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Abstract

The main goal of Visual Question Answering001
(VQA) is to effectively learn useful informa-002
tion from vision and language to perform an-003
swer reasoning. However, recent studies have004
shown that VQA models often have language005
bias, which is the false correlations between006
questions and answers, rather than truly ex-007
tracting answers from multi-modal knowledge.008
Existing methods mainly focus on modeling009
the question part to capture the language bias,010
while ignoring the influence of visual content011
on the model. To address this issue, in this pa-012
per, we combine potential causal models with013
VQA models, using dual-attention as treatment,014
and treating language bias as a confounding015
factor in the model. We enhance the role of016
visual information in the VQA model through017
the construction of observed and counterfactual018
outcomes, thus eliminating the impact of lan-019
guage bias on the VQA model. We conduct020
experiments on the VQA-CP v2 and VQA v2021
datasets to demonstrate the effectiveness of our022
proposed method.023

1 Introduction024

In recent years, visual question answering (VQA)025

has gained significant attention in deep learning026

research (Hudson and Manning, 2019). This task027

(Goyal et al., 2017; Antol et al., 2015) aims to028

answer questions about a given image through a029

model, which is required to handle multi-modal030

information from vision and language (Tan and031

Bansal, 2019). However, recent studies (Kafle and032

Kanan, 2017; Agrawal et al., 2016) have shown033

that VQA are often vulnerable to language biases,034

which cause models to rely on false associations035

between questions and answers when responding036

to questions. When the same question is presented037

with a different image, the model may still incor-038

rectly rely on the previous biased language associa-039

tion to provide a wrong answer. Therefore, many040

research studies have aimed to mitigate language 041

biases in VQA. 042

Several groundbreaking methods have been de- 043

veloped to address language bias. The most 044

straightforward method is using data augmenta- 045

tion methods to address language biases (Chen et 046

al., 2020). These methods (Liang et al., 2020; 047

Gokhale et al., 2020) build counterfactual samples 048

based on the VQA-CP v2 dataset (Agrawal et al., 049

2018), and adopt strategies such as expanding train- 050

ing samples to balance this dataset and improve 051

the VQA model’s data generalization ability. How- 052

ever, it is worth noting that the VQA-CP v2 dataset 053

is used solely to verify whether VQA models can 054

recognize language biases. Therefore, while these 055

methods can enhance the model’s generalization 056

ability under unbiased sample conditions, how to 057

perform unbiased inference without data augmenta- 058

tion remains a challenging task. Another category 059

of methods (Jing et al., 2020; Cadene et al., 2019; 060

Clark et al., 2019; Han et al., 2021) is ensemble- 061

based regularization methods. These methods train 062

the two models as a whole, using a weak model 063

to capture shallow or spurious patterns. The main 064

model can then focus on the more difficult exam- 065

ples, thus removing bias effects. However, it should 066

be noted that this method does not utilize visual 067

information fully for true connections between im- 068

ages and questions to perform answer reasoning. 069

070

Thus, we believe that solving the language bias 071

can be achieved by enhancing the involvement of 072

visual information in the model. Similar to the 073

CF-VQA (Niu et al., 2021), we choose to leverage 074

causal models in our method. The main purpose 075

of causal models is to infer causal relationships 076

between variables in large datasets, seeking links 077

between results and causes. Therefore, for VQA, 078

causal models can efficiently capture the correla- 079

tions between inputs and outputs. In the CF-VQA, 080

the authors define language bias as a direct causal 081
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(a) The proposed DAP model uses a dual-attention mechanism. First, it lever-
ages the Top-Down attention method from UpDn to generate attention weight
distribution att1. This att1 is then fed into an Attention Generation Network
(GN) to produce att2. The visual information is fused with these two attention
types (depicted by the purple and green circles marked 1), and the final feature
fusion is done (purple and green circles marked 2). The acquired features are
then input to a classification layer to obtain LogitF and LogitCF , which are
used for causality estimation.
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Figure 1: Overview of the model.

