et al., 2018b; Martinkus
et al., 2022; Vignac et al., 2023) in our evaluation. We compare a set of model-generated samples
to a test set via maximum mean discrepancy (MMD) (Gretton et al., 2012), based on various graph
descriptors. These descriptors include histograms of node degrees (Deg.), clustering coefficients
(Clus.), orbit count statistics (Orbit), and eigenvalues (Spec.). While we employ these metrics to
facilitate comparison with previous methods, we acknowledge the criticisms raised by O’Bray et al.
(2022) regarding the use of indefinite kernels and arbitrary selection of kernel hyperparameters in
these evaluation techniques.

In previous works (Martinkus et al., 2022; Vignac et al., 2023), very few samples are generated
for the evaluation of graph generative models. In Appendix A.17, we show both theoretically and
empirically that this leads to high bias and variance in the reported metrics. In Sec. 4.2 and 4.3, we
generate 1024 samples for evaluation to mitigate this issue, while we generate 40 samples in Sec. 4.1
to fairly compare to previous methods. We sample the number of nodes to be generated from the
empirical training distribution, which is consistent with Vignac et al. (2023) but deviates from the
approach by Bergmeister et al. (2024), where the authors determine the number of nodes by using
the ground truth number of nodes from the test set. For synthetic datasets, we follow previous works
by reporting the ratio of generated samples that are valid, unique, and novel (VUN). In Sec. 4.2
and 4.3, we report inference speed, measured as the time needed to generate 1024 graphs on an
H100 GPU, normalized to a per-graph cost.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of various models on small synthetic SPECTRE datasets. Results on
GraphRNN, GRAN and SPECTRE taken from Martinkus et al. (2022). Results on DiGress, ESGG
and EDGE from Bergmeister et al. (2024).

Planar Graphs (|V | = 64, Ntrain = 128)

VUN (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓)

GraphRNN 0.0 0.0049 0.2779 1.2543 0.0459
GRAN 0.0 0.0007 0.0426 0.0009 0.0075
SPECTRE 25.0 0.0005 0.0785 0.0012 0.0112
DiGress 77.5 0.0007 0.0780 0.0079 0.0098
EDGE 0.0 0.0761 0.3229 0.7737 0.0957
ESGG 95.0 0.0005 0.0626 0.0017 0.0075

Ours 72.5 0.0037 0.1332 0.0047 0.0099

SBM Graphs (|V | ∼ 104, Ntrain = 128)

VUN (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓)

GraphRNN 5.0 0.0055 0.0584 0.0785 0.0065
GRAN 25.0 0.0113 0.0553 0.0540 0.0054
SPECTRE 52.5 0.0015 0.0521 0.0412 0.0056
DiGress 60.0 0.0018 0.0485 0.0415 0.0045
EDGE 0.0 0.0279 0.1113 0.0854 0.0251
HiGen N/A 0.0019 0.0498 0.0352 0.0046
ESGG 45.0 0.0119 0.0517 0.0669 0.0067

Ours 47.5 0.0014 0.0506 0.0551 0.0058

Baselines. We aim to demonstrate that our method is competitive with state-of-the-art diffusion
models in terms of sample quality while outperforming them in terms of inference speed. Hence,
we compare our method to two recent diffusion models, namely DiGress (Vignac et al., 2023) and
ESGG (Bergmeister et al., 2024). DiGress first introduced discrete diffusion to the area of graph
generation and remains one of the most robust baselines. ESGG is acutely relevant to our work, as
it aims to improve inference speed and scalability to large graphs. In addition to these diffusion-
based approaches, we also present results on an autoregressive model, GRAN (Liao et al., 2019),
which focuses on efficiency during inference. Whenever we train baseline models, we continue
training until no additional improvements in validation validitiy and MMD metrics are apparent.
We provide additional details about model selection for ESGG in Appendix A.11 and for GRAN
in Appendix A.15. We provide our hyper-parameter choices for GRAN in Appendix A.12, for
DiGress in Appendix A.13, and for ESGG in Appendix A.14. In Sec. 4.1, we report baseline results
from the literature, also comparing to the hierarchical HiGen (Karami, 2024) approach, the scalable
EDGE (Chen et al., 2023) diffusion model, the autoregressive GraphRNN model (You et al., 2018b),
and the GAN-based SPECTRE model (Martinkus et al., 2022).

4.1 EXPERIMENTS WITH SMALL SYNTHETIC DATASETS

As a first demonstration of our method, we present results on the planar and SBM datasets by Mar-
tinkus et al. (2022). Since the training set consists of only 128 graphs, we find that our models tend to
overfit during the teacher-forcing training stage, which manifests as an increase in the validation loss
while the evaluation metrics continue to improve. To mitigate this issue, we introduce some small
stochastic perturbations to node orderings used for initializing node representations. We discuss this
in more detail in Appendix A.6. Model selection is performed based on the minimal validation loss.
Table 1 illustrates that our model outperforms GraphRNN (You et al., 2018b), GRAN (Liao et al.,
2019), and SPECTRE (Martinkus et al., 2022), in terms of validity on the planar graph dataset.
On the SBM dataset, it outperforms the autoregressive baselines (GraphRNN and GRAN) while
almost matching the performance of SPECTRE. On both datasets, it is competitive with the two
diffusion-based approaches, DiGress (Vignac et al., 2023) and ESGG (Bergmeister et al., 2024).

4.2 EXPERIMENTS WITH EXPANDED SYNTHETIC DATASETS

We supplement the results presented above by training our model on larger synthetic datasets.
Namely, we generate training sets consisting of 8192 graphs and corresponding validation and test
sets consisting of 256 graphs each. We use the same data generation approach as in Martinkus et al.
(2022) to obtain expanded planar and SBM datasets. Additionally, we produce an expanded dataset
of lobster graphs using NetworkX (Hagberg et al., 2008), as done in (Liao et al., 2019). To assess the
robustness of our method, we perform three independent training runs per dataset. We present the
median metrics along with the maximum deviations observed across the three runs in Appendix A.9
and visualize samples from our model in Appendix A.10. In Table 2, we compare our method to our
three baselines. For reasons of brevity, we only report the median performance of our method here.
We find that our models are substantially faster during inference than the diffusion models, consis-
tently achieving at least a 100-fold speedup in comparison to DiGress and ESGG. In an independent
experiment, we observe that reducing the number of diffusion steps in DiGress to values comparable
to the ones used in AFM (30 or 15) leads to a substantial degradation of quality. Moreover, in Ta-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance of various models on expanded synthetic datasets, evaluated on 1024 model
samples. We report the result across a single run for the baselines and the median performance
across three runs for our model. *ESGG evaluation is modified to draw graph sizes from empirical
training distribution and use 100 refinement steps for determining validity.

Expanded Planar Graphs (|V | = 64, Ntrain = 8192)

VUN (↑) Unique (↑) Novel (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓) Time (↓)

GRAN 0.19 100 100 0.0061 0.1862 0.0961 0.0081 0.0303
DiGress 80.76 100 100 0.0004 0.0217 0.0045 0.0024 2.73
ESGG* 89.94 100 100 0.0007 0.0162 0.0074 0.0012 4.65

Ours 79.20 100 100 0.0004 0.0183 0.0002 0.0012 0.0278

Expanded SBM Graphs (Ntrain = 8192)

VUN (↑) Unique (↑) Novel (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓) Time (↓)

GRAN 25.29 100 100 0.0186 0.0086 0.0305 0.0022 0.133
DiGress 56.15 100 100 0.0002 0.0056 0.0076 0.0009 12.99
ESGG* 3.52 100 100 0.0949 0.0121 0.0518 0.0122 39.42

Ours 75.98 100 100 0.0014 0.0051 0.0180 0.0011 0.0301

Expanded Lobster Graphs (Ntrain = 8192)

VUN (↑) Uniqe (↑) Novel (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓) Time (↓)

GRAN 41.99 99.90 97.56 0.0436 0.0069 0.1510 0.1469 0.0399
DiGress 96.58 99.22 96.78 0.0001 8.33× 10−7 0.0016 0.0009 4.86
ESGG* 63.96 99.61 98.24 0.0007 0.00 0.0027 0.0023 3.16

Ours 79.10 99.80 100 0.0004 7.89× 10−5 0.0010 0.0016 0.0297

Table 3: Performance of various models on protein graph dataset. *ESGG evaluation is modified to
draw graph sizes from empirical training distribution.

