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Abstract
We introduce Genie, the first generative interac-
tive environment trained in an unsupervised man-
ner from unlabelled Internet videos. The model
can be prompted to generate an endless variety
of action-controllable virtual worlds described
through text, synthetic images, photographs, and
even sketches. At 11B parameters, Genie can
be considered a foundation world model. It is
comprised of a spatiotemporal video tokenizer,
an autoregressive dynamics model, and a simple
and scalable latent action model. Genie enables
users to act in the generated environments on
a frame-by-frame basis despite training without
any ground-truth action labels or other domain-
specific requirements typically found in the world
model literature. Further the resulting learned
latent action space facilitates training agents to
imitate behaviors from unseen videos, opening the
path for training generalist agents of the future.

1. Introduction
The last few years have seen an emergence of generative
AI, with models capable of generating novel and creative
content. Driven by breakthroughs in architectures such as
transformers (Vaswani et al., 2017), advances in hardware,
and a recent focus on scaling models and datasets, we can
now generate coherent, conversational language (Brown
et al., 2020; Radford et al., 2018; 2019), as well as crisp and
aesthetically pleasing images from a text prompt (Ramesh
et al., 2021; 2022; Rombach et al., 2022; Saharia et al.,
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Figure 1: Diverse trajectories: Genie is a generative model that
can be used as an interactive environment. The model can be
prompted in various ways, either with a generated image (top) or a
hand-drawn sketch (bottom). At each time step, the model takes a
user-provided latent action to generate the next frame, producing
trajectories with interesting and diverse character actions.

2022). Early signs indicate video generation will be yet
another frontier, with recent results suggesting that such
models may also benefit from scale (Blattmann et al., 2023a;
Esser et al., 2023; Ho et al., 2022a; Hong et al., 2023). Still,
there remains a gulf between the level of interactions and
engagement of video generative models and language tools
such as ChatGPT, let alone more immersive experiences.

What if, given a large corpus of videos from the Internet,
we could not only train models capable of generating novel
images or videos, but entire interactive experiences? In
this work we propose generative interactive environments,
a new paradigm for generative AI whereby interactive en-
vironments can be generated from a single text or image
prompt. Our approach, Genie, is trained from a large dataset
of over 200,000 hours of publicly available Internet gaming
videos and, despite training without action or text annota-
tions, is controllable on a frame-by-frame basis via a learned
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Figure 2: A whole new world: Genie is capable of converting a variety of different prompts into interactive, playable environments that
can be easily created, stepped into, and explored. This is made possible via a latent action interface, learned fully unsupervised from
Internet videos. On the right we see a few generated steps for taking two latent actions. See more examples on our website.

latent action space (see Table 1 for a comparison to other
approaches). At 11B parameters, Genie exhibits the prop-
erties typically seen in foundation models—it can take an
unseen image as a prompt making it possible to create and
play entirely imagined virtual worlds (Figures 1 and 2).

Genie builds upon ideas from state-of-the-art video genera-
tion models (Gupta et al., 2023; Villegas et al., 2023), with
a core design choice being spatiotemporal (ST) transform-
ers (Xu et al., 2020) which are used in all of our model
components. Genie utilizes a novel video tokenizer, and
extracts latent actions via a causal action model. Both the
video tokens and latent actions are passed to the dynam-
ics model, which autoregressively predicts the next frame
using MaskGIT (Chang et al., 2022). We provide a rigor-
ous scaling analysis of our architecture with respect to both
batch size and model size, which we vary from 40M to 2.7B
parameters. The results show that our architecture scales
gracefully with additional computational resources, leading
to our final 11B parameter model. We train Genie on a fil-
tered set of 30,000 hours of Internet gameplay videos from
hundreds of 2D platformer games, producing a foundation
world model for this setting.

To demonstrate the generality of our approach, we also train
a separate model on action-free robot videos from the RT1
dataset (Brohan et al., 2023), learning a generative environ-
ment with consistent latent actions. Finally, we show that
latent actions learned from Internet videos can be used for
inferring policies from unseen action-free videos of simu-
lated reinforcement learning (RL) environments, indicating
that Genie may hold the key to unlocking unlimited data
for training the next generation of generalist agents (Bauer
et al., 2023; Clune, 2019; Open Ended Learning Team et al.,
2021; Reed et al., 2022).

Table 1: A new class of generative model: Genie is a novel video
and world model that is controllable on a frame-by-frame basis,
which requires only video data at train time.

Model Class Training Data Controllability

World Models Video + Actions Frame-level
Video Models Video + Text Video-level
Genie Video Frame-level

2. Methodology
Genie is a generative interactive environment trained from
video-only data. In this section we begin with preliminaries
before explaining the main components of our model.

Several components in the Genie architecture are based
on the Vision Transformer (ViT) (Dosovitskiy et al., 2021;
Vaswani et al., 2017). Notably, the quadratic memory cost of
transformers poses challenges for videos, which can contain
up to O(104) tokens. We thus adopt a memory efficient
ST-transformer architecture (inspired by Xu et al. (2020),
see Figure 4) across all model components, balancing model
capacity with computational constraints.