effect of question-answer pairs using Structural082

Causal Models(SCMs), and remove the causal ef-083

fect of language bias from the overall model. How-084

ever, the accuracy of a VQA model requires not085

only correctly responding to visual content, but also086

on the ability to answer incorrectly based on incor-087

rect visual information (Han et al., 2021). This088

demands not only a full understanding of the visual089

content by the model, but also an ability to establish090

the correspondence between visual and language091

information. Therefore, simply removing the in-092

fluence of language from the total causal effect093

would greatly weaken the model’s understanding094

of language.095

Compared to the prior works, we propose using096

Potential Causal Models (PCMs) (Yao et al., 2021)097

to capture the language biases in VQA models.098

PCMs are typically used to observe the outcomes099

of applying specific treatments to samples, such100

as doctors observing symptoms to prescribe treat-101

ment after a patient has taken a certain medication.102

PCMs make inferences by obtaining the causal103

effects between observed data. For VQA, we uti-104

lize attention mechanisms to focus on the visual105

content and construct observed and counterfactual106

outcomes using PCMs. This allows us to optimize107

attention’s ability to understand images, enhancing108

the involvement of visual content in VQA. Mean-109

while, prior to language bias removal in the model,110

we evaluate the current questions’ significance in111

the model during inference through a score for lan-112

guage bias evaluation, and dynamically adjust lan-113

guage bias removal in the model. Based on this, we114

attempt to assess the causal effects of VQA by mea-115

suring the relationship between the potential out-116

comes of different treatments in PCMs. Therefore, 117

we propose a de-biasing algorithm based on PCMs 118

(DAP), which utilizes dual-attention to combine 119

PCMs with VQA to achieve the goal of de-biasing. 120

The key points of DAP lie in how to apply the 121

PCMs to the VQA, and to model the causal rela- 122

tionship among vision, language, and answer. First, 123

we employ dual-attention as a treatment to estimate 124

causality using observed outcomes and counterfac- 125

tual outcomes. Secondly, we define language bias 126

as a confounding factor in PCMs and aim to remove 127

the bias by eliminating its effect on the model. As 128

depicted in Figure 1(a), we obtain two forms of 129

attention during the model inference phase and use 130

them to calculate corresponding potential results 131

to perform causal estimation. Figure 1(b) delin- 132

eates the process of the dashed line in detail. We 133

show that our method achieves substantial perfor- 134

mance improvement via extensive experiments. In 135

summary, the main contributions of this paper are 136

twofold. First, we use PCMs to capture the causal 137

relationships between observed data and evaluate 138

the causal effects of VQA by measuring the rela- 139

tionships between different potential outcomes in 140

PCMs. Second, our method employs dual-attention 141

mechanism to enhance the model’s ability to un- 142

derstand visual information and eliminate language 143

bias. 144

2 Related Work 145

2.1 Language Bias 146

In recent studies, multiple researchers have focused 147

on addressing language biases that arise in VQA, 148

which stands for VQA (Agrawal et al., 2016; Jabri 149
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et al., 2016; Manjunatha et al., 2019; Teney et al.,150

