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ABSTRACT

Long-Form Question Answering (LFQA) involves generating comprehensive,
paragraph-level responses to open-ended questions, which poses a significant
challenge for evaluation due to the richness of information and flexible response
format. Existing LFQA-evaluation benchmarks often lack reference answers and
are limited in size and topic coverage, reducing their reliability. To address
this gap, we introduce LFQA-E, a well-constructed, multilingual, and reference-
based benchmark designed to rigorously evaluate automatic metrics for LFQA.
LFQA-E comprises 1,625 questions and 7,649 pairwise comparisons across 15
topics, drawn from diverse sources such as online queries and examination ques-
tions, thereby enabling a comprehensive assessment of evaluation metrics. We
examine five categories of metrics, encompassing 17 specific methods, using
LFQA-E. The results demonstrate that none of the existing automatic metrics
perform comparably to human judgments, highlighting their inability to capture
the dense information in long-form responses. Furthermore, we present a detailed
analysis of the failure cases and the generalization capacity of these metrics, of-
fering insights to guide the future development of LFQA evaluation methods.

1 INTRODUCTION

Long-form Question Answering (LFQA) (Fan et al., 2019) targets at generating in-depth, paragraph-
level responses to open-ended questions. It requires models to have comprehensive domain-specific
knowledge or use evidence from retrieved documents (Nakano et al., 2022; Akash et al., 2023) to
provide relevant and accuracy answers. Despite efforts to enhance the quality of long-form answers,
developing automatic and reliable evaluation metrics for LFQA is still underexplored.

Evaluating long-form answers presents significant challenges, as evaluators must possess compre-
hensive domain knowledge. Previous manual evaluations typically employed crowd-sourced work-
ers for annotation. However, their limited domain expertise inevitably compromises reliability. In
contrast, expert annotation would ensure higher quality, while the cost of employing experts to an-
notate large-scale datasets is prohibitive. Consequently, automatic evaluation metrics are essential.
In automatic evaluation of LFQA, ROUGE (Lin, 2004) has been widely adopted. However, Krishna
et al. (2021) argue that ROUGE provides limited informativeness in long-form contexts, weakening
its reliability. With the advancement of LLMs (OpenAI, 2023; 2024) and Large Reasoning Mod-
els (LRMs) (DeepSeek-AI et al., 2025a), numerous studies have leveraged these models to develop
evaluation metrics through various approaches (Chang et al., 2023), including prompting (Wei et al.,
2023), fine-tuning (Li et al., 2023; Jiang et al., 2024), and training LLMs as Reward Models (RMs)
(Liu et al., 2024a; Chen et al., 2025), either generative or scalar-based. Despite the advances of eval-
uation metrics, determining which metrics are most effective and best aligned with human judgment
for LFQA evaluation requires systematic verification and benchmarking.

Previous benchmark for LFQA evaluation (Xu et al., 2023) samples records from reddit/ELI5, hir-
ing experts to annotate the better one between two responses without references, and test alignment
between automatic evaluation metrics and expert labels. However, their benchmark has several
limitations: 1) Lack of authorized references A reference answer provides a baseline for assess-
ing whether a response covers key details and maintains factual accuracy. Without ground-truth
references, the comparison between metrics may be unfair, and evaluations without clear criteria
or rubrics are inherently unreliable. 2) Limited diversity The benchmark consists of only 260
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Categories

Sources

The idea behind drinking a lot of fluid is that you will 
produce more urine and propel the stone out of the ureter

LFQA-E Example

Q: Why doesn’t kidney stone pain get 
worse with hydration?
Ref: One of the major causes of kidney 
stone pain is ureteral colic…The idea 
behind drinking a lot of fluid is that you 
will produce more urine and propel…
Resp1: From what I understand, kidney 
stones cause the amount of 
pain…cause the ureters themselves to 
swell to pass the greater volume of 
fluid, which then prevents the kidney 
stone from getting stuck and causing 
the painful spasms.
…Resp2: It does. When I'm in the hospital 
for a kidney stone and a medical 
professional sympathizes with me about 
the pain and talks about how that 
scraping is so painful, I know right away 
that they have no idea what they are 
talking about…

🧐 Which one is better according to the 
reference?

• Long-form Response
• Expert Reference
• Hard Comparison

Potential Solution:
Produce more 
urines

✅

Around Topic:
But no specific 
solution

❌

Resp1 is better

Identify Core

Discard Useless

Engineering, 
7.30%

Biology, 7.70%

Other, 6%

Technology, 
11.30%

Physics, 
8.50%

Mathemetics, 
3.40%Economics, 

8.70%

Planetary 
Science, 
6.50%

Chemistry, 
4%

History, 
6.10%

Geography, 
6.20%

Politics, 
6.20%

Law, 6.10%

Medicine, 
6.20%

Psychology, 
5.80%

Settings

Figure 1: The figure shows the overview of LFQA-E. The left side displays the categories, sources,
and three settings, showcasing its diversity. The right side illustrates an example of LFQA-E.
examples, all in English, constraining its linguistic and topical diversity. Moreover, it treats the
comparison as an A/B task, but in real scenarios, a “tie" option always exists.

To fill the gap, we introduce LFQA-E, towards evaluating the ability of different metrics. 1) To
evaluate whether current automatic evaluation metrics can select a better one from two nuanced re-
sponses, we gather references that are examined by the experts, and judge based on them. To ensure
the difficulty, we choose human responses based on their upvotes or their scores, and model re-
sponses based on two models with comparable capabilities. 2) To analyze the systematic differences
in validity among evaluation metrics, we rigorously assess the performance from several aspects.
First we evaluate them based on three settings, i.e, human vs human (h v. h), human vs model (h
v. m), and model vs model (m v. m). Moreover, we collect multilingual responses, i.e, English
and Chinese, and multiple domain-specific responses, e.g., Engineering, Law, Medicine, to ensure
a thorough analysis. 3) To prevent data contamination, we collect data from offline examination,
i.e., College Entrance Examination Simulation Questions (CEESQ) and Postgraduate Entrance Ex-
amination Questions (PEEQ) and online platform questions (reddit/ELI5) from the recent half-year.
The overview of LFQA-E Benchmark is shown in Figure 1.

Using LFQA-E, we critically assess the efficacy of 17 evaluation metrics. The experimental results
show that current leading evaluation metrics fail to capture core information as human beings from
verbose responses when differentiating the better one between two responses with similar quality.
Furthermore, we provide analysis on why automatic evaluation metrics fail in LFQA evaluation and
find the misalignment between evaluation metrics. Lastly, we try TTRL (Zuo et al., 2025) to improve
the evaluation performance of model-based metrics and provide some actionable insights.

2 RELATED WORK

Development of LFQA LFQA (Fan et al., 2019) requires models to generate paragraph-level
responses to open-ended questions which is more complex compared to datasets like SQuAD (Ra-
jpurkar et al., 2016), TriviaQA (Joshi et al., 2017), and NarrativeQA (Kočiský et al., 2017), where
answers are primarily words or phrases extracted directly from documents. In LFQA, models must
generate comprehensive yet correct responses based on their knowledge or existing evidence docu-
ments. Several studies have analyzed the discourse structure of long-form answers (Xu et al., 2022)
and have sought to enhance the performance on LFQA (Chen et al., 2023; Akash et al., 2023).

Evaluation of LFQA The automatic evaluation of LFQA remains challenging and underexplored.
For human annotation, HURDLES (Krishna et al., 2021) and WEBGPT (Nakano et al., 2022) employ
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A / B testing, where crowd-sourced annotators are instructed to choose the best of two candidate an-
swers. Since annotation of LFQA requires high expertise, the results of crowd-sourced workers may
be unreliable. To address the gap, Xu et al. (2023) employs experts for annotation, and tests several
evaluation metrics, such as ROUGE (Lin, 2004), BERTScore (Zhang et al., 2020), and BARTScore
(Yuan et al., 2021), on an expert-annotated dataset. Their findings validated that no existing metrics
fully align with human judgment. However, the dataset they used lacks expert-written references,
which are sourced from Reddit/ELI5, and is limited in scale, comprising only about 260 samples.
More recently, since the development of LLMs and LRMs, many work uses them for evaluation of
free-form answers, using prompt (Wei et al., 2023), fine-tuning using specific data (Liu et al., 2023),
and reinforcement-learning (Chen et al., 2025).

3 METHODOLOGY

3.1 OVERVIEW

To reasonably test the evaluation ability of different metrics for LFQA when having a reference, we
introduce LFQA-E, a multilingual and comprehensive benchmark composed of different topics and
questions. LFQA-E consists of the Chinese version LFQA-E-ZH and the English version LFQA-
E-EN. Table 1 shows its overview. It includes 1625 questions and 7649 comparisons, consisting of
1493 comparisons in Chinese and 6139 comparisons in English. It spans 15 topics, ranging from
history to engineering, ensuring its diversity. LFQA-E comprises expert-annotated references for
fair comparison and nuanced responses. Therefore, it is naturally a hard yet reasonable benchmark
for LFQA evaluation.

Table 1: Detailed statistics of LFQA-E. Avg Que.
Lens, Avg Ref. Lens, Avg Res. Lens corre-
sponds to question lengths, reference lengths, and
response lengths, respectively.

