
PI-QT-Opt: Predictive Information Improves
Multi-Task Robotic Reinforcement Learning at Scale

Kuang-Huei Lee∗ Ted Xiao Adrian Li Paul Wohlhart Ian Fischer Yao Lu∗
Google Research

[leekh, tedxiao, alhli, wohlhart, iansf, yaolug]@google.com

Abstract: The predictive information, the mutual information between the past
and future, has been shown to be a useful representation learning auxiliary loss for
training reinforcement learning agents, as the ability to model what will happen
next is critical to success on many control tasks. While existing studies are largely
restricted to training specialist agents on single-task settings in simulation, in this
work, we study modeling the predictive information for robotic agents and its im-
portance for general-purpose agents that are trained to master a large repertoire
of diverse skills from large amounts of data. Specifically, we introduce Predictive
Information QT-Opt (PI-QT-Opt), a QT-Opt agent augmented with an auxiliary
loss that learns representations of the predictive information to solve up to 297
vision-based robot manipulation tasks in simulation and the real world with a sin-
gle set of parameters. We demonstrate that modeling the predictive information
significantly improves success rates on the training tasks and leads to better zero-
shot transfer to unseen novel tasks. Finally, we evaluate PI-QT-Opt on real robots,
achieving substantial and consistent improvement over QT-Opt in multiple exper-
imental settings of varying environments, skills, and multi-task configurations.
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1 Introduction

Real robotic control systems are often partially observable and non-Markovian, and include high-
dimensional observations, such as pixels. In such systems, we can learn representations by explicitly
modeling the mutual information between consecutive states and actions – the predictive informa-
tion [1] – to facilitate policy and value learning [2, 3]. When learning a predictive information
representation between a state, action pair and its subsequent state, the learning task is equivalent
to modeling environment dynamics [4]. In this work, we are interested in training multi-task gen-
eralist agents [5, 6, 7] that can master a wide range of robotics skills in both simulated and real
environments by learning from a large amount of diverse experience. We hypothesize that modeling
the predictive information will give latent representations that capture environment dynamics across
multiple tasks, making it simpler and more efficient to learn a generalist policy. We also hypothe-
size that such a generalist agent may do a better job of transferring to real-world environments and
novel tasks unseen during training. While existing studies of learning predictive information repre-
sentations in RL [2, 3, 4, 8, 9] have largely been limited to learning single-task specialist agents in
simulated environments such as DM-Control [10] and Atari [11], our hypotheses can be seen as ex-
tending the generalization results in Lee et al. [2], which showed both more sample-efficient learning
and better fine-tuning on unseen tasks. We investigate both of these hypotheses in this work.

We combine a predictive information auxiliary loss with QT-Opt [12], a model-free off-policy re-
inforcement learning method that been shown to work well on vision-based continuous control
problems. QT-Opt is able to leverage large-scale, multi-task datasets in simulation and the real
world [12, 13, 14, 15]. We train a task-conditioned QT-Opt agent [12] with a predictive information
auxiliary loss similar to Lee et al. [2], which we refer to as Predictive Information QT-Opt (PI-QT-
Opt). We study various simulated and real robot environments using an Everyday Robots manipu-
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lator arm [16], including a large diverse set of real-world environments with up to 297 challenging
vision-based manipulation tasks in a kitchen setting [7] (See Section 3.2 for task definitions).

Lee et al. [2] showed the benefits of predictive information regularization for accerlerating policy
learning and quickly finetuning a policy trained on one task to solve a related task in the same
environment. Our experiments show that predictive information regularization additionally gives
substantial benefits in two challenging zero-shot settings: from simulation to real-world robots, and
from one set of training objects to novel objects in both simulation and real environments. We
demonstrate that PI-QT-Opt significantly outperforms QT-Opt in terms of success rate on training
tasks in simulation. When evaluated on tasks that are unseen during training, modeling the predictive
information increases the zero-shot success rate substantially. We verify these improvements on real
robots via sim-to-real transfer, and observe that PI-QT-Opt significantly outperforms QT-Opt.