Unlike a traditional transformer where every token attends
to all others, an ST-transformer contains L spatiotemporal
blocks with interleaved spatial and temporal attention layers,
followed by a feed-forward layer (FFW) as standard atten-
tion blocks. The self-attention in the spatial layer attends
over the 1×H×W tokens within each time step, and in the
temporal layer attends over T × 1× 1 tokens across the T
time steps. Similar to sequence transformers, the temporal
layer assumes a causal structure with a causal mask. Cru-
cially, the dominating factor of computation complexity (i.e.
the spatial attention layer) in our architecture scales linearly
with the number of frames rather than quadratically, making
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Figure 3: Genie model training: Genie takes in T frames of video as input, tokenizes them into discrete tokens z via the video tokenizer,
and infers the latent actions between each frame a with the latent action model. Both are then passed to the dynamics model to generate
predictions for the next frames in an iterative manner.

it much more efficient for video generation with consistent
dynamics over extended interactions. Further, note that in
the ST block, we include only one FFW after both spatial
and temporal components, omitting the post-spatial FFW to
allow for scaling up other components of the model, which
we observe to improve results significantly.

Figure 4: ST-transformer architecture. The architecture is com-
posed of L spatiotemporal blocks, each containing a spatial layer,
temporal layer and feed-forward layer. Each color represents a
single self-attention map, with the spatial layer attending over the
H ×W tokens from within a single time step, and temporal the
same token from across the T time steps.

2.1. Model Components

As shown in Figure 3, our model contains three key compo-
nents: 1) a latent action model that infers the latent action
a between each pair of frames and 2) a video tokenizer that
converts raw video frames into discrete tokens z and 3) a
dynamics model that, given a latent action and past frame
tokens, predicts the next frame of the video. The model is
trained in two phases following a standard autoregressive
video generation pipeline: we train the video tokenizer first,
which is used for the dynamics model. We then co-train the
latent action model (directly from pixels) and the dynamics
model (on video tokens).

Latent Action Model (LAM) To achieve controllable video
generation, we condition each future frame prediction on
the action taken at the previous frame. However, such action
labels are rarely available in videos from the Internet and

action annotation can be costly to obtain. Instead, we learn
latent actions in a fully unsupervised manner (see Figure 5).

Figure 5: Latent action model: learns actions at unsupervised
from unlabelled video frames.

First, an encoder takes as inputs all previous frames x1:t =
(x1, · · ·xt) as well as the next frame xt+1, and outputs
a corresponding set of continuous latent actions ã1:t =
(ã1, · · · ãt). A decoder then takes all previous frames and
latent actions as input and predicts the next frame x̂t+1.

To train the model, we leverage a VQ-VAE-based objec-
tive van den Oord et al. (2017), which enables us to limit
the number of predicted actions to a small discrete set of
codes. We limit the vocabulary size |A| of the VQ code-
book, i.e. the maximum number of possible latent actions,
to a small value to permit human playability and further
enforce controllability (we use |A| = 8 in our experiments).
As the decoder only has access to the history and latent
action, ãt should encode the most meaningful changes be-
tween the past and the future for the decoder to successfully
reconstruct the future frame.

We found it to be beneficial to use a lightweight decoder
to learn the latent actions rather than directly using the
dynamics model. Thus the LAM decoder exists only to give
the LAM training signal and is not subsequently used at
inference time. Indeed, apart from the VQ codebook, the
entire LAM is discarded at inference time and replaced with
actions from the user.

We utilize our ST-transformer architecture for the latent
action model. The causal mask in the temporal layer allows
us to take the entire video x1:T as input and generate all
latent actions between each frame ã1:T−1.
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Video Tokenizer Following prior work (Gupta et al., 2023;
Villegas et al., 2023; Yan et al., 2023), we compress videos
into discrete tokens to reduce dimensionality and enable
higher quality video generation (see Figure 6). We again
make use of VQ-VAE, which takes in T frames of video
x1:T = (x1, x2, · · · , xT ) ∈ RT×H×W×C as input, gen-
erating discrete representations for each frame z1:T =
(z1, z2, · · · , zT ) ∈ IT×D, where D is the size of the dis-
crete latent space. The tokenizer is trained using a standard
VQ-VQAE objective over the entire video sequence.

Figure 6: Video tokenizer: a VQ-VAE with ST-transformer.

Unlike prior works that focus on spatial-only compression
in the tokenization phase (Gupta et al., 2023; Hong et al.,
2022; Wu et al., 2022), we utilize the ST-transformer in both
the encoder and decoder to incorporate temporal dynam-
ics in the encodings, which improves the video generation
quality. By the causal nature of the ST-transformer, each
discrete encoding zt contains information from all previ-
ously seen frames of the video x1:t. Phenaki (Villegas et al.,
2023) also uses a temporal-aware tokenizer, C-ViViT, but
this architecture is compute intensive, as the cost grows
quadratically with the number of frames—in comparison,
our ST-transformer based tokenizer (ST-ViViT) is much
more compute efficient with the dominating factor in its
cost increasing linearly with the number of frames.

Figure 7: Dynamics model: takes in video tokens and action
embeddings, and predicts future masked video tokens.

Dynamics Model The dynamics model is a decoder-only
MaskGIT (Chang et al., 2022) transformer (Figure 7). At
each time step t ∈ [1, T ], it takes in the tokenized video
z1:t−1 and stopgrad latent actions ã1:t−1 and predicts the
next frame tokens ẑt. We again utilize an ST-transformer,
whose causal structure enables us to use tokens from all
(T − 1) frames z1:T−1 and latent actions ã1:T−1 as input,
and generate predictions for all next frames ẑ2:T . The model
is trained with a cross-entropy loss between the predicted
tokens ẑ2:T and ground-truth tokens z2:T . At train time
we randomly mask the input tokens z2:T−1 according to
a Bernoulli distribution masking rate sampled uniformly
between 0.5 and 1. Note that a common practice for training

world-models, including transformer-based models, is to
concatenate the action at time t to the corresponding frame
(Micheli et al., 2023; Robine et al., 2023). However, we
found that treating the latent actions as additive embeddings
for both the latent action and dynamics models helped to
improve the controllability of the generations.

