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ABSTRACT

The quadratic complexity of softmax attention presents a major obstacle for scal-
ing Transformers to high-resolution vision tasks. Existing linear attention variants
often replace the softmax with Gaussian kernels to reduce complexity, but such ap-
proximations lack theoretical grounding and tend to oversuppress mid-range token
interactions. We propose LaplacianFormer, a Transformer variant that employs
a Laplacian kernel as a principled alternative to softmax, motivated by empiri-
cal observations and theoretical analysis. To address expressiveness degradation
under low-rank approximations, we introduce a provably injective feature map
that retains fine-grained token information. For efficient computation, we adopt a
Nyström approximation of the kernel matrix and solve the resulting system using
Newton–Schulz iteration, avoiding costly matrix inversion and SVD. We further
develop custom CUDA implementations for both the kernel and solver, enabling
high-throughput forward and backward passes suitable for edge deployment. Ex-
periments on ImageNet show that LaplacianFormer achieves strong performance-
efficiency trade-offs while improving attention expressiveness. Our anonymous
repository is at https://anonymous.4open.science/r/sdfasfsdgsfgdrf.

1 INTRODUCTION

The Transformer architecture Vaswani et al. (2017) has become a fundamental framework for
sequence modeling, demonstrating strong performance across a wide range of computer vision
tasks Jiang et al. (2024); Zhu et al. (2021); Yu et al. (2025); Hou et al. (2024); Su et al. (2024).
While its self-attention mechanism effectively captures rich contextual dependencies, its quadratic
time and space complexity with respect to sequence length significantly limits scalability to long
input sequences Keles et al. (2022); Hassani et al. (2024).

To address this, a number of linear attention variants have been proposed to approximate softmax at-
tention using kernel-based formulations, thereby reducing complexity to linear Katharopoulos et al.
(2020); Lu et al. (2021); Chen et al. (2021); Bui et al. (2025); Kashiwagi et al. (2021). Notably, de-
spite differences in implementation, the vast majority of these methods converge on a similar design
choice: they rely on Gaussian-like kernels to define attention similarity. This widespread adoption
appears to be more of a default convention than a theoretically grounded decision. Indeed, there is
a lack of empirical or analytical justification for why the Gaussian kernel is inherently suitable for
modeling query-key interactions in attention mechanisms.
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Figure 1: Distributions of ℓ1 and ℓ22 Q-K distances in DeiT, PVT, and Swin Transformers.

Theoretically, the Gaussian kernel presumes that query-key similarity should decay rapidly with
increasing ℓ22 distance. However, this assumption may not reflect the actual distribution of query-key
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interactions in vision Transformers. To investigate this issue, we analyze the empirical distribution
of query-key distances in DeiT Touvron et al. (2020), PVT Wang et al. (2021b), and Swin Liu et al.
(2021b), using official checkpoints on the ImageNet Deng et al. (2009) validation set. As shown in
Figure 1, the ℓ22 distances exhibit a heavy-tailed distribution with high variance and frequent outliers.
When passed through the exponential function in the Gaussian kernel, these long-tailed distances
will lead to an amplification of the tail effect: outliers dominate the attention map, while moderately
relevant keys are overly suppressed. This behavior not only reduces the expressiveness of attention
weights but also causes vanishing gradients and unstable optimization, especially during the early
stages of training Zhang et al. (2021). In contrast, ℓ1 distances tend to be more concentrated and
less sensitive to outliers, providing a more faithful measure of token relevance. This observation
motivates the use of the Laplacian kernel, defined as k(x, y) = exp

(
−∥x−y∥1λ

)
, where x, y ∈ Rd

are input feature vectors and λ > 0 is a decay parameter. Compared to the Gaussian kernel, which
is based on squared ℓ2 distances, the Laplacian kernel exhibits a slower decay rate.
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Figure 2: (a) Top-1 accuracy (%) over training epochs on ImageNet. The left plot shows results
for SOFT++, and the right plot for Skyformer, each using either a Gaussian or Laplacian kernel for
attention computation. Models with Laplacian kernels (blue) converge faster and achieve slightly
higher final accuracy compared to their Gaussian counterparts (red). (b) Visual comparison of atten-
tion maps with different kernel choices. Each pair shows attention maps from the first Transformer
block of SOFT++ and Skyformer, where we only replace the Gaussian kernel with a Laplacian ker-
nel, keeping all other components unchanged. Attention matrices computed with Laplacian kernels
exhibit more structured patterns and better-conditioned rank profiles.