2020b). Some of the forms of language biases in151

VQA have been widely defined by scholars such152

as Han et al. (Han et al., 2021) and Wen et al.153

(Wen et al., 2021). One of the types of biases is154

the statistical distribution bias that exists between155

the train and test sets, which leads to a long-tail156

phenomenon in the answer distribution of certain157

question types in the dataset. Consequently, mod-158

els can achieve high accuracy by simply providing159

a "Yes" answer to a given question. Another type160

is the shortcut bias between the question and its161

answer, where there is a strong correlation between162

the two. For example, when asked the question163

"What sport?", the model can easily answer "ten-164

nis" and still achieve a high accuracy rate. Finally,165

Wen et al. (Wen et al., 2021) had introduced the166

concept of visual bias, which refers to the tendency167

of VQA models to focus on prominent objects in168

the image when answering questions, leading to169

the provision of incorrect answers.170

2.2 De-bias Method171

Recently, many researches have focused on miti-172

gating the impact of language biases on models,173

and a new VQA dataset (VQA-CP) has been pro-174

posed by Agrawal et al. (Agrawal et al., 2018) to175

evaluate the generalization ability of VQA mod-176

els. Currently, Debiasing methods applied to this177

dataset can be classified into several categories:178

First, methods of architectural bias force the model179

to predict answers by incorporating VQA knowl-180

edge into the model’s architecture, as in the works181

of Agrawal et al. (Agrawal et al., 2018) and Kumar182

and Verma (Kv and Mittal, 2020). Second, adver-183

sarial methods (Ramakrishnan et al., 2018) use ad-184

versarial losses to reduce known sources of bias by185

inducing errors in the model when presented with186

only the question. Third, regularization methods in-187

clude ensemble-based regularization (Cadene et al.,188

2019; Clark et al., 2019; Niu et al., 2021; Han et al.,189

2021; Han et al., 2023; Guo et al., 2019; Gat et al.,190

2020) and data-augmentation based regularization191

(Chen et al., 2020; Liang et al., 2020; Agarwal,192

2020; Teney et al., 2020a; Si et al., 2022; Wen et193

al., 2021; Chen et al., 2022; Zhu et al., 2020; Teney194

et al., 2021) to improve the robustness of the main195

model. Fourth, Structuring output loss methods,196

such as Dancette and Lebret (Dancette et al., 2020),197

Kervadec et al. (Kervadec et al., 2020), and Guo198

et al. (Guo et al., 2021), helped the model under-199

stand its errors by providing additional information200

rather than correcting them. 201

2.3 Causal Inference 202

Deep causal models have become a core method 203

based on unbiased estimation in the field of deep 204

learning (Li and Zhu, 2022). Similarly, causal 205

inference has made progress in visual-language 206

tasks. Agarwal et al. (Agarwal, 2020) proposed 207

a new metric for analyzing and measuring model 208

robustness based on the dependence of VQA on 209

language-relatedness, and generate an additional 210

VQA dataset through semantic operations. Shah et 211

al. (Shah et al., 2019) proposed a model-agnostic 212

cyclic consistent training scheme to increase the 213

model’s robustness by semantic change. Ray et al. 214

(Ray et al., 2019) introduced a new VQA dataset 215

and a quantitative metric to evaluate VQA consis- 216

tency. Wang et al. (Wang et al., 2020) proposed an 217

unsupervised region feature learning method that 218

captures inter-object relationships through causal 219

relationships and applies them to VQA. Meanwhile, 220

Niu et al. (Niu et al., 2021) proposed a counterfac- 221

tual VQA method using SCMs that indicate essen- 222

tial elements of VQA in causal graphs, removing 223

language biases through direct and indirect effects. 224

In this paper, we strengthen the involvement of 225

visual content in multi-modal inference through 226

attention mechanisms, balance confounding fac- 227

tors and enhance the model’s understanding of the 228

visual content to mitigate language biases. 229

3 Method 230

This section will cover how we apply the PCMs 231

to VQA task. For information related to PCMs, 232

please refer to Appendix 6. For the VQA, we need 233

to provide the model with inputs for vision and 234

language, denoted as V and Q respectively. As 235

illustrated in Figure 1(b), we juxtapose the con- 236

cepts in PCMs with the key elements in VQA, and 237

use dual-attention as treatment to obtain the cor- 238

responding observed and counterfactual outcomes 239

for the data V and Q, enabling the estimation of 240

causality. 241

3.1 Dual Attention 242

In the previous section, we discuss the impact of 243

confounding factors in the PCMs, which can lead 244

to false effects on the outcomes and affect the over- 245

all assessment of the model. Thus, we also take 246

into account the impact of confounding factors on 247

the VQA model when combining it with the PCMs. 248

Specifically, we define the language bias in the 249
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Figure 2: Diagram of dual attention, where Visual Features indicate the visual features processed by Fast R-CNN,
and Question Tokens indicate the question vector with a maximum length. (a) indicates the attention mechanism in
the UpDn model, and (b) indicates a simple example of the opposite attention generated in our method. The depth
of the colors indicates the degree that the model pays attention. (c) indicates the feature representation formed by
the image under the Bottom-Up attention mechanism.