Protein Graphs (100 ≤ |V | ≤ 500, Ntrain = 587)

Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓) Time (↓)

GRAN 0.0025 0.0510 0.1539 0.0051 2.25
DiGress 0.0006 0.0234 0.0289 0.0014 72.27
ESGG* 0.0033 0.0216 0.0557 0.0008 19.48

Ours 0.0024 0.0464 0.0532 0.0024 0.194

ble 2 we find that our method appears competitive with respect to sample quality, outperforming the
two diffusion models on the expanded SBM dataset in terms of validity. For ESGG, we note that we
obtain a surprisingly low validity score on the expanded SBM dataset. We refer to Appendix A.11
for further discussion on this. In comparison to the autoregressive baseline, GRAN, we find that our
model substantially outperforms it in terms of validity and MMD metrics.

4.3 EXPERIMENTS WITH REAL-WORLD DATA

In this subsection, we present empirical results on the protein graph dataset introduced by Dobson
& Doig (2003). While results have been reported for this dataset in previous works, we re-evaluate
the baselines on 1024 model samples to reduce bias and variance in the reported metrics. We use
a trained GRAN checkpoint provided by Liao et al. (2019) but re-train ESGG and DiGress, as no
trained models are available. We find that our model is again substantially faster than the diffusion-
based baselines. Moreover, it is also 10 times faster than GRAN while outperforming it with respect
to all MMD metrics. In comparison to the diffusion-based models, the sample quality of our ap-
proach appears slightly worse by most MMD metrics.

4.4 ABLATION STUDIES

In this subsection, we present empirical results which demonstrate that the noise augmentation of
intermediate graphs and adversarial fine-tuning introduced in Sec. 3.3 are crucial components of our
approach. We understand this as a strong indication that exposure bias affects our autoregressive
model. Additionally, we study the impact of the filtration granularity, as determined by the hyper-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Two ablation studies on expanded planar graph dataset. Results with median ± maximum
deviation across three runs are reported. For the noise ablation, we train for 100k steps in stage I.
For the finetuning ablation, we train for 200k steps in stage I.

Noise Ablation Finetuning Ablation

Stage I w/ Noise Stage I w/o Noise Stage II Stage I w/ Noise

VUN (↑) 20.21 ± 3.22 0.00 ± 0.00 79.20 ± 7.13 23.24 ± 9.67

Degree (↓) 0.0058 ± 0.0008 0.0864 ± 0.0749 0.0004 ± 5.4256 × 10−5 0.0036 ± 0.0009

Clustering (↓) 0.1768 ± 0.0106 0.3179 ± 0.0037 0.0183 ± 0.0014 0.1547 ± 0.0280

Spectral (↓) 0.0048 ± 0.0011 0.1042 ± 0.0760 0.0012 ± 0.0004 0.0033 ± 0.0014

Orbit (↓) 0.0129 ± 0.0169 0.7115 ± 0.4411 0.0002 ± 0.0016 0.0043 ± 0.0023

20 30 40 50 60 70

# Generation Steps

0.0

0.2

0.4

0.6

0.8

1.0

VU
N

AFM
DiGress

(a) Planar VUN vs T

20 30 40 50 60 70

# Generation Steps

0.00

0.05

0.10

0.15

0.20

0.25

In
fe

re
nc

e 
Ti

m
e 

[s
]

AFM
DiGress

(b) Inference time vs T

Figure 2: Performance and inference speed of AFM and DiGress on the expanded planar graph
dataset as the number of generation steps is varied.

parameter T . In Appendix A.16, we present extensive additional ablations on the choice of filtration
function, filtration schedule, and node individualization.

Noise Augmentation. Empirically, we find that noise augmentation of intermediate graphs sub-
stantially improves performance during training with teacher forcing (stage I). We illustrate this on
the expanded planar graph dataset in the left half of Table 4. As we consider this an important
finding of our work, we perform three training runs with different seeds for this ablation.

GAN Tuning. In the right half of Table 4, we compare performance after training with teacher-
forcing (stage I) and adversarial fine-tuning (stage II) on the expanded planar graph dataset from
Sec. 4.2. We find that adversarial fine-tuning substantially improves performance, both in terms of
validity and MMD metrics. A corresponding analysis for the expanded SBM and lobster datasets
can be found in Appendix A.16.

Filtration Granularity. In Figure 2, we study the impact of filtration granularity, i.e., the number
of steps T , on the generation quality and inference speed of AFM for the expanded planar graph
dataset. Additionally, we investigate how the number of denoising steps influences the quality and
speed in DiGress. We systematically re-train the models with varying T . Notably, AFM consistently
outperforms DiGress in computational efficiency across all steps. While DiGress only achieves a
maximum VUN of 41% for our largest considered T , AFM achieves a VUN of 81% for T = 30.

5 CONCLUSION

We proposed AFM, an efficient autoregressive graph generative model that relies on graph filtration.
AFM generates high-quality graphs, outperforming existing autoregressive models and rivaling dis-
crete diffusion approaches in terms of quality while being substantially faster at inference. Various
ablations demonstrated the configurability of AFM and indicate that exposure bias is an important
challenge for autoregressive graph modeling.

One limitation lies in the focus of our methodology solely on generating non-attributed graphs.
While extending this approach to include categorical edge labels seems feasible (see Appendix A.7),
the incorporation of node labels presents a bigger challenge. Although post-processing techniques
for node labeling may be applicable, the direct modeling of attributes remains a crucial area for fu-
ture investigation. Furthermore, exploring the possibility of learning to reverse a node label filtration
process jointly with the edge filtration could be a promising direction for future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

J. M. Anthonisse. The rush in a directed graph. Tech. Rep. BN 9/71, Stichting Mathematisch
Centrum, 2e Boerhaavestraat 49, Amsterdam, October 1971.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems 34 (NeurIPS), pp. 17981–17993, 2021.

Davide Bacciu, Alessio Micheli, and Marco Podda. Edge-based sequential graph generation with
recurrent neural networks. Neurocomputing, 416:177–189, 2020. doi: 10.1016/J.NEUCOM.
2019.11.112.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Systems
28 (NeurIPS), pp. 1171–1179, 2015.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In International Conference on
Learning Representations (ICLR), 2024.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan: Gen-
erating graphs via random walks. In International Conference on Machine Learning (ICML),
volume 80 of Proceedings of Machine Learning Research, pp. 609–618. PMLR, 2018.

Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic computation.
Soc. Networks, 30(2):136–145, 2008. doi: 10.1016/J.SOCNET.2007.11.001.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
CoRR, abs/1805.11973, 2018.

Dexiong Chen, Leslie O’Bray, and Karsten M. Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning (ICML), volume 162
of Proceedings of Machine Learning Research, pp. 3469–3489. PMLR, 2022.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco J. R. Ruiz, and Li-Ping Liu. Order matters: Proba-
bilistic modeling of node sequence for graph generation. In International Conference on Machine
Learning (ICML), volume 139 of Proceedings of Machine Learning Research, pp. 1630–1639.
PMLR, 2021.

Xiaohui Chen, Jiaxing He, Xu Han, and Liping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 4585–4610. PMLR, 2023.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. J. Mol. Biol., 330(4):771–783, July 2003.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In The Tenth
International Conference on Learning Representations (ICLR). OpenReview.net, 2022.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 24:43:1–43:48,
2023.

Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. Discrete
& Computational Geometry, 28(4):511–533, Nov 2002. ISSN 1432-0444. doi: 10.1007/
s00454-002-2885-2.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Amit Gangwal, Azim Ansari, Iqrar Ahmad, Abul Kalam Azad, Vinoth Kumarasamy, Vetriselvan
Subramaniyan, and Ling Shing Wong. Generative artificial intelligence in drug discovery: ba-
sic framework, recent advances, challenges, and opportunities. Frontiers in Pharmacology, 15:
1331062, 2024.

Francesco Gentile, Jean Charle Yaacoub, James Gleave, Michael Fernandez, Anh-Tien Ton, Fuqiang
Ban, Abraham Stern, and Artem Cherkasov. Artificial intelligence–enabled virtual screening of
ultra-large chemical libraries with deep docking. Nature Protocols, 17(3):672–697, Mar 2022.
ISSN 1750-2799. doi: 10.1038/s41596-021-00659-2.

Rafael Gómez-Bombarelli, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, David Duvenaud, Dou-
gal Maclaurin, Martin A. Blood-Forsythe, Hyun Sik Chae, Markus Einzinger, Dong-Gwang Ha,
Tony Wu, Georgios Markopoulos, Soonok Jeon, Hosuk Kang, Hiroshi Miyazaki, Masaki Numata,
Sunghan Kim, Wenliang Huang, Seong Ik Hong, Marc Baldo, Ryan P. Adams, and Alán Aspuru-
Guzik. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual
screening and experimental approach. Nature Materials, 15(10):1120–1127, Oct 2016. ISSN
1476-4660. doi: 10.1038/nmat4717.

Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: A scalable approach to domain-
agnostic labeled graph generation. In WWW ’20: The Web Conference 2020, pp. 1253–1263.
ACM / IW3C2, 2020. doi: 10.1145/3366423.3380201.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J.
Smola. A kernel two-sample test. J. Mach. Learn. Res., 13:723–773, 2012. doi: 10.5555/
2503308.2188410.

Francesca Grisoni, Berend JH Huisman, Alexander L Button, Michael Moret, Kenneth Atz, Daniel
Merk, and Gisbert Schneider. Combining generative artificial intelligence and on-chip synthesis
for de novo drug design. Science Advances, 7(24):eabg3338, 2021.

Aric Hagberg, Pieter Swart, and Daniel Chult. Exploring network structure, dynamics, and function
using networkx. In Proceedings of the 7th Python in Science Conference, 06 2008. doi: 10.25080/
TCWV9851.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5(2):109–137, 1983. ISSN 0378-8733.

John Ingraham, Vikas K. Garg, Regina Barzilay, and Tommi S. Jaakkola. Generative models for
graph-based protein design. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 32 (NeurIPS), pp. 15794–15805, 2019.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the sys-
tem of stochastic differential equations. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 10362–10383. PMLR, 2022.

Mahdi Karami. Higen: Hierarchical graph generative networks. In International Conference on
Learning Representations (ICLR), 2024.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International Conference on Machine
Learning (ICML), volume 202 of Proceedings of Machine Learning Research, pp. 17391–17408.
PMLR, 2023.

Cyrus Levinthal. How to fold graciously. In Mossbauer Spectroscopy in Biological Systems:
Proceedings of a meeting held at Allerton House, Monticello, Illinois., 1969. URL https:
//api.semanticscholar.org/CorpusID:9923873.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter W. Battaglia. Learning deep gener-
ative models of graphs. CoRR, abs/1803.03324, 2018.

12

https://api.semanticscholar.org/CorpusID:9923873
https://api.semanticscholar.org/CorpusID:9923873


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud, Raquel
Urtasun, and Richard S. Zemel. Efficient graph generation with graph recurrent attention net-
works. In Advances in Neural Information Processing Systems 32 (NeurIPS), pp. 4257–4267,
2019.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained graph vari-
ational autoencoders for molecule design. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 31 (NeurIPS), pp. 7806–7815, 2018.

Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Wei Chen, and Min Lin. Graph diffusion policy
optimization. CoRR, abs/2402.16302, 2024. doi: 10.48550/ARXIV.2402.16302.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE: spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In In-
ternational Conference on Machine Learning (ICML), volume 162 of Proceedings of Machine
Learning Research, pp. 15159–15179. PMLR, 2022.

Eyal Mazuz, Guy Shtar, Bracha Shapira, and Lior Rokach. Molecule generation using transformers
and policy gradient reinforcement learning. Scientific Reports, 13(1):8799, May 2023. ISSN
2045-2322. doi: 10.1038/s41598-023-35648-w.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning (ICML), 2021.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In The 23rd International
Conference on Artificial Intelligence and Statistics, AISTATS 2020, volume 108 of Proceedings
of Machine Learning Research, pp. 4474–4484. PMLR, 2020.

Leslie O’Bray, Bastian Rieck, and Karsten M. Borgwardt. Filtration curves for graph representation.
In Feida Zhu, Beng Chin Ooi, and Chunyan Miao (eds.), KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, pp. 1267–1275. ACM,
2021. doi: 10.1145/3447548.3467442.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten M. Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. In International Conference on
Learning Representations (ICLR), 2022.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film:
Visual reasoning with a general conditioning layer. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intel-
ligence (EAAI-18), pp. 3942–3951. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11671.

P G Polishchuk, T I Madzhidov, and A Varnek. Estimation of the size of drug-like chemical space
based on GDB-17 data. J Comput Aided Mol Des, 27(8):675–679, August 2013.

Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Advances in
Neural Information Processing Systems 35 (NeurIPS), 2022.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. In International Conference on Learning Representations
(ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Till Hendrik Schulz, Pascal Welke, and Stefan Wrobel. Graph filtration kernels. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2022, pp. 8196–8203. AAAI Press, 2022. doi:
10.1609/AAAI.V36I8.20793.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs us-
ing variational autoencoders. In 27th International Conference on Artificial Neural Networks
(ICANN), Proceedings, Part I, volume 11139 of Lecture Notes in Computer Science, pp. 412–
422. Springer, 2018. doi: 10.1007/978-3-030-01418-6\ 41.

Joshua Southern, Jeremy Wayland, Michael M. Bronstein, and Bastian Rieck. Curvature filtrations
for graph generative model evaluation. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36 (NeurIPS), 2023.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural
Information Processing Systems 34 (NeurIPS), pp. 24261–24272, 2021.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In International Conference
on Learning Representations (ICLR), 2023.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems 31 (NeurIPS), pp. 6412–6422, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pp. 5694–5703.
PMLR, 2018b.

James Jian Qiao Yu and Jiatao Gu. Real-time traffic speed estimation with graph convolutional
generative autoencoder. IEEE Trans. Intell. Transp. Syst., 20(10):3940–3951, 2019. doi: 10.
1109/TITS.2019.2910560.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, pp. 2852–2858. AAAI Press, 2017. doi: 10.1609/AAAI.V31I1.10804.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In Advances in Neural Information
Processing Systems 34 (NeurIPS), pp. 9061–9073, 2021.

Lingxiao Zhao, Xueying Ding, and Leman Akoglu. Pard: Permutation-invariant autoregressive
diffusion for graph generation. CoRR, abs/2402.03687, 2024. doi: 10.48550/ARXIV.2402.03687.

Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications
for graph classification. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Process-
ing Systems 32 (NeurIPS), pp. 9855–9866, 2019.

Afra Zomorodian and Gunnar E. Carlsson. Computing persistent homology. Discret. Comput.
Geom., 33(2):249–274, 2005. doi: 10.1007/S00454-004-1146-Y.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EXTENDED RELATED WORK

In this section, we extend Sec. 2 and provide additional comparative analyses to previous works.

Other Graph Generative Models. In concurrent work, Zhao et al. (2024) introduce a hybrid
graph generative model, termed Pard, combining autoregressive and discrete diffusion components.
Similar to AFM, Pard generates graphs by building a sequence of increasingly large sub-graphs. In
contrast to the method we present here, Pard is limited to the generation of induced sub-graphs and
uses a shared diffusion model to sample them. While the authors state efficiency as one motivation
for their approach, they do not present runtime measurements during inference.

Graph Diffusion. Similar to graph diffusion models (Vignac et al., 2023), we propose a corrupting
process to transform graph samples GT into graphs G0 from some convergent distribution (in our
case the point-mass at the empty graph). However, in contrast to denoising diffusion models, the
process we are proposing is not Markov.

Absorbing State Diffusion. Absorbing state graph diffusion (Chen et al., 2023; Kong et al., 2023)
resembles our approach in that it also generates a sequence of increasingly dense graphs. We aim
to increase efficiency by generating substantially shorter sequences than previous works. In prac-
tice, we choose to generate graphs within 15 or 30 steps. EDGE (Chen et al., 2023) requires be-
tween 64 and 512 denoising steps, depending on the dataset. To generate a graph on N nodes,
GraphARM (Kong et al., 2023) requires N denoising steps, as exactly one node decays to the ab-
sorbing state at a time. The larger number of denoising steps in these methods may increase infer-
ence time and necessitates a first-order autoregressive structure. Additionally, as detailed above, our
proposed method does not readily fit into the framework of denoising diffusion models.

A.2 COMPLEXITY ANALYSIS

In the following, we analyze the asymptotic runtime complexity of sampling a graph from our pro-
posed model and the baselines we studied in Section 4.
Proposition 1. The asymptotic runtime complexity for sampling a graph with N nodes from an
AFM with T timesteps is:

O(T 2N + TN3) (9)

Proof. To sample a graph from an AFM, one has to perform T forward passes through our proposed
mixer architecture. These forward passes are preceded by the computation of various graph fea-
tures, including laplacian eigenvalues and eigenvectors. This eigendecomposition has complexity
O(N3). At timestep 0 ≤ t < N , the structural mixing layers have complexity O(N2) due to the
self-attention component of SAT. The temporal mixing layers, on the other hand, have complexity
O(N(t+ 1)), as each node attends to its representations at timesteps 0, . . . , t. We bound this com-
plexity by O(NT ). Hence, aggregating these complexities across all T timesteps, we obtain the
following runtime complexity:

O(T 2N + TN2 + TN3) = O(T 2N + TN3) (10)

Below we show that the asymptotic complexity of AFM differs from the complexity of DiGress only
in the quadratic term w.r.t. T :
Proposition 2. The asymptotic runtime complexity for sampling a graph with N nodes from a
DiGress model with T denoising steps is:

Ω(TN3) (11)

Proof. Similar to AFM, DiGress performs an eigendecomposition of the graph laplacian in each
denoising step. Hence, one obtains a complexity of Ω(N3) in each timestep, resulting in an overall
complexity of Ω(TN3).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We further analyze the asymptotic complexities of our other baselines of Sec. 4.2 and Sec. 4.3.
Proposition 3. The asymptotic runtime complexity for sampling a graph with N nodes from a GRAN
model is Ω(N2).

