
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING TEMPORAL AND SEMANTIC GAPS: PROMPT
LEARNING ON TEMPORAL INTERACTION GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal Interaction Graphs (TIGs) are widely utilized to represent real-world sys-
tems like e-commerce and social networks. While various TIG models have been
proposed for representation learning, they face two critical gaps in their “pre-train,
predict” training paradigm: a temporal gap limiting timely predictions and a se-
mantic gap reducing adaptability to diverse downstream tasks. A potential solution
is applying the “pre-train, prompt” paradigm, yet existing static graph prompting
methods fail to address the time-sensitive dynamics of TIGs and have a deficiency
in expressive power. To tackle these issues, we propose Temporal Interaction
Graph Prompting (TIGPrompt), a versatile framework that bridges the tempo-
ral and semantic gaps by integrating with existing TIG models. Specifically, we
propose a “pre-train, prompt” training paradigm for TIGs, with a temporal prompt
generator to offer temporally-aware prompts for different tasks. To cater to varying
computational resource demands, we propose an extended “pre-train, prompt-based
fine-tune” paradigm, offering greater flexibility. Through extensive experiments
involving multiple benchmarks, representative TIG models, and downstream tasks,
our TIGPrompt demonstrates the SOTA performance and remarkable efficiency
advantages. The codes are available at an Anonymous Repository.

1 INTRODUCTION

In real-world scenarios, interaction data is often accompanied by temporal information, i.e., times-
tamps, necessitating its modeling as Temporal Interaction Graphs (TIGs) (Dai et al., 2016; Zhang
et al., 2017). In this context, static graphs can hardly model such TIGs since they lack the necessary
expressiveness to capture temporal dependencies. Specifically, in TIGs, objects are depicted as
nodes, while timestamped interactions between these objects are represented as edges. Consequently,
significant research efforts have been dedicated to TIG representation learning models (TIG models)
(Trivedi et al., 2019; Xu et al., 2020; Rossi et al., 2020; Zhang et al., 2023c). These works aim to
capture the dynamic nature of TIGs and learn temporal node representations, which can be applied to
various downstream tasks (Kumar et al., 2019; Rossi et al., 2020; Zhang et al., 2023c).

The “pre-train, predict” paradigm of existing TIG models. Recently, researchers have tried
to explore the design of TIG models, leading to various effective TIG model structures (Zhang
et al., 2023c;b;a). For example, TGN (Rossi et al., 2020) employs a memory module to store
historical information of nodes and a message module to store current node embeddings, each with
an associated update function that updates the memory and node representations. Although powerful,
as illustrated in Fig. 2 (a), we observe that nearly all of these models adopt a “pre-train, predict”
learning framework, where a TIG model is pre-trained on a specific task (e.g., link prediction) and
its learned knowledge is then transferred to various downstream tasks by tuning a corresponding
predictor (e.g., MLP (Bishop & Nasrabadi, 2006)).

Limitations of the “pre-train, predict” paradigm. In this paper, we analyze the prevailing “pre-
train–predict” paradigm in TIG models and identify two critical limitations: the temporal gap and
the semantic gap. First, as temporal interactions evolve, pre-trained models quickly become outdated,
leading to degraded performance on distant-future data (i.e., the temporal gap) (Zhou et al., 2022;
Chen et al., 2023b). As shown in Fig. 1 (a), our preliminary experiments simulate this scenario and
reveal a clear performance disparity between temporally proximal and temporally distant inference
data, providing evidence of the existence of the temporal gap. However, mitigating this gap under

1

https://anonymous.4open.science/r/TIGPrompt

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

70

73

76

79

82

85

Temporally proximal inference data
Temporally distant inference data

Gap: 3.98

Gap: 2.44

Gap Narrowed: 38.73%

Jodie TIGPrompt with
Projection TProG

65

69

73

77

81

85

Gap: 4.88

Gap: 3.15

Gap Narrowed: 35.45%

DyRep TIGPrompt with
Projection TProG

Baseline Ours Baseline Ours

(a) Temporal gap.

Jodie TIGPrompt with
Vanilla TProG

50

60

70

80

90

100

Link Prediction for “pre-train” and Link Prediction for “predict”
Link Prediction for “pre-train” and Node Classification for “predict”

Gap: 28.35
Gap: 39.43

Gap Narrowed: 28.10%

60

67

74

81

88

95

Gap: 22.20
Gap: 24.48

Gap Narrowed: 9.31%

TIGER TIGPrompt with
Vanilla TProG

Baseline Ours Baseline Ours

(b) Semantic gap.
Figure 1: Empirical analysis of the temporal gap and semantic gap on real-world TIG data. Our proposed TIG-
Prompt can effectively narrow these two gaps for better TIG representation learning. For more implementation
details, please refer to Appendix A.

the “pre-train, predict” paradigm typically requires exhaustive re-training to incorporate new data
recursively into model updating, resulting in a significant consumption of computational resources
(Devlin et al., 2018). Second, misalignment between pretext tasks and downstream objectives
significantly limits transferability across tasks (i.e., the semantic gap). For instance, while most
TIG models are pre-trained on edge-level prediction, downstream tasks may involve node-level
objectives, which can even cause negative transfer (Sun et al., 2023). Fig. 1 (b) further validates the
existence of this semantic gap. Such misalignment reduces the adaptability of TIG models, thereby
constraining their effectiveness in handling various downstream tasks. The detailed definitions,
illustrative examples, and quantification of the two gaps are provided in the Appendix A.

Prompt learning paradigm on static graphs. The aforementioned two gaps caused by the “pre-train,
predict” paradigm call for a more flexible training paradigm for TIG models. Graph prompt learning
offers such a potential solution by enabling efficient adaptation of pre-trained models through the
design and training of lightweight prompts, while keeping the backbone model unchanged (Liu et al.,
2023b; Fang et al., 2023). As demonstrated in static graph settings, prompt learning can not only
reduce the cost of adapting models to evolving data compared with full re-training (Liu et al., 2023a),
but also explicitly incorporate task-specific knowledge through prompt vectors (Sun et al., 2023),
thereby providing greater flexibility than traditional learning frameworks.

Limitations of existing graph prompt learning pradigm. Existing studies on prompt learning for
graphs have predominantly focused on static settings (Sun et al., 2022), providing limited insights
into the more complex scenario of TIGs. Most of these methods overlook the temporal nature of TIGs,
failing to incorporate temporal information into prompts to capture their evolving characteristics
(Dai et al., 2016). In addition, current approaches typically employ over-simplified prompt vectors
shared across all nodes (Liu et al., 2023b). While such designs may suffice for static graphs, they
are inadequate for TIGs, where node representations evolve continuously and demand personalized
updates over time. These limitations give rise to two technical challenges that hinder the direct
application of traditional static graph prompt learning to TIGs. The first challenge is how to learn
expressive prompts with the minimal cost to overcome the temporal gap caused by emerging data.
The second challenge is how to design flexible and temporal-aware prompts that can support various
TIG models and break down the semantic gap within diverse downstream application scenarios.

𝑡!

𝑡"

𝑡#

𝑡$

𝑡%

𝑡&

𝑡'

TIG
 Model

Link
Prediction

Predictor

Target Node

Pre-training Task

Node
Classification

🔥

𝒕𝟐𝟎

Downstream Task

Semantic Gap

𝑡* Temporal Gap

(a) Existing “pre-train, predict” paradigm.

+
Target Node

Pre-trained
Node Embedding

Temporal
Prompt

Bridge the gap Predict Label

Fusion

Temporal
Prompt

Generator
🔥

Predictor

Pre-trained
TIG Model

❄/

🔥

(b) Our introduced prompting mechanism.
Figure 2: (a): The “pre-train, predict” paradigm adopted
by existing TIG models, which exhibits both temporal and
semantic gaps when applied on the downstream task. (b): Our
introduced prompting mechanism, with an innovative TProG,
designed to mitigate both gaps.

Present work. In this paper, we propose
a new training architecture for TIG mod-
els, namely Temporal Interaction Graph
Prompting (TIGPrompt), as shown in Fig.
2 (b). TIGPrompt instantiates a “pre-train,
prompt” paradigm through a Temporal
Prompt Generator (TProG), which intel-
ligently generates personalized temporal
prompts for each node. By explicitly
incorporating temporal information, the
prompts adapt to timestamp-specific vari-
ability, thereby bridging the temporal gap
and overcoming the limitations of static
graph prompting methods. Furthermore, to
mitigate the semantic gap between pretext
and downstream tasks, the TProG is jointly
tuned with the specific downstream task,
facilitating adaptability to concrete down-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

stream scenarios. Notably, TIGPrompt is lightweight, as it involves only tuning the TIGPrompt while
keeping the TIG model frozen. It is also tolerant to weak supervision, requiring only a small portion of
data for pre-training and prompt tuning. Furthermore, we extend the “pre-train, prompt” paradigm to
cater to varying computational resource demands by introducing a “pre-train, prompt-based fine-tune”
solution. We summarize our contributions as follows:

• We identify two critical gaps in the prevailing TIG training paradigm and study the prompting
mechanism on TIG models. This is the first attempt that explores prompting on TIGs.

• We propose a “pre-train, prompt” paradigm specifically tailored for TIGs, bridging both the
temporal and semantic gaps in the traditional training process. Meanwhile, our framework
is compatible with various prompt generators and enables dynamic, personalized prompting.

• To enhance the flexibility and accommodate diverse computational resources, we extend
the paradigm to a “pre-train, prompt-based fine-tune” solution. Both paradigms can be
seamlessly integrated with existing TIG models.

• Extensive experiments on four datasets with seven representative TIG models across two
downstream tasks demonstrate that our framework achieves SOTA performance with re-
markable efficiency.

2 PRELIMINARIES

Definition of TIG. Given a node set V = {1, . . . , |V|} and a sequence of time-stamped edges
E = {(u, v, tuv) | u, v ∈ V, tuv > 0}, where each edge (u, v, tuv) denotes an interaction between
nodes u and v at time tuv , a TIG is defined as G = (V, E). Each interaction may be associated with a
feature vector euv(t), which encodes event-specific attributes such as interaction type or contextual
information. For any interaction (u, v, tuv) ∈ E , the model has access only to historical events
occurring before time tuv , i.e., (i, j, τ) ∈ E | τ < tuv .

TIG Models. Given an interaction event (u, v, tuv) ∈ E and its corresponding historical inter-
action records (u, v, τ) ∈ E | τ < tuv, TIG models aim to learn a mapping fΘ : (u, v, tuv) 7→
zu(tuv), zv(tuv), where zu(tuv), zv(tuv) ∈ Rd represent the dynamic embeddings of nodes u and
v at time tuv, and d denotes the dimensionality of the embedding space. At the whole-graph level,
the model’s output can be equivalently expressed as Z = fΘ(V, E), which yields the time-evolving
representations for all nodes in the graph.

Downstream Tasks. After optimizing the backbone TIG model, the node representations produced
by an arbitrary TIG encoder fΘ(·) can be retrieved for downstream tasks, formulated as Ŷ = pΦ(Z),
where pΦ(·) denotes the task-specific projection head (i.e. predictor).

