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Abstract

Episodic learning is a popular practice among researchers and practitioners inter-
ested in few-shot learning. It consists of organising training in a series of learning
problems (or episodes), each divided into a small training and validation subset to
mimic the circumstances encountered during evaluation. But is this always neces-
sary? In this paper, we investigate the usefulness of episodic learning in methods
which use nonparametric approaches, such as nearest neighbours, at the level of
the episode. For these methods, we not only show how the constraints imposed by
episodic learning are not necessary, but that they in fact lead to a data-inefficient
way of exploiting training batches. We conduct a wide range of ablative experi-
ments with Matching and Prototypical Networks, two of the most popular methods
that use nonparametric approaches at the level of the episode. Their “non-episodic”
counterparts are considerably simpler, have less hyperparameters, and improve
their performance in multiple few-shot classification datasets.

1 Introduction

The problem of few-shot learning (FSL) – classifying examples from previously unseen classes given
only a handful of training data – has considerably grown in popularity within the machine learning
community in the last few years. The reason is likely twofold. First, being able to perform well
on FSL problems is important for several applications, from learning new symbols [23] to drug
discovery [2]. Second, since the aim of researchers interested in meta-learning is to design systems
that can quickly learn novel concepts by generalising from previously encountered learning tasks, FSL
benchmarks are often adopted as a practical way to empirically validate meta-learning algorithms.

To the best of our knowledge, there is not a widely recognised definition of meta-learning. In a recent
survey, Hospedales et al. [22] informally describe it as “the process of improving a learning algorithm
over multiple learning episodes”. In practical terms, following the compelling rationale that “test
and train conditions should match” [48, 13], several seminal meta-learning papers (e.g. [48, 32, 14])
have emphasised the importance of organising training into episodes, i.e. learning problems with
a limited amount of “training” (the support set) and “test” examples (the query set) to mimic the
test-time scenario presented by FSL benchmarks.

However, several recent works (e.g. [9, 49, 11, 44]) showed that simple baselines can outperform
established FSL meta-learning methods by using embeddings pre-trained with the standard cross-
entropy loss, thus casting a doubt on the importance of episodes in FSL. Inspired by these results, we
aim at understanding the practical usefulness of episodic learning in popular FSL methods relying on
metric-based nonparametric classifiers such as Matching and Prototypical Networks [48, 40]. We
chose this family of methods because they do not perform any adaptation at test time. This allows us
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Figure 1: Difference in batch exploitation for
metric-based methods between adopting or not
adopting the concept of episodes during training,
on an illustrative few-shot learning problem with
2 ways (classes), and 4 shots (examples) and 1
query per class.
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Table 1: The extra number of gradients that,
on the same batch, a non-episodic method can
exploit with respect to its episodic counterpart
grows quadratically as O(w2(m2 + n2)), where
w is the number of ways, and n and m are the
number of shots and queries per class.

to test the efficacy of episodic training without having to significantly change the baseline algorithms,
which could potentially introduce confounding factors.

In this work we perform a case study focussed on Matching Networks [48] and Prototypical Net-
works [40], and we show that within this family of methods episodic learning a) is detrimental for
performance, b) is analogous to randomly discarding examples from a batch and c) introduces a
set of superfluous hyperparameters that require careful tuning. Without episodic learning, these
methods are closely related to the classic Neighbourhood Component Analysis (NCA) [19, 35] on
deep embeddings and achieve, without bells and whistles, an accuracy that is competitive with recent
methods on multiple FSL benchmarks: miniImageNet, CIFAR-FS and tieredImageNet.

PyTorch code is available at https://github.com/fiveai/on-episodes-fsl.

2 Background and method

This section is divided as follows: Sec. 2.1 introduces episodic learning and illustrates a data efficiency
issue encountered with nonparametric few-shot learners based on episodes; Sec. 2.2 introduces the
losses from Snell et al. [40], Vinyals et al. [48] and Goldberger et al. [19] which we use throughout
our experiments; and Sec. 2.3 explains the three options we explored to perform FSL classification
with previously-trained feature embeddings.