Proof. GRAN explicitly constructs a dense adjacency matrix with N2 entries.

Proposition 4. The asymptotic runtime complexity of sampling a graph with N nodes and M edges
from an ESGG model is Ω(N +M).

Proof. This bound should trivially be satisfied by any generative model, as one already needs Ω(N+
M) bits to represent a graph with M edges on N nodes. We refer to (Bergmeister et al., 2024) for a
discussion on how tight this bound is.

In Table 5, we summarize these asymptotic complexities. While this analysis may suggest that AFM

Table 5: Asymptotic runtime complexities for sampling from different graph generative models.

Method Sampling complexity

AFM O(T 2N + TN3)
DiGress Ω(TN3)
GRAN Ω(N2)
ESGG Ω(N +M)

does not scale well to extremly large graphs, we caution the reader that the asymptotic behavior
may not accurately reflect efficiency in practice: Firstly, multiplicative constants and lower-order
terms are ignored. Hence, it remains unknown in which regimes the asymptotic behavior governs
inference time. Secondly, the analysis was made under the assumption that hyper-parameter choices
(i.e. depth, width, etc.) is kept constant as N and M increase. It is reasonable to expect that more
expressive networks are required to model large graphs.

A.3 A FIRST-ORDER AUTOREGRESSIVE VARIANT

As we demonstrated in Appendix A.2, the runtime of AFM is quadratic in the number of generation
steps T due to the temporal mixing operations which are implemented as transformer decoder layers.
Analogously, one may verify that the memory complexity of sampling from AFM is linear in T . In
this subsection, we study a simplified variant of AFM in which we use a first-order autoregressive
structure. I.e., we enforce:

pθ(Gt+1|Gt, . . . , G0) = pθ(Gt+1|Gt) (12)
We implement this by ablating the causally masked self-attention mechanism from the transformer
layers in our mixer model, leaving only the feed-forward modules. The resulting first-order variant
of AFM has space complexity which is independent of T and runtime complexity which is linear in
T .

We train such a first-order variant of AFM on the expanded planar graph dataset, using the same
hyperparameters as for the transformer-based variant (see Appendix A.8). Using the first-order
variant, we observe training instabilities after the first 100k training steps of stage I. While reducing
the learning rate rectifies this instability, we find that this slows learning progress substantially.
Instead, we use a model checkpoint at 100k steps and continue with training stage II.

In Table 6, we compare the performance of the transformer-based and the first-order variants after
100k steps of stage I training. In Table 7, we compare the performance after the subsequent stage II
training. While we perform only 100k training steps in stage I for the first-order variant, we perform
200k training steps for the transformer-based variant, as it did not exhibit instabilities.

Generally, we observe that the transformer-based AFM variant slightly outperforms the first-order
variant in terms of quality. However, the first-order variant remains competitive after stage II trainig
and, thus, may be a suitable alternative in cases where a large T is chosen. In our setting (T = 30),
however, we find that the first-order variant is not substantially faster during inference, indicating
that the runtime is not governed by the quadratic complexity in T .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Performance of two AFM variants on the expanded planar graph dataset after 100k steps
of stage I training. Showing median across three runs for the transformer-based variant and a single
run for the first-order variant. All models reach perfect uniqueness and novelty scores.

VUN (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓)
Transformer 20.21 0.0058 0.1768 0.0129 0.0048
First-Order 5.66 0.0004 0.1782 0.0041 0.0035

Table 7: Performance of two AFM variants on the expanded planar graph dataset after stage II
training. The transformer-based variant was trained for 200k steps in stage I while the first-order
variant was trained for 100k steps in stage I. Showing median across three runs for the transformer-
based variant and a single run for the first-order variant. All models reach perfect uniqueness and
novelty scores.

VUN (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓) Time (↓)
Transformer 79.20 0.0004 0.0183 0.0002 0.0012 0.0278
First-Order 70.02 0.0004 0.0229 0.0046 0.0013 0.0247

A.4 A BOUND ON MODEL EVIDENCE

Given a graph GT , let

q(GT−1, . . . G1|GT ) =

T−1∏
t=1

q(Gt|GT ) (13)

be the data distribution over filtrations of this graph, determined by the choice of filtration function,
scheduling, and noise augmentation. We assume that G0 is deterministically the completely discon-
nected graph. Moreover, we note that by applying our noise augmentation strategy we ensure that q
is supported everywhere. Given some graph GT , we can now derive the following evidence lower
bound:

log pθ(GT ) =
∑

G1,...,GT−1∈G
pθ(GT , . . . , G0)

= log
∑

G1,...,GT−1∈G
q(GT−1, . . . , G1|GT )

pθ(GT , . . . , G0)

q(GT−1, . . . , G1|GT )

≥ Eq( · |GT )

[
log

pθ(GT , . . . , G0)

q(GT−1, . . . , G1|GT )

]
= Eq

[
log pθ(GT |GT−1, . . . , G0) +

T−1∑
t=1

log pθ(Gt|Gt−1, . . . , G0)

− log q(Gt|GT )

]

(14)

We note that this lower bound is (up to sign and a constant that does not depend on θ) exactly the
autoregressive loss we use in training stage I. Hence, while we train AFM to model sequences of
graphs, we do actually optimize an evidence lower bound for the final graph samples GT .

A.5 PRACICAL ADVICE ON HYPERPARAMETER CHOICE

In the following, we provide some pracitcal advice on choosing some of the most important hyper-
parameters in AFM. Generally, we tuned few hyper-parameters in our experiments. We found the
number of generation steps T to be one of the most impactful hyper-parameters.

Filtration Function. The filtration function f : E → R is the main component determining the
structure of the graph sequence during stage I training. As discussed in Sec. 3.1, we recommend

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

that f should convey meaningful information about the structure (i.e., be structurally consistent) and
assign (mostly) distinct values to distinct edges (i.e., be diverse). We note that if f fails to be diverse,
many edges may be added in a single generation step, regardless of the choice of T . We found the
edge Fiedler function to perform well in many settings, and used this filtration function throughout
our experiments. We recommend that practioners utilize this filtration function and perform experi-
ments with further filtration functions that incorporate domain-specific inductive biases. In the case
of generating protein graphs, for instance, one may consider a filtration function that quantifies the
distance of residues in the sequence (this filtration would first generate a backbone path, followed
by increasingly long-range interactions of residues).

Filtration Granularity. As we demonstrate in Sec. 4.4, the choice of the number of generation
steps T has a substantial influence on sampling efficiency and generation. Generally, T can be
chosen substantially smaller than in other autoregressive models. In our experiments, we chose
T = 15 or T = 30. We recommend that practitioners experiment with different values in this order
of magnitude. We further caution that increasing T does not necessarily improve sample quality,
and may actually harm it.

Scheduling Function. The scheduling function γ : [0, 1] → [0, 1] governs the rate at which
edges are added at different timesteps and should be monotonically increasing with γ(0) = 0 and
γ(1) = 1. We found the heuristic choice of γ(t) := t to work well in many settings. However,
as we demonstrate in Appendix A.16, the concave schedule may be a promising alternative. We
recommend that practitioners validate stage I training with a convex, linear, and concave schedul-
ing function. We note that the scheduling function is no longer used during stage II training, as
the model is left free to generate arbitrary intermediate graphs. Hence, performance after stage I
training may be a suitable metric for selecting a scheduling function.

Noise Augmentation. We use noise augmentation during training stage I to counteract exposure
bias, i.e. the accumulation of errors in the sampling trajectory. Manual inspection of the graph se-
quence G0, . . . , GT may be difficult. However, we found that inspecting the development of the edge
density over this graph sequence can provide a simple tool for diagnosing exposure bias. Namely,
we expect the density to be mostly governed by the scheduling function γ(t). E.g., for the linear
schedule, the density should increase roughly linearly with t. In models that do not utilize noise
augmentation, we can observe that, after some generation steps, the edge density can oftemtimes
deviate from this expected behavior (e.g. by suddenly increasing or becoming non-monotonic). In
this case we expect that noise augmentation can rectify exposure bias. In our experiments, we find
that we do not need to tune the noise schedule. Instead, we fix a single schedule that is shared across
all models. For details on this schedule, we refer to Appendix A.8.