For the link prediction task, the model estimates whether an interaction between two nodes will occur
at a future time, typically expressed as pΦ

(
zu(t), zv(t)

)
→ ŷuv(t). This objective also serves as

the pretext task adopted by most TIG models. Since the supervision signal (future interactions) is
inherently available in the TIG, this training paradigm is self-supervised.

For the node classification task, the model predicts node-level labels (e.g., user categories or item
types) using the learned dynamic node embeddings: pΦ

(
zu(t)

)
→ ŷu. Here, pΦ is an additional

trainable projection head that is optimized separately from the TIG encoder, and its training requires
labeled node instances. As a result, node classification introduces an explicit supervised phase on top
of the self-supervised TIG pre-training, where link prediction serves as the pretext task.

3 PROPOSED METHOD

In this section, we elaborate on the detailed designs within the TIGPrompt framework. We first
provide an overview of the “pre-train, prompt” paradigm. Then, we show the implementation and
optimization of our Temporal Prompt Generator (TProG) component, which enables the adaptability
of pre-trained models across diverse downstream tasks. Finally, we extend this paradigm to the
“pre-train, prompt-based fine-tune” mode, specifically devised to accommodate varying computing
resource constraints. An overview of our method is illustrated in Fig. 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Target Node
Predict
Label

Temporal Prompt Generator
Vanilla Learnable Vector

Recent Neighbors
···

Token Generation

···
Transformer

Transform
er

P
rojection

Learnable
Vector

+

𝑡!"

Time Projection

Pre-trained TIG Model❄

+

Prompt
Fusion

P
redictor

🔥

🔥

Forward Propagation

Loss Back Propagation

Tune ❄ Frozen

(a) Details of our “pre-train, prompt” paradigm
(b) Extension:

 “pre-train, prompt-based fine-tune”

Temporal Prompt
Generator

Pre-trained
 TIG Model🔥

🔥

··· Predict
Label

Figure 3: Overview of TIGPrompt: (a) During the prompt tuning stage, the node embedding, calculated by the
pre-trained TIG model, is combined with the personalized prompt embedding for downstream tasks. The TProG
is optimized during this stage. (b) The key distinction between the two modes lies in whether the parameters of
the TIG model are tuned.

3.1 “PRE-TRAIN, PROMPT” PARADIGM OVERVIEW

Existing TIG models such as JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGN (Rossi
et al., 2020), and TIGER (Zhang et al., 2023c) primarily employ link prediction as the pre-training
objective, with differences in their concrete model implementation. For instance, TGN (Rossi et al.,
2020) introduces a memory-based approach and integrates previous works into a cohesive framework,
while TIGER (Zhang et al., 2023c) puts forward a model that incorporates a dual-memory module
for effective information aggregation. Once a TIG model is well-trained, node embeddings can
be retrieved for task-specific predictions, such as node classification. The predictions are made as:
Ŷ = pΦ(Z), where Z = fΘ(V, E). Here, pΦ(·) denotes the projection head of the downstream task,
Z denotes the learned node representations obtained from an arbitrary TIG model fΘ(·), which takes
a TIG, G(V, E) as input. However, it is important to note that directly utilizing pre-trained node
embeddings for downstream tasks is unfeasible as it overlooks two critical gaps: the temporal gap
(i.e., the evolving nature of TIGs may render pre-trained node embeddings less expressiveness to
the timely TIG data), and the semantic gap (i.e., the distinctions between link-level pretext task and
node-level downstream task).

To bridge these gaps and enable the adaptability of a pre-trained TIG model across various scenarios,
we propose to utilize personalized and temporal-aware prompt for each node. Combined with pre-
trained node embeddings, these prompts can carry task-specific semantics to get adapted to different
downstream tasks as:

Ŷ = pΦ(Z̃), Z̃ = fρ(Z,P), (1)

where P denotes the prompt matrix produced by the TProG, fρ(·) represents the fusion function, and
Z̃ denotes the final prompted node representations. The prompt generator is tuned with task-specific
supervision, enabling the final synthesized node representations contain task-specific and temporal-
aware knowledge. Notably, during this process, the pre-trained TIG model fΘ(·) remains frozen,
making TIGPrompt lightweight to get adapted to concrete downstream scenarios. Then, we move to
the description of how these prompts are generated and tuned.

3.2 TPROG: TEMPORAL PROMPT GENERATOR

In this subsection, we provide a detailed explanation of our implementation of TProG, which
produces a prompt matrix P ∈ R|V|×d. We initially introduce a Vanilla TProG, where a learnable
vector is assigned to each node, enabling personalized prompts tailored for specific downstream
scenarios. Note that Vanilla TProG can be considered an intermediate bridge between static and
temporal interaction graph prompt learning, since it generates personalized prompts but does not
inject temporal information. To enhance the temporal awareness of produced prompts, we extend the
TProG by introducing two additional approaches: the Transformer TProG and the Projection TProG.

Vanilla TProG. We first introduce the simplest version of TProG, which aims to provide personalized
expressiveness for each node. In this approach, the prompt for node v ∈ V is implemented as a
learnable vector pv ∈ Rd, which is initialized as zero vector. Current methods normally utilize the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

link prediction task as the pretext task. In downstream tasks such as node classification, a projection
head—commonly an MLP—is used to classify node embeddings derived from the pre-trained model.
We enhance these node embeddings with learnable prompt vectors, i.e., Vanilla TProG, which are
concurrently optimized with the downstream task’s projection head. This strategy effectively embeds
task-specific knowledge into the prompt vectors during the prompt tuning phase. This implementation
bears a resemblance to traditional prompting techniques utilized in static graphs (Fang et al., 2023;
Liu et al., 2023b), and serves as a conceptual bridge between traditional graph prompting and TIG
prompt methods. Despite its simplicity, this method offers an intuitive design, easy implementation,
and low parameterization, requiring only O(|V|) parameters, scaling linearly with the size of the
temporal interaction graph.

Transformer TProG. To generate temporal-aware prompt, we consider encoding the most relevant
temporal information for each node. For a target node v, its most recent interactions provide valuable
insights into its temporal information, which can be leveraged to generate the temporal prompt pv .

Therefore, at any timestamp t, we first retrieve the node’s most recent neighbor set N t
v = {u|u ∈

V, (u, v, tuv) ∈ E and tuv ≤ t}. To avoid an excessively large neighbor set, we impose a restriction
on the size of N t

v , returning only the most recent K interactions. Then, for each neighboring node
u ∈ N t

v , we first create a temporal neighbor token as: tu = zv || zu || posu || euv || fω(t− tuv),
where zu, zv are pre-trained node embeddings, posu corresponds to the position index of node u
within the neighbor set, euv denotes the edge feature of historical interaction (u, v, tuv), || denotes
the concatenation operation, and fω(·) denotes a time encoding function (we apply the same time
encoding method used in (Xu et al., 2020; Rossi et al., 2020; Zhang et al., 2023c)). In this way, the
neighboring token tu incorporates both interactive and temporal knowledge, and we further leverage a
Transformer (Vaswani et al., 2017) to encode those temporal neighboring tokens to generate temporal
prompt pv as:

pv = Transformer({tu|u ∈ N t
v}). (2)

This approach ensures that the generated prompt pv captures expressive temporal and recent interac-
tive knowledge, promising to enhance downstream predictions. The implementation of Transformer
TProG is extremely lightweight, as the number of tunable parameters within this component is O(d),
scaling linearly with the embedding dimension.

Projection TProG. In addition to encoding recent neighboring information, we can also generate
a temporal-aware prompt by integrating personalized vectors and time encoding. Recall that in
the Vanilla TProG, we introduce a learnable vector pPersonal

v ∈ Rd for each node to represent the
prompt. To incorporate the temporal knowledge, we fuse this personalized vector with time encoding.
Specifically, at timestamp t, the temporal information can be encoded as pTemporal

v = fω(t − tv′),
where tv′ represents the most recent interaction timestamp of node v, and fω(·) is a time encoding
function. Finally, the temporal prompt pv is generated via integrating both sides of information as:

pv = MLP(pPersonal
v || pTemporal

v), (3)

where MLP(·) (Bishop & Nasrabadi, 2006) is introduced to combine two types of information. The
Projection TProG can be seen as a middle ground between the Vanilla TProG and the Transformer
TProG, as it utilizes a learnable prompt vector to represent interactive information and a temporal
vector to mimic the temporal evolution. Like the Vanilla TProG , the number of tunable parameters
required for the Projection TProG is O(|V|), scaling linearly with the size of the graph.

3.3 PROMPT TUNING AND INFERENCE

Recall in Equ. 1, a fusion function is introduced to combine pre-trained node embeddings Z and
prompt matrix P to yield prompted node representations. Specifically, we implement fρ(·) via a
MLP parameterized by ρ as:

Z̃ = fρ(Z,P) = MLPρ(Z || P), (4)

where Z̃ can be regarded as prompted embeddings, incorporating temporal knowledge to adapt to
specific downstream tasks.

Take the downstream link prediction task as an example, suppose a TIG has edge set E , which
can be split into three disjoint sets as E = Epre-train ∪ Eprompt ∪ Eval/test. Here, Epre-train denotes the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

set of edges used for pre-training the TIG model fΘ(·), Eprompt represents the set used to tune
the prompt generator, and Eval/test denotes the edges for validation or testing. Specifically, given
Eprompt, the TProG is optimized using predictions and ground-truth labels: Lprompt-tune(Φ, ρ,P) =
Cross-Entropy(pΦ(fρ(Z,P)),Yprompt), where Yprompt denotes the ground-truth labels provided by
Eprompt, pΦ(·) denotes the projection head of the link prediction task. Notably, during the prompt
tuning stage, the TIG model remains frozen, avoiding exhaustive re-training processes. The tuning
data only constitutes a small portion, meaning that even a small number of samples can help
improve the adaptation of the pre-trained TIG model to downstream predictions. Similarly, the
downstream node classification task can provide a small number of samples to tune TProG and
generate meaningful P. Once TProG is well-tuned, downstream predictions can be made as Ŷ =
pΦ(fρ(Z,P)). By leveraging task-specific supervision to tune TProG, the prompts can incorporate
task-specific semantics. This tuning process helps bridge both semantic and temporal gaps, resulting
in improved downstream predictions.

Extension: “Pre-train, Prompt-based Fine-tune” Paradigm. To accommodate to diverse computa-
tional resource requirements, we extend the proposed “pre-train, prompt” paradigm to the “pre-train,
prompt-based fine-tune” paradigm. The main difference between these two modes lies in whether
the parameters of TIG model fΘ(·) is tuned during the prompt tuning stage. Therefore, for this
paradigm, given prompt samples, both the prompts and the TIG model are optimized concurrently
as: Lfine-tune(Φ, ρ,P,Θ) = Cross-Entropy(pΦ(fρ,Θ(Z,P)),Yprompt). By jointly optimizing the TIG
model and the prompts, these two components reinforce each other, leading to improved adaptability
in various scenarios.