LFQA-E-EN LFQA-E-ZH

# Topics 9 6
# Questions 1026 599
# Comparisons 6156 1493
# Avg Que. Lens 13.4 24.6
# Avg Ref. Lens 299.1 187.2
# Avg Res. Lens 245.0 308.3
Annotate Expert Expert

Reference-Based Evaluation For LFQA-E,
references are sourced from academic exami-
nations or widely discussed questions in Red-
dit/ELI5. After being reviewed by experts
with relevant academic backgrounds, these ref-
erences are ensured to cover all the key points
needed to answer the question. This provides a
baseline for evaluation metrics to look up and
provide a more precise comparison.

Difficult Comparisons All the questions
contained in LFQA-E have been carefully ex-
amined by domain experts to ensure it is an-
swerable and clear to understand. We ensure that models have not seen the data by collecting data
from recent examinations and forum questions. The responses are collected from human-written re-
sponses, with close scores or upvotes, and model responses generated by comparable LLMs. There-
fore, it is hard to distinguish the better one at a glance.

Diverse Benchmark We collect 1493 questions and 7649 comparisons in 15 distinct domains,
from natural science to social science, to guarantee a diverse and representative benchmark. Also,
LFQA-E is multilingual, consisting of examples in both Chinese and English. Moreover, LFQA-E
includes three kinds of comparisons, guaranteeing the comprehensibility of the benchmark.

3.2 DATA PROCESSING

Data Collection For LFQA-E-ZH, we source our data from CEESQ and PEEQ, where ques-
tions, references, and scoring schemas are developed by domain experts, including teachers and
professors from high schools and colleges. The records are sampled from 2024 and are based on
local examinations restored from PDF files that have not been submitted to online platforms. These
questions cover diverse subjects, including politics, history, medicine, psychology, law, and geog-
raphy. We provide two examples of CEESQ and PEEQ in Appendix D.1. For LFQA-E-EN, data
is sourced from Reddit/ELI5, where each question is explained without specialized terminology or
complex concepts, and we use the top-ranked answer as our candidate reference. For LFQA-E-ZH,
to prevent overlap with potential training data, we avoid using data from actual College Entrance
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Examinations. All problems are sourced from PDF files and have not been uploaded online. Addi-
tionally, the questions captured from ELI5 are all from the past six months. We provide a benchmark
contamination study in Sec 5.5. To ensure that all questions are clear and answerable, we instruct
GPT-4o with temperature=0.7 to filter out questions with unclear descriptions. The instruction used
is listed in Appendix E.1. We conducted an experiment on the effectiveness of leveraging GPT-4o as
a filter, and the results reveal that GPT-4o demonstrates superior performance for this task, achiev-
ing 97% accuracy. Subsequently, to ensure our references contain all information needed to answer
the questions, we submit the remaining data for expert annotation. The annotation guidelines are
presented in Table 25. Each reference was annotated by two annotators, and references were dis-
carded if either annotator labeled them as invalid. The Cohen’s kappa coefficient is 0.78, indicating
substantial inter-annotator agreement. Through this process, we obtained 1,625 questions.

Human Response Collection For LFQA-E-ZH, we gather examination papers primarily in im-
age format and employ Optical Character Recognition (OCR) systems to extract student responses.
Specifically, we choose student answers with close scores to ensure the comparison difficulty. The
OCR is conducted using the Volcano Engine API. For LFQA-E-EN, we collect responses from the
forum section of the corresponding question. Also, we select answers within the many-voted yet
close up-votes to make them hard to differentiate. However, the responses we collect for LFQA-
E-ZH are mainly written during examination, it is concise and well structured, and the responses
we collect for LFQA-E-EN include some special characters like URLs, which deteriorate our data
quality. To handle it, we use GPT-4o to paraphrase and clean our human responses. The instruction
we used is shown in Appendix E.1. We randomly sample 100 records and annotate the paraphrased
responses to validate the performance of GPT-4o, with the results in Appendix B.1, which indicates
that leveraging LLMs doesn’t introduce any error. We also provide a case study in Appendix D.2.

Model Response Generation When generating model responses, we focus on evaluating whether
LLMs can understand the semantic meaning of texts well and properly select the better response.
Therefore, we do not impose extremely strict requirements on answer quality. Instead, we ensure
the difficulty of LFQA-E BENCH by selecting models with similar ranking in the LMSYS Arena
(Chiang et al., 2024; Zheng et al., 2023; 2024). On account of responses generated by stronger mod-
els like GPT-4o or Claude-4-sonnet will pose a great challenge for our annotators to differentiate,
increasing the cost of annotation, we leverage Llama-3-8B-Instruct (Dubey et al., 2024) and GPT-
3.5-turbo (OpenAI, 2023) for response generation. For model-generated answers, we use "Generate
reasonable answers to the following questions. Use references or examples if needed" to prompt
LLMs. The generation temperature is set to 1.0 to encourage diverse and creative responses.

3.3 HUMAN ANNOTATION

Annotator Decision We hire 10 annotators from relevant aspects or who have taken relevant
courses. Then we provide them with clear annotation recipes for better quality control. The an-
notation recipe is in Appendix F. Each annotator receives 2$ for annotating a question, including
4-6 comparisons. To ensure the effectiveness of the annotation, we pre-annotate a subset consisting
of 35 records. The annotator will start their work until they reach a 90% consistency on the subset.

Annotation Setting Guided by Xu et al. (2023), our evaluation criteria mainly focus on factuality
and completeness according to the reference, since almost all responses we collect are already very
fluent. Unlike typical A/B testing, our method employs a triple-choice format, giving a tie option,
to better capture the subtle differences between answers, as they often show comparable levels of
information overlap with the reference while the other information is useless or verbose according
to the central topic which can de dropped without hindering the comprehension of the response.

Annotation Process The annotators assess two responses against a given reference and select the
more informative and complete answer or declare a “tie” if both are of similar quality. During the
process, we treat a piece of information as the basic unit as FActScore (Min et al., 2023). Initially,
annotators extract the key information needed to answer the question from the provided reference
and check whether the responses under evaluation contain similar statements. Then, they will select
a better one based on the overlapped information. To minimize bias and subjectivity, each record
is annotated by two independent reviewers. Each comparison takes around 7 minutes to annotate.
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Table 2: Performance of evaluation metrics on LFQA-E. The largest value is denoted in bold.

ModelModel LFQA-E-EN LFQA-E-ZH AvgF1 AvgAcc

F1 Accuracy F1 Accuracy

Static Evaluation Metric

Human Baseline 77.7 83.3 68.9 76.5 73.3 79.9
Length 26.0 42.8 33.5 52.6 30.8 47.7
ROUGE 37.5 55.5 34.0 49.7 35.8 52.6
BERTScore 35.9 54.1 36.6 52.4 36.3 53.3

LLMs-based Evaluation Metric

Qwen2.5-32B-Instruct 45.8 63.5 41.8 56.7 43.8 60.1
Qwen2.5-72B-Instruct 43.1 61.2 39.0 53.0 41.1 57.1
Llama3.1-70B-Instruct 42.5 59.6 29.4 30.7 36.0 45.2
GPT-4o 46.4 61.7 42.6 53.2 44.5 57.5
DeepSeek-V3 39.3 57.9 41.1 53.8 40.2 55.9

RM-based Evaluation Metric

Skywork-Reward-Llama 37.3 54.4 38.2 53.6 37.8 54.0
Skywork-Reward-Gemma 37.5 56.0 33.0 48.3 35.3 52.2
RM-R1-Qwen2.5-Instruct-14B 36.4 64.9 35.1 51.9 35.8 58.4
RM-R1-DeepSeek-Distilled-Qwen-14B 43.9 65.7 36.7 53.2 40.3 59.5

LRM-based Evaluation Metric

o1-mini 45.9 62.9 45.2 58.9 45.6 60.9
Deepseek-R1 42.9 59.6 42.4 57.8 42.7 58.7

Trained Evaluation Metric

Auto-J-6B-bilingual 46.0 66.8 35.4 51.9 40.7 59.4
Prometheus-7B-v2.0 41.8 64.2 34.1 50.1 38.0 57.2
M-Prometheus-14B 41.6 60.8 33.9 49.4 37.8 55.1

For some hard-to-differentiate comparisons, detailed justification is saved to help understand. After
annotation, we find the Cohen’s kappa correlation of inter-annotator agreement is approximately
0.65, indicating a substantial agreement. We show a screenshot in Figure 5.

4 EXPERIMENTS

4.1 MODELS

We evaluate various metrics on LFQA-E-EN and LFQA-E-ZH respectively, including: Static Met-
rics: We use Length-orientation, ROUGE-1 (Lin, 2004) and BERTScore (F1) Zhang et al. (2020)
since they are widely used as the evaluation metric for LFQA. LLMs: We select Qwen2.5-32B-
Instruct (Qwen et al., 2025), Qwen2.5-72B-Instruct, Llama-3.1-70B-Instruct (Dubey et al., 2024),
Deepseek-V3 (DeepSeek-AI et al., 2025b), and GPT-4o (OpenAI et al., 2024). LRMs: Considering
the high time complexity and cost, we use o1-mini and Deepseek-R1 (DeepSeek-AI et al., 2025a).
RMs: We test on Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024a), Skywork-Reward-
Llama-3.1-8B-v0.2 considering their leading position on Reward Bench (Lambert et al., 2024).
We also test RM-R1-Qwen2.5-Instruct-14B (Liu et al., 2024b) and RM-R1-Deepseek-Distilled-
Qwen-14B since they represent another paradigm of reward models. We refer to Skywork-Reward-
Gemma-2-27B-v0.2 and Skywork-Reward-Llama-3.1-8B-v0.2 as Skywork-Reward-Gemma and
Skywork-Reward-Llama for simplification. Evaluation-Specific Models: There are some mod-
els trained to be evaluation models. Among these models, we select Auto-J-Bilingual (Li et al.,
2023), Prometheus-7B-v2.0, and M-Prometheus-14B (Kim et al., 2024).