VQA model as the confounding factor and elimi-250

nate its effect on the model by balancing confound-251

ing factors using the method.252

The presence of attention allows models in VQA253

to extract key information from different modali-254

ties efficiently and reason to produce answers. In255

previous work, visual-guided attention is usually256

used for multi-modal reasoning. Inspired by the257

concept of information theory (Saxe et al., 2019),258

we believe that something less likely to happen259

contains much more information than something260

certain. Analogous to the VQA, we believe that261

when a model applies a certain forward attention,262

it pays extra attention to certain objects, whereas263

its focus may shift dramatically when applying a264

reversed attention.265

Therefore, the difference in the information con-266

tained between the two attention distributions is267

greater when they are opposite, and the model can268

learn more knowledge from the reversed attention.269

Therefore, to estimate the impact of language bias270

in VQA, we relate the predicted results generated271

by both the forward and reversed attention distri-272

butions to the relationship between observed out-273

comes and counterfactual outcomes in PCMs. Con-274

sequently, we introduce the notion of dual-attention.275

As shown in Figure 2(a), the model generates k sets276

of visual features V = {v1, ..., vk} via the Bottom-277

Up attention mechanism (Anderson, 2018), and a278

set of attention distributions att1 via the Top-Down279

attention mechanism after weighting. As shown280

in Figure 2(b), given the visual features and text281

length, att1 indicates the attention weight distri-282

bution of each feature in the image under normal283

conditions. In Figure 2(c), att2 indicates the atten-284

tion distribution completely opposite to att1, where 285

objects worth attention in att1 receive less attention 286

in att2. The color scheme in the diagram indicates 287

the level of focus the model should have on a given 288

feature following a proper comprehension of the 289

question and image content. Accordingly, darker 290

colors signify greater focus the model should direct 291

toward the feature, thus yielding more information. 292

Specifically, our method generates two forms of 293

attention during the model inference phase. Firstly, 294

att1 is calculated by the UpDn model, which 295

weights each feature using the Top-Down atten- 296

tion mechanism. Secondly, after obtaining att1, 297

we introduce an attention generation network to ob- 298

tain att2, which has the opposite attention weight 299

distribution to att1. The attention calculation is 300

defined in Eq.(1): 301

att1 = f(V,Q)

att2 = F(att1),
(1) 302

where f denotes the Top-Down attention mech- 303

anism, and F represents the attention generation 304

network. 305

Finally, we utilize the two forms of attention 306

as treatments to strengthen the visual information, 307

establish the relationships between entities across 308

modalities, balance the confounding factors, and 309

weaken the false correlation between question and 310

answer. 311

3.2 Eliminating Bias 312

After the previous description, we can clearly de- 313

fine the main objective of our method: to use dual- 314

attention to balance confounding factors and re- 315

move the impact of language bias on the VQA 316
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model.317

Initially, we indicate the data in VQA as bi-318

nary pairs (vi, qi), which are the basic samples319

in our model, where vi ∈ V = {v1, ..., vn} and320

qi ∈ Q = {q1, ..., qn}. The dual-attention is321

defined as W = {W1,W2}, which denotes the322

treatments applied to the samples. LogitFi and323

LogitCF
i denote the observed and counterfactual324

outcomes, respectively. In the VQA model, they325

indicate the predicted answer probabilities under326

the corresponding attentions. The causal effect of327

a single sample under different treatments can be328

given by Eq.(2):329

LogitFi = H((W1 ∗ vi) ∗ qi)
LogitCF

i = H((W2 ∗ vi) ∗ qi)
IT̂Ei = LogitFi − LogitCF

i ,

(2)330

where H indicates the linear layer for answer clas-331

sification based on multi-modal knowledge. IT̂Ei332

stands for the difference in the results between the333

observed outcome and the counterfactual outcome334

under different treatments for a given sample.335

3.2.1 Language Bias Score336

To eliminate confounding factors, we allocate at-337

tention to the given sample to focus on visual infor-338

mation. Our method directly applies att1 and att2339

treatments simultaneously to the sample (vi, qi) and340

considers the corresponding results as the observed341

and counterfactual outcomes. Moreover, we rede-342

fine the propensity score mentioned in Section A.4343

as e(vi, qi), and rewrite Eq.(11) as Eq.(3):344

Qpred = Z(V = ∅, Q = qi)

e(vi, qi) = Softmax(Qpred),
(3)345

where V = ∅ and Q = qi indicate that we only346

input the question branch into our model, ignoring347

visual information, to evaluate the impact of the348

question branch alone on the model. This evalua-349

tion provides us with the score reflecting the impact350

of biases on answer distribution. Qpred denotes the351

answer distribution of the question branch after352

prediction by the model.353

3.2.2 Causal Estimation354

After defining the language bias scores, we proceed355

the AT̂E on our samples to eliminate their impact356

on VQA data. Firstly, for a given dataset (Q,V ),357

we rephrase the AT̂E calculation formula from358

Eq.(13) to Eq.(4): 359

AT̂E =
1

N

N∑
i=1

(
LogitFi − LogitCF

i

e(vi, qi)
)−Qpred,

(4) 360

where 1
e(vi,qi)