2.1 Episodic learning

A common strategy to train FSL methods is to consider a distribution Ê over possible subsets of
labels that is as close as possible to the one encountered during evaluation E 2 [48]. Each episodic
batch BE = {S,Q} is obtained by first sampling a subset of labels L from Ê , and then sampling
images constituting both support set S and query set Q from the set of images with labels in L,
where S = {(s1, y1), . . . , (sn, yn)}, Q = {(q1, y1), . . . , (qm, ym)}, and Sk and Qk denote the sets
of images with label y = k in the support set and query set respectively.

For most methods, this corresponds to training on a series of mini-batches in which each image
belongs to either the support or the query set. Support and query sets are constructed such that they
both contain all the classes of L, and a fixed number of images per class. Therefore, episodes are
defined by three variables: the number of classes w = |L| (the “ways”), the number of examples per
class in the support set n = |Sk| (the “shots”), and the number of examples per class in the query set
m = |Qk|. During evaluation, the set {w, n,m} defines the problem setup. Instead, at training time
{w, n,m} can be seen as a set of hyperparameters controlling the batch creation, and that (as we will
see in Sec. 3.2) requires careful tuning.

2Note that, in FSL, the sets of classes encountered during training and evaluation are disjoint.
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In a Maximum Likelihood Estimation framework, training on these episodes can be written as

arg max
θ

E
L∼Ê

E
S∼L
Q∼L

 ∑
(qi,yi)∈Q

logPθ (yi|qi, S, ρ)

 . (1)

For the sake of brevity, with a slight abuse of notation we omit the function fθ (e.g. a deep neural
network) which is used to obtain a representation for the images in S and Q, and whose parameters θ
are optimised during the training process. Note that the optimisation of Eq. 1 depends on an optional
set of parameters ρ. This is obtained by an “inner” optimisation procedure, whose scope is limited to
the current episode [22]. The idea is that the “outer” optimisation loop, by attending to a distribution
of episodes, will appropriately shift the inductive bias of the algorithm located in the inner loop, thus
learning how to learn [47]. In recent years, many interesting proposals have been made about what
form ρ should have, and how it should be computed. For instance, in MAML [14] ρ takes the form of
an update of the global parameters θ, while Ravi and Larochelle [32] learn to optimise by considering
ρ as set of the hyper-parameters of the optimiser’s update rule.

Other methods, such as Matching and Prototypical Networks [48, 40], avoid learning a separate set of
parameters ρ altogether, and utilise a nonparametric learner (such as nearest neighbour classifiers) at
the inner level. We chose to focus our case study on these methods not only because they have been
seminal for the community, but also for ease of experimental design. Having ρ = ∅ considerably
reduces the design complexity of the algorithm, thus allowing precise ablations to understand the
efficacy of episodic learning without considerably changing the nature of the original algorithms.

Considerations on data efficiency. The constraints imposed by episodic learning on the role each
image has in a training batch has subtle but important implications, illustrated in Fig. 1 by highlighting
the number of distances contributing to the loss. By dividing batches between support and query set (S
and Q) during training, episodes have the side effect of disregarding many of the distances between
labelled examples that would constitute useful training signal for nonparametric FSL methods.
More specifically, for metric-based nonparametric methods, the number of training distances that
are omitted in a batch because of the episodic strategy grows quadratically as O(w2(m2 + n2))
(derivation shown in Appendix A). Table 1 breaks down this difference in terms of gradients from
positives and negatives distance pairs (which we simply refer to as positives and negatives throughout
the rest of the paper). In a typical training batch with w = 20, m = 15 and n = 5 [40], ignoring the
episodic constraints increases the number of both positives and negatives by more than 150%.

In the remainder of this paper, we conduct a case study to illustrate how this issue affects two of the
most popular FSL algorithms relying on nonparametric approaches at the inner level: Prototypical
Networks [40] and Matching Networks [48].

2.2 Loss functions

Prototypical Networks (PNs) [40] are one of the most popular and effective approaches in the
few-shot learning literature. They are at the core of several recently proposed FSL methods (e.g. [27,
18, 1, 50, 7]), and they are used in a number of applied machine learning works (e.g. EEG scan
analysis for autism [36] and glaucoma grading [17]).

During training, episodes consisting of a support set S and a query set Q are sampled as described
in Sec. 2.1. Then, a prototype for each class k is computed as the mean embedding of the samples
from the support set belonging to that class: ck = (1/|Sk|) ·

∑
(si,yk)∈Sk

fθ(si), where fθ is a deep
neural network with parameters θ learned via Eq. 1.