2.2. Inference: Action-Controllable Video Generation

Figure 8: Genie Inference: the prompt frame is tokenized, then
combined with the latent action for the corresponding step taken
from the user, and passed to the dynamics model for iterative
generation. The predicted frame tokens are then decoded back to
image space via the tokenizer’s decoder.

We now describe how to use Genie for action-controllable
video generation at inference time (see Figure 8). A player
first prompts the model with an image x1 that serves as
the initial frame1. The image is tokenized using the video
encoder, yielding z1. The player then specifies a discrete
latent action a1 to take by choosing any integer value within
[0, |A|). Note that when first interacting with the model, it
is unclear how each latent action will impact the next frame
generation. However, we found that the meaning of each
action remained consistent across different inputs. Hence,
interpreting the mapping of latent actions is akin to learning
the buttons on a new controller. The dynamics model takes
the frame tokens z1 and corresponding latent action ã1,
which is obtained by indexing into the VQ codebook with
the discrete input a1, to predict the next frame tokens z2.
This process is repeated to generate the rest of the sequence
ẑ2:T in an autoregressive manner as actions continue to be
passed to the model, while tokens are decoded into video
frames x̂2:T with the tokenizer’s decoder. Note that we can
re-generate ground truth videos from the dataset by passing
the model the starting frame and inferred actions from the
video, while also generating completely new videos (or
trajectories) by changing the actions.

3. Experimental Results
Datasets We train Genie on a large-scale dataset collected
from publicly available Internet videos of 2D Platformer
games (referred to from here on as “Platformers”). We con-
struct the Platformers dataset by filtering publicly available
videos for keywords relating to platformers, yielding 55M
16s video clips at 10FPS, with 160x90 resolution. The final

1The model can be conditioned on a varying number of prompt
frames. Here we start from one image as an example.
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Figure 9: Scaling results. Left: Training curves for different model sizes, Middle: Final training loss for each model size, averaged over
the last 300 updates, Right: Final training loss for a 2.3B model with different batch sizes.

dataset contains 6.8M 16s video clips (30k hours), within an
order of magnitude of other popular Internet video datasets
(Bain et al., 2021; Wang et al., 2023). More details can be
found in Appendix B.1. Unless otherwise specified, results
are with a 11B-parameter model trained on this dataset.

To verify the generality of our method, we also consider the
robotics datasets used to train RT1 (Brohan et al., 2023),
combining their dataset of∼130k robot demonstrations with
a separate dataset of simulation data and the 209k episodes
of real robot data from prior work (Kalashnikov et al., 2018).
Note that we do not use actions from any of these datasets,
and simply treat them as videos. For simplicity, from here
on we refer to this dataset as “Robotics”.

Metrics We examine the video generation performance of
Genie via two factors, namely video fidelity, i.e. the quality
of video generation, and controllability, i.e. how much
impact the latent actions have in video generation. For video
fidelity we use the Frechet Video Distance (FVD), a video-
level metric, which has been shown to have a high level of
alignment to human evaluation on video quality (Unterthiner
et al., 2019). For controllability, we devise a metric based on
peak signal-to-noise ratio (PSNR) which we call ∆tPSNR,
that measures how much the video generations differ when
conditioned on latent actions inferred from ground-truth (x̂t)
vs. sampled from a random distribution (x̂′

t):

∆tPSNR = PSNR(xt, x̂t)− PSNR(xt, x̂
′
t),

where xt denotes the ground-truth frame at time t, x̂t

denotes the frame from latent actions ã1:t inferred from
ground-truth frames, and x̂′

t the same frame generated from
a sequence of latent actions randomly sampled from a cat-
egorical distribution. As such, the greater ∆tPSNR is, the
more the video generated from random latent actions differs
from ground-truth, which indicates a higher level of con-
trollability from the latent actions. For all experiments we
report ∆tPSNR with t = 4.

Training Details Our video tokenizer uses 200M parame-
ters, a patch size of 4 and a codebook with embedding size
32 and 1024 unique codes, which we found to be the most

effective given the trade-off between reconstruction qual-
ity of the tokenizer and downstream performance of video
prediction. The latent action model has 300M parameters,
uses a patch size of 16 and a codebook with embedding size
32 and 8 unique codes (latent actions). For all modelling
components we use a sequence length of 16 frames with
an FPS of 10. Further, we employ bfloat16 and QK norm
for training our dynamics model, which has been shown to
stabilize training at large scale (Dehghani et al., 2023; Henry
et al., 2020). At inference time, we perform 25 MaskGIT
steps for the sampling of each frame with a temperature of 2
using random sampling. See Appendix C for more details.

3.1. Scaling Results

In this section, we investigate the scaling behavior of our
model. To this end, we conduct studies that explore the
impact of both model size and batch size. See Appendix D
for more details on architecture and compute usage.

Scaling Model Size Given a fixed video tokenizer and action
model architecture, we train a series of dynamics models
ranging from 40M to 2.7B parameters. Figure 9 shows our
architecture scales gracefully with model parameters, with
each increase in size corresponding to a consistent decrease
in the final training loss. This is a strong indication that our
approach benefits from scaling, which we exploit with our
main Genie model.