Beyond empirical distributions, we further analyze the gradient behavior of these kernels, which
plays a critical role in optimization stability. For the Laplacian kernel, the partial derivative with re-
spect to coordinate xi is ∂k

∂xi
= 1

λ · sign(xi−yi) · exp
(
−∥x−y∥1λ

)
, while for the Gaussian kernel, it

is ∂k
∂xi

= 1
σ2 (xi− yi) · exp

(
−∥x−y∥

2
2

2σ2

)
, where σ denotes the kernel bandwidth. Notably, the Lapla-

cian kernel maintains non-vanishing gradients even when x and y are nearly identical, owing to the
piecewise linear nature of the ℓ1 norm. In contrast, the Gaussian kernel’s gradients diminish quadrat-
ically as ∥x− y∥2 → 0, resulting in vanishing updates that may hinder convergence. To empirically
validate this theoretical claim, we perform a simple ablation by replacing the Gaussian kernel in
two representative models—SOFT++ Lu et al. (2024) and Skyformer Chen et al. (2021)—with a
Laplacian kernel, keeping all other architectural components unchanged. As shown in Figure 2, this
modification alone leads to significantly faster convergence in both models, supporting the hypothe-
sis that the Laplacian kernel facilitates more stable and efficient learning dynamics. Beyond training
behavior, we also compare attention maps produced by the two kernels. The same figure also visu-
alizes attention from the first Transformer block of both models. In SOFT++, the Gaussian kernel
yields overly sparse attention, while the Laplacian variant produces more expressive and coherent
patterns. A similar trend is also observed in Skyformer. These results suggest that, beyond its theo-
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retically favorable decay profile, the Laplacian kernel also improves the practical expressiveness of
attention maps, particularly in early to mid-stage layers.

Motivated by these findings, we introduce LaplacianFormer, a scalable linear attention framework
that replaces the Gaussian-based attention mapping with a Laplacian formulation. To support prac-
tical deployment, we develop a CUDA-accelerated implementation that features efficient Laplacian
similarity computation and a Newton–Schulz-based inverse solver for fast inference. As shown in
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Figure 3: Accuracy and Memory Comparison.(a) Top-1 accuracy vs. FLOPs on ImageNet-1k Deng
et al. (2009). LaplacianFormer offers a strong accuracy-efficiency trade-off, outperforming prior
models across all FLOPs ranges. (b) GPU memory usage across input lengths. LaplacianFormer
shows linear scaling, matches efficient Transformers like Performer and SOFT, and far better than
the vanilla Transformer.

Figure 3, LaplacianFormer achieves strong performance across accuracy, memory efficiency, and
scalability metrics on standard vision benchmarks.

Our main contributions are summarized as follows:

• We propose LaplacianFormer, a linear attention model grounded in the Laplacian ker-
nel, which enhances long-range dependency modeling while maintaining scalability and
efficiency.

• We develop a CUDA-optimized implementation that integrates Laplacian attention with a
Newton–Schulz inverse module, significantly improving runtime and memory efficiency.

• We validate LaplacianFormer on ImageNet-1k Deng et al. (2009) and downstream vision
tasks such as object detection and instance segmentation, demonstrating competitive per-
formance across multiple benchmarks.

2 RELATED WORK

Vision Transformer with Softmax Attention. The Vision Transformer (ViT) Dosovitskiy et al.
(2021) has demonstrated exceptional performance and has been widely adopted for a range of
computer vision tasks, including image classification Touvron et al. (2021); Liu et al. (2021b;a);
Touvron et al. (2022), object detection Zhu et al. (2021); Zhang et al. (2023a), and semantic seg-
mentation Zheng et al. (2020); Xie et al. (2021); Cheng et al. (2021). By substituting traditional
convolutional operations with self-attention mechanisms, ViT enables the modeling of global de-
pendencies within images, offering a powerful alternative to convolutional neural networks (CNNs).
However, a major bottleneck lies in the quadratic time and memory complexity, O(n2), of stan-
dard softmax attention, which significantly restricts its scalability—especially for high-resolution
inputs—and limits its deployment on resource-constrained edge devices.