Let C = {(c1, y1), . . . , (ck, yk)} be the set of prototypes and corresponding labels. The loss can be
written as follows:

LPNs =
−1

|Q|
∑

(qi,yi)∈Q

log

(
exp−‖fθ(qi)− cyi‖2∑
k′ exp−‖fθ(qi)− ck′‖2

)
,

where k′ is an index that goes over all classes.
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Matching Networks (MNs) [48] are closely related to PNs in the multi-shot case and equivalent in
the 1-shot case. Rather than aggregating the embeddings of the same class into prototypes, this loss
directly computes a softmax over individual embeddings of the support set, as:

LMNs =
−1

|Q|
∑
(qi,y)
∈Q

log


∑
sj
∈Sy

exp−‖fθ(qi)− fθ(sj)‖2

∑
sk
∈S

exp−‖fθ(qi)− fθ(sk)‖2

 .

In their work, Vinyals et al. [48] use the cosine rather than the Euclidean distance. However, (as [40])
we observed that the Euclidean distance is a better choice for FSL problems, and thus we use it in all
the losses of our experiments. Note that Vinyals et al. [48] also suggest a variant to LMNs (MNs with
“Full Context Embeddings”), where an LSTM (with an extra set of parameters) is used to condition
the way the inputs are embedded in the current support set. In our experiments, we did not consider
this variant as it falls in the category of adaptive episodic learning approaches (ρ 6= ∅, see Sec. 2.1).

Neighbourhood Component Analysis (NCA). LMNs and LPNs sum over the likelihoods that a
query image belongs to the same class of a certain sample (or prototype) from the support set by
computing the softmax over the distances between the query and the support samples (or prototypes).
This is closely related to the Neighbourhood Component Analysis approach by Goldberger et al. [19]
(and expanded to the non-linear case by Salakhutdinov et al. [35] and Frosst et al. [15]), except for a
few important differences which we discuss at the end of this section.

Let i ∈ [1, b] be the indices of the images within a batch B. The NCA loss can be written as:

LNCA =
−1

|B|
∑

i∈1,...,b

log



∑
j∈1,...,b
j 6=i
yi=yj

exp−‖zi − zj‖2

∑
k∈1,...,b
k 6=i

exp−‖zi − zk‖2

 ,

where zi = fθ(xi) is an image embedding and yi its corresponding label. By minimising this loss,
distances between embeddings from the same class will be minimised, while distances between
embeddings from different classes will be maximised. Importantly, note how the concepts of support
set and query set here do not exist. More simply, the images (and respective labels) constituting the
batch B = {(x1, y1), . . . , (xb, yb)} are sampled uniformly.

Given the similarity between these three losses, and considering that PNs and MNs do not perform
episode-specific parameter adaptation, {w,m, n} can be simply interpreted as the set of hyper-
parameters controlling the sampling of mini-batches during training. More specifically, PNs, MNs
and NCA differ in three aspects:

I. First and foremost, due to the nature of episodic learning, PNs and MNs only consider pairwise
distances between the query and the support set (Fig. 1 left); NCA instead uses all the distances
within a batch and treats each example in the same way (Fig. 1 right).

II. Only PNs rely on the creation of prototypes.
III. Because of how L, S and Q are sampled in episodic learning (Eq. 1), for PNs and MNs some

images might be sampled more frequently than others (sampling “with replacement”). NCA
instead visits every image of the dataset once for each epoch (sampling “without replacement”).

To investigate the effects of these three differences, in Sec. 3 we conduct a wide range of experiments.

2.3 Few-shot classification during evaluation

Once fθ has been trained, there are many possible ways to perform few-shot classification during
evaluation. In this paper we consider three simple approaches that are particularly intuitive for
embeddings learned via metric-based losses like the ones described in Sec. 2.2. Note that, in the
1-shot case, all the evaluation methods considered coincide.
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k-NN. To classify an image qi ∈ Q, we first compute the Euclidean distance to each support point
sj ∈ S: dij = ‖fθ(qi) − fθ(sj))‖2. Then, we simply assign y(qi) to be majority label of the k
nearest neighbours. A downside here is that k is a hyper-parameter that has to be chosen, although a
reasonable choice in the FSL setup is to set it equal to the number of “shots” n.