Our primary contributions are:

• We validate that modeling the predictive information is an effective auxiliary task for learning
multi-task generalist robot control agents.

• We show that simple forms of task conditioning are sufficient to allow QT-Opt learn to solve
large numbers of tasks simultaneously, avoiding some of the complexity of earlier multi-task
approaches to QT-Opt [13].

• We verify the improvements through large-scale real-world experiments, including training a
reward-based agent that performs well on 297 real robotic control tasks.

• We show that the predictive information helps zero-shot generalization to unseen tasks.
• We demonstrate that PI-QT-Opt can train only on simulated environments and transfer to real

robots more effectively than our QT-Opt baseline.

2 Related Work

Predictive Information Representations. Previous studies [17, 2, 4, 3, 9, 18, 8, 19] have shown
that predictive information [1] is an effective auxiliary or representation learning objective for RL
agents or planning. This result can be connected to findings in neuroscience that suggested that
the brain maximizes predictive information at an abstract level [20, 21]. Broadly, our work differs
from those approaches by focusing on multi-task, vision-based robot learning in both simulated and
real-world environments. This enables us to verify improvements and study broader generalization
properties in realistic settings. Additionally, with the exception of [2], most such works do not
explicitly learn a compressed representation of the predictive information. Finally, because the
predictive information can model the underlying environment dynamics, which are stationary, its
use as an auxiliary loss can also be seen as a representation regularizer for RL agents, possibly
helping avoid overfitting to any specific value function during training [22].

Robot Manipulation. We focus on two main categories of related work in robot manipulation:
multitask robot learning methods and real world data-driven robotics methods. One family of ap-
proaches for multitask robot learning focuses on supervised learning of multitask control policies
to maximize few-shot performance via meta-learning [23, 24, 25] or direct zero-shot performance
via behavioral cloning [26, 27, 28, 29]. However, methods based on imitation learning require ex-
pensive expert demonstrations and struggle to improve autonomously with on-policy learning. On
the other hand, reinforcement learning (RL) based approaches are able to bootstrap without a large
amount of expert data and are able to continuously improve from their own experience. While some
RL methods combine subtasks [30, 31] or map tasks to individual policies [32, 33], we wish to learn
a single shared policy. Recent work focuses on learning a single multi-task policy with both on-
policy [34] and off-policy RL methods [35, 36, 37], and have shown promising results on a variety
of robot manipulation tasks in simulation [34]. Some approaches to real-world robot learning for
manipulation utilize RL with real robot data collection or simulation with domain randomization
[15, 29, 12, 13, 38, 39, 40, 41, 42, 43], while other approaches focus on imitation learning from ex-
pert demonstrations [27, 44, 45, 46, 47, 48]. MT-Opt [13] is closely related to our approach; it also
extends QT-Opt [12] to a real world multitask robot learning setting. While MT-Opt suggests that
data routing and data sharing is very important, it is quite challenging to scale this approach to the
hundreds of tasks that we consider. Thus, we take a different approach from MT-Opt, focusing on
learning better representations for a single task-conditioned critic that does not use any data routing.
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Figure 1: An overview of the PI-QT-Opt system for multi-task robotic reinforcement learning. The
contrastive CEB loss is an auxiliary objective to Q-learning. s = (sv, sp). See Section 3 for details.

3 Methods

We describe the details of Predictive Information QT-Opt (PI-QT-Opt) in Section 3.1, and task con-
text conditioning for enabling multi-task robot RL at scale in Section 3.2. More implementation
details are described in Appendix B. Figure 1 presents an overview of the our system.