Linear Attention: A Scalable Alternative. To mitigate the computational overhead of softmax
attention, linear attention has emerged as an efficient alternative. While softmax attention requires
O(N2d) operations to compute pairwise similarities, linear attention reduces this to O(Nd2) by
replacing the softmax with kernel-based approximations and reordering computations. Specifically,
computing K⊤V first decouples the attention process and enables linear scalability. This efficiency
gain becomes particularly significant in modern Transformers, where the token count N typically
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exceeds the channel dimension d. Linear attention thus maintains the ability to model long-range
dependencies while substantially improving computational efficiency.

Building on this foundation, a number of linear attention variants have been developed to reduce
computational cost while enhancing model capacity. Nyströmformer Xiong et al. (2021) approxi-
mates softmax attention via Nyström matrix decomposition. SOFT Lu et al. (2021) replaces soft-
max with a learnable kernel based on low-rank approximations. Skyformer Chen et al. (2021) in-
corporates Gaussian kernels and Nyström sampling to improve scalability in vision tasks, while
Gaussian Kernelized Attention Kashiwagi et al. (2021) applies a similar design to speech decoding.
Performer Choromanski et al. (2021) employs orthogonal random features (FAVOR+) to achieve
linear-time softmax approximation. Cosformer Qin et al. (2022) replaces softmax with a cosine-
based reweighting scheme to achieve linear complexity. Hedgehog Zhang et al. (2024) introduces
structured linear transformations to approximate softmax behavior, providing a unified and scalable
alternative. HiViT Zhang et al. (2023b) streamlines hierarchical Transformers by reducing token
mixing and applying uniform downsampling.

While differing in architecture, many of these methods share a common reliance on Gaussian kernels
to approximate attention weights. In this work, we replace the Gaussian kernel with a Laplace kernel
that ensures injectivity and enhances expressiveness, grounded in rigorous theoretical analysis.

3 PRELIMINARIES

3.1 SOFTMAX SELF-ATTENTION

Softmax self-attention is a core operation in transformer models. Given an input sequence X ∈
RN×de of N tokens embedded in a de-dimensional space, we compute queries, keys, and values via
linear projections:Q = XWQ,K = XWK ,V = XWV , where WQ,WK ,WV ∈ Rde×d are
learnable parameters and Q,K,V ∈ RN×d. The standard scaled dot-product attention for token i
is:

Attention(Q,K,V)i =

∑N
j=1 exp

(
q⊤
i kj√
d

)
vj∑N

j=1 exp
(

q⊤
i kj√
d

) (1)

and in matrix form:

Attention(Q,K,V) = Softmax

(
QK⊤√

d

)
V (2)

This formulation computes a similarity matrix QK⊤ ∈ RN×N , resulting inO(N2d) complexity due
to all pairwise interactions. To reduce cost, consider removing the softmax. Without it, attention
simplifies to

(
QK⊤
√
d

)
V, which can be reordered as Q(K⊤V) using associativity. This avoids

forming the large N ×N matrix and reduces complexity to O(Nd2), linear in N if d is small. This
insight underlies linear attention, which replaces softmax with associative operations for improved
efficiency. Figure 4 compares softmax and linear self-attention.

× × × ×× ×
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Figure 4: Comparison between Softmax Self-Attention (left) and Linear Self-Attention (right). The
former computes a full N×N similarity matrix, while the latter enables associativity through kernel
decomposition, reducing the complexity from O(N2) to O(N).