4.2 IMPLEMENTATION DETAILS

We evaluate all the metrics in both LFQA-E-EN and LFQA-E-ZH. We use Jieba cut for ROUGE-
zh. For BertScore, we use roberta-large for LFQA-E-EN evaluation and bert-base-chinese for
LFQA-E-ZH. We set the temperature at 1.0 for all LLM-based evaluation metrics to encourage
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diverse responses. We show the results of temperature = 0 in Sec 5.1. The prompts we used are
shown in Appendix E.2. For models with specific training templates, we adopt them. We include
references for models to look up in all our settings. We use accuracy and macro-F1 as our indicators:

Acc =
1

N

N∑
i=1

I(predi = labeli) (1)

F1macro =
1

||C||
∑
c∈C

(
2 · PcRc

Pc +Rc

)
(2)

where C = {A,B, tie}. For LLM-based methods, we include a “tie” option in the instruction, while
for other methods that return a scalar, we round the scalar to 3 decimal places. For the human
baseline, we hire another 3 annotators with doctor’s degrees to ensure the quality. The final scores
are obtained by averaging annotators’ results. We use the annotation recipe as previously claimed.

4.3 MAIN RESULTS

Table 3: Performance of different models on com-
parisons that humans labeled as tie. The largest
value in each column is in bold.

Model LFQA-E-EN LFQA-E-ZH

Deepseek-V3 1.8 10.2
Qwen2.5-32B-Instruct 7.2 7.5
Qwen2.5-72B-Instruct 2.6 3.6
Llama-3.1-70B-Instruct 5.0 7.7
o1-mini 7.1 14.1
Deepseek-R1 7.4 7.2
GPT-4o 9.2 14.6

Table 2 lists our results. The overall low accu-
racies and F1-scores of all evaluation metrics
indicate the challenge LFQA-E poses to cur-
rent models and methods. We also provide a
cost analysis in Appendix B.4.

Comparison Between Metrics Though
none of the evaluation metrics achieves a
high performance on LFQA-E, we observe
that scaling model size doesn’t definitely
yield a better result. For example, Qwen2.5-
32B-Instruct beats Qwen2.5-72B-Instruct
by 3%. What’s more, LRMs show a great
performance compared with LLMs, thanks to their long CoT and extended thinking. RM-based
evaluation metrics don’t show promising results when generalizing to LFQA evaluation, perhaps
because they are trained to give a better one between two responses, renouncing the "tie" option.
We will analyze further and give a fairer comparison in Section B.3.

Comparison Between Indicators All evaluation metrics struggle to give a tie as good as human
beings. Table 3 indicates that among the evaluation metrics we test, the best result is just 9.2%
for LFQA-E-EN and 14.6% for LFQA-E-ZH. Observing the responses, we find that they are too
conservative to claim two responses are of equal quality. This explains why accuracy is always
larger than Macro-F1. The low accuracy on tie comparison reflects the difficulty of LFQA-E again.

Specialized Tuned models Help Boost Performance. Observing the table above, we find that
tuning a base model to be a robust generative reward model helps in LFQA evaluation. Moreover,
when changing the base model to a strong reasoning model, the performance gains continually. In
addition, SFT models can also achieve performance comparable with models of larger sizes. These
phenomenon indicates that tuning is essential for LFQA evaluation.

5 ANALYSIS

5.1 TEMPERATURE MATTERS

To ablate the effect of temperature on our validation, we further experiment using a temperature
equals 0.0 for deterministic results. The result in Table 4 shows a noticeable shift in metrics. For
instance, the performance of LLM-based Evaluation Metrics such as Qwen2.5-32B-Instruct and
GPT-4o are higher compared to when the temperature is set to 1.0. This suggests that deterministic
behavior likely reduces the model’s variability in responses, leading to more consistent evaluation
results. However, the LRM-based evaluation metrics show a significant drop, indicating that models
relying on more exploration perform worse or even collapse under deterministic conditions.
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Table 4: Performance of metrics on LFQA-E when temperature is set to 0. The largest value is
denoted in bold.

Model
LFQA-E-EN LFQA-E-ZH

AvgF1 AvgAcc
F1 Accuracy F1 Accuracy

LLMs-based Evaluation Metric

Qwen2.5-32B-Instruct 46.0 64.5 40.0 54.0 43.0 59.3
Qwen2.5-72B-Instruct 41.8 58.6 38.5 52.7 40.2 55.7
Llama3.1-70B-Instruct 36.8 53.5 40.5 50.4 38.6 52.0
GPT-4o 49.5 63.1 43.9 52.7 46.7 57.9
DeepSeek-V3 40.1 57.8 40.9 55.1 40.5 56.5

LRM-based Evaluation Metric

o1-mini 43.4 56.2 4.3 5.8 23.9 31.0
Deepseek-R1 2.0 2.7 32.1 45.3 17.1 24.0

(a) LFQA-E-EN (b) LFQA-E-ZH

Figure 2: Performance of different models on our three settings on LFQA-E.

5.2 EVALUATION METRICS CAN’T EXCEL AT ALL SETTINGS.

To have a thorough understanding of whether the model evaluates human response or model re-
sponse differently, we experiment on a different group of LFQA-E. We break it into three groups,
i.e., h v. h, h v. m, and m v. m, where h indicates human response and m represents model response,
and see the accuracy changes. The results are listed in Figure 2a for LFQA-E-EN and Figure 2b
for LFQA-E-ZH. We can observe that for many evaluation metrics, there exists a huge difference
between different comparison settings. In LFQA-E-EN, the RMs show steady ability while others
exhibit degradation when model responses are introduced. In LFQA-E-ZH, all the metrics show a
drastic accuracy decline under m v. m, with a maximum drop of 14.2% from Deepseek-V3. This
further validates our assumption that current evaluation metrics can’t differentiate between two nu-
anced responses. we also show the performance across subjects in Appendix B.2.

5.3 REASONS EVALUATION METRICS FAIL WHEN EVALUATING LONG-FORM RESPONSES.

For LM-based Evaluation Metric We observe the outputs of several LLMs and find that almost
all errors arise from the following aspects.

• Keypoints Identification Error: The model fails to correctly identify and separate bullet
keypoints or enumerated lists in responses, leading to poorly structured answers.

• Irrelevant/Incorrect Information Error: The model does not penalize or filter out irrelevant
or factually incorrect details in its responses, reducing accuracy.

• Contradiction Error: During reasoning, the model generates inconsistent or contradictory
statements due to factual hallucinations.

• Formatting Error: The model produces responses with an improper format.

7
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Figure 4: The Cohen’s Kappa Correlation Matrix in LFQA-E.

We show the probability of each error occurring in Figure 3. We choose Deepseek-V3 and o1-mini
for representation. Point Identification Error and Irrelevant/Incorrect Information Error happen
most time, indicating the relatively low inherent ability for LMs when evaluating long-form answers.

o1-mini

Deepseek-V3

0% 25% 50% 75% 100%

Identification Information Contradiction Format

Figure 3: Percentage of error types for LMs
on the LFQA-E dataset.

Static Evaluation Metrics These methods simply
leverage word-level or embedding-level similarities,
which scratch on surface when evaluating. As de-
scribed in Fan et al. (2024), considering evaluat-
ing two long responses around a topic, there may
be many words overlapping. Also, overly long re-
sponses dilute semantics, making originally impor-
tant key information trivial, so metrics fail to con-
sider informativeness, but only focus on similarity.

5.4 DIFFERENT EVALUATION
METRICS DON’T AGREE WITH EACH OTHER.

To find whether there is a correlation between dif-
ferent evaluation metrics, we observe detailed eval-
uation results. Specifically, we select ROUGE,
Qwen2.5-32B-Instruct (simplified as Qwen), GPT-4o, Skywork-Reward-Llama (simplified as
Llama), o1-mini, and Auto-J-6B-bilingual (simplified as Auto-J), considering their relatively bet-
ter performance on LFQA-E. Figure 4a and 4b show the results. We observe that neither of the
two metrics achieves a high correlation, indicating two metrics may contradict each other to a large
degree. There are even some negative correlations between the two metrics under LFQA-E-EN.
This phenomenon further illustrates that there is no stable evaluation result across different metrics.

5.5 BENCHMARK CONTAMINATION ANALYSIS

To examine whether our evaluation benchmark has potential contamination from pretraining cor-
pora, we conducted perplexity (PPL) and n-gram overlap the same as Xu et al. (2024) analysis
using two widely adopted open-source instruction-tuned models: Qwen2.5-7B-Instruct and
Llama-3.1-8B-Instruct. The underlying intuition is that if evaluation data is memorized
during pretraining, the models would exhibit abnormally low perplexity and high n-gram overlap on
the evaluation benchmark.