3.1 Predictive Information QT-Opt

Predictive Information. The Predictive Information [1] is the mutual information between the
past and the future, I(past; future). It has been shown that the predictive information is an effective
auxiliary loss for RL agents [2, 3]. From here on, we will denote the past by X and the future
by Y . Lee et al. [2] argues that a learned representation Z of the predictive information should
be compressed with respect to X , based on the observation in Bialek and Tishby [1] that H(X),
the entropy of the past, grows more quickly than I(X;Y ). Following [2], we use the Conditional
Entropy Bottleneck (CEB) [49] to learn the representation Z, utilizing the same variational bound
on CEB:

CEB ≡ min
Z
βI(X;Z|Y )− I(Y ;Z) (1)

≤ min
Z

Ex,y,z∼p(x,y)e(z|x)β log
e(z|x)

b(z|y)
− log

b(z|y)
1
K

∑K
k=1 b(z|yk)

(2)

where (x, y) are sampled from the data distribution, p(x, y), e(z|x) is the learned forward encoder
distribution, b(z|y) is the learned variational backward encoder distribution, β is a Lagrange mul-
tiplier that controls how strongly compressed the learned representation Z is, with smaller values
corresponding to less compression, andK is the number of examples in a mini-batch during training.
The second term of Equation (2) corresponds to the contrastive InfoNCE bound [3, 50] on mutual
information I(Y ;Z). Following the CEB implementation of Lee et al. [51], we choose e(z|x) and
b(z|y) to be parameterized von Mises-Fisher distributions. Details are described in Appendix B.1.

QT-Opt. QT-Opt is an offline actor-critic algorithm where only the critic is explicitly learned. It
learns the Q-function (or critic) by minimizing Bellman errors:

E(θ) = E(s,a,s′)∼p(s,a,s′)D [Qθ(s, a), QT (s, a, s′)] (3)

where θ is the set of model parameters, s and s′ are state observations, a is the action taken, D
is some divergence (QT-Opt uses cross-entropy), Qθ is the learned state-action value function,
and QT = r(s, a) + γV (s′) gives a target value for the given transition (s, a, s′). V (s′) =
mini∈[1,2]Qθ̄i(s

′, πθ̄1(s′)) is a Double DQN state value function [52, 53, 54], which for QT-Opt
is computed by using two lagged versions of the parameters θ, θ̄1 and θ̄2, with different lagging
methods. The QT-Opt policy, πθ̄1(s) = arg maxaQθ̄1(s, a), is optimized directly at each envi-
ronment step using the cross-entropy method (CEM) [55]. In CEM, N actions are sampled from a
Guassian over the action space, the bestM < N actions as measured byQθ̄1 are used to estimate the
mean and variance of a new Guassian, from which another N samples are drawn. This is repeated a
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fixed number of steps, converging towards a narrow Gaussian over the part of the action space that
the critic believes will perform best at the current state. See [12] for further details.

PI-QT-Opt. As shown in Figure 1, PI-QT-Opt combines a predictive information auxiliary simi-
lar to that introduced in Lee et al. [2] with the QT-Opt architecture. We define the past (X) to be
the current state and action, (s, a), and the future (Y ) to be the next state, next optimal action, and
reward, (s′, a′, r). A state s includes an RGB image observation and proprioceptive information.
Image observations are processed by a simple conv net, the output of which is mixed with action,
proprioceptive state, and the current task context (described in Section 3.2) using additive condition-
ing. A second simple conv net processes the combined state representation. All of the convolutional
parameters are shared by both the forward encoder eθ for modeling the predictive information (as
in Equation (2)) and the Q-function Qθ (as in Equation (3)), but the shared representation output
from this is further processed by separate MLPs, to allow each loss to specialize its representation
as needed, while still allowing the predictive information loss to influence the shared convolutional
representation. Not shown in Figure 1 is that the target Q-function Qθ̄1 and backward encoder bθ̄1
for modeling the predictive information also share the same base lagged and non-trainable convo-
lutional representation, but the backward encoder has its own trainable MLP, in order to learn any
differences in dynamics when trying to predict the past from the future, rather than predicting the
future from the past, as the forward encoder does. In addition, we concatenate the convolutional
representation with observed reward r(s, a) as the input to the backward encoder MLP head.

We find that adding a predictive information auxiliary loss is an easy way to give substantial perfor-
mance improvements to our chosen RL algorithm, as in Lee et al. [2] which introduced Predictive
Information Soft Actor-Critic (PI-SAC). However, we note that PI-SAC on its own was unable to
solve our tasks, yielding close-to-zero success rates, and neither was SAC [56]2, which may indicate
that the choice of base RL algorithm is still critical.