Nearest centroid. Similar to k-NN, we can perform classification by inheriting the label of the
closest class centroid, i.e. y(qi) = arg minj∈{1,...,k}‖fθ(xi) − cj‖. This is the approach used by
Prototypical Networks [40], SimpleShot [49], and both baselines of Chen et al. [10].

Soft assignments. To classify an image qi ∈ Q, we compute the values

pij =
exp(−‖fθ(qi)− fθ(sj))‖2)∑

sk∈S exp(−‖fθ(qi)− fθ(sk)‖2)

for all sj ∈ S, which is the probability that i inherits its class from j. We then compute the
likelihood for each class k:

∑
sj∈Sk

pij , and choose the class with the highest likelihood y(qi) =

arg maxk
∑
sj∈Sk

pij . This is the approach for classification adopted by the original NCA paper [19]
and Matching Networks [48].

We experiment with all three alternatives and observe that the nearest centroid approach is the most
effective (details available in Appendix D). For this reason, unless differently specified, we use it as
default in our experiments.

3 Experiments

In the following, Sec. 3.1 describes our experimental setup; Sec. 3.2 shows the important effect of the
hyperparameters controlling the creation of episodes; in Sec. 3.3 we compare the episodic strategy to
randomly discarding pairwise distances within a batch; in Sec. 3.4 we perform a set of ablations to
better illustrate the relationship between PNs, MNs and NCA; finally, in Sec. 3.5 we compare our
version of the NCA to several recent methods.

3.1 Experimental setup

We conduct our experiments on miniImageNet [48], CIFAR-FS [5] and tieredImageNet [34], using
the popular ResNet-12 variant first adopted by Lee et al. [24] as embedding function fθ 3 . A detailed
description of benchmarks, architecture and choice of hyperparameters is deferred to Appendix F,
while below we discuss the most important choices of the experimental setup.

Like Wang et al. [49], for all our experiments (including those with Prototypical and Matching
Networks) we centre and normalise the feature embeddings before performing classification, as it is
considerably beneficial for performance. After training, we compute the mean feature vectors of all
the images in the training set: x̄ = 1

|Dtrain|
∑

x∈Dtrain x. Then, all feature vectors in the test set are
updated as xi ← xi − x̄, and normalised by xi ← xi

‖xi‖ .

As standard [22], performance is assessed on episodes of 5-way, 15-query and 1- or 5-shot. Each
model is evaluated on 10,000 episodes sampled from the validation set during training, or from the
test set during testing. To further reduce the variance, we trained each model three times with three
different random seeds, for a total of 30,000 episodes per configuration, from which 95% confidence
intervals are computed.

3.2 Batch size and episodes

Despite Prototypical and Matching Networks being among the simplest FSL methods, the creation of
episodes requires the use of several hyperparameters ({w,m, n}, Sec. 2.1) which can significantly
affect performance. Snell et al. [40] state that the number of shots n between training and testing
should match and that one should use a higher number of waysw during training. In their experiments,
they train 1-shot models with w = 30, n = 1, m = 15 and 5-shot models with w = 20, n = 5,
m = 15, with batch sizes of 480 and 400, respectively. Since the corresponding batch sizes of these
configurations differ, making direct comparisons between them is difficult.

3Note that, since we do not use a final linear layer for classification, our backbone is in fact a ResNet-11.
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Figure 2: 1-shot and 5-shot accuracies on CIFAR-FS (val. set) for Prototypical and Matching
Networks models trained with different episodic configurations: 1-shot with m+ n=8 and 5-shot
with m+ n=8, 16 or 32. NCA models are trained on batches of size 128, 256 and 512 to match the
size of the episodes. Reported values correspond to the mean accuracy of three models trained with
different random seeds and shaded areas represent 95% confidence intervals. See Sec. 3.2 for details.