denotes the bias-to-answer’s impact 361

transformed into weight. We perform causal in- 362

ference for our sample by calculating the value of 363

AT̂E with visual information enhancement weight- 364

ing for model prediction. Specifically, LogitFi − 365

LogitCF
i indicates the IT̂E, which is the differ- 366

ence between the answer distribution in the pres- 367

ence and absence of counterfactual attention. This 368

method increases the contribution of essential vi- 369

sual information. Finally, to eliminate the effect 370

of bias, we subtract Qpred from the overall model 371

prediction. 372

3.2.3 Training and Testing 373

Given (Q,V ), as shown in Figure 3(a), the model 374

optimizes the entire network by minimizing the 375

cross-entropy loss between the predicted results 376

and labels. During the training phase, the causal re- 377

lationship AT̂E obtained from different attention, 378

shown in Figure 3(b), serves as the output of the 379

proposed method and is used as the prediction re- 380

sult. Simultaneously, our optimization strategy in- 381

volves minimizing the cross-entropy loss between 382

AT̂E and the label. Therefore, The final loss is the 383

combination of Lcls and Late: 384

Loss = Lcls + Late, (5) 385

where Lcls refers to the cross-entropy loss between 386

the model’s predicted probability and the ground 387

truth label. Late refers to the cross-entropy ob- 388

tained by AT̂E and the labels. 389

As shown in Figure 3(b), during the training 390

phase, DAP generates dual-attention for a given 391

(Q,V ). This process entails generating observed 392

and counterfactual outcomes. Additionally, we al- 393

low att1 to learn the differences in information 394

quantity between the two , thereby allowing it to 395

pay closer attention to the visual region that is most 396

relevant to the question. However, as shown in 397

Figure 3(c), during the testing phase, we no longer 398

generate att2 and instead only use the same net- 399

work structure as the UpDn model for testing. 400

4 Experiments 401

Our experiments are conducted primarily on the 402

VQA-CP v2 (Agrawal et al., 2018) and VQA v2 403

5



Q

V

Attention Model Logit

(a) UpDn

Q

V

Attention 1

Model

LogitF

Attention 2 LogitCF

Loss

(b) DAP-train

Q

V

Attention 1

Model

Logit

Attention 2 LogitCF

(c) DAP-test

Figure 3: The diagram illustrates the DAP during both the training and testing stages. (a) UpDn model using
attention for reasoning. (b) DAP generates two types of attention during the training phase, to enhance visual
information. (c) During the testing phase, the model remains consistent with UpDn by using only one type of
attention.