3.2 Multi-Task Context Conditioning

In order to learn one general-purpose agent for multiple tasks, we condition the Q-functions and the
Predictive Information auxiliary on a task context, which describes the specific task that we wish
the agent to perform, as illustrated in Figure 1. In our setting, a task involves a robot skill and a set
of objects that the robot should interact with. We use two practical implementations of task context
in different robot manipulation settings (Section 4.1). One is image-based, where a task is specified
with the initial image, the initial object locations, and the skill type as depicted in Figure 2. It only
considers locations and skill types and thus could enable good generalization across different and
even novel objects. The other one is language-based, where tasks are specified with natural language,
similar to Ahn et al. [7]. Details of these two implementations are described in Appendix B.2. A
generalization of the language-based approach is considered in Appendix F.

An alternative approach to extending QT-Opt for multi-task learning is having one critic head per
task with a shared base encoder, as used in MT-Opt [13]. However, MT-Opt found that a multi-
headed architecture performed worse than a single-headed architecture; in addition, we note that a
multi-headed strategy is practically prohibitive to scale to the order of hundreds of tasks.

4 Experimental Setup

To analyze how PI-QT-Opt compares with QT-Opt across different multi-task robotic learning sce-
narios, we explore a variety of challenging simulation and real vision-based robotic manipula-
tion environments. While prior results on large-scale robotic grasping focused on a limited set
of tasks [12, 13], we verify the robustness and scalability of PI-QT-Opt by studying many different
environments across hundreds of different tasks in the real world.

4.1 Robot Manipulation Tasks

We study 6 different multi-task, vision-based robotic manipulation settings in 3 different environ-
ments in simulation. Four of the manipulation settings have the corresponding hardware setup per-
mitting real-world evaluation.

2With our best effort, we were unable to get SAC and PI-SAC working on our tasks (See Appendix B.4)
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Figure 2: Example tasks in simulation and real-world environments using the Everyday Robots
manipulator arm. See Section 4.1 for details. The first images of (e), (f) and (g) show target object
locations used in the image-based task context conditioning method we designed. In real-world
environments, the object locations are detected using a vision model (Section 5.2). An overlay
image is created based on the object locations and the skill type, where we use different colors to
indicate different skills. This overlay image is only created for the first image of an episode. Then,
the first image and the overlay image are used as task context throughout the whole episode.

Experiment 1: (Sim & Real) SayCan Move skill (Figure 2(a),(b),(e)). We use the kitchen envi-
ronment from SayCan [7] which contains 17 objects that spawn on a countertop. The simulation
environment is shown in Figure 2(a) and the real countertop is shown in Figure 2(b). The Move skill
contains 272 tasks of the form “move object A near object B”. 246 tasks are used during training
and the 26 remaining tasks are held out. Image-based task conditioning is used.
Experiment 2: (Sim & Real) SayCan Pick skill (Figure 2(a),(b),(f)). Same environment as
Experiment 1. The Pick skill encompasses picking up each of the individual objects, for a total of
17 tasks. 12 tasks are used during training and the remaining 5 tasks are held out. Image-based task
conditioning is used, as described in Section 3.2.
Experiment 3: (Sim & Real) SayCan Knock skill (Figure 2(a),(b),(g)). Same environment as
Experiment 1. The Knock skill contains 8 tasks testing knocking over a can or bottle. 7 tasks are
used during training and 1 task is held out. Image-based task conditioning is used.
Experiment 4: (Sim & Real) SayCan 297 tasks, All skills (Figure 2(a),(b),(e)-(g)). Same
environment as Experiment 1. This task set includes all 3 SayCan skills (297 tasks). 265 tasks are
used during training and the 32 remaining tasks are held out. Image-based task conditioning is used.
Experiment 5: (Sim Only) Instance Grasping (Figure 2(c)). A sampled subset of 37 different trash
objects are placed randomly in bins. A vision model provides a target object for the robot to grasp.
The episode is successful if the robot lifts the target object. Image-based task conditioning is used.
Experiment 6: (Sim Only) 6-Object Manipulation (Figure 2(d)). A fixed set of 6 objects are
placed randomly on a table, similar to [27]. There are 30 separate tasks comprising the manipulation
skills of picking, pushing, and pick and place. Language-based task conditioning is used.