3.4 CONNECTION TO EXISTING GRAPH PROMPTING APPROACHES

Various prompting methods have been developed for static graphs (Please refer to Appendix B Related
Work for more details). Most of these methods are specifically designed for a range of downstream
tasks unique to static graph contexts. Among these methods, GraphPrompt (Liu et al., 2023b) and
GPF (Fang et al., 2023) stand out as representatives and amenable to adaptation for the TIG model.
GraphPrompt (Liu et al., 2023b) utilizes a prompt vector on the outputted embeddings of GNN
models, whereas GPF (Fang et al., 2023) employs a similar prompt vector on the input data features.
Therefore, in Sec. 4.5 we transfer these ideas to the TIG model and conduct experiments to see the
comparable performance with our temporal graph prompting approach.

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

We apply the proposed TIGPrompt on four public datasets, Wikipedia, Reddit, MOOC and LastFM
(Kumar et al., 2019). Detailed statistics of these datasets are presented in Appendix C (Tab. 5). Only
Wikipedia, Reddit and MOOC are with dynamic labels indicating state changes of users. For datasets
missing node or edge features, we adopt the approach used in prior works (Rossi et al., 2020; Zhang
et al., 2023c), representing them with zero vectors.

For baseline comparisons, we select representative TGN-based methods1, including Jodie (Kumar
et al., 2019), DyRep (Trivedi et al., 2019), TGN (Rossi et al., 2020) and TIGE (Zhang et al., 2023c).
Additionally, we include TIGER-T (Zhang et al., 2023c) as a baseline, considering it is a variant
of TIGE and potentially offers improved performance over the TIGE model. We also compare
our method with GraphMixer (Cong et al., 2023) and DyGFormer (Yu et al., 2023), which employ
different model architectures, with a detailed discussion provided in Appendix E.2.

4.2 EXPERIMENTAL SETTINGS

Our implementation and hyper-parameter settings are consistent with those in previous works (Rossi
et al., 2020; Zhang et al., 2023c). More information is discussed in Appendix J. Typically, the chosen
baseline models split interaction edges chronologically into 70% for training, 15% for validation, and
15% for testing. However, as discussed in Sec. 3, our aim is to demonstrate our method’s adeptness

1These methods can be integrated into a unified framework based on TGN (Rossi et al., 2020).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Under the “pre-train, prompt” paradigm, results for the link prediction task — encompassing
both transductive and inductive settings — are presented using Average Precision (%). For the
dynamic node classification task, results are measured in terms of AUROC (%). The best performance
is highlighted in bold .

Transductive Link Prediction Inductive Link Prediction Node Classification

TProG Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC

Jo
di

e

Baseline 94.62±0.5 97.11±0.3 76.50±1.8 68.77±3.0 93.11±0.4 94.36±1.1 77.83±2.1 82.55±1.9 86.27±2.2 58.48±2.6 65.39±1.1

Vanilla 94.10±0.4 97.65±0.0 74.47±0.9 74.15±1.0 91.43±0.3 93.07±0.4 72.23±1.4 79.42±1.1 86.79±2.1 69.22±0.4 69.21±0.4

Transformer 96.50±0.1 98.28±0.0 82.90±1.1 77.98±2.1 95.08±0.2 95.68±0.1 79.81±1.2 85.72±0.9 80.91±6.7 63.80±2.2 70.67±1.1

Projection 96.44±0.3 98.99±0.0 82.47±0.9 89.39±0.7 94.75±0.5 97.43±0.1 79.89±1.2 92.72±0.4 87.08±1.1 68.26±0.9 76.45±0.6

D
yR

ep

Baseline 94.59±0.2 97.98±0.1 75.37±1.7 68.77±2.1 92.05±0.3 95.68±0.2 78.55±1.1 81.33±2.1 85.11±1.4 62.77±2.1 66.68±3.4

Vanilla 89.64±1.0 97.63±0.0 71.57±2.7 72.62±1.1 85.45±1.2 92.92±0.3 71.34±0.5 77.48±1.7 84.88±1.4 65.67±2.4 68.38±0.9

Transformer 94.51±0.4 98.27±0.0 80.59±1.9 76.89±1.6 92.44±0.4 95.73±0.1 78.89±0.2 84.81±3.0 60.87±3.8 58.20±2.3 70.80±0.9

Projection 96.87±0.2 99.06±0.0 79.76±1.9 89.04±0.6 95.37±0.3 97.48±0.0 78.56±0.7 92.58±0.4 85.25±1.3 64.50±1.5 76.06±0.9

T
G

N

Baseline 98.46±0.1 98.70±0.1 85.88±3.0 71.76±5.3 97.81±0.1 97.55±0.1 85.55±2.9 80.42±4.9 84.93±1.1 65.99±3.8 69.80±1.8

Vanilla 96.40±0.2 98.36±0.0 86.71±1.0 79.67±1.7 95.02±0.2 95.54±0.2 81.99±1.2 83.76±1.3 85.79±1.1 66.13±1.3 70.16±1.9

Transformer 97.36±0.3 98.67±0.0 89.21±0.7 81.63±0.6 96.19±0.4 96.68±0.2 83.35±0.9 84.82±1.2 86.39±1.8 64.89±1.1 71.13±1.4

Projection 97.83±0.1 99.29±0.0 89.28±0.8 91.85±0.3 96.79±0.2 98.14±0.1 84.49±1.0 93.17±0.7 87.09±0.4 66.07±1.5 73.44±1.4

T
IG

E

Baseline 98.83±0.1 99.04±0.0 89.64±0.9 87.85±0.9 98.45±0.1 98.39±0.1 89.51±0.7 90.14±1.0 83.98±3.4 65.36±2.9 69.61±2.5

Vanilla 98.75±0.0 98.88±0.0 88.91±0.4 89.54±0.3 98.22±0.0 97.73±0.0 88.22±0.3 90.78±0.0 86.18±0.5 62.13±2.0 70.57±1.1

Transformer 98.95±0.0 99.25±0.0 91.10±0.4 90.65±0.3 98.52±0.1 98.68±0.0 88.82±0.9 91.71±0.2 82.02±7.0 61.41±2.6 71.44±0.6

Projection 99.10±0.1 99.47±0.0 90.94±0.2 95.21±0.2 98.75±0.1 99.07±0.0 89.61±0.4 95.81±0.1 86.65±0.9 60.75±1.3 75.18±2.1

T
IG

E
R

Baseline 98.90±0.0 99.02±0.0 86.99±1.6 85.17±0.2 98.58±0.0 98.59±0.0 86.42±1.7 89.11±0.3 80.84±4.6 62.58±1.3 64.91±5.2

Vanilla 98.89±0.0 98.90±0.0 87.43±0.4 86.13±0.4 98.50±0.0 98.33±0.0 87.28±1.5 88.18±0.5 85.12±0.3 63.16±1.4 68.68±1.9

Transformer 98.98±0.0 99.22±0.0 90.31±0.4 88.22±0.4 98.59±0.0 98.88±0.0 89.05±1.0 90.69±0.4 77.15±8.9 61.94±2.1 71.26±1.2

Projection 99.16±0.0 99.49±0.0 89.74±0.5 93.73±0.2 98.89±0.0 99.26±0.0 89.42±1.5 95.07±0.3 86.30±0.8 62.75±1.5 74.07±0.5

G
ra

ph
M

ix
er Baseline 97.25±0.0 97.31±0.0 82.78±0.2 75.61±0.2 96.65±0.0 95.26±0.0 81.41±0.2 82.11±0.4 86.80±0.8 64.22±3.3 69.42±0.8

Vanilla 96.12±0.0 92.95±0.3 80.86±0.6 76.57±1.5 95.56±0.0 94.33±0.2 78.28±1.1 75.73±2.5 89.00±0.0 69.77±0.8 70.91±0.5

Transformer 97.39±0.0 98.28±0.0 84.44±0.4 79.28±0.1 96.98±0.1 96.67±0.0 82.14±0.8 84.39±0.2 88.24±0.1 68.82±2.9 71.69±0.8
Projection 99.33±0.0 99.18±0.1 87.42±0.4 89.53±3.1 97.89±0.4 94.64±0.3 84.00±0.5 87.87±1.3 87.92±0.8 67.73±0.7 71.60±0.5

D
yG

Fo
rm

er Baseline 99.03±0.0 99.22±0.0 87.52±0.5 93.00±0.1 98.59±0.0 98.84±0.0 86.96±0.4 94.23±0.1 87.44±1.1 68.00±1.7 78.37±0.6

Vanilla 98.98±0.1 99.20±0.0 84.96±0.8 92.85±0.1 98.63±0.1 98.85±0.1 84.50±0.4 94.19±0.0 88.92±1.5 62.95±1.6 75.91±0.8

Transformer 99.11±0.1 99.53±0.0 88.05±0.3 94.14±0.1 98.88±0.2 99.17±0.0 87.05±0.6 95.08±0.1 86.93±1.0 66.57±2.6 78.56±0.5
Projection 99.80±0.0 99.87±0.0 90.60±0.4 95.04±0.7 99.32±0.1 98.82±0.2 87.91±0.6 95.49±0.4 88.14±0.7 65.03±2.8 76.06±0.4

in adapting to emerging data. For a fair comparison, we utilize the same data portion for training and
inference. Therefore, we use only 50% of the data for pre-training and 20% for prompt tuning or
fine-tuning, with the remaining 30% equally divided for validation and testing. In essence, we train
our model with less data and leverage a smaller portion for prompt tuning or fine-tuning to achieve
enhanced performance on downstream tasks compared to the baselines. The data amount used for
experiments is detailed summarized in the Appendix G.

4.3 “PRE-TRAIN, PROMPT”

Link Prediction. In the initial set of experiments, we keep the established protocols (Rossi et al.,
2020; Zhang et al., 2023c) to assess model performance in both transductive and inductive temporal
link prediction tasks. In the transductive setting, we focus on those edges linked to nodes previously
encountered in the training dataset. Conversely, in the inductive setting, the predictions center on
temporal links between nodes that are unseen during the training phase. The evaluation metric is the
average precision (AP) score. We discuss the TGN-based methods in this section, while the results of
GraphMixer and DyGFormer will be discussed in the Appendix E.2.

Adhering to the proposed “pre-train, prompt” training paradigm, we keep the pre-trained model’s
parameters frozen during prompt tuning phrase. As illustrated in Tab. 1, the experiments utilize three
distinct proposed TProGs, respectively. Notably, the integration of prompts generated by the proposed
TProGs with the original node representations results in significant improvements in downstream
tasks. This approach yields SOTA results across nearly all datasets and baselines. This effectiveness
stems from the fact that the prompts generated by the proposed TProG comprehensively incorporate
temporal information, thereby bridging the temporal gap between pre-training and downstream
task data. Particularly for the LastFM dataset, where performance is previously sub-optimal, our
method enhances performance by 29% compared to prior approaches, as evidenced on two baselines.
The fact that only a small portion of the data is used for prompt tuning underscores the efficacy
of our methods, particularly the Transformer TProG and Projection TProG, in facilitating model
adaptation to evolving timely TIG data. However, in certain specific dataset/model combinations,
such as Wikipedia/TGN, our model does not surpass the baseline. This limitation arises because

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The results for the link prediction task under the “pre-train, prompt” paradigm, note that
only 20% of data is used in total (10% for pre-train, 10% for fine-tune). Results colored in blue
indicate that they even surpass the baseline achieved with 70% of the data used for training.