Perturbation of Node Orderings. During training stage I, AFM may overfit on small datasets.
This manifests as an increase in validation loss, while the validation MMD metrics continue to
improve. We observe this behavior only on the small datasets in Sec. 4.1 and find that it can be
mostly attributed to the node ordering used to derive initial node representations (c.f. Appendix A.6).
We recommend to monitor validation losses during stage I training. If the validation loss starts to
slowly increase while the training loss continues to decrease, we recommend to randomly perturb
the node ordering, as described in Appendix A.6. Increase the noise scale σ until no over-fitting can
be observed.

A.6 INPUT NODE REPRESENTATIONS

We define the input node representations as:

v
(t)
i := fθ(Gt)i +W node

i , (15)

where fθ produces node features from Laplacian positional encodings (Dwivedi et al., 2023), ran-
dom walk positional encodings (Dwivedi et al., 2022), and cycle counts following DiGress (Vignac
et al., 2023). The matrix W node ∈ RN×D is a trainable embedding layer where N denotes the
cardinality of the largest vertex set seen during training. It is important to note that the computation
of input node representations requires a specific node ordering. While the permutation equivariance
of our model and the symmetry of the initially empty graph G0 allow for arbitrary ordering during

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

inference, we employ a structured approach during teacher-forcing training. This ordering is derived
from the structure of the final graph GT and is based on the filtration function f .

Specifically, we propose a node weighting scheme h : V → R defined as:

h(i) :=
1

|NG(i)|
∑

j∈NG(i)

f(eij), ∀ i ∈ V, (16)

where NG(i) represents the neighborhood of node i in G. This weighting assigns to each node the
average weight of its incident edges, as determined by the filtration function f . We then establish
a node ordering such that h is non-increasing. The impact of different ordering strategies on model
performance is further studied and compared in Appendix A.16.

When training on small datasets, such as those introduced by Martinkus et al. (2022), we find that
the node individualization in Eqn. (15) can lead to overfitting. This manifests as an increase in
validation loss, while the evaluation metrics (i.e. MMD and VUN) continue to improve. As a data
augmentation strategy to avoid overfitting, we propose to add Gaussian noise to the node weights
hG defined in Eqn. (15) when training on small datasets. I.e., we use the perturbed node weights

hG(s) +N (0, σ2) (17)

for sorting the nodes. We emphasize that this measure is independent of the perturbation of interme-
diate graphs introduced in Sec. 3.3. Moreover, we perturb node orderings only in the experiments
on the small SPECTRE datasets (i.e., in Sec 4.1).

A.7 EDGE DECODER ARCHITECTURE

In this subsection, we present details on the edge decoder D·,θ. While our approach is in principle
applicable to discretely labeled edges, we concentrate on predicting distributions over unlabeled
edges here. Fix some timestep 0 ≤ t < T . Assume that for this timestep, we are given some node
representations (vi)

|V |
i=1 produced by the backbone model. The edge decoder contains K submodules

that produce multivariate Bernoulli distributions. Assuming that the node-representations produced
by the backbone are D-dimensional, let Dense

(1)
k,θ : RD → R2D and Dense

(2)
k,θ,Dense

(3)
k,θ : R2D →

R2D be fully connected layers learned for each component k. Define corresponding MLPs:

MLPk,θ := ReLU ◦Dense
(2)
k,θ ◦ReLU ◦Dense

(1)
k,θ (18)

For each k, we process the node representations vi separately and split the resulting vectors into two
D-dimensional halves:

(x
(k)
i , y

(k)
i ) := MLPk,θ(vi) (x̂

(k)
i , ŷ

(k)
i ) := Dense

(3)
k

(
(x

(k)
i , y

(k)
i )

)
(19)

We define the logit lk,i,j for the presence of an edge and the logit rk,i,j for the absence of an edge:

lk,i,j :=
x
(k)
i

⊤
x̂
(k)
j + x

(k)
j

⊤
x̂
(k)
i

2
rk,i,j :=

y
(k)
i

⊤
ŷ
(k)
j + y

(k)
j

⊤
ŷ
(k)
i

2
(20)

Finally, we define the likelihood of the presence of an edge as:

Dk,θ(vi, vj) :=
exp(lk,i,j)

exp(lk,i,j) + exp(rk,i,j)
(21)

While this modeling of the mixture distributions is quite involved, it allows the edge decoder to be
easily extended to produce distributions over labeled edges by producing logits for labels of node
pairs (instead of producing logits for presence and absence of edges).

Finally, we compute a mixture distribution π ∈ ∆K−1 via Dmix,θ. To this end, we learn a node-level
MLP:

MLP
(1)
mix,θ := ReLU ◦Dense

(1)
mix,θ (22)

and a graph-level MLP:

MLP
(2)
mix,θ := Dense

(3)
mix,θ ◦ReLU ◦Dense

(2)
mix,θ (23)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where Dense
(3)
mix,θ : RD → RK . We then define:

Dmix,θ

(
(vi)

|V |
i=1

)
:= softmax

MLP
(2)
mix,θ

 1

|V |

|V |∑
i=1

MLP
(1)
mix,θ(vi)

 (24)

In the following, we discuss how our approach, and the edge decoder in particular, may be extended
to edge-attributed and directed graphs.

Edge Attributes. While we only present experiments on un-attributed graphs, we note that our
approach (in particular the edge decoder) is naturally extendable to discretely edge-attributed graphs.
Assuming that one has S possible edge labels (where one edge label encodes the absence of an edge),
one would predict S logits l(s)k,i,j instead of predicting only two logits lk,i,j and rk,i,j . Then, for fixed
i, j, k, the vector

softmaxs

(
l
(s)
k,i,j

)S

s=1
∈ ∆S−1 (25)

would provide a distribution over labels for edge {vi, vj}. This distribution would be incorporated
into a mixture (over k) of categorical distributions as above. Eqn. (6) would be adjusted to quantify
the likelihood of edge labels instead of the likelihood of edge presence/absence.

Directed Graphs. In our experiments, we only consider applications of AFM to undirected
graphs. However, our approach is also naturally extendable to directed graphs. Concretely, one
would first adjust all GNNs in AFM to take edge directionality into account. One would additionally
modify the product in Eqn. (6) to run over the entire adjacency matrix instead of only considering
the upper triangle. I.e., one would get:

pθ(Et|Gt−1, . . . , G0) :=

K∑
k=1

πk

∏
i,j

{
p
(i,j)
k if eij ∈ Et

1− p
(i,j)
k else

}
. (26)

Finally, the edge decoder would be adjusted in Eqn. (20) to drop the symmetrization of lk,i,j and
rk,i,j w.r.t. i and j (i.e., one no longer enforces the presence of the edge (vi, vj) to have the same
probability as the presence of (vj , vi)).

A.8 AFM HYPERPARAMETERS

In Table 8, we summarize the most important hyperparameters of the generative model used in our
experiments, including the number of filtration steps (T ), mixture components (K), learning rate
(LR), batch size (BS) in the format num gpus × grad accumulation × local bs, and the
number of perturbed filtration sequences we produce per graph in our training set (# Perturbations).
We use a linear schedule and the line Fiedler filtration function in all experiments, unless indicated
otherwise.

Table 8: Hyper-parameters for generative model

SPECTRE Planar SPECTRE SBM Expanded Planar Expanded SBM Expanded Lobster Protein

T 30 15 30 15 30 15
K 8 4 8 4 8 16
# Layers 5
Hidden Dim 256
Laplacian PE dim. 4
RWPE dim. 20
Noise Augm. λt affine with λ1 = 0.25 and λT−1 = 0.05
# Perturbations 256 256 4 4 4 8
Perturb Node Order Yes Yes No No No No
Stg. I LR 2.5 × 10−5 1 × 10−5 2.5 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

Stg. I BS 2 × 1 × 32 2 × 1 × 32 2 × 1 × 32 2 × 1 × 32 2 × 1 × 32 2 × 4 × 8
# Stg. I Steps 50k 100k 200k 200k 100k 100k
Stg. I Precision BF16 AMP
Stg. II LR 1.25 × 10−7

Stg. II BS 1 × 4 × 32 1 × 4 × 32 1 × 4 × 32 1 × 4 × 32 1 × 4 × 32 1 × 16 × 8
# Stg. II Iters 2.5k 3k 1.5k 5k 4k 1.5k

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In Table 9, we additionally provide the most important hyperparameters of the discriminator and
value model trained during the adversarial fine-tuning stage.