Instead, to directly compare configurations across batch sizes, we define an episode by its number of
shots n, the batch size b and the total number of images per class m+ n (the sum of elements across
support and query set). For example, if we train a 5-shot model with m + n = 8 and b = 256, its
corresponding training episodes will have n = 5, m = 8 − n = 3, and w = 256/(m + n) = 32.
Using this notation, we train configurations of PNs and MNs covering several combinations of these
hyperparameters, so that the resulting batch size corresponding to an episode is 128, 256 or 512.
Then, we train three configurations of the NCA, where the sole hyperparameter is the batch size b.

Results for CIFAR-FS can be found in Fig. 2, where we report results for NCA, PNs and MNs with
m+n = 8, 16 or 32. Results for miniImageNet observe the same trend and are deferred to Appendix
H. For consistency in our comparisons, we evaluate performance using a nearest centroid classifier
when comparing against PNs, and soft assignments when comparing against MNs (see Sec. 2.3).
Note that PNs and MNs results for 1-shot with m + n = 16 and m + n = 32 are not reported, as
they fare significantly worse. The 1-shot m+ n = 16 is 4% worse in the best case compared to the
lowest lines in Fig. 2, and the m+ n = 32 is 10% worse in the best case. This is likely because these
two setups exploit the fewest number of pairs among all the setups, which leads to the least training
signal being available. In Appendix E we discuss whether the difference in performance between the
different episodic batch setups of Fig. 2 can be solely explained by the differences in the number of
distance pairs used in the batch configurations. We indeed find that generally speaking the higher the
number of pairs the better. However, one should also consider the positive/negative balance and the
number of classes present within a batch.

Several things can be observed from Fig. 2. First, NCA-trained embeddings perform better than
all configurations, no matter the batch size. Second, PNs and MNs are very sensitive to different
hyperparameter configurations. For instance, with batches of size 128, PNs trained with episodes of
5-shot and m+n=32 perform worse than a PNs trained with 5-shot episodes and m+n=16. Note
that, as we will show in Table 2, the best episodic configurations for PNs and MNs found with this
hyperparameter search is superior to the setting used in the original papers.

3.3 Episodic batches vs. random sub-sampling

Despite the inferior performance with respect to the NCA, one might posit that, by training on
episodes, PNs and MNs can somehow make better use of a smaller number of distances within a
batch. This could be useful, for instance, in situations where it is important to train with very large
batches. Given the increased conceptual complexity and the extra hyperparameters, the efficacy of
episodic learning (in cases where a smaller number of distances should be considered) should be
validated against the much simpler approach of random subsampling. We perform an experiment
where we train NCA models by randomly discarding a fraction of the total number of distances used
in the loss. Then, for comparison, we include different PNs and MNs models, after having computed
to which percentage of discarded pairs (in a normal batch) their episodic batches correspond to.

Results can be found in Fig. 3. As expected, we can see how subsampling a fraction of the total
available number of pairs within a batch negatively affects performance. More importantly, we
can notice that the points representing PNs and MNs models lie very close to the under-sampling
version of the NCA. This suggests that the episodic strategy is roughly equivalent, empirically, to
only exploiting a fraction of the distances available in a batch. Note how, moving along the x-axis of
Fig. 3, variants of PNs and MNs exploiting a higher number of distances perform better.
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Figure 3: 1-shot and 5-shot accuracies on miniImageNet (val. set) for NCA models trained by
only sampling a fraction of the total number of available pairs in the batch (of size 256). Stars and
squares represent models trained using the Prototypical or Matching Network loss, and are plotted
on the x-axis based on the total number of distance pairs exploited in the loss, so that they can be
directly compared with this “sub-sampling” version of the NCA. Reported values correspond to the
mean accuracy of three models trained with different random seeds and shaded areas represent 95%
confidence intervals. See Sec. 3.3 for details.

Figure 4: Ablation experiments on NCA and Prototypical Networks, both on batches (or episodes)
of size 128, 256, and 512 on miniImageNet and CIFAR-FS (val. set). Reported values correspond to
the mean accuracy of three models trained with different random seeds and error bars represent 95%
confidence intervals. See Sec. 3.4 for details.

3.4 Ablation experiments

To better analyse why NCA performs better, in this section we consider the three key differences
discussed at the end of Sec. 2.2 by performing a series of ablations on models trained on batches of
size 128, 256 and 512. Results are summarised in Fig. 4. We refer the reader to Appendix B to obtain
detailed steps describing how these ablations affect the losses of Sec. 2.2.