Perplexity Analysis. Table 5 reports the PPL values on both English and Chinese sub-
sets. For Qwen2.5-7B-Instruct, the PPL is 11.60 (en) and 11.73 (zh). For
Llama-3.1-8B-Instruct, the PPL is 11.70 (en) and lower at 7.21 (zh), which all fall within
tolerable limits and low data contamination potential.
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Table 5: Perplexity (PPL) on the benchmark.

Model en zh

Qwen2.5-7B-Instruct 11.60 11.73
Llama-3.1-8B-Instruct 11.70 7.21

Table 6: n-gram accuracy on the benchmark.

Model en zh

Qwen2.5-7B-Instruct 0.030 0.047
Llama-3.1-8B-Instruct 0.025 0.093

n-gram Overlap. We further computed n-gram exact match accuracy between the benchmark
and model generations. As shown in Table 6, the overlap scores remain low across both models,
e.g., 0.025–0.030 in English and 0.047–0.093 in Chinese. These values are significantly below
contamination thresholds observed in prior work, reinforcing the view that large-scale memorization
is unlikely to happen in our benchmark.

Table 7: Performance of TTRL.

Model LFQA-E-EN

Qwen2.5-3B-Instruct

CoT 49.6

Structured Prompt 59.7

TTRL 63.9

TTRL + Clip Higher 66.5

Qwen2.5-7B-Instruct

CoT 53.3

Structured Prompt 60.6

TTRL 68.2

TTRL + Clip Higher 68.6

Overall, both analyses suggest that the bench-
mark is not heavily contaminated. The English
subset appears relatively safe across both mod-
els. For the Chinese subset, while Llama-3.1-
8B-Instruct shows somewhat lower perplex-
ity and higher n-gram overlap, though n-gram
higher than expected, remain within acceptable
bounds and don’t indicate severe memorization.

5.6 TTRL TO BOOST PERFORMANCE

Here, we try to improve the performance on
LFQA-E through prompting and reinforcement
learning (RL). Firstly, we use a structured
prompt to instruct models to embrace their
response within a <answer>...</answer>
tag. This leads to a non-trivial performance in-
crease, considering the relatively lower instruc-
tion following ability of small language models.
Building on this, since RL is widely used to improve the reasoning ability of LLMs (Cui et al., 2025;
Fan et al., 2025), we use RL to leverage the performance of LLMs on LFQA evaluation. Consid-
ering the lack of high-quality data, we implement TTRL (Zuo et al., 2025) on our LFQA-E-EN
as an example. We configure our model with a batch size of 8, a rollout temperature of 1.0, and
generate 32 rollouts per prompt. The learning rate is 5e-7. During validation, the temperature is 0.0
for consistent results. The reward signal is based on an outcome-based rule, similar to the approach
used in Deepseek-R1 (DeepSeek-AI et al., 2025a). As shown in Table 7, TTRL yield a substantial
performance boost, demonstrating the effectiveness of using RL for this task. Also, the response
length grows steadily during the training until the training rewards converge. However, we observe
a rapid convergence where all rollouts produce identical preferences, which limits further improve-
ments. We attribute this to the underlying three-category classification which is easily overfitted
when the model is over-confident. For a remedy, we implement clip-higher mechanism used in
DAPO (Yu et al., 2025). Also, we observe a performance boost, indicating that when we increase
the diversity during rollouts, RL can take effect more stably. However, more sophisticated methods
and high-quality data are needed for a better evaluation metric that mimics human preferences.

6 CONCLUSION

We introduce LFQA-E, a multilingual benchmark for LFQA evaluation. It consists of 1625 ques-
tions and 7649 comparisons, spanning 15 topics, from natural science to social science, consisting
of 3 settings, i.e., h v. h, h v. m, and m v. m. Each records include a clear question, an authorized ref-
erence, and two hard-to-differentiate responses, ensuring its difficulty. We conduct experiments on
15 automatic evaluation metrics. The results show that none of the metrics can evaluate long-form
responses as well as human beings. We further analyze the generalization of different metrics across
languages and settings. The results further indicate that all models struggle to generalize well to all
comparisons. We find that LRMs and specifically trained evaluation models lead on LFQA-E. The
test-time-scaled evaluation model may be used to enhance the performance of LFQA evaluation.
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A USE OF LLMS

We use LLMs to refine our writing using Gemini2.5-Pro, GPT-5, and Claude-4.1. We check the
refined phrases after generation.

B ADDITIONAL RESULTS

B.1 ANNOTATION OF LLM PARAPHRASING

We randomly sample 100 records to compare the orignal responses and the paraphrased responses.
We define three types of errors: 1) The paraphrased response contains factual errors; 2) The para-
phrased response adds new core points to answer the problem, which may reverse the order; 3) The
paraphrased response drops original points or introduces influency or inconsistency. After annota-
tion, we find error 2 in only 1 out of 100 paraphrased response, indicating the effectiveness of using
GPT-4o to paraphrase responses.

B.2 THE ABILITY OF EVALUATION METRICS VARIES ACROSS DOMAINS.

The performance of evaluation metrics in LFQA-E varies significantly across different domains. As
shown in Tables 8 and 9, models and metrics exhibit distinct strengths and weaknesses depending
on the subject area. For instance, on the LFQA-E-ZH dataset, models like Qwen2.5-32B-Instruct
and GPT-4o consistently excel in subjects such as Geography, Law, and Medicine but perform
less effectively in more complex domains like Psychology and History. Conversely, models like
DeepSeek-V3 and RM-based Evaluation Metrics show particular strengths in fields like Politics and
Law, where the emphasis is on factual accuracy and legal context. Similarly, in the LFQA-E-EN
dataset, LLM-based models such as Qwen2.5-32B-Instruct perform exceptionally well in Engineer-
ing and Technology but show a noticeable decline in subjects like Psychology and Mathematics,
possibly due to the more abstract nature of these domains. In contrast, RM-based Evaluation Met-
rics, such as RM-R1-DeepSeek-Distilled-Qwen-14B, demonstrate impressive performance in fields
like Planetary Science and Chemistry, where the data is often more structured and less ambiguous.

Table 8: Results of different topics from LFQA-E-ZH. The largest value is denoted using bold.

METRICS GEOGRAPHY HISTORY POLITICS PSYCHOLOGY MEDICINE LAW

LLM-based Evaluation Metric

Qwen2.5-32B-Instruct 64.3 58.2 50.4 44.8 65.1 49.0
Qwen2.5-72B-Instruct 65.5 54.3 51.1 42.7 58.3 54.9
Llama-3.1-70B-Instruct 41.5 34.4 37.0 46.3 46.6 62.6
GPT-4o 62.0 51.8 49.1 44.8 58.3 46.1
Deepseek-V3 60.0 50.5 54.4 40.6 57.3 49.0

RM-based Evaluation Metric

Skywork-Reward-Llama 58.3 54.1 51.4 34.4 59.2 54.9
Skywork-Reward-Gemma 54.3 50.0 41.0 36.5 48.5 56.9
RM-R1-Qwen2.5-Instruct-14B 58.6 51.0 45.5 44.8 58.4 54.9
RM-R1-DeepSeek-Distilled-Qwen-14B 61.4 51.8 62.5 37.5 54.5 57.8

LRM-based Evaluation Metric

o1-mini 53.5 46.9 42.5 49.0 66.0 56.9
Deepseek-R1 64.0 58.4 53.2 42.7 67.0 54.9

Trained Evaluation Metric

Auto-J-6B-bilingual 58.5 55.4 41.7 38.5 58.4 59.8
Promethus-7B-v2.0 54.0 52.6 43.2 40.6 51.5 59.8
M-Promethus-14B 56.0 51.3 43.7 41.7 44.7 50.0

B.3 LLMS ARE BETTER AT FINDING SOMETHING BETTER.

Considering that giving a tie option is difficult for both humans and models, we drop out the records
that are labeled as a tie and conduct the experiments again. We show the results in Table 10. After
discarding the tied comparison, all the evaluation metrics show nontrivial performance boosts. GPT-
4o even gets a 6.4% bonus. This increase matches what we find when comparing indicators. Similar
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Table 9: Results of different topics from LFQA-E-EN. The largest value is denoted using bold.