In all of the experiments, we use an Everday Robots manipulator robot [16] with parallel-jaw grip-
pers, an over-the-shoulder camera, and a 7-DoF arm. The robot has a proprioceptive observation
space that includes the RGB camera image, the arm pose, and the gripper angle. For the action
space, learned policies control the robot via relative position control of the end effector. In the
simulation-only environments, we utilize blocking control, where the policy waits until the previous
action completes before planning the next action. Motivated by faster and more reactive robot mo-
tions for real world evaluations, we utilize concurrent control [14] in all SayCan experiments, which
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(a) Move Skill (b) Pick Skill (c) Knock Skill

(d) SayCan 297 Tasks (All Skills) (e) Instance Grasping (f) 6-Object Manipulation

Figure 3: Performance (success rate) on tasks that are used for agent training.

means that the current action is computed while the previous action is still executing. We provide
additional implementation details in the Appendix B.

4.2 Reducing the Sim-to-Real Gap with CycleGAN

We train our PI-QT-Opt and QT-Opt models in simulated environments that roughly match the real
world evaluation environments. In order to reduce the simulation-to-real (sim-to-real) gap when
deploying policies on real robots, we train a RetinaGAN [57] model, a version of CycleGAN [58],
to transform simulated robot images to look more realistic while preserving general object structure,
following the sim-to-real setup in [14]. This enables our method to train purely on RetinaGAN-
transformed simulation images and directly transfer to the real world. We apply this image transfor-
mation to all the SayCan models, which we evaluate in both simulation and the real world.

4.3 Training and Evaluation Protocols

For each of the experimental settings in Section 4.1, we create a sparse binary reward (success or
failure) in simulation based on ground truth object poses. For each environment, we follow the large
scale asynchronous distributed training procedure in [12] and train QT-Opt agents and PI-QT-Opt
agents with the same hyperparameters with a batch size of 4096 using 16 TPUv2. In simulation, we
evaluate models with 700 episodes and compute their success rates. For the real-world evaluations,
we test each policy on 50 episodes of standardized starting scenarios for a fair comparison between
policies. More details are described in Appendix B.6 and Appendix B.7.

5 Experimental Results

We discuss experimental results on the manipulation tasks introduced in Section 4.1 in Section 5.1
and Section 5.2. We report mean and one standard deviation of success rate over 3 training runs with
different random seeds for each model. We analyze the relationship between predictive information
and agent performance in Section 5.3 and information compression in Appendix E.

5.1 Evaluation in Simulated Environments

Performance on training tasks. We learn PI-QT-Opt and QT-Opt models for each of the exper-
iment settings introduced in Section 4.1. Figure 3 shows evaluation results on tasks that are used
for agent training in simulation. We can see that PI-QT-Opt consistently outperforms QT-Opt in all
settings throughout training, improving the move model by 20% and the 297-tasks model by 25%
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relatively for example. This empirically validates our hypothesis that training with the predictive
information auxiliary loss leads to better and more efficient learning of general-purpose agents.

Zero-shot transfer to unseen tasks. We use the held-out SayCan tasks to evaluate zero-shot trans-
fer of PI-QT-Opt and QT-Opt models. A SayCan task is a composition of a skill and a set of target
objects (1-2) that the robot should interact with, as described in Section 4.1. Here, we consider two
types of zero-shot transfer: (1) the task is never seen during training, but the target objects have been
seen during training in other tasks, and (2) not only the task but the object is never seen during train-
ing. For (1), we evaluate the move skill models on held-out move tasks, and the 297-tasks models on
held-out tasks of all skills3. For (2), we evaluate the pick/knock skill models on held-out pick/knock
tasks. As demonstrated in Figure 4, PI-QT-Opt outperforms QT-Opt in all the settings, showing
that using the predictive information auxiliary loss leads to better zero-shot transfer to novel task
compositions and unseen objects. The 297-tasks model, for instance, is improved by 28% relatively.