Table 9: Hyper-parameters of discriminator and value model used during adversarial fine-tuning.

SPECTRE Planar SPECTRE SBM Expanded Planar Expanded SBM Expanded Lobster Protein

D
is

c.

LR 1.00 × 10−4

BS 1 × 1 × 32
# Layers 2 3 3 3 3 2
Hidden dim. 32 128 128 128 128 64
RWPE dim. 5 20 20 20 20 20

V
al

. LR 2.50 × 10−4

BS 1 × 4 × 32
# Layers 5
Hidden dim. 128

A.9 COMPREHENSIVE EVALUATION RESULTS ON EXPANDED SYNTHETIC DATASETS

In Table 10, we present the deviations observed across the three training runs discussed in Sec. 4.2.

Table 10: Evaluation results for AFM trained on expanded synthetic datasets. Showing median
across three runs ± maximum deviation.

Expaned Planar Expanded SBM Expanded Lobster

VUN (↑) 79.20 ± 7.13 75.98 ± 3.71 79.10 ± 7.13

Degree (↓) 0.0004 ± 5.43 × 10−5 0.0014 ± 0.0062 0.0004 ± 0.0013

Clustering (↓) 0.0183 ± 0.0014 0.0051 ± 0.0009 7.89× 10−5 ± 5.32 × 10−5

Spectral (↓) 0.0012 ± 0.0004 0.0011 ± 0.0006 0.0016 ± 0.0028

Orbit (↓) 0.0002 ± 0.0016 0.0180 ± 0.0171 0.0010 ± 0.0156

Unique (↑) 100.00 ± 0.00 100.00 ± 0.00 99.80 ± 0.10

Novel (↑) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.10

A.10 QUALITATIVE MODEL SAMPLES

In Figure 3, we present uncurated samples from the different models described in Sec. 4.

A.11 ESGG MODEL SELECTION

While ESGG maintains exponential moving averages of model weights during training, we choose
to only evaluate non-smoothed model weights (i.e. the EMA weights with decay parameter γ = 1),
as validation is compute-intensive.

SBM Dataset. In our experiments, we obtain worse performance on the expanded SBM dataset
than was reported on the smaller SPECTRE SBM dataset in (Bergmeister et al., 2024). In Figure 4,
we show the development of validity throughout training, which lasted over 4.5 days on an H100
GPU. Throughout training, we fail to match the validity reported in (Bergmeister et al., 2024).
Although the validity estimate is quite noisy, it appears to plateau. We select a model checkpoint at
4.8M steps.

Protein Dataset. Model selection on the protein graph dataset is challenging, as the MMD metrics
computed during validation are noisy, and generating model samples is time-consuming. We take a
structured approach and evaluate model checkpoints at 1-4M training steps using the same validation
approach as Bergmeister et al. (2024). Namely, for each graph in the validation set, we generate a
corresponding model sample with the same number of nodes. We present the resulting MMD metrics
in Table 11. Based on these results, we select the model checkpoint at 2M steps.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Uncurated samples from AFM model trained on expanded planar graph dataset.

(b) Uncurated samples from AFM model trained on expanded SBM dataset.

(c) Uncurated samples from AFM model trained on expanded lobster dataset.

(d) Uncurated samples from AFM model trained on protein dataset.

Figure 3: Uncurated samples from AFM

0 1 2 3 4 5

Steps 1e6

0.00

0.05

0.10

0.15

0.20

SB
M

 V
al

id
ity

Figure 4: SBM validity during training of ESGG on expanded SBM dataset. Validity is computed
using 1000 refinement steps in validation but 100 refinement steps during testing to remain consistent
with other baselines.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Validation results of ESGG trained on protein dataset.

# Steps Degree (↓) Clustering (↓) Orbit (↓) Spectral (↓) Wavelet (↓) Ratio (↓)
1M 0.0242 0.1074 0.1091 0.0095 0.0267 63.8122
2M 0.0028 0.0254 0.0520 0.0009 0.0023 12.2426
3M 0.0066 0.0632 0.0640 0.0030 0.0090 23.6206
4M 0.0293 0.1016 0.2474 0.0079 0.0224 84.9982

A.12 GRAN HYPERPARAMETERS

For our experiments on the expanded lobster dataset, we use the hyperparameters provided by Liao
et al. (2019) for their own (smaller) lobster dataset. For experiments on the expanded planar graph
dataset, we utilize the same hyper-parameter setting but reduce the batchsize to 16. For experiments
on the SBM dataset, we further reduce the batchsize to 8 and use 2 gradient accumulation steps.
For the experiments on the protein dataset, we utilize the pretrained model provided at http:
//www.cs.toronto.edu/˜rjliao/model/gran_DD.pth. We perform inference with a
batch size of 20.

A.13 DIGRESS HYPERPARAMETERS

For our experiments on the expanded planar graph and SBM datasets, we use the hyperparameters
provided by Vignac et al. (2023) for the corresponding SPECTRE datasets. On the lobster dataset,
we use the same hyperparameters as for the expanded SBM dataset (8 layers and batch size 12).
On the protein dataset, we use similar hyperparameters as for the expanded SBM dataset but reduce
the batch size to 4 due to GPU memory constraints. We use the same inference approach as Vignac
et al. (2023), performing generation with a batch size that is twice as large as the batch size used for
training. In all cases, we follow Vignac et al. (2023) in using 1000 diffusion steps.

A.14 ESGG HYPERPARAMETERS

For our experiments on the expanded planar graph and SBM datasets, we use the hyperparameters
provided by Bergmeister et al. (2024) for the corresponding SPECTRE datasets. For the expanded
lobster dataset, we use the hyperparameters used by Bergmeister et al. (2024) for their tree dataset.
We use the test batch sizes provided by Bergmeister et al. (2024) in their hyperparameter configura-
tions.

A.15 GRAN MODEL SELECTION

Expanded Planar. In Table 12, we present validation results of the GRAN model trained on the
expanded planar graph dataset. We observe no clear development in model performance past 500
steps. We select the checkpoint at 1000 steps.

Table 12: Validation results for GRAN model trained on expanded planar graph dataset. Evaluated
on 260 model samples.

# Steps Valid (↑) Node Count (↓) Degree (↓) Clustering (↓) Orbit (↓) Spectral (↓)
500 0.00 0.0065 0.0087 0.1749 0.0693 0.0096
1000 0.00 0.0007 0.0070 0.1696 0.1100 0.0086
1500 0.77 0.0100 0.0066 0.1730 0.0743 0.0078
2000 0.00 0.0021 0.0056 0.1658 0.0816 0.0094
2500 0.77 0.0033 0.0064 0.1768 0.1042 0.0087

Expanded SBM. In Table 13, we present validation results of the GRAN model trained on the
expanded SBM dataset. We find that, overall, the checkpoint at 200 steps appears to perform best
and select it.

23

http://www.cs.toronto.edu/~rjliao/model/gran_DD.pth
http://www.cs.toronto.edu/~rjliao/model/gran_DD.pth


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 13: Validation results for GRAN model trained on expanded SBM dataset. Evaluated on 260
model samples.

# Steps Valid (↑) Node Count (↓) Degree (↓) Clustering (↓) Orbit (↓) Spectral (↓)
100 22.31 1.9992 0.0243 0.0119 0.0400 0.0037
200 24.23 1.9998 0.0194 0.0114 0.0290 0.0026
400 20.38 1.9999 0.0278 0.0130 0.0448 0.0039
600 20.38 1.9999 0.0225 0.0120 0.0318 0.0030

Expanded Lobster. In Table 14, we present validation results of the GRAN model trained on the
expanded lobster dataset. We observe no improvement in validity past 2500 steps and select this
checkpoint.

Table 14: Validation results for GRAN model trained on expanded lobster graph dataset. Evaluated
on 260 model samples.

# Steps Valid (↑) Node Count (↓) Degree (↓) Clustering (↓) Orbit (↓) Spectral (↓)
500 2.34 2.0000 0.0257 0.4753 0.2507 0.0509
1500 38.67 2.0000 0.0092 0.0112 0.1624 0.0329
2500 42.58 2.0000 0.0083 0.0059 0.1749 0.0361
3500 42.97 2.0000 0.0101 0.0049 0.1970 0.0406

A.16 ADDITIONAL ABLATIONS

GAN Tuning. In Tables 15 and 16, we compare models after training stage I and II on the ex-
panded SBM and lobster datasets from Sec. 4.2. Again, we observe that adversarial fine-tuning
substantially improves performance in terms of validity and MMD metrics.

Table 15: Performance of AFM models after stage I (200k steps) and stage II on expanded SBM
dataset. Showing median±maximum deviation across three runs. All models attain perfect unique-
ness and novelty scores.