3.2 LINEAR SELF-ATTENTION

Linear self-attention reformulates the attention mechanism by approximating the similarity compu-
tation through kernel-based feature mappings. Specifically, let ϕ(·) denote a kernel function, and
define the similarity between a query qi and a key kj as: Sim(qi,kj) = ϕ(qi)ϕ(kj)

⊤.
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The kernel-based formulation replaces the exponential dot product with a more general similarity
function, enabling efficient reordering of computations and eliminating the softmax operation. The
attention output for the i-th query can be written as:

Attention(Q,K,V)i =
ϕ
(
qi

)(∑N
j=1 ϕ

(
kj

)⊤
vj

)
ϕ
(
qi

)(∑N
j=1 ϕ

(
kj

)⊤) . (3)

Since the key-value summaries
∑N

j=1 ϕ(kj)
⊤vj and

∑N
j=1 ϕ(kj)

⊤ are independent of the query,
they can be precomputed, allowing each attention output to be computed in linear time.

4 METHOD

4.1 LAPLACIANFORMER

Our LaplacianFormer instantiates the general kernel attention framework described in Section 3.2
using a novel Laplace-based transformation inspired by recent work on attention injectivity Han
et al. (2024a). Instead of directly using the Laplacian kernel as a similarity score, we construct a
normalized kernel representation for each query qi to enhance feature discrimination:

zi = Σ−
1
2

[k(qi,k1), . . . , k(qi,kN )]
⊤ − 1

N

N∑
j=1

k(qi,kj)

+
1

N
, (4)

where k(q,k) = exp
(
−∥q−k∥1λ

)
denotes the Laplacian kernel. The whitening matrix Σ−1/2 ∈

RN×N is ideally computed from the covariance of query–key similarity vectors gi ∈ RN , where
each gi = [k(qi,k1), . . . , k(qi,kN )]⊤.

In practice, computing the full inverse square root Σ−1/2 is computationally prohibitive for long
sequences, requiring eigendecomposition with O(N3) time and O(N2) memory. To mitigate this,
we approximate the whitening operation with a diagonal estimator that normalizes each feature
dimension independently across a batch of query–key vectors {gi}Bi=1, where B is the batch size.

For each dimension j ∈ {1, . . . , N}, we compute the empirical mean and variance:

µj =
1

B

B∑
i=1

gij , σ2
j =

1

B

B∑
i=1

(gij − µj)
2
. (5)

We then normalize each element of the similarity vector: g̃ij =
gij−µj√

σ2
j+ε

, where ε is a small constant

added for numerical stability. This corresponds to a diagonal whitening matrix:

D−1/2 = diag

(
1√

σ2
1 + ε

, . . . ,
1√

σ2
N + ε

)
. (6)

This approximation preserves the centering and scaling effects of full whitening, improves stability,
and reduces both time and memory complexity from quadratic to linear in N , making it compatible
with efficient kernelized attention. For completeness, we define the kernel similarity matrix among
keys as Gij = k(ki,kj), Σkey = PGP⊤, with P = I − 1

N 11⊤. Although not directly used in
normalization, the key–key covariance Σkey provides a useful interpretation of the kernel structure.

We prove in the appendix that the transformation in Eq. equation 4 is injective under mild assump-
tions, ensuring that distinct queries yield distinct outputs. This injectivity property aligns with the
behavior of softmax attention, which is inherently injective and yields full-rank attention maps that
preserve fine-grained token distinctions Han et al. (2024a). The final attention output incorporates
both global interactions via kernelized similarity and local context modeling through depth-wise
convolution. Specifically, we compute

Attention(Q,K,V) = ZV +DWC(V), (7)

5
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where Z ∈ RN×N stacks each z⊤i as a row, and DWC(·) denotes a depth-wise convolution applied
over the value sequence V.

4.2 NYSTRÖM APPROXIMATION FOR LAPLACIAN KERNEL

To efficiently compute Laplacian kernel-based attention, we adopt a Nyström approxima-
tion Williams & Seeger (2000); Xiong et al. (2021). The Nyström method approximates the ker-
nel matrix G by selecting a small set of landmark keys and computing a rank-reduced estimate
G̃ ∈ RN×N , defined as G̃ = CW†C⊤, where C ∈ RN×m is the matrix of Laplacian kernel simi-
larities between all queries and a selected subset of m ≪ N landmark keys, W ∈ Rm×m contains
pairwise Laplacian kernel similarities among the m selected landmark keys, and W† denotes the
Moore–Penrose pseudoinverse of W. More specifically, the (i, ℓ)-th entry of C is defined as:

Ciℓ = k(qi, k̃ℓ) = exp

(
− 1

λ

∥∥∥qi − k̃ℓ

∥∥∥
1

)
, (8)

where qi is the query vector of the i-th token and k̃ℓ ∈ {k1, . . . ,kN} is the ℓ-th landmark key, while
the (ℓ, ℓ′)-th entry of W is computed as:

Wℓℓ′ = k(k̃ℓ, q̃ℓ′) = exp

(
− 1

λ

∥∥∥k̃ℓ − q̃ℓ′

∥∥∥
1

)
, (9)

where k̃ℓ and q̃ℓ′ are the landmark key and query vectors selected by Nyström sampling, respec-
tively.

The process for computing the low-rank Laplacian kernel via Nyström approximation is outlined in
Algorithm 1. In Line 2, the sampling function fs selects m ≪ N landmark tokens from the full
set of queries and keys, forming the landmark matrices Q̃, K̃ ∈ Rm×d. Lines 3–5 perform the core
kernel operations: Line 3 computes the landmark kernel matrix W (Eq. 9), Line 4 computes the
query-to-landmark kernel matrix C (Eq. 8), and Line 5 applies the Nyström approximation using
W† to obtain the final attention matrix Ŝ.

Algorithm 1 Laplacian Kernel with Nyström Approximation
1: Input: Queries Q ∈ RN×d, Keys K ∈ RN×d, Nyström sampling function fs
2: Sampling: Q̃, K̃ ← fs(Q), fs(K) ▷ Select m≪ n landmark points

3: W ← exp
(
− 1

λ∥Q̃⊖ K̃∥1
)

▷ Kernel matrix on sampled points

4: C ← exp
(
− 1

λ∥Q⊖ K̃∥1
)

▷ Cross-kernel between all queries and landmarks

5: Ĝ← CW †C⊤ ▷ Low-rank approximation of full kernel matrix
6: Output: Ĝ

Algorithm 2 Newton–Schulz Iteration for Approxi-
mating W†

1: Input: Landmark kernel matrix W ∈ Rm×m, number of itera-
tions T ∈ Z+

2: Add small perturbation: W ←W + ϵI, where ϵ > 0
3: Initialize scaling factor: α← 2

∥W∥2
4: Initialize: X0 ← αW⊤

5: for k = 1 to T do
6: Xk ← Xk−1(2I−WXk−1)
7: end for
8: Output: Approximate pseudoinverse XT ≈W†

Laplacian Kernel Inversion via Newton–
Schulz Iteration. To efficiently and stably
approximate the inverse of the landmark ker-
nel matrix W ∈ Rm×m, which is symmetric
and positive semi-definite, we use the Newton–
Schulz iteration. Since convergence requires
W to be strictly positive definite, we apply a
small diagonal perturbation W ← W + ϵI,
with ϵ > 0, preserving the structure while en-
suring stability. Unlike inversion or SVD-based
methods, Newton–Schulz relies only on matrix
multiplications and additions, making it GPU-
friendly. The iteration starts with X0 = αW⊤, where α = 2

∥W∥2 ensures ∥I − αWW⊤∥ < 1.
The update rule is: Xk+1 = Xk(2I−WXk). The full algorithm is detailed in Algorithm 2.

Sampling Strategies for Landmark Selection. To efficiently approximate attention, we adopt
a pooling-based landmark selection strategy inspired by PVTv2 Wang et al. (2021a). The query
tensor Q ∈ RB×H×N×d is reshaped into a spatial map RB·H×d×H′×W ′

, where N = H ′×W ′. We

6
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apply average pooling with kernel size r and stride r to aggregate each r× r region into a landmark
token, yielding H′

r ×
W ′

r tokens per head.

We also explored a depthwise convolution-based selection strategy, in which each r × r region is
processed by a lightweight filter to extract local structure. While this approach offers greater expres-
siveness, it yielded no significant improvement over average pooling in our experiments. Given its
higher computational cost and additional parameters, we adopt average pooling by default.