(Goyal et al., 2017) datasets. These experiments404

aim to validate the effectiveness of our method in405

mitigating language bias and its adaptability on gen-406

eral datasets. To facilitate comparison, we choose407

the UpDn model (Anderson, 2018) as the baseline408

and evaluate results according to the VQA evalu-409

ation metrics (Antol et al., 2015). Due to our use410

of attention methods, we conduct experiments and411

comparisons on the UpDn model.412

4.1 Quantitative Analysis413

4.1.1 Comparison with Other Methods414

We conduct experiments on the VQA-CP v2 and415

VQA v2 datasets using our method and compare416

them with other state-of-the-art methods on these417

datasets. The experimental results are presented in418

Table1. Specifically, we show on the VQA-CP v2419

dataset:420

(1) Our method shows significant improvement421

over the UpDn baseline model, increasing the over-422

all performance by 19%.423

(2) Additionally, compared to the CF-VQA424

model, which also utilizes a causal model and the425

same baseline model as ours, our method outper-426

forms CF-VQA by approximately 5% in terms427

of the overall performance. However, for spe-428

cific question types, CF-VQA is better than our429

method in answering "Y/N" questions, it may be430

attributed to CF-VQA’s stronger ability to correct431

distributional biases in the dataset. However, for432

other question types that require more visual in-433

formation, our method significantly outperforms434

CF-VQA. This is because our dual-attention de-435

sign continually optimizes attention and enhances436

visual content involvement in understanding visual437

information during training.438

(3) Moreover, we also compare our method with439

some other visual-aware methods. AdaVQA (Guo440

et al., 2021) achieves better results in the "Num."441

question type, but is inferior to our method in the442

"Other" question type. This is because AdaVQA443

eliminates answer bias from a feature perspective 444

but overlooks the impact of visual content and an- 445

swer diversity on the model. 446

(4) In addition, our method demonstrates com- 447

petitiveness when compare with other methods that 448

use data augmentation and balanced datasets. 449

Finally, in experiments on the VQA v2 dataset, 450

our method also achieves reasonable performance. 451

4.1.2 Analysis of Other Metrics 452

In our approach, we aim to increase the role of 453

visual content in reasoning. To assess its effective- 454

ness, we use additional metrics. In Table 2, we 455

compare our results with other methods using the 456

CGD metric. For a more detailed understanding of 457

CGD, please refer to (Han et al., 2021; Shrestha et 458

al., 2020). As shown in Table 1, compared to GGE, 459

our method performs better in "Num." question 460

type but slightly worse in "Other" question type. In 461

these two types of questions that require more vi- 462

sual information, our method demonstrates strong 463

competitiveness compared to them. Furthermore, 464

we compare our method with GGE using the CGD 465

evaluation metrics, as shown in Table 2. As the 466

CGD is used to evaluate whether visual informa- 467

tion is utilized for answer prediction, the results 468

indicate that our method score higher than the GGE 469

method in CGD evaluations. Therefore, this sug- 470

gests some improvements in our method’s ability 471

to utilize visual information for answer prediction. 472

4.2 Abalation Experiments 473

In this section, we design a series of ablation ex- 474

periments to verify the effectiveness of our DAP 475

method in bias mitigation. These experiments are 476

primarily conducted on the VQA-CP v2 dataset. 477

The Efficacy of Dual-Attention In the first 478

group of experiments, we aim to verify the impact 479

of dual-attention method on VQA models. Using 480

att2 in conjunction with two opposing weight dis- 481

tributions, dual-attention enables att1 to contain 482

more information. We compare our method with 483
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Table 1: The results of VQA-CP v2 test set and VQA v2 validation set are presented in the following table. Each
column illustrates the Best performances of each method, excluding data augmentation techniques. Our DAP
method has been compared with state-of-the-art methods on both datasets.

Data set VQA-CP v2 test VQA v2 val

Method Base All Y/N Num. Other All Y/N Num. Other

GVQA - 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
SAN - 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84
UpDn - 39.96 43.01 12.07 45.82 63.48 81.18 42.14 55.66
S-MRL - 38.46 42.85 12.81 43.20 63.10 - - -

HINT UpDn 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56
SCR UpDn 49.45 72.36 10.93 48.02 62.2 78.8 41.6 54.5
RUBi UpDn 44.23 67.05 17.48 39.61 - - - -
LMH UpDn 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69
DLP UpDn 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
DLR UpDn 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
AttAlign UpDn 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22
CF-VQA(SUM) UpDn 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30
GGE-DQ-tog UpDn 57.32 87.04 27.75 49.59 59.11 73.27 39.99 54.39
AdaVQA UpDn 54.67 72.47 53.81 45.58 - - - -
DAP(Ours) UpDn 59.00 86.23 47.70 48.19 60.54 75.34 40.92 54.48

Methods of data augmentation and additional annotation:

CSS UpDn 58.95 84.37 49.42 48.24 59.91 7.25 39.77 55.11
Mutant UpDn 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28
D-VQA UpDn 61.91 88.93 52.32 50.39 64.96 82.18 44.05 57.54
KDDAug UpDn 60.24 86.13 55.08 48.08 62.86 80.55 41.05 55.18
OLP UpDn 57.59 86.53 29.87 50.03 - - - -