First, we compare two variants of the NCA: one in which the sampling of the training batches happens
sequentially and without replacement, as is standard in supervised learning, and one where batches
are sampled with replacement. This modification (row 1 and 2 of Fig. 4) has a negligible effect,
meaning that the replacement sampling introduced by episodic learning should not interfere with
the other ablations. We then perform a series of ablations on episodic batches, i.e. sampled with the
method described in Sec. 2.1. To obtain a reasonably-performing model for both 1- and 5-shot models,
we use configurations with m+ n = 8. This means that, for PNs and MNs, models are trained with 8
images per class, and either 16, 32 or 64 classes (batches of size 128, 256 and 512 respectively). The
batch size for NCA is also set to either 128, 256, or 512, allowing direct comparison.

The ablations of Fig. 4 compare PNs to NCA. First, we train standard PNs models (row 4 and 5
of Fig. 4). Next, we train a model where “prototypes” are not computed (row 6). This implies
that, similar to what happens in MNs, distances are considered between individual points, but a
separation between query and support set remains. This ablation allows us to investigate if the loss in
performance by PNs compared to NCA can be attributed to prototype computation during training
(which turned out not to be the case). Then, we perform an ablation where we ignore the separation
between support and query set, and compute the NCA on the union of the support and query set,
while still computing prototypes for the points that would belong to the support set (row 7). Last, we
perform an ablation where we consider all the previous points together: we sample with replacement,
we ignore the separation between support and query set and we do not compute prototypes (row 3).
This amounts to the NCA loss, except that it is computed on batches with a fixed number of classes
and a fixed number of images per class (row 3). Notice that in Fig. 4 there is only one row dedicated
to 1-shot models. This is because we cannot generate prototypes from 1-shot models, so we cannot
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miniImageNet CIFAR-FS tieredImageNet
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Episodic methods

adaResNet [26] 56.88± 0.62 71.94± 0.57 - - - -
TADAM[27] 58.50± 0.30 76.70± 0.30 - - - -
Shot-Free [33] 60.71± n/a 77.64± n/a 69.2± n/a 84.7± n/a 63.52± n/a 82.59± n/a
TEAM [30] 60.07± n/a 75.90± n/a - - - -
MTL [42] 61.20± 1.80 75.50± 0.80 - - - -
TapNet [50] 61.65± 0.15 76.36± 0.10 - - 63.08± 0.15 80.26± 0.12
MetaOptNet-SVM[24] 62.64± 0.61 78.63± 0.46 72.0± 0.7 84.2± 0.5 65.99± 0.72 81.56± 0.53
Variatonal FSL [51] 61.23± 0.26 77.69± 0.17 - - - -

Simple cross-entropy baselines

Transductive finetuning [11] 62.35± 0.66 74.53± 0.54 70.76± 0.74 81.56± 0.53 - -
RFIC-simple [44] 62.02± 0.63 79.64± 0.44 71.5± 0.8 86.0± 0.5 69.74± 0.72 84.41± 0.55
Meta-Baseline [10] 63.17± 0.23 79.26± 0.17 - - 68.62± 0.27 83.29± 0.18

Our implementations:

MNs ([40] episodes) 58.91± 0.12 72.48± 0.10 69.28± 0.13 80.79± 0.10 65.75± 0.13 78.40± 0.10
PNs ([40] episodes) 59.78± 0.12 75.42± 0.09 69.94± 0.12 84.01± 0.09 65.80± 0.13 81.26± 0.10
MNs (our episodes) 60.77± 0.12 73.82± 0.09 71.86± 0.13 82.41± 0.10 66.53± 0.13 79.08± 0.10
PNs (our episodes) 61.32± 0.12 77.77± 0.09 70.41± 0.12 84.61± 0.10 66.89± 0.14 82.20± 0.09
SimpleShot [49] 62.16± 0.12 78.33± 0.09 69.98± 0.12 84.40± 0.09 66.67± 0.14 81.57± 0.10
NCA soft assignment (ours) 62.55± 0.12 76.93± 0.11 72.49± 0.12 83.38± 0.09 68.35± 0.13 81.04± 0.09
NCA nearest centroid (ours) 62.55± 0.12 78.27± 0.09 72.49± 0.12 85.15± 0.09 68.35± 0.13 83.20± 0.10

Table 2: Comparison of methods that use ResNet12 as fθ, on the test set of miniImageNet, CIFAR-FS,
and tieredImageNet. Values are reported with 95% confidence intervals. For our methods, reported
values correspond to the mean accuracy of three models trained with different random seeds.

have a “no proto” ablation. Furthermore, for 1-shot models the “no S/Q” ablation is equivalent to the
NCA with a fixed batch composition.