METRICS ENGINEERING BIOLOGY TECHNOLOGY PHYSICS MATHEMATICS ECONOMICS PLANETARY SCIENCE CHEMISTRY OTHER

LLM-based Evaluation Metric

Qwen2.5-32B-Instruct 59.0 64.7 59.0 52.3 55.6 63.0 64.7 64.7 65.7
Qwen2.5-72B-Instruct 59.8 65.7 60.2 52.2 57.1 61.9 61.6 67.5 63.4
Llama-3.1-70B-Instruct 59.7 61.4 53.2 51.0 55.0 61.2 60.5 62.6 58.0
GPT-4o 60.5 65.1 60.4 55.9 58.1 63.0 64.4 64.4 65.5
Deepseek-V3 52.6 64.9 52.8 51.9 54.4 62.7 64.4 64.7 57.1

RM-based Evaluation Metric

Skywork-Reward-Llama 55.9 57.1 54.1 55.9 56.2 57.1 58.0 63.1 53.5
Skywork-Reward-Gemma 56.9 59.0 59.2 56.3 56.8 57.0 58.5 56.6 60.0
RM-R1-Qwen2.5-Instruct-14B 56.9 59.0 59.2 56.3 56.8 57.0 58.5 56.6 60.0
RM-R1-DeepSeek-Distilled-Qwen-14B 65.7 72.1 64.5 63.9 61.3 67.7 73.0 71.4 69.0

LRM-based Evaluation Metric

o1-mini 56.2 64.7 53.9 54.0 58.7 64.3 67.3 62.6 57.0
Deepseek-r1 54.0 58.6 54.3 48.3 47.1 58.8 56.3 62.6 56.1

Trained Evaluation Metric

Auto-J-6B-bilingual 72.3 68.3 73.1 65.2 64.3 67.1 67.4 69.6 72.9
Promethus-7B-v2.0 66.8 66.4 69.0 65.1 65.1 63.9 64.0 72.0 57.0
M-Promethus-14B 64.1 63.5 62.0 59.5 55.2 62.1 64.9 70.6 65.5

Table 10: Performance of different evaluation metrics on LFQA-E. The examples whose labels are
tie are discarded for fairer comparison. The largest value is denoted using bold.

MODEL LFQA-E-EN LFQA-E-ZH Avg
Static Evaluation Metric

Length 42.7 56.9 49.8 ↑ 2.1%
ROUGE 57.5 53.8 55.7 ↑ 3.1%
BERTScore 56.0 56.6 56.3 ↑ 3.0%

LLM-based Evaluation Metric

Qwen2.5-32B-Instruct 66.8 62.8 64.8 ↑ 4.7%
Qwen2.5-72B-Instruct 63.4 57.6 60.5 ↑ 3.4%
Llama-3.1-70B-Instruct 66.1 34.0 50.1 ↑ 4.9%
GPT-4o 66.3 61.4 63.9 ↑ 6.4%
Deepseek-V3 60.0 60.0 60.0 ↑ 4.1%

RM-based Evaluation Metric

Skywork-Reward-Llama 56.7 58.4 57.6 ↑ 3.6%
Skywork-Reward-Gemma 58.2 52.5 55.4 ↑ 3.2%
RM-R1-Qwen2.5-Instruct-14B 67.5 56.2 61.9 ↑ 3.5%
RM-R1-DeepSeek-Distilled-Qwen-14B 68.0 57.5 62.8 ↑ 3.3%

LRM-based Evaluation Metric

o1-mini 67.3 64.2 65.8 ↑ 4.9%
Deepseek-R1 61.6 63.1 62.4 ↑ 3.7%

Trained Evaluation Metric

Auto-J-6B-bilingual 70.0 57.3 63.7 ↑ 4.3%
Prometheus-7B-v2.0 66.5 54.1 60.3 ↑ 3.1%
M-Prometheus-14B 63.7 53.3 58.5 ↑ 3.4%

to what we observe above, LRMs remain leading on the fairer comparison, and RMs still struggle to
generalize to long-form response evaluation. Static evaluation metrics, however, show the least im-
provement. The experimental results demonstrate the potential of test-time scaling, while reflects the
generalization problem of RMs. What’s more, specific evaluation models show their great potential
once again, ranking first on LFQA-E-EN, displaying its future for LFQA evaluation.

B.4 HOW TO BALANCE THE COST AND TIME EFFICIENCY BETWEEN MODELS?

To further discuss the tradeoff between efficiency and effectiveness among language models, we cal-
culate the average inference time per question of several LLMs, LRMs and RMs. Table 13 lists the
results. Specifically, for the closed-source models that need to invoke api for inference, we calculate
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their costs on both LFQA-E-EN and LFQA-E-ZH in Table 14. We observe that o1-mini incurs
the highest cost, which is aligned with its relatively higher accuracy and F1 scores. DeepSeek-
V3, on the other hand, offers a more cost-effective alternative, though its performance is somewhat
lower. For a more practical and cost-efficient evaluation, models like Skywork-Reward-Llama and
Skywork-Reward-Gemma have much smaller parameter scales and can be deployed on local re-
sources, showing strong promise for reducing costs while still providing a reasonable evaluation.

C DISCUSSION

We suggest training open-domain RMs or evaluation models, which may help for the evaluation of
LFQA, considering their relatively low cost and GPU requirements, but with a decent score. Also,
we recommend future work to focus on evaluation workflows that combine the strengths of both
LLM-based models and more efficient reward models. Particularly, for open-sourced models, we
don’t observe steady performance gains as model size scales. Therefore, smaller models with more
training data may help more than larger models with some well-designed prompts.

D CASE STUDY

D.1 CASE FROM CEESQ AND PEEQ

We provide two cases from CEESQ and PEEQ in Table 11. We translate them into English for easier
comprehension.

Table 11: Case Study from CEESQ and PEEQ.

QUESTION FROM PEEQ:
What are the classifications and percentages of white blood cells?

REFERENCE:
White blood cells are divided into granular cells and non-granular cells. Granular cells include:
neutrophils (50%-70%); basophils (0-1%); eosinophils (0.5%-5%). Non-granular cells include:
monocytes (3%-8%); lymphocytes (20%-40%)

QUESTION FROM CEESQ:
Analyze the natural reasons for the numerous sandbars in the Yangtze River estuary area.

REFERENCE
The river has a large discharge volume and carries a large amount of sediment; located at the
river estuary, the terrain is low and flat, the flow velocity is slow, with deposition as the main pro-
cess, leading to massive sediment accumulation; situated at the river-sea interface, tidal backing
enhances the deposition process, forming numerous sandbars in the estuary area.

D.2 CASE FOR PARAPHRASING

We provide a case study from LFQA-E-ZH for paraphrasing in Table 12.

D.3 FAILED CASE

We show error cases in Table 15, Table 16, and Table 17. Table 15 shows the Incorrect Information
Error. Table 16 shows the Point Identification Error. Table 17 shows the Format Error.

D.4 SUCCESS CASE

We show successful cases in Table 18 and Table 19.
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Table 12: Case Study for parahrasing.

QUESTION FROM LFQA-E-ZH:
Reasons for the extremely fragile ecological environment in Guizhou Province.

ORIGINAL RESPONSE:
1. Guizhou features karst topography with undulating terrain
2. Serious soil erosion
3. Guizhou Province has few plains and is susceptible to natural disasters
4. Rugged terrain with inconvenient transportation

PARAPHRASED RESPONSE:
The ecological environment of Guizhou Province is extremely fragile for four main reasons:
First, Guizhou features karst topography with undulating terrain and complex landforms; Sec-
ond, serious soil erosion has caused severe depletion of land resources; Third, Guizhou Province
has few plains, with most areas being mountainous, making it susceptible to natural disasters;
Fourth, the rugged terrain with inconvenient transportation creates certain difficulties for ecolog-
ical environment protection and restoration.

Table 13: The average inference time of different language models per question, arranged in de-
scending order.

Model TIME (SECONDS)
Skywork-Reward-Llama 0.21
Qwen2.5-32B-Instruct 0.27
Skywork-Reward-Gemma 0.64
Qwen2.5-72B-Instruct 1.03
o1-mini 1.80
GPT-4o 3.56
DeepSeek-V3 12.00
DeepSeek-R1 14.13

Table 14: Overall cost on closed-source models using API. The largest value is denoted in bold.

Model LFQA-E-EN LFQA-E-ZH

DeepSeek-V3 3.6$ 0.7$
DeepSeek-R1 18.0$ 6.9$
o1-mini 67.0$ 14.2$
GPT-4o 35.6$ 5.7$

E INSTRUCTIONS

The following are instructions we used.

E.1 DATA COLLECTION INSTRUCTIONS

The instruction for the question filter is in Table 20. The instruction for the paraphrase is in Table
21.

E.2 ENGLISH LLM EVALUATION INSTRUCTION

The instruction for all LLMs and LRMs is in Table 22. The instruction for Prometheus series is in
Table 23. The instruction for Auto-J is in Table 24.
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Table 15: Case Study from LFQA-E from GPT-4o. This results from an incorrect information error.

QUESTION:
How does law enforcement track down a criminal during a manhunt?

REFERENCE:
1) Do we know where he/she is likely to “go to ground?” We try to find people he/she relies on
from phone taps, social media, prior crimes etc. You’d be amazed how many guys are found at
their aunt’s/ex’s/former cellmate’s place.
2) Put the word out to local TV news. In my experience they plaster the manhunt news and
mugshot on their website landing page right away.
3) License plate scanner hits on patrol cars and traffic cameras, if available. This is surprisingly
effective.
4) Social media phishing. Is he/she into certain drugs? Certain types of prostitutes? Is he trying
to find his wife or kids who are working with victim services and in hiding (very common in bad
domestic abuse cases)?