Only 20% of data used Transductive Link Prediction Inductive Link Prediction

TProG Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC LastFM

Baseline 79.28±4.2 92.39±1.4 55.73±2.2 68.00±0.7 79.30±4.8 80.58±2.8 58.51±2.6 80.96±1.3
Vanilla 89.17±0.4 96.39±0.1 63.10±0.2 72.57±1.0 88.00±0.6 94.33±0.1 63.52±0.3 77.13±0.9

Transformer 92.11±0.9 97.54±0.0 72.98±0.3 77.99±0.6 92.34±0.7 96.43±0.0 73.25±0.3 81.63±0.8Jo
di

e

Projection 95.64±0.3 98.54±0.1 76.23±0.3 89.21±0.1 95.04±0.2 97.71±0.1 76.31±0.3 90.94±0.2

Baseline 88.19±1.0 96.82±0.3 73.13±1.7 67.38±1.1 85.99±0.9 92.01±0.8 71.91±2.1 79.67±1.8
Vanilla 84.27±1.2 96.35±0.1 61.19±1.3 69.85±0.5 83.93±0.9 93.82±0.3 61.42±1.5 75.50±0.2

Transformer 91.68±0.4 97.40±0.1 72.44±1.0 74.78±0.4 91.23±0.5 96.28±0.2 72.75±1.0 80.07±0.2D
yR

ep

Projection 95.74±0.2 98.63±0.0 76.40±0.2 88.26±0.2 95.40±0.2 97.74±0.1 76.40±0.3 90.51±0.1

Baseline 96.34±0.2 97.63±0.1 56.54±0.5 66.54±2.0 95.86±0.3 95.98±0.4 61.11±0.9 75.09±2.8
Vanilla 95.59±0.1 97.63±0.1 74.30±1.2 64.36±2.0 95.27±0.2 96.32±0.2 74.58±1.1 67.92±1.5

Transformer 96.23±0.1 98.09±0.0 75.15±0.8 67.65±3.0 95.79±0.1 97.35±0.1 75.25±0.7 70.43±3.4T
G

N

Projection 96.93±0.2 98.95±0.0 79.10±0.6 87.42±0.4 96.58±0.3 98.38±0.1 79.17±0.5 88.65±0.6

Baseline 98.36±0.1 98.71±0.1 80.60±1.5 84.73±0.7 98.11±0.1 98.46±0.1 80.71±1.4 85.73±0.8
Vanilla 98.50±0.0 98.58±0.0 80.58±0.4 85.24±0.3 98.20±0.0 98.16±0.0 80.88±0.3 86.45±0.0

Transformer 98.92±0.0 99.08±0.0 80.32±1.2 87.77±0.4 98.69±0.0 98.90±0.0 80.56±1.1 88.81±0.3T
IG

E

Projection 98.82±0.0 99.32±0.0 83.11±0.1 93.40±0.2 98.63±0.0 99.16±0.0 83.30±0.1 93.94±0.1

Baseline 98.32±0.1 98.67±0.1 80.31±0.6 84.53±0.4 98.10±0.1 98.12±0.2 78.07±0.5 88.54±0.5
Vanilla 98.50±0.0 98.62±0.0 80.47±0.3 84.66±0.1 98.22±0.0 98.31±0.0 80.88±0.3 86.05±0.3

Transformer 98.93±0.0 99.04±0.0 80.66±0.9 88.18±0.2 98.67±0.0 98.85±0.0 80.90±0.9 89.36±0.2T
IG

E
R

Projection 98.77±0.0 99.35±0.0 82.96±0.3 93.10±0.1 98.57±0.0 99.23±0.0 83.16±0.3 93.73±0.0

Baseline 95.88±0.1 96.51±0.0 75.65±1.5 74.14±0.4 95.61±0.0 94.43±0.0 74.10±1.6 80.84±0.6
Vanilla 94.41±0.1 96.32±0.1 73.34±2.2 77.30±0.2 93.80±0.1 94.77±0.1 73.28±2.2 80.48±0.4

Transformer 95.55±0.2 97.48±0.1 82.71±0.8 78.39±0.1 95.30±0.1 96.71±0.1 82.67±0.8 81.02±0.1

G
ra

ph
M

ix
er

Projection 98.80±0.2 98.91±0.1 87.05±2.0 83.67±3.5 97.44±0.5 96.13±0.3 86.68±1.9 84.72±2.6

Baseline 98.84±0.0 98.91±0.0 77.52±1.3 92.02±0.0 98.40±0.0 98.46±0.1 74.45±1.2 93.48±0.0
Vanilla 98.57±0.0 98.60±0.1 75.69±4.2 91.04±0.2 98.28±0.0 98.42±0.1 75.85±4.1 91.85±0.2

Transformer 98.80±0.0 99.20±0.1 82.31±1.8 92.74±0.2 98.62±0.0 99.04±0.1 82.46±1.9 93.56±0.2

D
yG

Fo
rm

er

Projection 99.75±0.1 99.76± 0.0 87.77±1.9 92.47±0.2 99.47±0.1 98.82±0.5 87.46±1.9 92.85±0.3

breaking down the temporal gap in these contexts adversely affects the results. However, in the
node classification experiments discussed subsequently, both temporal and semantic gaps exist
between the pretext and downstream tasks. In these cases, our model achieves superior performance,
indicating that in such scenarios, the semantic gap predominates as the primary limiting factor for the
performance of the TIG model.

Node Classification. Dynamic node classification is conducted aiming to predict dynamic labels of
nodes. It is utilized as a downstream task to validate the prompt’s effectiveness and to demonstrate
how the proposed method effectively bridges the temporal and semantic gap between pretext and
downstream tasks. We conduct dynamic node classification on datasets with dynamic labels, i.e.,
Wikipedia, Reddit, and MOOC.

We use the same pre-trained models as in the link prediction task. The TProGs, however, are
exclusively initialized and trained during the node classification process. Following the approach
in (Xu et al., 2020; Rossi et al., 2020; Zhang et al., 2023c), we pass time-aware representations
through a two-layer MLP to determine the probabilities of dynamic labels. However, these time-aware
representations are substituted with prompted node representations, generated by the TProG. In the
original methodology, validation, and testing phases are not distinct, with the last epoch’s results under
a fixed maximum number of epochs being directly used for testing. To incorporate TProG training
into this process, we adapt the validation and testing phases to mirror the link prediction task approach,
allocating 15% of the data for validation and another 15% for testing. Concurrently, the baseline
settings align with those used here.

As the results shown in Tab. 1, our method significantly outperforms the baseline on almost all node
classification tasks, achieving the SOTA performance. It is worth noting that on the Reddit dataset,
the Vanilla TProG alone is sufficient to achieve superior results. At the same time, the Projection
TProG not only surpasses the baseline on Reddit but also shows the best performance on the other
two datasets. For the MOOC dataset, our method improves upon the DyRep baseline by 15%. These
results demonstrate the substantial impact of the proposed training paradigm in bridging the gap
between pretext and downstream tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 “PRE-TRAIN, PROMPT-BASED FINE-TUNE”

In the “pre-train, prompt-based fine-tune” paradigm, we follow a similar experimental setting as with
“pre-train, prompt”, with a key difference: instead of freezing the pre-trained model’s parameters,
we allow for their simultaneous optimization while using 20% of the data to train the TProG. This
adjustment aims to enhance the model’s adaptability to new data and downstream tasks. The full
experimental results are shown in Appendix D. As shown in Tab. 6, this paradigm yields improved
results compared to “pre-train, prompt” on link prediction task, attributable to the fine-tuning of the
pre-trained model. However, this approach requires more training resources due to the optimization
of the pre-trained model’s parameters. Thus, this training paradigm is recommended when sufficient
resources are available to achieve optimal results. More details of node classification task are
discussed in Appendix D.2.

4.5 COMPARISON WITH EXISTING GRAPH PROMPTS

As discussed in Sec. 3.4, we conduct experiments using prompts from static graphs, i.e., GraphPrompt
(Liu et al., 2023b) and GPF (Fang et al., 2023), where a single, learnable prompt vector is applied
uniformly across all nodes, either on the input (Fang et al., 2023) or on the output (Liu et al., 2023b)
embeddings. The comparative results of these experiments are depicted in Fig. 4. The results
demonstrate that our method significantly outperforms the traditional prompt method used in static
graphs, demonstrating our effectiveness once again.

4.6 EFFECTIVENESS OF VARIOUS TPROGS

As indicated in Tab. 1 and 6, the Projection TProG generally outperforms other types of TProG in
link prediction tasks, with the Transformer TProG also excelling in certain scenarios. In contrast, the
Vanilla TProG often shows weaker performance, likely due to its limited capacity to express temporal
information. However, in node classification tasks, the Vanilla TProG demonstrates improved results
on specific datasets. Meanwhile, the Projection TProG consistently surpasses the baseline, though
the Transformer TProG shows slightly lower effectiveness.

The Transformer TProG captures recent behavior patterns, whereas the Projection TProG emphasizes
the global historical state. The scenarios where the Transformer TProG demonstrates superior
performance are predominantly observed on the MOOC dataset. This suggests that the recent
behavioral characteristics inherent to this dataset are particularly effective in bridging the existing
gaps. The robust performance of the Projection TProG across various tasks can be ascribed to its
ability to model global historical information, which possesses significant expressive power for
capturing temporal dynamics in TIGs. Additionally, its node-specific learnable embeddings play a
pivotal role in effectively bridging the semantic gap between pretext and downstream tasks.

Although the Transformer and Projection TProG generally exhibit stronger temporal expressiveness,
there remain cases, particularly in node classification task, where the simpler Vanilla TProG performs
competitively or even slightly better. This phenomenon is consistent with the distinct nature of
node classification, which typically depends more on semantic alignment than on detailed temporal
dynamics. As analyzed earlier, the semantic gap arising from the mismatch between link-level
pretext training and node-level downstream objectives often becomes the primary bottleneck for
node classification. The Vanilla TProG introduces node-specific learnable embeddings that directly
encode task-relevant semantic information without additional temporal modeling. In datasets such as
Reddit, where interactions are dense and long-term temporal dependencies are relatively weak, this
lightweight semantic adaptation proves particularly effective, leading to performance that rivals or
occasionally surpasses more expressive variants.

Source of the Performance Improving. As shown in Tab. 1, the Vanilla TProG, without using
the temporal information, generally exhibits inferior performance in link prediction tasks compared
to the Transformer and Projection TProG, both of which incorporate time-related prompts. This
demonstrates that adding time-related information contributes to performance enhancement. Further-
more, our comparison with static graph methods in Sec. 4.5, indirectly corroborates that the observed
improvements are attributable to the proposed TProG.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Jodie DyRep TGN TIGE TIGER97

98

99

Tr
an

s.
A

P
(%

)

GraphPrompt
GPF
Transformer TProG
Projection TProG

(a) Reddit

Jodie DyRep TGN TIGE TIGER70

75

80

85

90

Tr
an

s.
A

P
(%

)

GraphPrompt
GPF
Transformer TProG
Projection TProG

(b) MOOC

Figure 4: Comparison between traditional
prompt on static graphs (Liu et al., 2023b;
Fang et al., 2023) and our methods (“pre-train,
prompt” paradigm, transductive link prediction
on Reddit and MOOC).