(a) Move Skill (b) Pick Skill

(c) Knock Skill (d) SayCan 297 Tasks (All Skills)

Figure 4: Performance (success rate) on unseen novel tasks.

5.2 Evaluation in the Real World

We directly deploy our PI-QT-Opt and QT-Opt models trained in simulation for SayCan skills on
a real robot in the SayCan kitchen environment. As described in Section 4.1, these models use
image-based task context conditioning that requires information about the initial object locations
(Section 3.2). Unlike the simulated environments, the ground truth locations are not available in the
real environments. Therefore, we use a VILD [59] model to detect objects conditioned on object
names to locate the target objects associated with the names. When the VILD model fails to detect
the target objects, we adjust the scene slightly until VILD succeeds and then continue with the
evaluation. This allows us to evaluate the policy performance exclusively. We evaluate the SayCan
Pick, Move, and Knock models; the results are presented in Table 1, showing a clear advantage for
PI-QT-Opt. This empirically supports our hypothesis that using the predictive information auxiliary
loss enables better performance when transferring to the real world.

3The Move Skill training task set contain 246 tasks and each involves 2 objectives. Due to the nature of this
task set, it is difficult to avoid seen objects in held-out tasks. Therefore, we only use it for type (1) zero-shot
transfer but not type (2).
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Table 1: Evaluations on the real robot (mean and standard deviation over 3 evaluations)
Task PI-QT-Opt Success Rate QT-Opt Success Rate Relative Change
SayCan Move 22.9 ± 8.4% 13.93 ± 3.2% +64.4%
SayCan Pick 42.0 ± 9.9% 28.7 ± 8.0% +46.6%
SayCan Knock 54.6 ± 2.4% 36.2 ± 11.6% +50.7%

5.3 How does Predictive Information Relate to Agent Performance?

A core hypothesis of this work is that the ability to model what will happen next is critical to success
on control tasks. This ability can be quantified by the amount of predictive information, I(X,Y ), the
agent’s representation captures. In this section, we analyze the SayCan 300-task PI-QT-Opt model.
We compare the estimates of I(X,Y ), E[log b(z|y) − log 1

K

∑K
k=1 b(z|yk)] (from Equation (2))

in successful and failed episodes versus TD-error in Figure 54. We can observe that the amount
of predictive information is generally higher in successful episodes, and that episodes with high
TD-errors have much lower predictive information and are always failures.
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Figure 5: Predictive information estimate versus TD-error. Each point is averaged over an episode.
The predictive information is the mutual information (MI) between the past and future.

6 Conclusion

We have shown that using the predictive information auxiliary with a QT-Opt agent, i.e. PI-QT-
Opt, results in faster training, higher final performance, and better generalization to unseen tasks
for a single generalist agent trained on hundreds of tasks. We have also shown that PI-QT-Opt and
QT-Opt can be made to support multiple tasks by adding simple task conditioning. Our system,
PI-QT-Opt, is a generalist agent capable of solving hundreds of real-world tasks in a simple kitchen
environment, in spite of having only been trained in simulation.

Limitations. We focused on a single robotic arm and gripper, so we cannot speculate on how well
our approach would work on different robotic setups. We limited our real-world experiments to
simple, carefully-controlled “kitchen” settings, and can say nothing about performance on different
types of environments. Most importantly, our models do not have any safety guarantees, and we did
not attempt to evaluate how they would perform in the presence of other agents, such as humans
or animals. Using these models in settings where there are other agents could lead to injury or
death. These limitations may be mitigated in future research by working with a range of robot
platforms, expanding the breadth of tasks considered, including other agents in the environments
during training and evaluation, and integrating safety systems.

4For these predictive information analyses, we collect data for each task with a converged policy, and use
a batch size of 128, which corresponds to an I(X,Y ) upper bound of log 128 = 4.852 in order to fit these
analyses into one machine, while the distributed training batch size is 4096.
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