RESPONSE 1:
There are a lot of ways that law enforcement can track someone during a manhunt. First and
foremost, we live in the age of technology, and technology is a really powerful tool for tracking
someone. A cell phone is pretty much always transmitting your approximate location, and law
enforcement can gain access to the satellite that keeps track of that location.
There are also a few tried and true methods: the public. Law enforcement will almost always
provide a physical description of a suspect, complete with a photograph or artist rendition, and
urge people to report anyone who fits the bill close enough to be the person. This is a powerful
tool when to get anything modern, you need to interact with other humans or come into close
contact with human society.
There are also recordings, photographs, and footage captured by CCTV cameras everywhere.
Police may also deploy tracking hounds if they know who you are and have anything that has your
smell on it and escaping on foot from persistent, trained hunting dogs is unbelievably difficult."

RESPONSE 2:
Ohhhhh so many ways. Really depends on what resources are on hand.
1. Suspect probably has friends and family. Check their houses, interview them, see what they
know about the suspects hobbies and motives. Do they have a goal they’re trying to achieve? Is
that goal local or would it send them running elsewhere?
2. Flowing from above, roadblocks. If you generally know where your suspect is, where they
might try to go, and what means of transportation are available to them, you can monitor those
points of access until they show up.
3. Technology. Where did the suspect use their credit card. Oh, they pulled out cash to avoid
being traced? We can see where they made the withdrawal and go from there. Is their phone still
online? Can we call and trace them? Were they recently active on social media? How about their
friends? A lot of those posts have geotags in the metadata

MODEL JUDGE:
- Response 1 aligns well with the standard answer by emphasizing technology (cell phone track-
ing), public involvement (providing descriptions and photos), and surveillance methods (CCTV
cameras and tracking dogs). It touches upon finding the suspect’s connections, similar to the
standard answer’s first point about identifying likely places to "go to ground."
- Response 2 also covers relevant points such as investigating friends and family, setting up
roadblocks, and using technology like phone tracing and social media analysis. However, it
delves into areas like credit card tracking, which the standard answer specifically mentions as
ineffective.
Overall, Response 1 more closely mirrors the strategies outlined in the standard answer. (The
Judgement is incorrect by incorrectly estimating the weights of irrelevant or unimportant key-
points.)
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Table 16: Case Study from LFQA-E from GPT-4o. This results from an identification error.

QUESTION:
Why do swear words exist? What is it about swear words that make us feel better? Why don’t
other normal words make us feel the same way swear words do?

REFERENCE:
Swear words fall broadly into two categories: profanity and obscenity.Profanity originates with
the Ten Commandments, specifically "Do not take the Lord’s name in vain" in Abrahamic reli-
gions. Generally the idea though is "don’t disparage or devalue the sacred". This is where the
term "curse words" comes from, as you would curse someone by saying "God damn you". It’s
also where the term "swear words" comes from, i.e. "I swear to God". Obscenity, by contrast, is
primarily words that relate to sex or using the toilet. These are activities during which you would
be vulnerable to being attacked, and also that produce excrement that could be harmful for oth-
ers. There is sometimes a need to discuss these things in polite company, so terms were divided
into "polite" and "rude". In English, this distinction largely comes from the language of origin.
English has linguistic roots in both Romance languages (ones based on Latin like French) and
Germanic languages. At the time when the language was developing, higher society had more
background in Romance languages while the lower classes were more Germanic. So the former
words were considered refined and the latter crude and crass. Most English obscenities have
close analogs in German. In modern usage, there’s actually official definitions of profanity and
obscenity by the FCC. Profanity is using these words in an exclamatory sense, while obscenity
is using these words to describe the actions. The former is more allowable than the latter. As for
why it feels good to swear, it’s mostly because breaking a taboo gives a feeling of exhilaration,
and if nobody actually suffers as a result, you also get to feel like you’re "getting away with it".
Basically, if we didn’t put so much emphasis on NOT saying the words, it wouldn’t feel so good
when we do say them.

RESPONSE 1:
Language is a tool of communication. Expletives communicate something that you basically
cannot express using polite language. There’s certainly an element to them where the social
transgression is part of what makes them function as they do. What is or isn’t considered a swear
word largely depends on cultural values. In the Middle Ages it’s pretty apparent that words
related to bodily functions or sexuality were not considered particularly offensive, while blas-
phemies were generally considered a lot more offensive than they are in most modern societies.
Medieval folks appear to have been simultaneously less prudish but more fearful of the almighty.

RESPONSE 2:
Language has been used to separate classes for a very long time. Do you know why a pig is a pig
in the pen but pork on your plate? Or why a cow becomes beef when you serve it up? Because
one word was used by the lower class who raised the animals and the other word was used by
the upper class who could afford to consume it (in this case, Normans). Words used by the lower
classes frequently, but not by upper classes, will be found to be taboo in the upper classes, leading
them to be essentially banned in polite society. They have power because they are taboo, and for
no other reason. The word ’merde’ has no power to you unless you speak French, and the word
’crap’ has no power to you unless you’re 6. You’ve been conditioned to believe these words are
strong, so you feel strong when saying them. It really is that simple. It’s nothing more than the
placebo effect.

MODEL JUDGE:
Upon evaluating both responses against the reference answer:
- Response 1 aligns closely with the standard answer by discussing the role of swear words
in communication, the significance of social transgression, and cultural variations in what is
considered offensive. It also touches on historical perspectives, similar to how the reference
answer differentiates profanity and obscenity based on origins and societal values.
- Response 2 introduces the concept of language separating classes and the power of taboo stem-
ming from class distinctions. While it addresses the conditioning and perceived strength of swear
words, it deviates more from the primary focus of the standard answer, which centers on cultural
and linguistic origins rather than class-based language differentiation.
Therefore, Response 1 is better.(The Judgement is incorrect by observing the number of infor-
mation coexisting.)
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Table 17: Case Study For LFQA-E from GPT-4o. This results from a format error.

QUESTION:
Can someone explain Benford’s Law. I get that certain numbers show up more often in large data
sets, but why?

REFERENCE:
Benford’s Law is typically stated about data that span multiple orders of magnitude; so we have
values that are many times larger than others instead of them being close together. Next is that we
have at least a bit of what is called scale-invariance: unlike many simpler probability problems,
we don’t assume that all numbers are equally likely, but instead that larger ones are rarer. More
precisely, we want roughly the same chance to land between x and 2x as for landing between
y and 2y. If those two are satisfied, Benford’s Law states that the leading digit 1 is more likely
than an other, and the larger digits are the less common ones. There can be no perfect examples
of scale-invariance in probability. But between those lie dozens of orders of magnitude, easily
more than enough within reason...

RESPONSE 1:
Benford’s law says if you gather up a bunch of random numbers that appear "in the wild" and
you tally up the first digits of each of these numbers then you will tend to find lots of 1’s and
not many 9’s. This tends to happen when you have a range of numbers which is spread out over
multiple orders of magnitude. The reason is when numbers are spread out over many orders of
magnitude, it tends to be roughly uniform when measured on a "log scale". This means that the
number of data points between x and 2x will be about the same for different values of x. In other
words, there should be as many values between 100 and 200 as there are between 200 and 400.

RESPONSE 2:
Benford’s law says the first digit of a number picked from a large range of numbers tends to be
a 1. Think of it like this between 1 and 20, 11 of the 20 numbers start with a 1. Between 1 and
99, 11 of the 99 numbers start with a 1. This repeats for 0-200 and 0-999 etc always holding the
max of "just over half" and the min of "about 11 percent" so if you average that for all ranges,
you get that about 30 percent of numbers in an unknown range start with 1. Between 1 and 89,
1 number starts with 9, basically 1/89 percent. Going up to 99 brings us back to 11/99, but now
11 is the max and "almost 0" is the min, so again average it over all ranges, and you get more
like 4 percent of lead numbers. You can then apply this to some fraud cases. If the numbers span
multiple orders of magnitude AND should be roughly random, AND there are a lot of them, you
should expect them to match Benford’s law pretty well. If they don’t, one of the 3 requirements is
probably false. If you know the first and last are true, you can say "these probably arent actually
random".

MODEL JUDGE:
- Strengths of Response 1:
Correctly identifies that Benford’s Law applies to numbers spanning large ranges.
Explains the higher probability of 1 as a leading digit by comparing intervals which aligns with
the scale-invariance idea.
Mentions the decreasing probability for higher digits.
Correctly notes the conditions for applying Benford’s Law and its use in fraud detection.
- Weaknesses of Response 1:
Doesn’t explicitly mention scale-invariance, though the intuition is somewhat captured.
The explanation for why 1 is more likely is a bit simplistic.
- Strengths of Response 2: Introduces Benford’s Law in a simple, relatable context. Correctly
notes that 1 and 2 are more common as leading digits.
- Weaknesses of Response 2:
Misrepresents the core reasons for Benford’s Law. The explanations given are incorrect or mis-
leading. Benford’s Law is not about human behavior but about inherent properties of scale-
invariant data.
Doesn’t mention orders of magnitude or scale-invariance at all, which are central to the reference
answer.
The references at the end are irrelevant to the actual content of the response.
No preference provided!
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Table 18: Case Study For LFQA-E from Deepseek-V3.

QUESTION:
how do metals put together with electricity cause technology and chips and computers and data
etc?