5% 10% 15% 20%
85.00

87.60

90.20

92.80

95.40

98.00

Projection TProG Transductive
Projection TProG Inductive
Transformer TProG Transductive
Transformer TProG Inductive
w/o TProG Transductive
w/o TProG Inductive

(a) Wikipedia/DyRep

5% 10% 15% 20%
98.40

98.60

98.80

99.00

99.20

99.40

(b) Wikipedia/TIGER

Figure 5: Performance w.r.t the Proportion of
Prompting Data. This figure is continued in
Appendix E.1, Fig. 7.

4.7 PERFORMANCE WITH LIMITED DATA

4.7.1 PERFORMANCE WITH LIMITED TRAINING DATA

To validate the effectiveness of the proposed prompt method and demonstrate that it requires only a
small dataset to achieve superior results, we strategically design an experiment using merely 10%
of the data for pre-training, followed by another 10% for prompt tuning (“pre-train, prompt”). As
a baseline for comparison, we utilized the results reported in TIGE (Zhang et al., 2023c), which is
trained on only 20% of the data. The experimental outcomes, detailed in Tab. 2, clearly illustrate that
our method, even with limited data for training and prompt tuning, can attain the best results among
all the baselines. Remarkably, on certain dataset/model combinations, our results even surpass the
baseline achieved with 70% of the data used for training.

4.7.2 PERFORMANCE WITH LIMITED PROMPT DATA

To further explore the efficiency of our method, we investigate the minimum amount of data required
for prompt tuning to surpass baseline performances. We utilize 50% of the data for pre-training, and
5% to 20% data for prompt tuning. We select DyRep (Trivedi et al., 2019) and TIGER (Zhang et al.,
2023c) to conduct experiments under the “pre-train, prompt” paradigm for this analysis. The results,
as depicted in Fig. 5 and Fig. 7, reveal that as little as 10%, and in some cases only 5%, of the data is
needed for our approach to prompt tuning to achieve improved results. Furthermore, we observe that
increasing the amount of data used for prompt tuning correspondingly enhances the performances in
the transductive setting. This finding reaffirms the efficacy of our approach.

5 CONCLUSION

In this paper, we introduce two novel training paradigms for TIGs, which are grounded in pre-
training, prompting, and fine-tuning techniques. Additionally, we present and compare three distinct
temporal prompt generators, designed to ensure the resulting prompt vectors encapsulate a significant
amount of temporal information. Employing the proposed paradigms can bridge both temporal and
semantic gaps in the traditional training paradigm. Moreover, through extensive experimentation, we
demonstrate that our methods significantly improve the performance of TIG models over baselines
across various downstream tasks, thus achieving SOTA performance.

REFERENCES

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Mouxiang Chen, Zemin Liu, Chenghao Liu, Jundong Li, Qiheng Mao, and Jianling Sun. Ultra-dp:
Unifying graph pre-training with multi-task graph dual prompt. arXiv preprint arXiv:2310.14845,
2023a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xi Chen, Yongxiang Liao, Yun Xiong, Yao Zhang, Siwei Zhang, Jiawei Zhang, and Yiheng Sun.
Speed: Streaming partition and parallel acceleration for temporal interaction graph embedding.
arXiv preprint arXiv:2308.14129, 2023b.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks? In
The Eleventh International Conference on Learning Representations, 2023.

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network: Embedding
user and item features for recommendation. arXiv preprint arXiv:1609.03675, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Zifeng Ding, Yifeng Li, Yuan He, Antonio Norelli, Jingcheng Wu, Volker Tresp, Michael Bronstein,
and Yunpu Ma. Dygmamba: Efficiently modeling long-term temporal dependency on continuous-
time dynamic graphs with state space models. arXiv preprint arXiv:2408.04713, 2024.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
for graph neural networks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Qingqing Ge, Zeyuan Zhao, Yiding Liu, Anfeng Cheng, Xiang Li, Shuaiqiang Wang, and Dawei Yin.
Enhancing graph neural networks with structure-based prompt. arXiv preprint arXiv:2310.17394,
2023.

Chenghua Gong, Xiang Li, Jianxiang Yu, Cheng Yao, Jiaqi Tan, Chengcheng Yu, and Dawei Yin.
Prompt tuning for multi-view graph contrastive learning. arXiv preprint arXiv:2310.10362, 2023.

Junfeng Hu, Xu Liu, Zhencheng Fan, Yifang Yin, Shili Xiang, Savitha Ramasamy, and Roger
Zimmermann. Prompt-based spatio-temporal graph transfer learning. In Proceedings of the 33rd
ACM International Conference on Information and Knowledge Management, pp. 890–899, 2024.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023a.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph
benchmark for machine learning on temporal graphs. Advances in Neural Information Processing
Systems, 36:2056–2073, 2023b.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023a.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference 2023,
pp. 417–428, 2023b.

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V Chawla. Hetgpt: Harnessing the
power of prompt tuning in pre-trained heterogeneous graph neural networks. In Proceedings of the
ACM on Web Conference 2024, pp. 1015–1023, 2024.

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT), 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Reza Shirkavand and Heng Huang. Deep prompt tuning for graph transformers. arXiv preprint
arXiv:2309.10131, 2023.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717–1727, 2022.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2120–2131, 2023.

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. Virtual node tuning for few-shot node
classification. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 2177–2188, 2023.

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
model for link prediction. In The twelfth international conference on learning representations,
2024.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In The Seventh International Conference on Learning
Representations, 2019.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. Advances in Neural Information
Processing Systems, 34:200–212, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive rep-
resentation learning on temporal graphs. In The Eighth International Conference on Learning
Representations, 2020.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:67686–
67700, 2023.

Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. Hgprompt: Bridging homogeneous and
heterogeneous graphs for few-shot prompt learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 16578–16586, 2024a.

Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming Zhang. Generalized
graph prompt: Toward a unification of pre-training and downstream tasks on graphs. IEEE
Transactions on Knowledge and Data Engineering, 2024b.

Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. Non-homophilic graph pre-training and
prompt learning. arXiv preprint arXiv:2408.12594, 2024c.

Xingtong Yu, Zhenghao Liu, Xinming Zhang, and Yuan Fang. Node-time conditional prompt learning
in dynamic graphs. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=kVlfYvIqaK.

Siwei Zhang, Yun Xiong, Yao Zhang, Yiheng Sun, Xi Chen, Yizhu Jiao, and Yangyong Zhu. Rdgsl:
Dynamic graph representation learning with structure learning. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pp. 3174–3183, 2023a.

12

https://openreview.net/forum?id=kVlfYvIqaK

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Siwei Zhang, Yun Xiong, Yao Zhang, Xixi Wu, Yiheng Sun, and Jiawei Zhang. ilore: Dynamic graph
representation with instant long-term modeling and re-occurrence preservation. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge Management, pp.
3216–3225, 2023b.

Yao Zhang, Yun Xiong, Xiangnan Kong, and Yangyong Zhu. Learning node embeddings in inter-
action graphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 397–406, 2017.

Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, and Yangyong
Zhu. Tiger: Temporal interaction graph embedding with restarts. In Proceedings of the ACM Web
Conference 2023, pp. 478–488, 2023c.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. Tgl: A
general framework for temporal gnn training on billion-scale graphs. Proceedings of the VLDB
Endowment, 15(8):1572–1580, 2022.

Yun Zhu, Jianhao Guo, and Siliang Tang. Sgl-pt: A strong graph learner with graph prompt tuning.
arXiv preprint arXiv:2302.12449, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TEMPORAL GAP AND SEMANTIC GAP

A.1 DEFINITION AND EXAMPLES OF THE GAPS

Temporal gap: The gap caused by the time difference between training and inference data. For
example, in TIG models, data (interaction edges) is input into the model chronologically, with training
data occurring earlier than the data encountered during inference phase. During inference, the model
trained on the training data is used to generate node representations. Previous TIG models usually rely
on a memory module to store historical information. Specifically, they predict nodes’ future behaviors
based on the stored memory, which is continuously updated. However, although the updating branch
for temporal embedding modules generates new representations, the branch for memory updating
often neglects this new information, leading to stale memory (Zhang et al., 2023c; Chen et al., 2023b).
As a result, when there is a significant time gap between the training and inference data, the memory
generated during inference cannot provide expressive historical information. Consequently, the
training process becomes outdated with temporal interactions, resulting in ineffective predictions for
future events (Zhang et al., 2023c).

Semantic gap: The gap between edge-level pretext task and node-level downstream task. For
example, in the pre-training phase, the pretext task is typically link prediction, which usually brings
connected nodes closer in the latent representation space. However, for node-level downstream tasks,
such as node classification, using the node representations generated by the pre-trained model requires
training an additional classification predictor. Since this process cannot access the pre-trained model,
the output representations from the edge-level pre-trained model may lead to negative transfer when
connected nodes have different labels, potentially resulting in misclassification of node labels (Sun
et al., 2023). Intuitively, this is because edge-level pre-training strategy tends to enforce smoothness
of node representations along observed edges, but there are many cases that two connected nodes
have totally different labels, thereby exacerbating negative transfer (Sun et al., 2023).

A.2 QUANTIFICATION OF THE GAPS

Since these gaps are often implicitly embedded in node embeddings or representations, our idea
is to assess them or identify the gaps through performance on downstream tasks. For example,
using prompts that incorporate temporal information (Transformer or Projection TProG) reduces
the temporal gap (i.e., in link prediction tasks, the models with these two TProGs outperform the
baseline), while using only the Vanilla TProG without temporal information directly narrows the
semantic gap (i.e., in node classification tasks, the models with Vanilla TProG successfully outperform
the baseline). We propose a set of intuitive experiments to illustrate our claims.

Temporal gap: Building on the previous main experiments, we further split the inference (test) data
into two parts, where the edge timestamps are increasing—i.e., interactions in the first part (1st Part,
corrsponds to “temporally proximal inference data” in Fig. 1 (a)) occur earlier and are closer to the
training data than those in the second part (2nd Part, corrsponds to “temporally distant inference data”
in Fig. 1 (a)). We then apply them and conduct inference separately. If our hypothesis about the
temporal gap holds true, the performance on the first part should be better than on the second part
when using the baseline methods. When applying our proposed Transformer or Projection TProGs
(we use Projection TProG and take MOOC dataset as example here for illustration), the performance
should be improved, and the difference between the two parts should narrow. In line with main
experiments, we use AP as the evaluation metric. As shown in the Tab. 3, the results align with our
hypothesis. This validates the existence of the temporal gap and demonstrates that our method helps
reduce it.

Semantic gap: Since the link prediction and node classification tasks both use the node embeddings
generated by the pre-trained models for downstream tasks, a simple way to locate the semantic
gap is to compare the same metric on both link prediction task and node classification task. For a
fair comparison, we use AUROC as the evaluation metric for both tasks and conduct experiments
on different dataset and backbone model combinations. By comparing the difference in AUROC
between the two tasks before and after applying our proposed Vanilla TProG, it can be seen (from the
Tab. 4) that the differences are narrowed after applying our “pre-train, prompt” training paradigm and
TProG. This proves that the semantic gap indeed exists and that our method helps to narrow it.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Quantification of Temporal Gap: Evaluated by AP (%). The 1st Part and the 2nd Part
corrspond to “temporally proximal inference data” and “temporally distant inference data” in Fig. 2
(c), respectively.