Scaling Batch Size We also investigate the effect of scaling
the batch size, considering a 2.3B model with batch sizes of
128, 256, and 448, equating to 1.9M, 3.8M and 6.6M tokens.
As shown in Figure 9, increasing the batch size leads to a
similarly favorable gain in terms of model performance.

Genie Model It is clear that increasing both model size and
batch size helps improve model performance. As a result,
for our final model, we train a 10.1B dynamics model with
a batch size of 512, for a total of 125k steps, using 256
TPUv5p. When combined with the tokenizer and action
model this brings the total to 10.7B parameters, trained on
942B tokens, which we refer to as the Genie model.
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Figure 10: Playing from Image Prompts: We can prompt Genie with images generated by text-to-image models, hand-drawn sketches or
real-world photos. In each case we show the prompt frame and a second frame after taking one of the latent actions four consecutive
times. In each case we see clear character movement, despite some of the images being visually distinct from the dataset.

3.2. Qualitative Results

We now present qualitative results from the Genie model.
We showcase a 11B parameter model trained on the Plat-
formers dataset and a smaller 1.3B model trained on the
Robotics dataset. Our model generates high-quality, con-
trollable videos across diverse domains. Notably, we quali-
tatively evaluate our Platformers-trained model using only
out-of-distribution (OOD) image prompts, including those
generated from text-to-image models, hand-drawn sketches,
and even real-world photos. The ability to generalize to
such significantly OOD inputs underscores the robustness
of our approach and the value of training on large-scale data,
which would not have been feasible with real actions as
input.

Platformers-trained model Figure 10 showcases examples
of our model’s generations prompted from OOD images,
including (top row) images generated from Imagen2 (Ho
et al., 2022a; van den Oord et al.), (second row) hand-drawn
sketches and (bottom row) real-world photos. Genie enables
bringing these imagined worlds to life, as we see game-
like behaviour when interacting with each example. We
showcase more generations in Appendix A, additionally
highlighting the consistency of the latent actions.

Another emergent capability of our model is its ability to
understand 3D scenes and emulate parallax, which is com-
monly seen in platformer games. In Figure 11 we show an
image generated by Imagen2, where taking a latent action

Figure 11: Emulating parallax, a common feature in platformer
games. From this initial frame generated by a text-to-image model,
the foreground moves more than the near and far middle ground,
while the background moves only slightly.

moves the foreground at a different rate to the background
(as indicated by the length of different colored arrows).

Robotics-trained model We trained a 2.5B-parameter
model on the Robotics dataset using the same hyperparame-
ters found to be best on Platformers, achieving an FVD of
82.7 on the test split. As shown in Figure 17, this model suc-
cessfully learns distinct and consistent actions from video
data, requiring neither text nor action labels (as in e.g. Yang
et al. (2023)). Notably, our model learns not only the con-
trols of the robotic arm but also the interactions and de-
formations of various objects (Figure 12). We believe this
shows our approach presents a path to using larger video
datasets from the Internet to create a foundational world
model for robotics, with low-level controllable simulation
that could be used for a variety of applications.
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Figure 12: Learning to simulate deformable objects: we show frames from a ten step trajectory in the model, taking the same action.
Genie is capable of learning the physical properties of objects such as bags of chips.

Figure 13: Controllable, consistent latent actions in Robotics:
trajectories beginning from three different starting frames from
our Robotics dataset. Each column shows the resulting frame from
taking the same latent action five times. Despite training without
action labels, not only are the same actions consistent across varied
prompt frames, but also have semantic meaning: down, up and left.

3.3. Training Agents

Proprietary + ConfidentialPrompt Play!
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Figure 14: Playing from RL environments: Genie can generate
diverse trajectories given an image of an unseen RL environment.

We believe Genie could one day be used as a foundation
world model for training generalist agents. In fact, in Fig-
ure 14 we show that the model can be used for generating
diverse trajectories in unseen RL environments. We further
investigate if latent actions learnt from Internet videos can
be used for imitating behaviors from unseen videos. We use
a frozen LAM to label a sequence of expert videos from
a target environment with discrete latent actions and then
train a policy that predicts the likelihood of the expert taking

a latent action given an observation. We then use a small
dataset with expert ground-truth actions for mapping latent
to real actions (see Appendix E for more details).

We evaluate in both hard and easy settings of a procedurally
generated 2D-platformer environment, CoinRun (Cobbe
et al., 2020), and compare against an oracle behavioral
cloning (BC) model that has access to expert actions as
an upper bound, and a random agent as a lower bound (Fig-
ure 15). Notably, the LAM-based policy achieves the same
score as the oracle and adapts given as few as 200 expert
samples, despite almost certainly never seeing CoinRun be-
fore. This provides evidence that the learnt latent actions
are consistent, as the mapping from latent to real contains
no information about the current observation.

Figure 15: BC results. Mean percentage of levels solved out of
100 samples, averaged over 5 seeds with 95% confidence intervals.

3.4. Ablation Studies

Design choices for latent action model In designing our
latent action model, we carefully considered the type of
input to use. While we ultimately chose to use the original
images (pixels), we thoroughly evaluated this choice against
the alternative of using tokenized images (replacing x with
z in Figure 5). We refer to this alternative approach as
the “token-input” model (see Table 2). While this model
achieved a slightly lower FVD score on the Platformers
dataset, it did not maintain this advantage on the Robotics
dataset. More importantly, in both environments, the token-
input model exhibited worse controllability (as measured
by ∆tPSNR). This suggests that some information about
video dynamics and movement might have been lost during
tokenization, and as a result it is beneficial for the latent
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action model to take in raw videos as input.