REFERENCE:
Silicon along with a little bit of some other elements combined form what is called a semicon-
ductor, of which there are 2 types, the n type and the p type. When you then sandwich these
semiconductors in a specific way, it has the property that applying a current to these sandwiches
causes it to become conductive, or if you invert the sandwich it has the property that it’s con-
ductive when you don’t apply a current and then not conductive when you do. So essentially,
what you have created is an electrical switch, which is controlled by electricity, and we call these
transistors.
If you’re looking at how these transistors then form a computer, you can arrange transistors to
perform logical functions. A simple one would be the NOT gate, which just uses the second
switch I mentioned that turns off when there is an input. An AND gate would be if you took two
switches, placed them one after the other, and each switch is then controlled by an input. Both
inputs need to be on for there to be an output.

RESPONSE 1:
For that, you need to look at boolian values and at turing machines. A boolian value is just a yes
no answer. Yes vs no, on vs off, one vs zero. Technically you use boolian values all the time in
speech. “Is Tommy in the bathroom?” You could answer “Yes”, but you could also say “one”,
and anyone who knows Boolian will understand.
A Turing machine is just a name for any machine that uses Boolian values. It has rules, for
example “if you see seven zeros in a row followed by a one, then do”. It seems pretty abstract.
But math people have actually proved that you can do any calculation, think any thought, perform
any task, if you have the right rules designed for your turing machine.
So once we figured that out, it just became a matter of inventing the right rules for the machine,
and inventing the best form for a machine to store boolian values. A transistor is always either a
One or a Zero, and they can be made very small, so it makes sense to use them for your Turing
Machine.

RESPONSE 2:
When metals are put together with electricity in the context of technology, it typically refers to
the process of creating integrated circuits or microchips. These chips are made up of layers of
different metals, such as silicon, aluminum, and copper, that are carefully arranged on a silicon
wafer.
Electricity is used to power the various components on the chip, allowing them to perform their
specific functions. The flow of electricity through these metal layers enables the chip to process
and store information, ultimately allowing computers and other electronic devices to function.
Additionally, metals such as gold and copper are used in the construction of circuit boards and
connectors within electronic devices. These metals have excellent conductivity properties, which
allow for the efficient flow of electricity throughout the device.

MODEL JUDGE:
Response 1 delves into the concept of Boolean values and Turing machines, which extends the
topic to how computers "think" and process data. It links the use of transistors to Turing ma-
chines and emphasizes the binary nature of data processing, which aligns well with the reference
answer’s explanation of logical functions and binary systems accessible through transistors.
Response 2 focuses on the physical aspects of creating chips, such as the use of various metals
and their conductivity. While it provides a general overview of chip construction and functional-
ity, it lacks depth on the conceptual workings, like the function of transistors and binary systems,
which is a significant aspect of the reference answer.
The reference answer provides an explanation centered around the role of transistors as switches
and their organization to perform logical operations. It links this to the representation of numbers
and data processing in computers through binary systems, which Response 1 addresses more
comprehensively compared to Response 2.
Therefore, Response 1 is better. (The evaluation is correct!)
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Table 19: Case Study For LFQA-E from Deepseek-V3.

QUESTION:
How did human calculate time?

REFERENCE:
For a long time we didn’t and no one cared. However, once you start farming, you need to know
what season it is, what hour of the day it is more or less, so you know what you can and should do
on the fields for a bountiful yield. The easiest way to do is to watch the celestial bodies, namely
the two major ones, the Sun and the Moon (the Stars also helped, but eventually it was more
of a tool for navigation). Over time people figured out that the Sun shifts, days are not evenly
distributed over the year, but luckily it goes in cycles, so it is predictable. Once you make a chart
of these shifts throughout the year, you got yourself more or less a calendar. Civilizations with
accurate-enough calendars survived and thrived. Calendars got more and more accurate over time
as our math and science got better and here we are, keeping time down to split seconds. By the
way, it does not fit perfectly. We accumulate quite the error over time, but the Gregorian Calendar
is designed as a way to correct for these accumulative errors. The Persian Solar Calendar is the
most accurate one, because the new year starts after a celestial event. Gregorian calendar has a
bigger focus on religious events rather than any celestial event, so it needs corrections. We have
a very accurate time measurement, but that is NOT what is used on the daily, because we don’t
need it.

RESPONSE 1:
Absolutely nothing about the way humans decided to calculate time “fits neatly” into Earth’s
behaviours. Years are actually 365 days plus 6 hours and 9 minutes, days are actually 23 hours
and 56 minutes long.Ot her time systems have been attempted, with the Romans dividing day and
night into 12 hours, which varied in actual length as the days and nights shifted through the year.
They also had the “Civil Day” system: formal names given to time according to certain markers
(such as separate named times for “rooster is crowing” and “rooster stops crowing”, or “time we
light candles” and “bed time”). Humans have been struggling with measuring it forever.

RESPONSE 2:
Time has been calculated and measured in various ways throughout history. One of the earliest
methods used by ancient civilizations was observing the movement of celestial bodies such as
the sun, moon, and stars. By tracking the positions of these objects in the sky, early astronomers
were able to develop calendars and timekeeping systems. The modern concept of time mea-
surement is based on the International System of Units (SI). In terms of dividing the day into
hours, minutes, and seconds, this system was developed by the ancient Babylonians and Egyp-
tians. The Babylonians used a base-60 system for counting, which led to the division of the hour
into 60 minutes and the minute into 60 seconds. The Egyptians also used a similar system of
timekeeping. Overall, the calculation of time has evolved over centuries through a combination
of astronomical observations, scientific advancements, and cultural practices. The precise mea-
surement of time today is achieved through the use of atomic clocks and coordinated universal
time (UTC) to ensure accurate timekeeping worldwide.

MODEL JUDGE:
The reference answer emphasizes the historical development of time measurement, focusing on
the transition from no precise timekeeping to the necessity of using celestial bodies for farming.
Response 1 discusses the inconsistency and challenges of time measurements historically, noting
the Roman system and difficulties faced by humans in tracking time over time. While it touches
on early attempts to measure time, it doesn’t delve specifically into celestial observations or the
evolution of calendars as much.
Response 2 covers the historical aspect of using celestial bodies and tracks the progression to
modern timekeeping with atomic clocks. It also discusses the Babylonian and Egyptian contri-
butions to dividing time. This response aligns more closely with the standard answer by tracing
the transition from ancient methods to modern precision, even mentioning cultural influences on
timekeeping.
Overall, while both responses provide historical context, Response 2 is closer to the reference
answer as it better follows the progression of timekeeping from ancient observations leading to
the precise systems we have today.
Therefore, Response 2 is better. (The evaluation is correct!)
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Table 20: Prompt used for LLM-based question filtering.

PROMPT FOR LLM FILTER

Question Filtering Instructions

Objective
Filter out questions that are either unclear in their description or too broad to provide a mean-
ingful reference.
Filtering Criteria
1. Unclear Questions
Reject questions that exhibit:

* Ambiguous wording or phrasing
* Multiple possible interpretations
* Missing critical context or parameters
* Vague or undefined terms
* Grammatical issues that obscure meaning
* Incomplete or fragmented thoughts

2. Overly Broad Questions
Reject questions that:

* Request information on topics with no reasonable boundaries
* Would require encyclopedic or book-length answers
* Ask for opinions on vast, multi-faceted subjects
* Lack specific focus or scope constraints
* Would yield references too general to be useful
* Cover multiple unrelated topics simultaneously

Process
1. Read the question carefully and completely
2. Evaluate against both clarity and breadth criteria
3. Make a filtering decision:

PASS: Question is clear and appropriately scoped
REJECT - UNCLEAR: Question lacks clarity (provide specific reason)
REJECT - TOO BROAD: Question is overly broad (provide specific reason)

Examples of Questions to Reject
* “What about technology?" (unclear)
* “Explain everything about human history" (too broad)
* “How does stuff work in general?" (both unclear and too broad)
* “What are all the factors affecting everything in the world?" (too broad)

Examples of Questions to Pass
* “What is the boiling point of water at sea level?"
* “How does photosynthesis work in green plants?"
* “What were the main causes of World War I?"
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Table 21: Prompt for LLM Paraphrase.

PROMPT FOR LLM PARAPHRASE

Objective:
Transform the provided response into a more verbose version while strictly preserving the
original meaning and information.
Requirements:
- Expand the original text by adding descriptive language, elaborations, and explanatory
phrases
- Maintain complete fidelity to the original information—do not introduce any new facts,
claims, or insights
- Preserve the tone and intent of the original message
- Use stylistic techniques such as:

* Adding clarifying phrases and parenthetical explanations
* Employing more elaborate sentence structures
* Incorporating synonyms and varied vocabulary
* Adding transitional phrases between ideas
* Expanding brief points into full explanations

- Ensure the final text feels natural and not artificially inflated

Process:
1. Thoroughly analyze the original response to understand its complete meaning
2. Identify core points and supporting details
3. Expand each point methodically while maintaining the original structure
4. Review to confirm no new information has been introduced
5. Polish the text for readability and flow

Table 22: Prompt for English LLM Evaluation.