Models Baseline Projection
TProG

Gap
Narrowed

Jo
di

e 1st Part 76.35 82.60
38.73%2nd Part 72.38 80.17

GAP 3.98 2.44

D
yR

ep 1st Part 74.81 82.71
35.45%2nd Part 69.93 79.56

GAP 4.88 3.15

T
G

N 1st Part 88.34 88.91
42.62%2nd Part 86.85 88.06

GAP 1.49 0.86
T

IG
E 1st Part 89.37 89.94

38.24%2nd Part 88.01 89.10
GAP 1.36 0.84

T
IG

E
R 1st Part 87.16 89.56

28.70%2nd Part 86.08 88.79
GAP 1.08 0.77

Table 4: Quantification of Semantic Gap: Evaluated by AUROC (%). (Wiki. refers to Wikipedia
dataset)

Dataset/Models Baseline Vanilla
TProG

Gap
Narrowed

W
ik

i./
T

G
N Link Prediction 98.11 96.25

20.63%Node Classification 84.93 85.79
GAP 13.18 10.46

R
ed

di
t/

Jo
di

e Link Prediction 97.91 97.57
28.10%Node Classification 58.48 69.22

GAP 39.43 28.35

M
O

O
C

/
T

IG
E

R Link Prediction 89.39 90.88
9.31%Node Classification 64.91 68.68

GAP 24.48 22.20

A.3 HOW TPROGS NARROW THE GAPS

We now provide a brief theoretical analysis of how each TProG variant contributes to narrowing the
semantic and temporal gaps.

Vanilla TProG introduces node-specific prompt vectors that are directly optimized via node-level
supervision signals. This establishes a task-conditioned prompt generating, allowing the model to
re-contextualize outputted representations from frozen backbone toward the target task objective
(e.g., node classification), even without additional temporal signals. The effectiveness of such a setup
for node classification task confirms that semantic mismatch between edge-level pre-training and
node-level prediction can be mitigated through lightweight, learnable prompts.

Projection TProG builds upon Vanilla TProG by introducing explicit time conditioning, effectively
providing a soft temporal hint to the node representation. By projecting node-specific prompt vectors
into a temporal latent space using most recent interaction, it encourages the model to align the node
embedding from frozen backbone models with its current or recent temporal context. Intuitively, this
allows the prompt to act as a “reminder” or “hint” of recent temporal activity, helping the model
adapt representations to evolving dynamics. This partially compensates for the temporal mismatch
introduced during pre-training and enables better adaptation under time-varying behaviors. This
design enables downstream adaptation that is both semantically aligned and temporally consistent,
effectively narrowing the temporal gap and semantic gap that arise from stale backbone parameters.

Transformer TProG further generalizes this mechanism by conditioning prompt generation on
a sequence of recent interactions through self-attention. The prompt depends on the temporal
distribution and relational dynamics of recent neighbors. This captures higher-order temporal

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

dependencies and behavioral recency, which are crucial in interaction-dense data. As a result, the
prompt embedding space adapts in a temporally fine-grained manner.

In sum, the three variants form a progressive design spectrum: from task conditioning (Vanilla), to
timestamp-aware alignment (Projection), to dynamically evolving temporal modeling (Transformer).
This theoretically grounded progression supports our claim that the proposed prompting framework
can systematically mitigate both semantic and temporal gaps in TIG models.

B RELATED WORK

Temporal Interaction Graph Models. Temporal Interaction Graph representation learning models
(TIG models) are specifically designed to learn dynamic representations of the nodes in TIGs. These
models employ node representations to execute downstream tasks, including link prediction (by
computing node similarity) and node classification (through additional training of a classifier, i.e.,
projection head). The development of contemporary TIG models began with Jodie (Kumar et al.,
2019). Jodie utilizes two RNNs to dynamically update node representations and employs a projection
operator to estimate the embeddings of nodes that have not interacted for an extended period. DyRep
(Trivedi et al., 2019) introduces a deep temporal point process model, employing a dual-time scale
approach to effectively capture both association and communication dynamics. TGAT (Xu et al.,
2020) revolutionizes TIG models by incorporating an attention mechanism, wherein it substitutes
the original position coding with time coding to effectively aggregate information from a node’s
neighbors. Building on this, TGN (Rossi et al., 2020) introduces a memory module to store nodes’
historical interaction information, and integrating these developments into a cohesive framework.
TIGER (Zhang et al., 2023c) presents a model equipped with a dual-memory module, specifically
designed for enhanced aggregation of neighbor information. TIGER also introduces a restarter
module, responsible for generating surrogate representations, which serve as a warm initialization for
node representations. Additionally, several works are devoted to addressing challenges and resolving
specific complexities inherent in TIG models, including large-scale training (Zhou et al., 2022; Chen
et al., 2023b), noise dynamics (Zhang et al., 2023a), and node-wise long-term modeling (Zhang et al.,
2023b) issues. However, two critical issues persist: the limited adaptability of these models to new
data, and the semantic gap between pretext tasks and downstream tasks.

Graph Prompt Learning. Prompt-tuning methods, originating from the NLP domain (Devlin et al.,
2018; Liu et al., 2023a), have gained widespread use in adapting pre-trained language models to
a variety of downstream tasks. More recently, prompt learning has emerged in the graph domain
(Qin & Eisner, 2021; Tsimpoukelli et al., 2021; Sun et al., 2022; Zhu et al., 2023; Liu et al., 2023b;
Sun et al., 2023; Tan et al., 2023; Fang et al., 2023; Huang et al., 2023a; Shirkavand & Huang,
2023; Gong et al., 2023; Chen et al., 2023a; Ma et al., 2024; Ge et al., 2023; Yu et al., 2024a) as a
promising approach for directing downstream tasks. Pioneering works like GPPT (Sun et al., 2022)
focus on the node classification task, incorporating learnable prompts directly into graphs. Similarly,
GraphPrompt (Liu et al., 2023b) introduces a uniform prompt design, specifically tailored to address
both node- and graph-level downstream tasks. All-in-One (Sun et al., 2023) expands graph prompt
learning further by encompassing prompt tokens, structures, and insertion patterns, introducing a
comprehensive, albeit complex, prompting framework. Recent advancements in prompt learning
for static graphs have explored more fine-grained aspects of representation learning. GraphPrompt+
(Yu et al., 2024b) incorporates subgraph similarity and fixed structural patterns into the prompt
learning framework, enabling more structured guidance. ProNoG (Yu et al., 2024c) addresses the
challenges of non-homophilic graphs by focusing on structural irregularities and designing node-
specific prompting strategies. STGP (Hu et al., 2024) extends prompt learning to spatio-temporal
graphs in urban computing, highlighting cross-domain and multi-task transfer through a two-stage
prompting mechanism. Nevertheless, there is a noticeable absence of prompt tuning methods
specifically designed for the temporal interaction graphs, as existing static graph prompting works
lack a temporal consideration and exhibit weak expressiveness.

Comparison with Contemporaneous Work. We identify a contemporaneous work, DyGPrompt (Yu
et al., 2025), and provide a conceptual comparison as follows. While both TIGPrompt and DyGPrompt
aim to bridge the gap between pre-training and downstream tasks in dynamic graph learning through
prompt-based adaptation, the two methods differ in design goals and technical implementation.
DyGPrompt introduces a dual-prompt and dual-conditioning framework, utilizing both feature and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

temporal prompts along with a node-time co-conditioning mechanism. This design enables fine-
grained joint modeling of node features and timestamps through a sophisticated co-conditioning
process. In contrast, our work identifies two fundamental gaps—temporal and semantic—in traditional
TIG training paradigms, and proposes a novel prompt-based training approach to bridge them.
Specifically, we propose to use “pre-train, prompt” paradigm or “pre-train, prompt-based fine-tune”
paradigm, bridging the temporal and semantic gaps and introduce TProGs to construct prompts that
incorporate temporal information, aligning with the inherent characteristics of TIGs. Our approach
emphasizes a new training paradigm for TIGs and lightweight, time-aware prompt generation through
variants of TProGs. We thus consider DyGPrompt a complementary contemporaneous work. While
DyGPrompt emphasizes fine-grained adaptivity in node-time modeling, TIGPrompt offers a simple,
efficient, and broadly applicable solution. Due to the unavailability of DyGPrompt’s source code, we
do not include a direct empirical comparison in our paper.

C DATASETS

In alignment with previous studies (Kumar et al., 2019; Trivedi et al., 2019; Rossi et al., 2020; Zhang
et al., 2023c), we utilize four public datasets made available by the authors of Jodie (Kumar et al.,
2019). Detailed statistics of these datasets can be found in Tab. 5.

Table 5: Dataset Statistics. dn and de indicate the dim of nodes and edges, respectively.

Nodes # Edges dn de Classes

Wikipedia 9,227 157,474 172 172 2
Reddit 10,984 672,447 172 172 2
MOOC 7,144 411,749 172 172 2
LastFM 1,980 1,293,103 172 172 -

D EXPERIMENTS UNDER “PRE-TRAIN, PROMPT-BASED FINE-TUNE”

D.1 LINK PREDICTION

We provide the complete experiment results for the “pre-train, prompt-based fine-tune” paradigm link
prediction task in both transductive and inductive settings in Tab. 6.

D.2 NODE CLASSIFICATION

D.2.1 TRAINING STRATEGIES

Under the “pre-train, prompt-based fine-tune” paradigm for the node classification task, three different
strategies can be applied: (1) directly employing the TProG trained in the link prediction task to
generate prompts; (2) using the link prediction-trained TProG to initialize a TProG and then further
optimizing it during node classification; and (3) discarding the previously TProG and re-initializing
a new one for optimization alongside the node classification task.

We choose the first strategy for our experiments, with the outcomes detailed in Tab. 7. Notably, a part
of these results exceed those achieved under the “pre-train, prompt” paradigm. However, similar to
the link prediction task, this approach demands additional training resources. A comparison of three
training strategies is presented in Appendix D.2.2. This comparison demonstrates that applying the
other two strategies has the potential to improve the performance of node classification tasks.

D.2.2 COMPARISON BETWEEN THREE STRATEGIES OF NODE CLASSIFICATION TRAINING

Beyond the initial experiments conducted under “pre-train, prompt-based fine-tune” for the node
classification task, we extend our investigation to include various training strategies outlined in
Appendix D.2.1. A series of experiments was conducted using the Wikipedia dataset, employing the
Projection TProG. The outcomes of these experiments are illustrated in Fig. 6. The results indicate
that our method outperforms the baseline models when different strategies are applied, thereby
demonstrating the effectiveness of our approach.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Full results of Average Precision (%) for the link prediction tasks under the “pre-train,
prompt-based fine-tune” paradigm in both Transductive and Inductive settings.