Stage II Stage I

VUN (↑) 75.98 ± 3.71 39.65 ± 4.69

Degree (↓) 0.0014 ± 0.0062 0.0023 ± 0.0063

Clustering (↓) 0.0051 ± 0.0009 0.0082 ± 0.0012

Spectral (↓) 0.0011 ± 0.0006 0.0032 ± 0.0006

Orbit (↓) 0.0180 ± 0.0171 0.0210 ± 0.0135

Filtration Function. In Table 17, we study alternative filtration functions. We compare the line
fiedler function to the centrality-based filtration functions introduced in Sec. 3.1. Following An-
thonisse (1971); Brandes (2008), we let σ(i, j) denote the number of shortest paths between two
nodes i, j ∈ V , and σ(i, j | e) denote the number of these paths passing through an edge e ∈ E.
Then, we define the betweenness centrality function as:

fbetween(e) :=
∑
i,j∈V

σ(i, j|e)
σ(i, j)

, ∀ e ∈ E. (27)

Based on this, we define the remoteness centrality as fremote(e) = −fbetween(e). We observe that
the line fiedler function appears to out-perform the two alternatives in our setting.

Scheduling. We study the performance of the three schedules (linear, convex, and concave) pro-
posed in Sec. 3.1 on the planar graph dataset in Table 18. We find that no single variant performs

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 16: Performance of models after stage I (100k steps) and stage II on expanded lobster dataset.
Showing median ± maximum deviation across three runs.

Stage II Stage I

VUN (↑) 79.10 ± 7.13 31.25 ± 4.69

Degree (↓) 0.0004 ± 0.0013 0.0004 ± 0.0010

Clustering (↓) 7.89 × 10−5 ± 5.32 × 10−5 0.0136 ± 0.0054

Spectral (↓) 0.0016 ± 0.0028 0.0030 ± 0.0012

Orbit (↓) 0.0010 ± 0.0156 0.0073 ± 0.0026

Unique (↑) 99.80 ± 0.10 99.51 ± 0.39

Novel (↑) 100.00 ± 0.10 99.90 ± 0.39

Table 17: Performance after training stage I with different filtration functions for 100k steps on
expanded planar graph dataset. Showing median of three runs for spectral variant and one run each
for betweenness and remoteness variants.

VUN (↑) Degree (↓) Clustering (↓) Spectral (↓) Orbit (↓)

Line Fiedler 20.21 0.0058 0.1768 0.0048 0.0129
Betweenness 0.20 0.0069 0.2724 0.0124 0.0804
Remoteness 3.52 0.0136 0.2720 0.0085 0.0234

0.10

0.05

0.00

0.05

0.10

(a) Line Fiedler

0.02
0.04
0.06
0.08
0.10
0.12

(b) Betweenness

0.12
0.10
0.08
0.06
0.04
0.02

(c) Remoteness

Figure 5: Visualization of different filtration functions on a planar graph

Table 18: Performance after training stage I with different filtration schedules for 100k steps on
expanded planar graph dataset. All models attain perfect uniqueness and novelty scores. Showing
median of three runs for linear variant and one run each for convex and concave variants.

VUN (↑) Degree (↓) Clustering (↓) Spectral (↓) Orbit (↓)

Linear 20.21 0.0058 0.1768 0.0048 0.0129
Convex 5.66 0.0043 0.2239 0.0040 0.0062
Concave 31.05 0.0045 0.1590 0.0059 0.0153

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

consistently best across all evaluation metrics. However, the concave variant attains the highest
validity score.

Node Individualization. In Table 19, we study different node individualization techniques on the
expanded planar graph dataset. We refer to the ordering scheme we describe in Sec. 3.2 as the de-
rived ordering, as it is based on the filtration function. Additionally, we study individualizations
via either random orderings or i.i.d. gaussian noise that is re-applied in each time-step. Finally, we
also consider a variant in which no individualization is applied, i.e., the embedding matrix W node

is fixed to be all-zeros. We find that individualizing nodes with learned embeddings based on some

Table 19: Performance after training stage I with different node individualization techniques for
100k steps on expanded planar graph dataset. All models attain perfect uniqueness and novelty
scores. Showing median of three runs for derived ordering and one run each for all other variants.

VUN (↑) Degree (↓) Clustering (↓) Spectral (↓) Orbit (↓)

Derived Ordering 20.21 0.0058 0.1768 0.0048 0.0129
Random Ordering 18.36 0.0085 0.2332 0.0023 0.0091
Gaussian Noise 12.99 0.0086 0.2356 0.0031 0.0112
Zeros 13.48 0.0057 0.2195 0.0023 0.0091

ordering (either random or derived from the filtration functions) appears to be beneficial. On the pla-
nar graph dataset, there is no clear benefit of the derived ordering over random orderings. However,
we observe a clear advantage on the SBM dataset, as can be seen in Table 20.

Table 20: Performance after training stage I with derived and random node ordering after 100k steps
on expanded SBM datasets. Showing median ± maximum deviation across three runs for derived
ordering and one run for random ordering.

Derived Ordering Random Ordering

VUN (↑) 26.95 ± 2.64 2.44
Degree (↓) 0.0222 ± 0.0127 0.0396
Clustering (↓) 0.0106 ± 0.0012 0.0122
Spectral (↓) 0.0061 ± 0.0014 0.0144
Orbit (↓) 0.0548 ± 0.0244 0.0596
Unique (↑) 1.0000 ± 0.0000 0.9951
Novel (↑) 1.0000 ± 0.0000 1.0000

Stage I. While the ablation study in Sec. 4.4 demonstrates that stage II training substantially boosts
performance, we now show that, similarly, stage I is crucial too. To this end, we perform stage II
training on a very early checkpoint of stage I training. Specifically, we use a checkpoint obtained
after 10k steps of stage I training on the expanded planar graph dataset. We present the results
in Table 21. We observe that performing stage II training on a premature checkpoint from stage I
substantially harms performance. Hence, stage I training is a crucial part of our method.

Table 21: Performance on expanded planar graph dataset of AFM variants with different training
durations during stage I. Showing median across three runs for 200k steps and a single run for 10k
steps.

# Stage I Steps VUN (↑) Deg. (↓) Clus. (↓) Orbit (↓) Spec. (↓)
200k 79.20 0.0004 0.0183 0.0002 0.0012
10k 3.32 0.0016 0.2278 0.0464 0.0069

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.17 BIAS AND VARIANCE OF ESTIMATORS

Previous works (Martinkus et al., 2022; Vignac et al., 2023; Bergmeister et al., 2024) evaluate their
graph generative models on as few as 40 samples. In this section, we investigate how this practice
impacts the variance and bias of the estimators used in model evaluation and argue that a higher
number of test samples should be chosen.

A.17.1 VARIANCE OF VALIDITY ESTIMATION

On synthetic datasets such as those introduced in (Martinkus et al., 2022), one may verify whether
model samples are ”valid”, i.e., whether they satisfy a property that is fulfilled by (almost) all sam-
ples of the true data distribution. By taking the ratio of valid graphs out of n model samples, previous
works have estimated the probability of obtaining valid graphs from the generator.

Definition 1. Let the random variable G denote a sample from a graph generative model and let
valid : G → {0, 1} a measurable binary function that determines whether a sample is valid. Then
the models true validity ratio is defined as:

P[valid(G) = 1] (28)

For i.i.d. samples G1, . . . , Gn, we introduce the following estimator:

V :=

∑n
i=1 valid(Gi)

n
(29)

Given the simplicity of the validity metric, we can very easily derive the uncertainty of the estimator
used for evaluation. We make this concrete in Proposition 5.

Proposition 5. For a generative model with a true validity ratio of p ∈ [0, 1], the validity estimator
on n samples is unbiased and has standard deviation

√
p(1− p)/

√
n.

Proof. Assuming that the random variables G1, . . . , Gn are i.i.d. samples from the generative
model, then the random variables valid(G1), . . . , valid(Gn) are i.i.d. according to Bernoulli(p).
The validity estimator is given as:

V =

∑n
i=1 valid(Gi)

n
(30)

By the linearity of expectation, we have

E[V ] =

∑n
i=1 E[valid(Gi)]

n
=

np

p
= p (31)

which shows that the estimator is unbiased. The variance is given by:

Var[V ] =
Var [

∑n
i=1 valid(Gi)]

n2
=

∑n
i=1 Var[valid(Gi)]

n2

=
p(1− p)

n

(32)

where we used the independence assumption in the first line. Taking the square root, we obtain the
standard deviation from the proposition.

From Proposition 5, we note that the standard deviation of the validity estimate can be as high as
1/(2
√
n), which is achieved at p = 0.5. For n = 40, we find that the standard deviation can

therefore be as high as 7.9 percentage points.