From Fig. 4, we can see that disabling prototypes (row 6) negatively affects the performance of 5-shot
(row 5), albeit slightly. Since for PNs the amount of gradient signal is the same with (row 5, Fig.4)
or without (row 6, Fig.4) the computation of prototypes, we believe that this could be motivated
by the increased misalignment between the training and test setup present in the ablation of row
6. Nonetheless, enabling the computation between all pairs increases the performance (row 7) and,
importantly, enabling all the ablations (row 3) completely recovers the performance lost by PNs.
Note the meaningful gap in performance between row 1 and 3 in Fig. 4 for batch size 128, which
disappears for batch size 512. This is likely due to the number of positives available in an excessively
small batch size. Since our vanilla NCA creates batches by simply sampling images randomly from
the dataset, there is a limit to how small a batch can be (which depends on the number of classes of the
dataset). As an example, consider the extreme case of a batch of size 4. For the datasets considered,
it is very likely that such a batch will contain no positive pairs for some classes. Conversely, the
NCA ablation with a fixed batch composition (i.e. with a fixed number of images per class) will have
a higher number of positive pairs (at the cost of a reduced number of classes per batch). This can
explain the difference, as positive pairs constitute a less frequent (and potentially more informative)
training signal. In Appendix E we extend this discussion, commenting on the role of positive and
negative distances. In Appendix H we also report the results of a second set of ablations to compare
NCA and Matching Networks, which are analogous to the ones with Prototypical Networks we just
described and lead to the same conclusions.

These experiments highlight that the separation of roles between the images belonging to support
and query set, which is typical of episodic learning [48], is detrimental for the performance of
metric-based nonparametric few-shot learners. Instead, using the NCA loss on standard mini-batches
allows full exploitation of the training data and significantly improves performance. Moreover, the
NCA has the advantage of simplifying the overall training procedure, as the hyperparameters for the
creation of episodes {w, n,m} no longer need to be considered.

3.5 Comparison with recent methods

We now evaluate our models on three popular FSL datasets to contextualise their performance with
respect to the recent literature. When considering which methods to compare against, we chose those
a) which have been recently published, b) that use a ResNet-12 architecture [24] (the most commonly
used), and c) with a setup that is not significantly more complicated than ours. For example, we only
report results for the main approach of Tian et al. [44]. We omit their self-distillation [16] variant, as
it can be applied to most methods and involves multiple stages of training.

8



Results can be found in Table 2. Besides the results for the NCA loss, we also report PNs and
MNs results with both the episodic setup from Snell et al. [40] and the best one (batch size 512,
5-shot, m + n=16 for both PNs and MNs) found from the experiment of Fig. 2, which brings a
considerable improvement over the original and other PNs implementations (See Appendix I for
a comparison of our PNs implementation to other works). Note that our aim is not to improve
the state of the art, but rather to shed light on the practice of episodic learning. Nonetheless, our
vanilla NCA is competitive and sometimes even superior to recent methods, despite being extremely
simple. It fares surprisingly well against methods that use meta-learning (and episodic learning), and
also against the high-performing simple baselines based on pre-training with the cross-entropy loss.
Moreover, because of the explicit inductive bias that it encodes in terms of relative position in the
embedding space of samples from the same class, the NCA loss is a useful tool to consider alongside
cross-entropy trained baselines.