Transductive Link Prediction Inductive Link Prediction

TProG Wikipedia Reddit MOOC LastFM Wikipedia Reddit MOOC LastFM
Jo

di
e

Baseline 94.62±0.5 97.11±0.3 76.50±1.8 68.77±3.0 93.11±0.4 94.36±1.1 77.83±2.1 82.55±1.9

Vanilla 94.22±0.9 97.17±0.3 76.32±1.6 74.45±1.3 92.66±1.0 93.91±0.9 74.58±2.5 81.27±1.0

Transformer 97.01±0.4 98.25±0.1 85.52±0.6 76.48±1.5 96.13±0.5 96.71±0.3 84.33±0.6 84.63±1.3

Projection 96.72±0.6 98.84±0.1 83.03±0.3 88.82±0.5 95.36±0.6 97.79±0.2 81.72±1.3 92.51±0.4

D
yR

ep

Baseline 94.59±0.2 97.98±0.1 75.37±1.7 68.77±2.1 92.05±0.3 95.68±0.2 78.55±1.1 81.33±2.1

Vanilla 90.48±1.1 97.15±0.2 74.88±2.5 72.96±0.5 88.50±1.3 93.31±0.7 73.42±2.7 80.79±1.8

Transformer 95.62±0.4 98.17±0.1 84.81±1.1 74.22±1.8 94.52±0.6 96.61±0.2 83.38±0.7 83.74±2.5

Projection 97.19±0.2 98.96±0.1 82.53±1.7 88.83±0.4 96.11±0.3 97.78±0.2 81.51±1.0 92.59±0.4

T
G

N

Baseline 98.46±0.1 98.70±0.1 85.88±3.0 71.76±5.3 97.81±0.1 97.55±0.1 85.55±2.9 80.42±4.9

Vanilla 97.72±0.2 98.32±0.1 88.58±1.1 72.69±5.0 96.94±0.1 96.51±0.3 87.89±0.9 78.97±3.9

Transformer 98.25±0.1 98.68±0.1 89.95±1.7 77.79±3.2 97.59±0.2 97.62±0.1 89.11±1.2 83.48±2.4

Projection 98.38±0.1 99.29±0.0 90.00±1.4 90.08±0.9 97.81±0.1 98.61±0.1 89.15±1.6 92.64±0.9

T
IG

E

Baseline 98.83±0.1 99.04±0.0 89.64±0.9 87.85±0.9 98.45±0.1 98.39±0.1 89.51±0.7 90.14±1.0

Vanilla 98.84±0.0 98.87±0.0 90.18±0.7 89.06±0.5 98.37±0.0 97.82±0.2 89.59±0.5 91.06±0.4

Transformer 98.99±0.0 99.20±0.0 92.14±0.9 91.22±0.3 98.58±0.0 98.70±0.1 91.22±0.8 92.81±0.3

Projection 99.12±0.0 99.48±0.0 91.68±0.4 95.30±0.1 98.84±0.0 99.16±0.0 91.16±0.4 96.20±0.1

T
IG

E
R

Baseline 98.90±0.0 99.02±0.0 86.99±1.6 85.17±0.2 98.58±0.0 98.59±0.0 86.42±1.7 89.11±0.3

Vanilla 98.90±0.0 98.84±0.0 85.12±1.1 85.59±0.5 98.49±0.1 98.13±0.1 84.37±0.8 88.43±0.6

Transformer 99.05±0.0 99.18±0.0 87.00±0.9 87.84±0.2 98.68±0.0 98.78±0.0 86.07±1.0 90.50±0.3

Projection 99.17±0.0 99.49±0.0 87.83±0.6 93.50±0.2 98.88±0.0 99.28±0.0 87.38±0.9 94.90±0.3

G
ra

ph
M

ix
er Baseline 97.25±0.0 97.31±0.0 82.78±0.2 75.61±0.2 96.65±0.0 95.26±0.0 81.41±0.2 82.11±0.4

Vanilla 96.24±0.1 97.52±0.0 81.27±0.3 76.91±0.3 95.65±0.1 94.25±0.2 79.27±0.9 81.86±0.4

Transformer 97.45±0.0 98.12±0.0 84.09±0.9 78.19±0.3 97.02±0.0 96.40±0.0 81.61±1.2 83.81±0.3

Projection 98.99±0.2 99.23±0.0 87.48±0.2 88.84±3.1 97.78±0.5 94.43±0.9 84.76±0.1 86.92±2.3

D
yG

Fo
rm

er Baseline 99.03±0.0 99.22±0.0 87.52±0.5 93.00±0.1 98.59±0.0 98.84±0.0 86.96±0.4 94.23±0.1

Vanilla 98.97±0.0 99.16±0.0 86.42±0.4 92.78±0.1 98.55±0.0 98.78±0.0 85.67±0.5 94.14±0.0

Transformer 99.07±0.1 99.50±0.1 87.92±0.3 93.76±0.1 98.76±0.1 99.12±0.1 87.17±0.3 94.69±0.3

Projection 99.84±0.0 99.87±0.0 91.06±0.3 95.12±0.2 99.44±0.0 98.79±0.2 89.08±0.2 94.99±0.4

Table 7: AUROC (%) for dynamic node clas-
sification task under “pre-train, prompt-based
fine-tune”.

Node Classification

TProG Wikipedia Reddit MOOC

Jo
di

e Baseline 86.27±2.2 58.48±2.6 65.39±1.1
Vanilla 84.82±0.3 63.87±1.4 66.32±1.8

Transformer 86.42±2.4 67.19±1.0 71.36±0.8
Projection 84.41±3.0 62.27±3.8 75.89±1.5

D
yR

ep

Baseline 85.11±1.4 62.77±2.1 66.68±3.4
Vanilla 88.64±1.8 58.64±2.7 65.00±2.2

Transformer 83.73±0.3 64.58±2.2 71.98±2.8
Projection 85.35±0.5 58.84±2.1 75.09±1.3

T
G

N

Baseline 84.93±1.1 65.99±3.8 69.80±1.8
Vanilla 82.49±2.7 62.93±3.8 64.66±3.9

Transformer 82.43±1.1 64.67±3.5 70.03±2.9
Projection 83.86±1.4 60.28±4.8 77.15±3.1

T
IG

E

Baseline 83.98±3.4 65.36±2.9 69.61±2.5
Vanilla 81.43±6.8 62.46±2.5 70.35±0.8

Transformer 85.87±2.0 64.14±1.6 67.61±5.9
Projection 88.51±0.8 59.08±3.9 78.04±3.2

T
IG

E
R Baseline 80.84±4.6 62.58±1.3 64.91±5.2

Vanilla 84.93±2.5 64.22±1.8 68.16±2.9
Transformer 83.95±4.4 60.75±1.3 68.26±1.8
Projection 85.13±1.4 61.20±2.2 81.58±1.2

Jodie DyRep TGN TIGE TIGER80

82

84

86

88

A
U

R
O

C
 (%

)

Baseline
Using Link Prediction TProG
Init. Link Prediction TProG and Optimizing
Init. Empty TProG and Optimizing

Figure 6: Comparison between three differ-
ent “pre-train, prompt-based fine-tune” node
classification training strategies (Wikipedia
dataset, employing the Projection TProG).

E CONTINUED EXPERIMENT RESULTS

E.1 RESULTS FOR LIMITED PROMPT DATA EXPERIMENTS

We provide the complete experiment results for limited prompt data analysis in Fig. 7).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

5% 10% 15% 20%
94.00

95.20

96.40

97.60

98.80

100.00

(a) Reddit/DyRep

5% 10% 15% 20%
73.00

74.80

76.60

78.40

80.20

82.00

(b) MOOC/DyRep

5% 10% 15% 20%
65.00

71.00

77.00

83.00

89.00

95.00

(c) LastFM/DyRep

5% 10% 15% 20%
98.40

98.68

98.96

99.24

99.52

99.80

(d) Reddit/TIGER

5% 10% 15% 20%
85.00

86.20

87.40

88.60

89.80

91.00

(e) MOOC/TIGER

5% 10% 15% 20%
84.00

86.40

88.80

91.20

93.60

96.00

(f) LastFM/TIGER

Figure 7: Performance w.r.t the Proportion of Prompting Data. This is a continued figure of Fig. 5.

E.2 APPLYING TO NON-MEMORY-BASED TIG METHODS

The basic baseline models utilized in this paper are based on the TGN architecture (Rossi et al., 2020),
which employ a memory module to store historical interaction information for nodes. Recently, vari-
ous model architectures have been proposed by researchers, incorporating different backbone models.
GraphMixer (Cong et al., 2023) and DyGFormer (Yu et al., 2023) are two representative works based
on MLP and Transformer architectures, respectively. Although GraphMixer and DyGFormer do
not share a similar architecture with the memory-based TIG methods (i.e., methods based on TGN
architecture or TGN-based methods), they similarly utilize representations for downstream tasks. Our
proposed TIGPrompt, wherein the prompt is fused with node representations for use in downstream
tasks, is thus thought to potentially combine effectively with GraphMixer and DyGFormer. To explore
this possibility, we conduct a set of experiments based on these two models. As demonstrated in Tab.
1, 2 and 6, our proposed TIGPrompt can effectively enhance the performance of non-memory-based
TIG models on both link prediction and node classification tasks.2

Although we only implement experiments on GraphMixer and DyGFormer, the underlying mecha-
nism is similar for other methods that build upon them, such as DyGMamba (Ding et al., 2024) and
FreeDyG (Tian et al., 2024). Our proposed method is not a new backbone model, but rather a general
training paradigm designed to adapt existing TIG models to downstream tasks in a more flexible and
efficient manner. While the motivation is inspired by TGN-based architectures, our empirical evalua-
tion covers models beyond memory-based designs, i.e., GraphMixer (MLP-based) and DyGFormer
(Transformer-based). These results demonstrate that TIGPrompt is broadly compatible with different
backbone types, as long as they follow the triditional “pre-train, predict” training paradigm.

F TPROG VARIANT SELECTION

We provide guidance on selecting among the three TProG variants according to dataset characteristics
and computational–performance considerations.

Vanilla TProG, with its lightweight O(|V|) node-dependent parameters, focuses primarily on mitigat-
ing the semantic gap and offers the fastest inference among all variants. It is well suited for datasets
with relatively few nodes, scenarios requiring low-latency inference, and node classification tasks
where semantic alignment dominates over temporal dynamics.

2Experiments are conducted based on the open-source repository DyGLib (Yu et al., 2023). We employ the
best model configurations as provided by DyGLib for the pre-training process with default settings.

19

https://github.com/yule-BUAA/DyGLib

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Projection TProG also scales with O(|V|) parameters but incorporates temporal cues, enabling it to
address both the semantic and temporal gaps while maintaining high computational efficiency. This
variant is particularly appropriate for small- to medium-scale datasets or applications that require a
balanced trade-off between temporal expressiveness and inference cost.

In contrast, Transformer TProG employs a lightweight Transformer encoder with parameters scaling
as O(d), making it more scalable for large graphs and especially effective when modeling complex or
irregular temporal patterns. It typically achieves the strongest performance in settings where temporal
gap mitigation is crucial and accuracy is prioritized over inference speed.

G DATA AMOUNT FOR TRAINING

In this section, we analyze the amount of data used in our experiment for training and the reasons
behind the resulting experimental outcomes. Note that all experiments use 15% of the data for
validation and a different 15% for testing. The data amount used for training is summarized in Tab. 8.