PROMPT FOR ENGLISH LLM EVALUATION

Objective:
Transform the provided response into a more verbose version while strictly preserving the
original meaning and information.
Requirements:
- Expand the original text by adding descriptive language, elaborations, and explanatory
phrases
- Maintain complete fidelity to the original information—do not introduce any new facts,
claims, or insights
- Preserve the tone and intent of the original message
- Use stylistic techniques such as:

* Adding clarifying phrases and parenthetical explanations
* Employing more elaborate sentence structures
* Incorporating synonyms and varied vocabulary
* Adding transitional phrases between ideas
* Expanding brief points into full explanations

- Ensure the final text feels natural and not artificially inflated

Process:
1. Thoroughly analyze the original response to understand its complete meaning
2. Identify core points and supporting details
3. Expand each point methodically while maintaining the original structure
4. Review to confirm no new information has been introduced
5. Polish the text for readability and flow
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Table 23: Prompt for Prometheus Evaluation.

PROMPT FOR PROMETHEUS EVALUATION

Task Description:
An instruction (might include an Input inside it), a response to evaluate, and a score rubric
representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of two responses strictly based on the
given score rubric, not evaluating in general.
2. After writing a feedback, choose a better response between Response A and Response
B. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria)
[RESULT] (A or B)"
4. Please do not generate any other opening, closing, and explanations.
Instruction: {orig_instruction}
Response A: {response_A}
Response B: {response_B}
Score Rubric: {score_rubric}
Feedback:

Table 24: Prompt for Auto-J Evaluation.

PROMPT FOR AUTO-J EVALUATION

You are a helpful and precise assistant for checking the quality of the feedback.

Two pieces of feedback have been provided for the same response to a particular query.
Which one is better with regard to their correctness, comprehensiveness, and specificity to
the query?
[BEGIN DATA]
[Query]: {prompt}
[Response]: {response}
[Feedback 1]: {feedback1}
[Feedback 2]: {feedback2}
[END DATA]

Please choose from the following options, and give out your reason in the next line.
A: Feedback 1 is significantly better.
B: Feedback 2 is significantly better.
C: Neither is significantly better.
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F ANNOTATION

We show the annotation recipe in Table 25 and Table 26. We show a screenshot of annotation
pipeline in Figure 5.

Table 25: Annotation recipe for deciding valid references of LFQA-E.

ANNOTATION RECIPE FOR DROPPING INVALID REFERENCES

Goal
Keep only real, helpful explanation. Discard those that are uninformative, incorrect, or not actual expla-
nations.
Keep if the answer:
- Directly answers the question.
- Gives a simple but meaningful explanation (even if simplified).
- Is factually reasonable — not misleading or false.
- Stands alone (no “see link" or “I don’t know").

Good example: "We yawn to help cool the brain and stay alert. It brings in oxygen and improves blood
flow."
Discard if the answer is:
- Not an explanation – e.g., “Google it," “It’s magic," jokes, memes, one-liners (“Because science").
- Irrelevant – Doesn’t address the question or misunderstands it.
- Factually wrong – Clear misinformation (e.g., “Rain comes from clouds crying").
- Too vague – No real content: “It’s complicated," “There are many reasons."
- Avoids answering – “Great question!", “Not sure, but here’s a thought..." with nothing useful.
- Circular – Repeats the question: “We sleep because we’re tired."
- Inappropriate – Offensive, harmful, or unprofessional content.
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Question: 

Briefly describe the advantageous conditions that attract the company to build crude oil pressing factories in Huimin, Tieling, Tongliao, and Ordos.What is an instigator in Chinese criminal law?

Reference:

Overall, an instigator in Chinese criminal law refers to an individual who incites others to commit a crime. Specifically, such individuals intentionally lead or 

provoke others to decide to carry out criminal activities.\n\nFirstly, the fundamental characteristic of an instigator is that they incite others to commit a crime 

without directly participating in the criminal behavior themselves. They play a role in inducing others to form criminal intentions. For instance, a person may 

encourage, persuade, or offer some benefit to successfully prompt another to decide to commit acts such as theft or fraud while not partaking in the actual 

criminal process.\n\nSecondly, certain conditions must be met to establish instigation. Subjectively, the instigator must have the intention to induce others to 

form the criminal intent and decide to commit the crime, which is known as the intent to instigate others to commit a crime. This intent must be explicit; the 

instigator must clearly know whom they are instigating and what crime they are instigating. Without explicit intent, instigation cannot be established; 

behavior that inadvertently causes others to form criminal intentions cannot constitute instigation. Objectively, the instigator must have carried out acts of 

instigation, commonly manifested as encouragement, deception, persuasion, requests, bribery, or coercion, prompting specific individuals to commit specific 

crimes. Whether the instigatee actualizes the criminal intent or determination and whether the instigatee actually carries out the criminal act do not affect the 

establishment of the instigator.\n\nRegarding the criminal liability of instigators, several key points are noteworthy. First, instigators are punished according 

to their role in the joint crime. If the instigator plays a major role in the crime process, they will be punished as the main perpetrator; if they only play a minor 

or auxiliary role, they will be punished according to the standard for accomplices. Although instigators typically play a major role and are generally punished 

as main perpetrators, it is possible for an instigator with a minor role to be punished as an accomplice. Second, if the instigatee does not commit the 

instigated crime, the instigator may still be deemed guilty but subject to lighter or reduced punishment. This scenario, usually referred to as \"attempted 

instigation,\" indicates that attempted instigation is also punishable, underscoring the independent and punishable nature of instigative behavior under 

Chinese criminal law. Third, instigating minors to commit crimes should result in harsher punishment, especially in cases where those under 18 are incited to 

commit criminal acts.\n\nThough instigators possess independent criminality or punishability, they are not an independent crime category. The instigator 

should be charged according to the specific crime instigated. For example, if the instigation pertains to robbery, the instigator should be prosecuted under 

robbery charges. In summary, through these three points, we can gain a deeper understanding of the provisions concerning instigators in Chinese criminal law 

and clarify their legal responsibilities.\n\nOf course, this summary does not cover all possible scenarios, and specific legal determinations in practice require 

detailed analysis based on individual cases. However, these basic principles provide a relatively comprehensive understanding of instigators. These principles 

stem from Chinese criminal law and reflect our serious attitude towards and strict control over instigative behavior.

answer a: 

An instigator in Chinese criminal law refers to a person who directly or indirectly instructs or incites others to commit a crime. According to the relevant 

provisions of the Criminal Law of the People's Republic of China, an instigator not only bears the corresponding criminal responsibility for the criminal act but 

may also be punished more severely based on their role and influence in the criminal process. For example, if a person induces and instructs others through an 

online platform, leading to the commission of a fraud crime by the incited person, the instructing behavior, although not directly involved in the fraud, may be 

recognized as an instigator, bearing corresponding criminal responsibility. In legal practice, the determination of an instigator generally requires a 

comprehensive judgment based on the specific circumstances of the case, including the nature, content, and result of the instruction, as well as the identity of 

the instructing person.

answer b:

According to Chinese criminal law, an instigator is a person who deliberately entices or incites others to commit criminal behavior through oral, written, or other 

means. The instigator usually does not directly commit the crime but their actions lead directly to the commission of the crime by others. In criminal law, an 

instigator, like a principal or accomplice, must bear corresponding legal responsibility. For example, if someone incites another person online to rob a store, and 

the incited person commits the robbery, the instigator constitutes an instigator.
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Figure 5: The annotation pipeline.
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Table 26: Annotation recipe of LFQA-E.

Overview
This guide helps annotators evaluate and compare long-form responses against a reference to determine
which response is more informative and complete. The process uses a triple-choice format (Response A
Better, Response B Better, or Tie).
Key Principles
- Focus on factuality and completeness according to the reference
- Fluency is not a primary evaluation criterion (all responses are expected to be fluent)
- Use information units as the basic evaluation unit
- Minimize bias through systematic comparison

Prerequisites
- Domain knowledge relevant to the question topic
- Understanding of the subject matter through academic coursework or professional experience
- Ability to maintain focus during paragraph-level analysis

Evaluation Process
Step 1: Extract Key Information from Reference
1. Read the question carefully to understand what information is being requested
2. Read the reference thoroughly
3. Identify and list all key information units that:

- Directly answer the question
- Provide necessary context or background
- Support the main answer with evidence or examples

4. Organize key information into logical categories or themes

Step 2: Check for Key Information in Responses
For each response (A and B):
1. Read the response completely
2. Map each key information unit from the reference to the response
3. Mark which key information units are:

- Present and accurate
- Present but inaccurate
- Missing entirely

4. Note any additional information not in the reference

Step 3: Handle Response Content
1. Evaluate additional information:

- Is it relevant to the central topic?
- Does it enhance understanding or is it verbose/unnecessary?

2. Identify intertwined information:
- For sentences containing both correct and incorrect information, separate the components
- Assess the impact of any inaccuracies on the overall response quality

Step 4: Compare Overlapping Information
1. Compare how well each response covers the key information units
2. Consider:

- Completeness: Which response includes more key information?
- Accuracy: Which response presents information more correctly?
- Relevance: Which response stays more focused on the question?

3. Compare the quality of overlapping information presentation

Step 5: Make Final Decision
Select one of three options:
- Response A is Better: A contains more key information and/or presents it more accurately
- Response B is Better: B contains more key information and/or presents it more accurately
- Tie: Both responses are comparable in information coverage and accuracy

Common Pitfalls to Avoid
1. Losing focus due to long paragraphs - use the systematic approach
2. Allowing domain bias to influence decisions - stick to the reference
3. Confusing eloquence with accuracy
4. Missing subtle differences between comparable responses
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