Table 2: Latent action model input ablation. We see that Genie
achieves higher controllability.

Dataset #Params FVD (↓) ∆tPSNR(↑)
Token-input Platformers 2.3B 38.8 1.33
Pixel-input (Genie) Platformers 2.5B 40.1 1.91

Token-input Robotics 1B 257.8 1.65
Pixel-input (Genie) Robotics 1B 136.4 2.07

Tokenizer architecture ablations We compare the perfor-
mance of three choices of tokenizers, including 1) (spatial-
only) ViT, 2) (spatial-temporal) ST-ViViT and 3) (spatial-
temporal) C-ViViT (Table 3). For comparison we use similar
number of parameters for all tokenizers, with patch size 10,
batch size 128 and sequence length 16. We then train the
same dynamics and latent action model on these three dif-
ferent tokenizers, and report their FVD as well as ∆tPSNR.

Table 3: Tokenizer architecture ablation: Our ST-ViViT archi-
tecture results in the best performing tokenizer.

#Params Memory FVD (↓) ∆tPSNR(↑)
ViT 230M 0.3GB 114.5 1.39
C-ViViT (Villegas et al., 2023) 225M 1.6GB 272.7 1.37
ST-ViViT (ours) 205M 0.9GB 81.4 1.66

Our proposed ST-ViViT architecture provides both im-
proved video generation (FVD) and ∆tPSNR, for a rea-
sonable trade-off in memory, as compared to to C-ViViT
and the spatial-only ViT. This demonstrates its ability to gen-
erate videos of high fidelity and controllability, respectively.
While C-ViViT employs a full space-time attention mecha-
nism, resulting in significantly higher memory consumption
compared to the other two architectures at the same parame-
ter count, this does not translate to improved performance.
In fact, C-ViViT exhibits a tendency towards overfitting,
necessitating strong regularization during training, which
might explain its considerably lower performance.

4. Related Work
World models Generative interactive environments can be
considered a class of World Models (Ha & Schmidhuber,
2018; Oh et al., 2015), which enable next-frame predic-
tion that is conditioned on action inputs (Bamford & Lucas,
2020; Chiappa et al., 2017; Hafner et al., 2020; 2021; Kim
et al., 2020; 2021; Micheli et al., 2023; Nunes et al., 2020;
Pan et al., 2022; Robine et al., 2023). Such models can
be useful for training agents, as they can be used for learn-
ing policies without direct environment experience at agent
training time. However, learning the models themselves
typically requires action-conditioned data obtained directly
from the environment. In contrast, our approach seeks to
learn a world model in an unsupervised fashion from videos
alone. Recently, there has been renewed emphasis on scaling

world models. GAIA-1 (Hu et al., 2023) and UniSim (Yang
et al., 2023) learn world models for autonomous driving and
robotic manipulation respectively. These approaches require
both text and action labels, while we focus on training from
video-only data from publicly available Internet videos.

Video models Our work is related to video models, which
typically condition on initial frames (or text) and predict
the remaining frames in a video (Blattmann et al., 2023b;
Clark et al., 2019; Finn et al., 2016; Ho et al., 2022a;b;
Höppe et al., 2022; Kalchbrenner et al., 2017; Le Moing
et al., 2021; Lotter et al., 2017; Luc et al., 2020; Singer et al.,
2023; Walker et al., 2021; Yan et al., 2021). Our approach
most resembles recent transformer based models such as
Phenaki (Villegas et al., 2023), TECO (Yan et al., 2023)
and MaskViT (Gupta et al., 2023), as we use MaskGIT
(Chang et al., 2022) and an ST-Transformer (Xu et al., 2020)
over tokenized images. While video models are becoming
increasingly controllable (e.g. (Huang et al., 2022)), we
seek a more agentic goal and explicitly learn a latent action
space directly from data, allowing users or agents to “play”
the model using latent action-conditioned predictions.

Playable Video Generation Genie generalizes beyond
Playable Video Generation (PVG) (Menapace et al., 2021),
where latent actions are used for controlling world models
learnt directly from videos (Menapace et al., 2021; 2022).
In contrast to Genie, PVG and related works (Davtyan
& Favaro, 2022) consider domain-specific static exam-
ples, rather than generating entirely new environments via
prompting. Thus, scaling beyond this setting required non-
trivial architectural changes, dropping inductive biases in
exchange for a general method.

Environment generation Our work is also related to Pro-
cedural Content Generation (PCG, see for example Risi
& Togelius, 2020a;b) where machine learning has proven
highly effective for generating game levels (Summerville
et al., 2018), recently via language models that directly
write game code (Sudhakaran et al., 2023; Todd et al., 2023).
Language models themselves can also be considered to be
interactive environments (Wong et al., 2023), albeit lacking
a visual component. By contrast in our setting the levels
can be learnt and generated directly from pixels, which en-
ables us to utilize the diversity of Internet video data. Other
related works have aimed to learn game level components
from videos, but require domain-specific knowledge and
thus could be difficult to scale (Guzdial & Riedl, 2016;
Guzdial et al., 2017).

Training agents with latent actions Prior works have used
latent actions for imitation from observation (Edwards et al.,
2019), planning (Rybkin* et al., 2019) and pre-training RL
agents (Schmidt & Jiang, 2024; Ye et al., 2022). These ap-
proaches have similar objectives to our latent action model,
though have not been applied at scale. VPT (Baker et al.,
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2022) is a recent approach that uses an inverse dynamics
model learnt from human-provided action labeled data, to
label Internet-scale videos with actions that can then be
used for training a policy. We showed, in contrast, that we
can use latent actions learnt from Internet videos to infer
policies for arbitrary environments, avoiding the need for
ground-truth actions that are costly and may not generalize.