the HINT (Selvaraju et al., 2019), SCR (Wu et al.,484

2019) methods on an attention level perspective.485

As shown in Table 3, applying the dual-attention486

method solely to the UpDn baseline model also487

yield performance improvement. Additionally,488

compared to other attention-based methods, our489

method demonstrate certain performance advance-490

ments, particularly in question types that require491

visual context.492

The dual-attention method is also shown to be493

competitive in these scenarios.494

PCMs Ablation Experiments In this section,495

we conduct ablation experiments to verify the im-496

pact of PCMs on debiasing. As mentioned earlier,497

the key idea of DAP is to make full use of visual498

information to reduce the influence of bias. There-499

fore, we consider comparing other works to vali-500

date the effectiveness of PCMs. Specifically, we501

transform from causal inference at the visual level502

to causal inference at the language level. Similar to503

other works, we model bias in the question-answer504

branch, and bias is considered as the counterfactual 505

outcomes in PCMs. 506

Therefore, we combine the PCMs with the VQA 507

framework using the aforementioned method and 508

compare our method to CF-VQA, which also em- 509

ploys causal models. As shown in Table 4, our 510

method exhibit similar overall performance to CF- 511

VQA. However, for specific question types, such as 512

"Y/N", PCMs underperform compared to CF-VQA. 513

Conversely, for "Num." and "Other" types, PCMs 514

outperform CF-VQA. 515

4.3 Visual Qualitative Analysis 516

In this section, we will present visual experimen- 517

tal results to demonstrate the effectiveness of our 518

method in mitigating language bias. As shown in 519

Figure 4, in the first image, DAP not only provide 520

the correct answer when ask about the shape of 521

an object, but also increase the credibility of the 522

response. For judgment-type questions, the model 523

must effectively understand the image’s content to 524
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Table 2: Experiment on the evaluation metric CGD
using the DAP method on the VQA-CP v2 dataset. Best
results are displayed in each column.

Method CGR CGW CGD

UpDn 44.27 40.63 3.91
HINT 45.21 34.87 10.34
RUBi 39.60 33.33 6.27
LM 47.30 35.97 11.33

LMH 46.44 35.84 10.60
CSS 46.70 37.89 8.87

GGE-D 38.79 24.48 14.31
GGE-DQ-iter 44.35 27.91 16.44
GGE-DQ-tog 42.74 27.47 15.27
DAP(Ours) 46.83 30.21 16.62

Table 3: For the ablation experiments with dual-
attention on VQA-CP v2 dataset, DAP method is com-
pared with other attention-related VQA debiasing tech-
niques, using UpDn as the baseline model. Best results
are displayed in each column.

All Y/N Num. Other

UpDn 39.96 43.01 12.07 45.82
LMH 52.01 72.58 31.12 46.97

HINT 46.73 67.27 10.61 45.88
SCR 49.45 72.36 10.93 48.02

DAP(Ours) 51.15 83.25 24.02 41.78

provide an accurate answer. DAP correctly com-525

prehend the scene of the second image and provide526

the correct response. Counting problems are the527

most challenging types of questions in VQA. In528

the third image, DAP accurately identify the red529

luggage object and correctly answer the question.530

Additionally, in the fourth image, the model needs531

to understand the image’s content and respond to532

the counting question. The UpDn baseline model’s533

reasoning process leads to a low possibility of ob-534

taining the correct response. However, our method535

generates precise reasoning and provides accurate536

responses. This method increases the participation537

of visual information in multi-modal reasoning.538

5 Conclusion539

In this paper, we propose a de-biasing method540

based on PCMs (DAP). We aim to eliminate lan-541

guage bias in VQA models while enhancing the542

influence of the visual content on the model. We543

consider language bias as a confounding factor in544

Table 4: For the ablation experiments of the PCMs on
the VQA-CP v2 dataset, the DAP method indicates us-
ing only the PCMs, while the DAP(att) method indicates
the simplified version with dual-attention. Best results
are displayed in each column.

All Y/N Num. Other

UpDn 39.82 42.40 12.23 46.05

CF-VQA(SUM) 53.72 90.86 13.08 44.98
DAP(Ours) 53.77 79.02 22.69 49.07

Question: What shape is on the jesters hat? GGE OursUpDn

star

dragon

bird

fish

star

triangle triangle

star

fish

bird

rectangle

stars

fish

bird

triangle

(1)

Question: Would you eat a hot dog at this venue? GGE OursUpDn

no

yes no

yes

not sure

unknown

don't know

not sure

unknown

don't konw

no

yes

not sure

unknown

don't konw

(2)
Question: How many red luggages are there? GGE OursUpDn

2

3

4

1

0

2

1 3

1

0

5

4

3

4

0

(3)