Firstly, we use 50% of the data for pre-training, followed by 20% of the data for prompt tuning,
making a total of 70% of the data used for training (Sec. 4.3 and 4.4). This setup is to align with the
70% data for training of baseline models. Additionally, we adjust the amount of 20% prompt tuning
data through comparative experiments to explore the effects of different tuning data volumes (Sec.
4.7.2). Then, we compare the situation where only a small amount of training data is available, i.e.,
the baseline uses only 20% of the data for training, whereas our method uses only 10% of the data for
pre-training and 10% for prompt tuning, making a total of 20% of the data for overall training (Sec.
4.7.1).

It is natural that some experimental results may show degradation when only 10% of the data is
allocated for pre-training, compared to the baseline results achieved with 70% of the data used for
training. This can be attributed to the substantial decrease in the amount of overall training data.
However, as can be seen from Tab. 2, almost all results of our method surpass the baseline of using
only 20% of the data for training, with part of results (marked in blue in the Tab. 2) surpass the
baseline models training with 70% of data. This demonstrates the effectiveness of our proposed
method.

Table 8: Training Data Amount for different experiments.

Experiments Methods Pre-train/
Training

Prompt
tuning

Total for
Training

Main
(Sec. 4.3 and 4.4)

Baseline 70% / 70%
TIGPrompt 50% 20% 70%

Limited Training
Data (Sec. 4.7.1)

Baseline 20% / 20%
TIGPrompt 10% 10% 20%

Limited Prompt
Data (Sec. 4.7.2)

Baseline 70% / 70%
TIGPrompt 50% 5%-20% 55%-70%

Discussions on “Weak Supervision”. In the original prompt learning literature from NLP (Devlin
et al., 2018; Liu et al., 2023a), the concept of few-shot learning is well-established. However, this
notion is difficult to directly translate into the context of TIGs. In TIGs, a few-shot setting can only
be simulated by restricting the amount of data used during either the fine-tuning phases. Notably,
temporal link prediction—the core task for both pretext and downstream objectives in many TIG
models—does not lend itself easily to a few-shot formulation. This is because the supervision signal
arises from future interactions rather than class labels, making it hard to define a fixed number of
“support” instances typical of few-shot learning. For node classification, existing few-shot methods
designed for NLP (Devlin et al., 2018; Liu et al., 2023a) or static graphs (Liu et al., 2023b; Sun
et al., 2023) are also not directly applicable. In TIGs, the task typically involves dynamic node
classification, where the label of a node may evolve over time. Additionally, training a classification
head in this setting still requires a minimum amount of data, further complicating the establishment
of a rigorous few-shot regime. As such, we argue that constructing an effective few-shot setting for
TIG representation learning remains an open and under-explored challenge.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

To address this, we introduce the concept of weak supervision in TIG prompt learning. Here, weak
supervision refers to training under limited data availability—not only during prompt tuning but also
throughout the entire training pipeline, including pre-training.

Specifically, we explore scenarios where only 5%–20% of the data is used for prompt tuning (with
a total training budget of 55%–70% data, please refer to Sec.4.7.1), or even more extreme cases
where 10% is allocated for pre-training and another 10% for prompt tuning—resulting in a total
training budget of just 20% data (please refer to Sec.4.7.2). These settings demonstrate the strong data
efficiency and weak-supervision tolerant of our method, particularly when compared to traditional
baselines trained on the full 70% of the data, which still underperformed.

H PARAMETER ANALYSIS

In these experiments, we explore the impacts of the dimension of the prompt vector. Additionally, we
examine whether increasing the dimensions could yield even better results. As shown in Fig. 8, the
results indicate that a 64-dimensional prompt vector suffices to surpass the baseline performance in
most cases. While higher dimensions do improve outcomes, they also increase the model’s complexity.
Researchers, therefore, should weigh the trade-off between experimental effectiveness and resource
efficiency when selecting the optimal prompt vector dimension.

16 32 64 128 172 256
91.00

92.40

93.80

95.20

96.60

98.00

(a) Wikipedia/DyRep

97.00

98.25

99.50

16 32 64 128 172 256
95.20

95.50

95.80

(b) Reddit/DyRep

78.00

79.00

80.00

81.00

82.00

16 32 64 128 172 256
75.20
75.35
75.50

(c) MOOC/DyRep

16 32 64 128 172 256
67.00

72.60

78.20

83.80

89.40

95.00

(d) LastFM/DyRep

16 32 64 128 172 256
98.50

98.66

98.82

98.98

99.14

99.30

(e) Wikipedia/TIGER

16 32 64 128 172 256
98.50

98.74

98.98

99.22

99.46

99.70

(f) Reddit/TIGER

88.50

89.75

91.00

16 32 64 128 172 256
86.00
86.50
87.00

(g) MOOC/TIGER

16 32 64 128 172 256
84.00

86.40

88.80

91.20

93.60

96.00

(h) LastFM/TIGER

Figure 8: Performance w.r.t the Prompts Dimension. This figure shares the same legend with Fig. 5.

I EFFICIENCY ANALYSIS

We first record the training time on the Nvidia V100 GPU of the most commonly used baseline model,
TGN (Rossi et al., 2020), on two datasets. As shown in Tab. 9, the Transformer TProG exhibits
modest time efficiency due to the inherent computational slowness of transformers. However, the
other two TProGs both register substantial efficiency enhancements. The results demonstrate that the
proposed method is indeed lightweight.

We further provide a theoretical comparison between TProGs and TGN (other backbones exhibit
similar complexity).

For TGN, assuming the node embeddings, including the memory, and prompts use the same dimension
dn as the input node features, and edge features dimension is de.

The complexity for the time encoding is O(dte), where dte is the dimension of time encoding. The
memory module’s complexity is O(|V| · dn), where |V| is the total number of nodes. TGN employs
a GRU as the memory updater, which has a complexity of O((dte + 2dn + de) · dn + d2n). TGN
uses multi-head attention to compute node embeddings, with the complexity of O(L · ((dn + de +
dte) · h+ (n+ 1)2 + h · dn)), where h is hidden layer dimension, L is number of layers, and n is
the number of neighbors. Thus, the overall space complexity of TGN can be expressed as adding

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

these four terms together. As observed, the memory module contributes significantly to TGN’s space
complexity, especially for large graphs.

In contrast, Vanilla TProG introduces only a learnable prompt vector for each node. Its overall
complexity is O(|V| · dn). This results in a lower computational complexity compared to TGN.

Transformer TProG employs a 1-layer Transformer to generate prompts, with a complexity of
O((2dn + 1+ de + dte) · h+K2 + h · dn), as derived in Equ. 2, where K is the sampled historical
interactions used to compute the prompts. Notably, this complexity is independent of the number of
nodes, i.e., |V|, making it more efficient for larger TIGs with many nodes.

Projection TProG shares a similar structure with Vanilla TProG in maintaining a node-specific prompt
vector, but further incorporates a lightweight MLP to model temporal dependencies. Its complexity
can be expressed as O(dn ·dte+d2n+ |V| ·dn), which remains lower than that of TGN, while offering
improved modeling capability.

As the results in Tab. 9 and the complexity analysis show, our method boosts efficiency and lowers
training resources versus the baselines. Despite its efficiency, our method still yields favorable
outcomes in downstream tasks.

Table 9: Training time for one epoch (in seconds) comparison.

TProG Training Time

W
ik

ip
ed

ia Baseline 15.1
Vanilla 4.4(-70.9%)

Transformer 14.4(-4.6%)
Projection 4.2(-72.2%)

M
O

O
C

Baseline 36.9
Vanilla 12.6(-65.9%)

Transformer 23.2(-37.1%)
Projection 12.4(-66.4%)

J IMPLEMENTATION DETAILS

We implement our methods in PyTorch, building on the official implementations of TGN (Rossi et al.,
2020), TIGER (Zhang et al., 2023c) and DyGFormer (Yu et al., 2023). Unless specified otherwise,
we adhere to the default hyper-parameters listed in Tab. 10 and maintain the same data pre-processing
and hyper-parameter settings as in the original implementations. Since we strictly follow the settings
in the original implementations, we reuse the baseline results reported in (Zhang et al., 2023c) as
baselines. To fairly assess the effect of our proposed training framework, we deliberately refrain
from adjusting hyper-parameters, and treat negative sampling strategies (Yu et al., 2023; Huang et al.,
2023b) as intrinsic, hyper-parameter-level choices specific to each backbone model (e.g., DyGFormer
(Yu et al., 2023) adopts different strategies across datasets and model variants). Consequently, we keep
all default configurations unchanged and integrate TIGPrompt on top of the original implementations.
This ensures that the observed performance gains stem from the prompting paradigm rather than
backbone-specific heuristics.

All experiments are conducted on a single server with 72 cores, 32GB memory, and single Nvidia
Tesla V100 GPU.

K LIMITATIONS AND FUTURE WORK

We provide a novel training paradigm for TIGs, while we may need to conduct a certain amount
of additional experiments to test which TProG is more suitable for the current dataset/baseline
combination for performance consideration. However, for the improvement in performance, we
believe this extra effort is worthwhile. We also provide practical guidance for selecting among
different TProG variants in Appendix F. Our paper has demonstrated that all three TProGs are
effective through extensive experiments. The current work only focuses on and considers a series of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 10: Default values of hyper-parameters.

Hyper-parameter Value

Batch size (Pre-training) 200
Batch size (Prompt tuning) 100

Learning rate 0.0001
Optimizer Adam

Prompt dimension 172
Memory dimension 172
Negative sampling Same as backbone models

baseline models based on TGN. The current method only considers individual datasets and does not
account for integrating multiple datasets to construct a large dataset for pre-training.

In light of our study’s scope and findings, we identify several potential directions for future work:

• Designing TProG variants to better match various baseline models and datasets.
• Utilizing larger datasets to complete comprehensive pre-training processes, followed by

fine-tuning or prompt tuning for diverse datasets.
• Extending our methodologies to additional downstream tasks, including graph-level tasks.

L THE USE OF LARGE LANGUAGE MODELS

The Large Language Models are only used for editing and formatting purposes.

23

	Introduction
	Preliminaries
	Proposed Method
	``Pre-train, Prompt'' Paradigm Overview
	TProG: Temporal Prompt Generator
	Prompt Tuning and Inference
	Connection to Existing Graph Prompting Approaches

	Experiments
	Datasets and Baselines
	Experimental Settings
	``Pre-train, Prompt''
	``Pre-train, Prompt-based Fine-tune''
	Comparison with Existing Graph Prompts
	Effectiveness of Various TProGs
	Performance with Limited Data
	Performance with Limited Training Data
	Performance with Limited Prompt Data

	Conclusion
	Temporal Gap and Semantic Gap
	Definition and Examples of the Gaps
	Quantification of the Gaps
	How TProGs Narrow the Gaps

	Related Work
	Datasets
	Experiments Under ``Pre-train, Prompt-based Fine-tune''
	Link Prediction
	Node Classification
	Training Strategies
	Comparison Between Three Strategies of Node Classification Training

	Continued Experiment Results
	Results for Limited Prompt Data Experiments
	Applying to Non-Memory-Based TIG Methods

	TProG Variant Selection
	Data Amount for Training
	Parameter Analysis
	Efficiency Analysis
	Implementation Details
	Limitations and Future Work
	The Use of Large Language Models