5. Conclusion and Future Work
We proposed Genie, a new form of generative AI that en-
ables anyone, even children, to dream up, create, and step
into generated worlds as we can with human-designed sim-
ulated environments. We demonstrated that Genie can be
prompted to generate a diverse set of interactive and control-
lable environments despite training from video-only data.

There are clear improvements that can be made to the model.
Genie inherits some of the weaknesses of other autoregres-
sive transformer models, and can hallucinate unrealistic
futures. And while we have made progress with spatiotem-
poral representations, we are still limited to 16 frames of
memory which makes it challenging to get consistent envi-
ronments over long horizons. Finally, Genie currently oper-
ates around 1FPS and requires future advances to achieve
an efficient frame rate for interaction.

Still, we believe Genie opens up vast potential for future
research. Given its generality, the model could be trained
from an even larger proportion of Internet videos to simulate
diverse, realistic, and imagined environments. Furthermore,
we only briefly touched upon the capabilities of using Genie
for training agents, but given that the lack of rich and diverse
environments is one of the key limitations in RL, we could
unlock new paths to creating more generally capable agents.

Impact Statement
Societal Impact Genie could enable a large amount of peo-
ple to generate their own game-like experiences. This could
be positive for those who wish to express their creativity in
a new way, for example children who could design and step
into their own imagined worlds. We also recognize that with
significant advances, it will be critical to explore the possi-
bilities of using this technology to amplify existing human
game generation and creativity—and empowering relevant
industries to utilize Genie to enable their next generation of
playable world development.

Training Data and Weights: We have chosen not to release
the trained model checkpoints, the model’s training dataset,
or examples from that data to accompany this paper or the
website. We would like to have the opportunity to further
engage with the research (and video game) community and
to ensure that any future such releases are respectful, safe

and responsible.

Reproducibility: We understand that it may be challenging
for researchers with fewer computational to reproduce our
main results. In order to mitigate this issue, we describe a
smaller scale, fully reproducible example in Appendix F that
can run on a single mid-range TPU (or GPU). Given that
many design choices translate between the two settings, we
believe this will make it possible for the broader community
to investigate future architectural improvements as well as
additional research directions resulting from our work.
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N., Rakicevic, N., Rocktäschel, T., Schroecker, Y., Singh, S.,
Sygnowski, J., Tuyls, K., York, S., Zacherl, A., and Zhang,

9



Generative Interactive Environments

L. M. Human-timescale adaptation in an open-ended task space.
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 1887–1935. PMLR, 23–29
Jul 2023.

Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D., Kilian,
M., Lorenz, D., Levi, Y., English, Z., Voleti, V., Letts, A.,
Jampani, V., and Rombach, R. Stable video diffusion: Scaling
latent video diffusion models to large datasets, 2023a.

Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim,
S. W., Fidler, S., and Kreis, K. Align your latents: High-
resolution video synthesis with latent diffusion models. 2023
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 22563–22575, 2023b.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn,
C., Gopalakrishnan, K., Hausman, K., Herzog, A., Hsu, J.,
Ibarz, J., Ichter, B., Irpan, A., Jackson, T., Jesmonth, S., Joshi,
N. J., Julian, R., Kalashnikov, D., Kuang, Y., Leal, I., Lee, K.-
H., Levine, S., Lu, Y., Malla, U., Manjunath, D., Mordatch, I.,
Nachum, O., Parada, C., Peralta, J., Perez, E., Pertsch, K.,
Quiambao, J., Rao, K., Ryoo, M., Salazar, G., Sanketi, P.,
Sayed, K., Singh, J., Sontakke, S., Stone, A., Tan, C., Tran,
H., Vanhoucke, V., Vega, S., Vuong, Q., Xia, F., Xiao, T., Xu, P.,
Xu, S., Yu, T., and Zitkovich, B. Rt-1: Robotics transformer for
real-world control at scale. In Robotics: Science and Systems,
2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901, 2020.

Chang, H., Zhang, H., Jiang, L., Liu, C., and Freeman, W. T.
Maskgit: Masked generative image transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11315–11325, June 2022.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed, S. Recur-
rent environment simulators. In International Conference on
Learning Representations, 2017.

Clark, A., Donahue, J., and Simonyan, K. Efficient video genera-
tion on complex datasets. CoRR, abs/1907.06571, 2019. URL
http://arxiv.org/abs/1907.06571.

Clune, J. Ai-gas: Ai-generating algorithms, an alternate paradigm
for producing general artificial intelligence. arXiv preprint
arXiv:1905.10985, 2019.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Leveraging
procedural generation to benchmark reinforcement learning. In
Proceedings of the 37th International Conference on Machine
Learning, pp. 2048–2056, 2020.

Davtyan, A. and Favaro, P. Controllable video generation through
global and local motion dynamics. In Avidan, S., Brostow, G.,
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A. More Example Trajectories

Figure 16: More example trajectories: the model is prompted with either hand-drawn sketches, images generated from text-to-image
generative models or realistic photos. Actions that drive the dynamics of the trajectory are provided by human input.
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Proprietary + Confidential

Prompt 🎮:left 🎮:right 🎮:jump 🎮:no-op

Figure 17: Controllable, consistent latent actions in Platformers: trajectories beginning from four different starting frames from our
Platformers dataset. Each column shows the resulting frame from taking the same latent action five times. Despite training without action
labels, not only are the same actions consistent across varied prompt frames, but also have semantic meaning: left, right, jump, and no-op.