Convergence Guarantee and Complexity Analysis. The Newton–Schulz iteration is guaranteed
to converge for strictly positive definite matrices; this condition is satisfied by applying a small
diagonal perturbation to W. Our method achieves linear time and space complexity O(n) with
respect to the input length n. A complete complexity analysis and proof of convergence are provided
in the appendix.

4.3 CUDA ACCELERATION NewTon-Schulz Kernel Execution Time Laplace Kernel Execution Time

Matrix Size (N) Matrix Size (N)

Ti
m

e 
(m

ill
is

ec
on

ds
)

Figure 5: Execution time breakdown of custom CUDA
kernels. Comparison of forward and backward execution
time for Newton–Schulz iteration (left) and Laplacian ker-
nel (right) across different matrix sizes (batch = 1, 2 heads,
32 channels). CUDA execution times (< 0.05ms) are shown
as 0.0 due to timing resolution limits.

The Laplacian kernel fuses distance com-
putation and exponential transformation
into a single operation, reducing global
memory access. For Newton–Schulz iter-
ation, we optimize matrix multiplications
via tiling and register reuse.

To assess the effectiveness of our CUDA
acceleration, we compare the execution
time of both Laplacian kernel evaluation
and Newton–Schulz iteration against their
PyTorch counterparts Paszke et al. (2017),
with and without custom CUDA kernels.
As shown in Figure 5, our implementation consistently outperforms the baseline across various
matrix sizes. The speedup is particularly prominent in backward passes, which benefit from pre-
computed gradients and in-place memory reuse. Numerical accuracy comparisons are provided in
the appendix.

5 EXPERIMENTS

5.1 IMAGE CLASSIFICATION

Datasets and model architectures. We evaluate our model on the ImageNet-1K dataset Deng
et al. (2009), which contains 1.28M training and 50K validation images across 1000 classes. Built
on the PVT architecture Wang et al. (2021b), our LaplacianFormer re-designs the self-attention
mechanism by constructing an injective attention function based on the Laplacian kernel. To en-
sure training efficiency, we implement two custom CUDA kernels: one for computing the Laplacian
kernel matrix and another for performing Newton–Schulz iteration to approximate the inverse. Addi-
tionally, RoPE SU2 (2024) is adopted for positional encoding. All other settings follow the original
PVT configuration. Training is performed with a batch size of 1024 on multiple NVIDIA H800
GPUs.

Comparison. We compare the Top-1 accuracy and computational cost of our LaplacianFormer
against state-of-the-art Vision Transformers. As shown in Table 1, models are grouped by
FLOPs:<1G, 1–3G, 3–5G, 5–10G, and >10G. LaplacianFormer consistently achieves the highest
Top-1 accuracy across all FLOP ranges. This result demonstrates the superiority of LaplacianFormer
over existing methods.

5.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Results. Table 2 summarizes the comparison results under the 1× schedule for both Mask R-
CNN He et al. (2017) and RetinaNet Lin et al. (2017). Across all scales, LaplacianFormer consis-
tently surpasses previous backbone designs. For instance, LaplacianFormer-Tiny achieves 43.2 APb

and 40.3 APm under Mask R-CNN, outperforming SOFT++-Tiny and FL-PVT-T. Under RetinaNet,
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Table 1: Performance comparison with state-of-the-art models on ImageNet.

FLOPs range Model Params FLOPs Top-1 %↑ Image Size

< 3G

Agent-Deit-T Han et al. (2024c) 6.0M 1.2G 74.9 224
VRWKV-T Duan et al. (2025) 6.2M 1.2G 75.1 256
PVT-T-PolaFormer Meng et al. (2025) 12M 2.0G 78.8 224
FL-PVTv2-B1 Han et al. (2023) 13M 2.2G 79.5 224
BiFormer-T Zhu et al. (2023) 13.1M 2.2G 81.4 224
LaplacianFormer-Tiny 12.1M 2.1G 81.4 224

3∼8G

InLine-CSwin-S Han et al. (2024a) 33M 6.8G 83.8 224
SViT-S Huang et al. (2023) 25M 4.4G 83.6 224
BiFormer-S Zhu et al. (2023) 25.5M 4.5G 83.8 224
HiViT-T Zhang et al. (2023b) 19M 4.6G 82.1 224
Agent-PVT-S Han et al. (2024c) 20.6M 4.0G 82.2 224
LaplacianFormer-Small 25.7M 4.8G 83.8 224