4 Related work

Pioneered by Utgoff [46], Schmidhuber [38, 39], Bengio et al. [4] and Thrun [43], the general concept
of meta-learning is several decades old (for a survey see [47, 22]). However, in the last few years
it has experienced a surge in popularity, becoming the most used paradigm for learning from very
few examples. Several methods addressing the FSL problem by learning on episodes were proposed.
MANN [37] uses a Neural Turing Machine [21] to save and access the information useful to meta-
learn; Bertinetto et al. [6] and Munkhdalai et al. [25] propose a deep network in which a “teacher”
branch is tasked with predicting the parameters of a “student” branch; Matching Networks [48] and
Prototypical Networks [40] are two nonparametric methods in which the contributions of different
examples in the support set are weighted by either an LSTM or a softmax over the cosine distances
for Matching Networks, and a simple average for Prototypical Networks; Ravi and Larochelle [32]
propose instead to use an LSTM to learn the hyperparameters of SGD, while MAML [14] learns
to fine-tune an entire deep network by backpropagating through SGD. Despite these works widely
differing in nature, they all stress on the importance of organising training in a series of small learning
problems (episodes) that are similar to those encountered during inference at test time.

In contrast with this trend, a handful of papers have recently shown that simple approaches that forego
episodes and meta-learning can perform well on FSL benchmarks. These methods all have in common
that they pre-train a feature extractor with the cross-entropy loss on the “meta-training classes” of
the dataset. Then, at test time a classifier is adapted to the support set by weight imprinting [29, 11],
fine-tuning [9], transductive fine-tuning [11] or logistic regression [44]. Wang et al. [49] suggest
performing test-time classification by using the label of the closest centroid to the query image.
Unlike these papers, which propose new methods, we are more focussed on shedding light on the
possible causes behind the inefficiency of popular nonparametric few-shot learning algorithms such
as Prototypical and Matching Networks.

Despite maintaining a support and a query set, the work of Raghu et al. [31] is similar in spirit to ours,
and modifies episodic learning in MAML, showing that performance is almost entirely preserved
when only updating the network head during meta-training and meta-testing. In this paper, we
focussed on FSL algorithms just as established, and uncovered inefficiencies that not only allow for
notable conceptual simplifications, but that also bring a significant boost in performance. Two related
but different works are the ones of Goldblum et al. [20] and Fei et al. [12]. The former addresses
PNs’ poorly representative samples by training on episodic pairs with the same classes (but different
instances) and using a regularizer enforcing consistency across them. The latter investigates meta-
learning methods with parametric base learners, and shows interesting findings on the importance
of having tightly clustered classes in feature space, which inspires a regularizer that improves non
meta-learning models. Bai et al. [3] also show that the episodic strategy in meta-learning is inefficient
by providing both theoretical and experimental arguments on methods solving a convex optimization
problem at the level of the base learner. Similar to us, though via a different analysis, they show
that the classic split is inefficient. Chen et al. [8] derive a generalisation bound for algorithms
with a support/query separation. They do not provide any bounds for methods like NCA, which
would be an interesting direction for future work. Triantafillou et al. [45] ignore the query/support
separation in order to exploit all the available samples while working in a Structured SVM framework.
Though the reasoning about batch exploitation is analogous to ours, the scope of the paper is very
different. Finally, two recent meta-learning approaches based on Gaussian Processes [28, 41] also
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merge the support and query sets during learning to take full advantage of the available data within
each episode.

5 Conclusion

Towards the aim of understanding the reasons behind the poor competitiveness of meta-learning
methods with respect to simple baselines, in this paper we investigate the role of episodes in popular
nonparametric few-shot learning methods. We found that their performance is highly sensitive to the
set of hyperparameters used to sample these episodes. By replacing the Prototypical Networks and
Matching Networks losses with the closely related (and non-episodic) Neighbourhood Component
Analysis, we were able to ignore these hyperparameters, while improving the few-shot classification
accuracy. We found out that the performance discrepancy is in large part caused by the separation
between support and query set within each episode, which negatively affects the number of pairwise
distances contributing to the loss. Moreover, with nonparametric few-shot approaches, the episodic
strategy is almost empirically equivalent to randomly discarding a portion of the distances available
within a batch. Finally, we showed that our variant of the NCA achieves an accuracy on multiple
popular FSL benchmarks that is competitive with recent methods, making it a simple and appealing
baseline for future work.

Broader impact. We believe that progress in few-shot learning is important, as it can significantly
impact important problems such as drug discovery and medical imaging. We also recognise that the
capability of leveraging very small datasets might constitute a threat if deployed for surveillance by
authoritarian entities (e.g. by applying it to problems such as re-identification and face recognition).
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