B. Dataset
B.1. Platformers Dataset

Initial Dataset We generated a dataset by filtering publicly available Internet videos, using the following criteria:

• The title contains keywords relating to 2D platformer games.

• The title or description must contain an action word, such as “speedrun” or “playthrough”.

• The title must not contain negating words such as “movie” or “unboxing”.

We then split each video into 16s clips at 10 FPS, which corresponds to 160 frames per clip. Our resulting dataset contains
55M videos, which totals around 244k hours. When selecting keywords, we manually spot checked results to check that
they typically produced 2D platformer gameplay videos which are not outnumbered by other sorts of videos which happen
to share similar keywords.

Filter Pipeline We noticed that many of the videos in the dataset were of poor quality, impacting our model performance.
We propose a scalable approach to systematically filter the data, using a learned classifier as in (Baker et al., 2022). First, we
define high quality videos as those that display clear gameplay and do not contain distractor items such as menu screen or
streamer faces. We then filter this data as follows:

1. Our team hand labelled 10k videos, with roughly ten hours of total human effort. The labels ranged from 5 (best) to 1
(worst) quality.
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2. We trained a 11M parameter ResNet18 (He et al., 2016) with binary classification where we deleted all entries rated
2-4 and classified 5 as good and 1 as bad.

3. We then apply a decision rule based on model prediction and confidence to determine whether to keep the video.

Consistent to findings in prior work Baker et al. (2022); Oquab et al. (2023), having high quality data outweighs the quantity
of data – even though the curated datasaet is only just over 10% the size of the original dataset, the model trained on the
curated dataset outperforms in terms of FVD, see Table 4. Our final dataset is 6.8M videos for a total of over 30k hours.

Table 4: Effect of dataset curation.

#Params FVD (↓)
Original dataset (55M videos) 580M 61.4
Curated dataset (6.8M videos) 580M 54.8

C. Training details
C.1. Latent Action Model Training

We found a benefit from increasing the number of codes (i.e. number of actions), at the cost of reduced playability for
human and AI agents.

Table 5: Platformers action model hyperparameters

Component Parameter Value

Encoder num layers 20
d model 1024
num heads 16

Decoder num layers 20
d model 1024
num heads 16

Codebook num codes 8
patch size 16
latent dim 32

Note that the model inputs are normalized between 0 and 1 and the final outputs of the decoder are placed through a sigmoid.

C.2. Video Tokenizer Training

Here we describe our video tokenizer training. We found it more effective to scale our decoder than the encoder, and a
marginal gain from increasing batch size (see Table 6).

Table 6: Tokenizer batch size scaling hyperparameters.

batch size training hardware FLOPs PSNR

64 64 TPUv2 4.22× 1020 35.7
384 64 TPUv3 2.57× 1021 36.5
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Table 7: Platformers video tokenizer hyperparameters.

Component Parameter Value

Encoder num layers 12
d model 512
num heads 8
k/q size 64

Decoder num layers 20
d model 1024
num heads 16
k/q size 64

Codebook num codes 1024
patch size 4
latent dim 32

We train our video tokenizer for 300k steps using the AdamW optimizer, with cosine decay, using the hyperparameters in
Table 8.

Table 8: Video tokenizer optimizer hyperparameters

Parameter Value

max lr 3e-4
min lr 3e-4
β1 0.9
β2 0.9
weight decay 1e-4
warmup steps 10k

C.3. Dynamics Model Training

Table 9: Dynamics model optimizer hyperparameters

Parameter Value

max lr 3e-5
min lr 3e-6
β1 0.9
β2 0.9
weight decay 1e-4
warmup steps 5k

D. Scaling Experiments Details
In this section we provide more details on the architecture as well as compute budget for the scaling experiments.

Scaling model size For all models we use a batch size of 256. We train all models for 200k steps, thus use a total of 750B
training tokens for each run. All runs make use of batch parallelism and stage-3 ZeRO sharding (Rajbhandari et al., 2020),
while our larger models also make use of tensor parallelism (Shoeybi et al., 2019). For this experiment we make use of
TPUv2 and TPUv3 (Jouppi et al., 2020). See Table 10 for more details.
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Table 10: Model size scaling architectures and compute usage. All models were trained for 200k steps with a batch size of 256, equating
to 750B tokens.

Parameters num layers num heads d model k/q size training hardware training time FLOPs

41M 18 8 512 64 64 TPUv2 3 days 2.05× 1020

96M 16 16 768 64 64 TPUv2 6 days 3.58× 1020

192M 20 18 1024 64 64 TPUv2 9 days 6.4× 1020

404M 21 12 1536 128 64 TPUv2 18 days 1.2× 1021

811M 20 20 2048 128 128 TPUv3 7 days 2.2× 1021

1.6B 28 22 2560 128 128 TPUv3 12 days 4.04× 1021

2.7B 36 22 3072 128 256 TPUv3 16 days 6.91× 1021

Scaling batch size All models use the same architecture with 2.3B parameters, as shown in Table 11, and train for 200k
steps. The only difference between the three runs is hardware—the 128, 256 and 448 batch size models train on 64 TPUv3,
128 TPUv3 and 64 TPUv5p respectively.