8∼10G

SViT-B Huang et al. (2023) 52M 9.9G 84.8 224
SOFT++-Medium Lu et al. (2024) 45M 7.2G 83.7 224
BiFormer-B Zhu et al. (2023) 56.8M 9.8G 84.3 224
Swin-S-PolaFormer Meng et al. (2025) 50M 8.7G 83.6 224
SLAB-Swin-S Guo et al. (2024) - 8.7G 81.8 224
LaplacianFormer-Medium 46.3M 7.43G 85.3 224

10∼14G

StructViT-B-8-1 Kim et al. (2024) 52M 12G 84.3 224
SOFT++-Large Lu et al. (2024) 64M 11G 84.1 224
NAT-B Hassani et al. (2023) 90M 13.7G 84.3 224
MogaNet-L Li et al. (2024) 82.5M 15.9G 84.7 224
FLatten-CSwin-S Han et al. (2023) 35M 6.9G 83.6 224
LaplacianFormer-Large 63.1M 11.2G 85.6 224

>14G

VRWKV-B Duan et al. (2025) 93.7M 18.2G 82.0 224
SViT-L Huang et al. (2023) 95M 15.6G 85.3 224
MLLA-B Han et al. (2024b) 96M 16.2G 85.3 224
HiViT-B Zhang et al. (2023b) 66M 15.9G 83.8 224
LaplacianFormer-Huge 78.5M 15.5G 85.8 224

it further achieves 42.5 APb, ranking first among all tiny-scale counterparts. As the model size in-
creases, LaplacianFormer-Medium yields 48.0 APb and 43.5 APm, establishing a new state-of-the-
art within the medium-sized category. These results highlight the strong generalization and detection
capabilities enabled by our Laplacian kernel attention mechanism.

Table 2: Comparison to other backbones using RetinaNet and Mask R-CNN with “1×” schedule.

Backbone Mask R-CNN 1× RetinaNet 1×
AP b AP b

50 AP b
75 APm APm

50 APm
75 AP b AP b

50 AP b
75 AP b

S AP b
M AP b

L

Swin-T-PRepBN Guo et al. (2024) 42.9 65.8 46.8 39.3 62.6 41.9 – – – – – –
FL-PVT-T Han et al. (2023) 38.2 61.6 41.9 37.0 57.6 39.0 – – – – – –
SOFT++-Tiny Lu et al. (2024) 41.2 63.7 44.7 38.2 61.0 41.0 41.9 62.7 44.7 27.8 45.4 55.6
LaplacianFormer-Tiny 43.2 66.1 47.2 40.3 63.0 42.9 42.5 64.1 46.4 29.1 46.9 57.8

PVT-S-PolaFormer Meng et al. (2025) 43.9 66.1 47.9 40.2 63.1 43.0 43.2 64.1 46.4 – – –
InLine-PVT-S Han et al. (2024a) 43.4 66.4 47.1 40.1 63.1 43.3 – – – – – –
SOFT++-Small Lu et al. (2024) 43.8 66.0 47.5 40.1 63.0 43.0 43.7 64.9 46.8 28.7 47.4 57.6
LaplacianFormer-Small 45.8 68.2 49.8 42.0 65.1 45.2 45.5 66.8 49.1 30.7 51.8 59.5

Agent-PVT-M Han et al. (2024c) 45.9 67.8 50.4 42.0 65.0 45.4 – – – – – –
FL-Swin-M Han et al. (2023) 44.0 66.4 48.0 40.3 63.4 43.5 – – – – – –
SOFT++-Medium Lu et al. (2024) 46.6 67.8 51.2 42.0 64.8 45.2 44.3 64.7 47.4 29.0 48.2 59.9
LaplacianFormer-Medium 48.0 70.3 52.5 43.5 65.8 46.5 47.2 68.5 51.5 31.8 53.0 61.4