A.17.2 BIAS AND VARIANCE OF MMD ESTIMATION

Definition 2. Let (X , d) be a metric space and let k : X × X → R be a measurable, symmetric
kernel which is bounded but not necessarily positive-definite. Let X := [x1, . . . , xn] be i.i.d. sam-
ples from a Borel distribution px on X and Y := [y1, . . . , yn] be i.i.d. samples from a distribution

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

py . Assume X and Y to be independent. Following (Gretton et al., 2012), define the squared MMD
of px and py as:

MMD2(px, py) := E[k(x1, x2)] + E[k(y1, y2)]− 2E[k(x1, y1)] (33)

and note that this is well-defined by our assumptions. Finally, introduce the following estimator for
the squared MMD:

M :=
1

n2

n∑
i,j=1

k(xi, xj) +
1

m2

m∑
i,j=1

k(yi, yj)−
2

nm

n∑
i=1

m∑
j=1

k(xi, yj) (34)

We empirically study bias and variance of the MMD estimates on the planar graph dataset. We
generate 8192 samples from one of our trained model and repeatedly compute the MMD between
the test set and a random subset of those samples. We vary the size of the random subsets and run 64
evaluations for each size, computing mean and standard deviation of the MMD metrics across the
64 evaluations. We report the results in Table 22. We observe that on average the MMD is severly

Table 22: Mean MMD ± standard deviation across 64 evaluation runs of a single model. The test
set contains 256 planar graphs, while a varying number of model samples is used, as indicated on
the left. The MMD and its variance decrease substantially with larger numbers of model samples.

# Model Samples Degree (↓) Clustering (↓) Spectral (↓)

32 8.59× 10−4 ± 5.59 × 10−4 4.21× 10−2 ± 1.44 × 10−2 4.73× 10−3 ± 9.14 × 10−4

64 5.58× 10−4 ± 2.90 × 10−4 2.68× 10−2 ± 7.58 × 10−3 2.59× 10−3 ± 4.78 × 10−4

128 4.40× 10−4 ± 1.79 × 10−4 2.17× 10−2 ± 4.33 × 10−3 1.61× 10−3 ± 3.16 × 10−4

256 4.39× 10−4 ± 1.45 × 10−4 2.02× 10−2 ± 3.89 × 10−3 1.14× 10−3 ± 1.86 × 10−4

512 4.32× 10−4 ± 8.48 × 10−5 1.81× 10−2 ± 2.56 × 10−3 1.18× 10−3 ± 2.04 × 10−4

1024 4.26× 10−4 ± 5.99 × 10−5 1.72× 10−2 ± 1.66 × 10−3 1.18× 10−3 ± 2.00 × 10−4

over-estimated when using fewer than 256 model samples. At the same time, the variance between
evaluation runs is large when few samples are used, making the results unreliable.

A.18 ADVERSARIAL FINETUNING DETAILS

We provide pseudocode for the adversarial fine-tuning stage in Algorithm 1. We note that we do not
make all procedures explicit and that many hyper-parameters must be chosen (including the number
of steps and epochs in TRAINGENERATORANDVALUEMODEL).

Generator. The generator operates in inference mode, meaning that all dropout layers are disabled
and batch normalization modules utilize the (now frozen) moving averages from training stage I.
Hence, the behavior of the generative model becomes reproducible. It acts as a stochastic policy in
a higher-order MDP, where the graphs G0, . . . , GT are the states. It receives a terminal reward for
the plausibility of the final sample GT .

Discriminator. The discriminator is implemented as a GraphGPS (Rampásek et al., 2022) model
which performs binary classification on graph samples GT , distinguishing real samples from gen-
erated samples. It is trained via binary cross-entropy on batches consisting in equal proportions of
generated graphs and graphs from the dataset D. For a given graph GT , the discriminator produces
a probability of ”realness” by applying the sigmoid function to its logit. Following SeqGAN (Yu
et al., 2017), the log-sigmoid of the logit then acts as a terminal reward for the generative model.
We emphasize that only the final graph GT is presented to the discriminator.

Value Model. The value model uses the same backbone architecture as our generative model and
regresses scalars from pooled node representations. It is trained via least squares regression. The
value model is used to compute baselined reward-to-go values.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Training Outline. While Algorithm 1 provides a technical description of the training algorithm,
we also provide a rougher outline here. At the start of training stage II, the generator is initialized
with the weights learned in training stage I, while the discriminator and value model are initialized
randomly. Before entering the main training loop, we pre-train discriminator and value model to
match the generator. Namely, we first pre-train the discriminator to classify graphs as either ”real”
or ”generated”. The log-likelihood of ”realness” acts as a terminal reward of the generative model.
The discriminator is then pre-trained to regress the reward-to-go. After pre-training is finished, we
proceed to the training loop, which consists of alternating training of (i) the generator and value
model and (ii) the discriminator. As described above, the generator is trained via PPO to maximize
the terminal reward provided by the discriminator. The value model is used to baseline the reward
and is continuously trained to regress the reward-to-go. The discriminator, on the other hand, con-
tinues to be trained on generated and real graph samples via binary cross-entropy.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Algorithm 1 Adversarial Finetuning

procedure TRAINGENERATORANDVALUEMODEL(pθ, dφ, vϑ)
for i = 1 . . . , Nsteps do
S ← [ ] ▷ List of sampled filtrations
r ← 0 ∈ RNsamples ▷ Terminal rewards
for j = 1 . . . , Nsamples do

G
(j)
0 , . . . , G

(j)
T ← SAMPLEFILTRATION(pθ)

S . append
((

G
(j)
0 , . . . , G

(j)
T

))
rj ← logsigmoid(dφ(G

(j)
T ))

rj ← max(rj , Rlower) ▷ Reward clamping
end for
r ← WHITEN(r) ▷ Whiten rewards using EMA of mean and std
gj,t ← 0 ∀j = 1, . . . , Nsamples ∀t = 0, . . . , T − 1 ▷ Rewards-to-go
for j = 1 . . . , Nsamples do

for t = 0, . . . , T − 1 do
gj,t ← rj − vϑ(G

(j)
0 , . . . , G

(j)
t ) ▷ Compute baselined RTG

end for
end for
TRAINVALUEMODEL(vϑ,S, r)
for k = 1 . . . , Nepoch do

l
(k)
j,t ← − log pθ(G

(j)
t |G

(j)
t−1, . . . , G

(j)
0 ) ∀j = 1, . . . , Nsamples ∀t = 1, . . . , T

uj,t ← exp(sg[l
(1)
j,t ]− l

(k)
j,t ) ∀j, t

L(1)
j,t ← −uj,t · gj,t−1 ∀j, t
L(2)
j,t ← − clamp(uj,t, 1− ϵ, 1 + ϵ) · gj,t−1 ∀j, t
L ←

∑
j,t max(L(1)

j,t ,L
(2)
j,t )

θ ← θ − δ∇θL ▷ Backpropagate and update parameters
end for

end for
end procedure

procedure GANTUNING(pθ, D) ▷ Takes generator from training stage I and graph dataset
dφ ← new GNN ▷ Initialize discriminator
TRAINDISCRIMINATOR(pθ, dφ,D) ▷ Pre-train discriminator
vϑ ← new mixer model
S ← GENERATEFILTRATIONS(pθ)
r ← GRADESAMPLES(S, dφ)
TRAINVALUEMODEL(vϑ,S, r) ▷ Pre-train value model
while not converged do

TRAINGENERATORANDVALUEMODEL(pθ, dφ, vϑ)
TRAINDISCRIMINATOR(pθ, dφ,D)

end while
end procedure

30


	Introduction
	Related Work
	Method
	Graph Filtration
	Autoregressive Modeling of the Filtration Sequence
	Training Algorithm
	Mitigating Exposure Bias


	Experiments
	Experiments with Small Synthetic Datasets
	Experiments with Expanded Synthetic Datasets
	Experiments with Real-World Data
	Ablation Studies

	Conclusion
	Appendix
	Extended Related Work
	Complexity Analysis
	A First-Order Autoregressive Variant
	A Bound on Model Evidence
	Pracical Advice on Hyperparameter Choice
	Input Node Representations
	Edge Decoder Architecture
	AFM Hyperparameters
	Comprehensive Evaluation Results on Expanded Synthetic Datasets
	Qualitative Model Samples
	ESGG Model Selection
	GRAN Hyperparameters
	DiGress Hyperparameters
	ESGG Hyperparameters
	GRAN Model Selection
	Additional Ablations
	Bias and Variance of Estimators
	Variance of Validity Estimation
	Bias and Variance of MMD Estimation

	Adversarial Finetuning Details