Table 11: Batch size scaling hyperparameters. All models use the following architecture for 200k steps, differing only in batch size.

Parameters num layers num heads d model k/q size

2.3B 34 20 2560 128

Genie Model The parameter count, model architecture as well as compute usage of the dynamics model for the final
Genie model is listed in Table 12. We train a 10.1B dynamics model with a batch size of 512, for a total of 125k steps using
256 TPUv5.

Table 12: Genie dynamics model hyperparameters.

Parameters num layers num heads d model k/q size FLOPs

10.1B 48 36 5120 128 6.6× 1022

E. Behavioral Cloning Details
In this section we provide more details about our behavioral cloning experiments. We train within the Procgen CoinRun
environment (Cobbe et al., 2020) and evaluate in a held out test set. We assume we have a dataset of expert sequences in this
environment from an agent trained with R2D2 (Kapturowski et al., 2018). We then train an agent to imitate from this data.
Notably, the oracle agent has access to the corresponding ground-truth expert actions. We now discuss how we can utilize a
pre-trained LAM to infer the actions taken.

E.1. Genie LAM

In order to train an agent to imitate from unseen videos, we can use a frozen LAM from a Genie model trained on Internet
videos. Given an expert sequence ⟨xt, xt+1⟩ we extract the corresponding latent action label at ← LAM(xt, xt+1). We
then train a policy π(at|xt) to predict the likelihood of the expert taking latent action at given observation xt. Note that
this procedure is similar to prior works that learn from videos (Baker et al., 2022; Torabi et al., 2018). However, these
approaches use ground-truth actions for labeling videos whereas we utilize latent actions learnt completely offline.

During inference, we must map latent actions emitted by the policy to real actions. To do this, we utilize a small set of
action-labeled expert sequences. Given an expert sequence ⟨xt, ut, xt+1⟩ (we denote ut for ground-truth actions to avoid
confusion with predicted latent actions), we use the LAM to obtain a latent action at and fill a dictionary D consisting of
mapped latents to a list of corresponding real actions. In summary, given an observation xt from the environment, we can
obtain the most likely latent action as at ∼ π(st), and then take the corresponding real action as ut ∼ D[at].

Note that other works have used data extracted from the agent’s policy to obtain a mapping from latent to real actions
(Edwards et al., 2019; Ye et al., 2022), but we found using expert data enabled us to better evaluate the quality of the learnt
policy. As shown in the main text, the agent was capable of adapting with as few as 200 expert labels.
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E.2. Architecture

We train a transformer as the policy for both the oracle and latent BC agents. We utilize our proposed ST-ViViT architecture
for encoding the frames x1:t = (x1, · · ·xt) . All previous actions are placed through a one-hot and then combined with the
corresponding frame encoding as an additive embedding. We use a sequence length of 4 during both training and inference
and a batch size of 16.

Both the oracle and Genie LAM are trained with a cross-entropy loss where targets are either real or latent actions,
respectively. During inference, we obtain the final prediction by sampling from the predicted logits. Note we found the
oracle agent performed better when we randomly sampled actions 10% of the time.

Table 13: BC model optimizer hyperparameters

Parameter Value

max lr 3e-5
min lr 3e-6
β1 0.9
β2 0.96
weight decay 1e-4
warmup steps 5k

Table 14: BC policy hyperparameters

Component Parameter Value

Encoder num layers 12
d model 512
patch size 4

Policy linear layer 512

F. Reproducible Case Study
In this section we describe a self-contained, fully reproducible case study that can be trained with a single mid range
TPU/GPU in under a week.

F.1. Data Collection

First we need to collect the data to train our model. We use the CoinRun environment from the Procgen benchmark (Cobbe
et al., 2020) since it has thousands of visually diverse levels with fairly simple platformer-like dynamics. Using the “hard”
mode, we collect data using a random policy with no action repeats. We sample level seeds between zero and 10,000 and
collect 1,000 timesteps for each level, for a total of 10M transitions.

F.2. Video Tokenizer Training

Our video tokenizer for CoinRun follows the same setup as described in Section 2.1, trained with the optimizer configuration
as in Section C.2. The primary difference in this example is we use smaller model sizes (see Table 15), and then use a batch
size of 48 sequences, of length 16, for a total of 768 images per batch. This is sufficient to fit in a single TPU with 16G
memory. The model is trained for three days using a single TPU which is sufficient to complete 300k steps.
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Table 15: CoinRun video tokenizer hyperparameters

Component Parameter Value

Encoder num layers 8
d model 512
num heads 8

Decoder num layers 8
d model 512
num heads 8

Codebook num codes 1024
patch size 4
latent dim 32

F.3. Dynamics + Latent Action Model Training

Once we have trained the video tokenizer we can then jointly train the latent action and dynamics models. Once again we
seek to fit our model training inside 16G memory, so we use a batch size of 36 sequences consisting of 16 frames each, for a
total of 576 images. We train both the latent action model and dynamics model in parallel, using the setup described above
(see: Section C.1 for the latent action model and Section C.3 for the dynamics model).

We train both the latent action and dynamics models in parallel for 200k steps, using the optimizer hyperparameters in
Table 9.

Table 16: CoinRun action model hyperparameters

Component Parameter Value

Encoder num layers 8
d model 512
num heads 8

Decoder num layers 8
d model 512
num heads 8

Codebook num codes 6
latent dim 32

Table 17: CoinRun dynamics model hyperparameters

Component Parameter Value

Architecture num layers 12
d model 512

num layers 8
Sampling temperature 1.0

maskgit steps 25
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