Swin-T-PolaFormer Meng et al. (2025) 44.8 67.6 49.1 40.5 64.1 43.5 – – – – – –
Agent-PVT-L Han et al. (2024c) 46.9 69.2 51.4 42.8 66.2 46.2 – – – – – –
SOFT++-Large Lu et al. (2024) 47.0 68.3 51.7 42.2 65.2 45.4 47.0 67.8 50.4 30.2 50.9 62.0
LaplacianFormer-Large 48.2 70.5 53.0 43.8 67.1 47.4 48.5 69.3 52.4 32.6 52.3 63.8

5.3 ABLATION STUDIES
Convergence Under Varying Condition Numbers. We evaluate solver convergence across vary-
ing condition numbers. We measure the relative error for Newton–Schulz using the Frobenius norm
∥Xk − W †∥F /∥W †∥F , and for CG using the Euclidean norm ∥xk − x∗∥2/∥x∗∥2.As shown in
Figure 6, CG converges more rapidly under well-conditioned settings (e.g., κ = 2) but degrades sig-
nificantly as the condition number increases. In contrast, Newton–Schulz exhibits an initial warm-up
phase followed by stable convergence even under ill-conditioned regimes (e.g., κ = 50), indicating
greater robustness in practice.
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Figure 6: Convergence behavior of Newton–Schulz and conjugate gradient methods under varying
condition numbers. Each plot shows relative error (log scale) vs. iteration.
Inverse Solver Effect. We compare two iterative solvers—Newton–Schulz (used in our model) and
conjugate gradient (CG)—for computing the kernel inverse in linear attention, both implemented
with custom CUDA kernels. As shown in Table 3, Newton–Schulz achieves higher Top-1 accuracy
than CG for both LaplacianFormer-Tiny (81.1% vs. 77.8%) and LaplacianFormer-Small (83.8% vs.
80.4%), likely due to better GPU convergence and numerical stability.

Effect of Laplacian Kernel Scale. We study the impact of the Laplacian kernel scale λ in the
similarity function simLap(q, k) = exp

(
−∥q−k∥1λ

)
. As shown in Table 3, the model achieves the

best Top-1 accuracy (81.4%) when λ = 4. Small λ values (e.g., 0.5, 1) overly suppress long-range
interactions, while large values (e.g., 8) yield overly smooth attention, diluting local detail. An
intermediate scale (λ = 4) balances local sensitivity and global context, and is thus fixed in all
experiments. Attention map visualizations (Figure 7) further validate this choice.

Table 3: Ablation studies on LaplacianFormer architecture. (left) Top-1 accuracy (%) of LaplacianFormer
variants using different inverse solvers: conjugate gradient (CG) vs. Newton–Schulz (NS).(right) Effects of the
Laplacian kernel scale λ on LaplacianFormer-Tiny.

Model CG (%) NS (%)

LaplacianFormer-Tiny 79.2 81.4
LaplacianFormer-Small 81.4 83.8

λ 0.5 1 2 4 8

Top-1 Acc (%) ↑ 79.4 79.6 80.1 81.4 78.5

𝜆𝜆=0.5 𝜆𝜆=1 𝜆𝜆=2 𝜆𝜆=4 𝜆𝜆=8

Figure 7: Visualization of attention maps under different Laplacian kernel scales λ. From left
to right: λ = 0.5, 1, 2, 4, 8.

6 CONCLUSIONS AND FUTURE WORK
We propose LaplacianFormer, a Transformer variant that employs a Laplacian kernel to construct
injective and normalized attention, enabling fine-grained token discrimination with linear com-
plexity. To ensure scalability, we adopt the Nyström approximation and accelerate computation
via Newton–Schulz iteration, with efficient CUDA support for both forward and backward passes.
LaplacianFormer strikes a balance between expressiveness and efficiency, performing well on both
vision and long-sequence tasks. Moreover, it achieves strong results on downstream applications
such as object detection and segmentation, further demonstrating its generalization capability.

This work specifically focuses on comparing Laplacian and Gaussian kernels—the latter being the
dominant choice in prior linear attention models Katharopoulos et al. (2020); Lu et al. (2021); Chen
et al. (2021). Our goal is to challenge this convention through both theoretical analysis and empirical
validation. Broader comparisons with other kernel families (e.g., cosine, polynomial) are left as
future work.
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