Question: How many peple are going to eat? GGE

1

2

3

0

4

Ours

2

1

0

3

4

UpDn

1

2

0

3

4

(4)

Figure 4: The results of qualitative analysis show the
flow of our model when making predictions by masking
different image regions so that the model focuses on the
effective ones

the PCMs and propose to use dual-attention to 545

construct observed and counterfactual outcomes. 546

Through balancing the confounding factors, we are 547

able to eliminate the influence of the language bias 548

on the model. The effectiveness of our method is 549

demonstrated through extensive experiments. In 550

addition, we believe that enhancing the model’s 551

understanding of visual content is a future research 552

direction for the elimination of language bias. Our 553

study demonstrates the significant experimental sig- 554

nificance of the causal model in visual language 555

tasks with reasonable experimental designs. 556

6 Limitations 557

Firstly, our method’s performance depends on the 558

dual-attention algorithm, and when this algorithm 559

fails to effectively focus on relevant areas of the 560

image, it significantly impacts model performance. 561

Secondly, the correspondence between biases in 562

VQA and causal effects may be more complex in 563

real situations. Different types of biases may affect 564

the model’s causal effects differently, thus requir- 565

ing distinct considerations. 566
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A Appendix 779

A.1 The Three Fundamental Elements 780

This section introduces the three fundamental ele- 781

ments of PCMs: unit, treatment, and outcome. A 782

unit is the smallest physical entity used in causal 783

inference. Consistent with the original paper (Yao 784
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et al., 2021), we use the terms "sample" and "unit"785

interchangeably in this paper. Treatment refers to786

the action or policy that the model applies to a unit,787

and the outcome indicates the state of the unit after788

a certain treatment. That is, by applying some treat-789

ment to a unit, we can observe the corresponding790

outcome.791

The outcomes under PCMs can be classified into792

three categories based on the effects of treatment793

(Yao et al., 2021):794

• Potential outcomes: For any sample, there ex-795

ist potential outcomes corresponding to any796

treatment, denoted as Y (wi), where wi indi-797

cates one of the treatments, and the set of all798

treatments is denoted by W = {w1, ...wn}.799

• Observed outcomes: Observed outcome Y F800

indicates the actual manifestation of potential801

outcomes when a treatment is applied to a802

sample. The relationship between observed803

and potential outcomes is defined by Eq.(6):804

Y F = Y (wi), (6)805

where Y F indicates the observed outcomes,806

and Y (wi) is the outcome of actually applying807

a specific treatment wi.808

• Counterfactual outcomes: The outcome of a809

sample under an alternative treatment is de-810

fined by Eq.(7):811

Y CF = Y (wj), (7)812

where Y CF indicates the potential outcomes813

that are not observed. Y (wj) denotes the out-814

come under a different treatment wj , where815

wj ∈ W and j ̸= i.816

Notably, counterfactual outcomes are also po-817

tential outcomes, and potential outcomes com-818

prise both observed and counterfactual out-819

comes. Furthermore, for binary treatments820

(w ∈ {0, 1}), observed and counterfactual821

outcomes can be defined by Eq.(8):822

Y F = Y (w)

Y CF = Y (1− w),
(8)823

where w ∈ {0, 1} denotes the treatment ap-824

plied to the sample, while 1− w indicates the825

alternative potential treatment applied to the826

sample at the same time.827

A.2 Treatment Effect 828

Treatment effect defines the performance of a unit 829

before and after taking a treatment, and is typically 830

estimated by the outcomes (Yao et al., 2021; Rubin, 831

1974; Splawa-Neyman et al., 1990). 832

• Individual Treatment Effect (IT̂E): The dif- 833

ference between the observed and counterfac- 834

tual outcomes of the i-th unit. The IT̂E of 835

unit i is defined as Eq.(9): 836

IT̂Ei = Yi(W = 1)− Yi(W = 0) (9) 837

where Yi(W = 1) and Yi(W = 0) denote the 838

observed and counterfactual outcomes for unit 839

i respectively. 840

• Average Treatment Effect (AT̂E): The differ- 841

ence between the observed and counterfactual 842

outcomes in the overall sample, as defined as 843

Eq.(10): 844

AT̂E = E[Y (W = 1)− Y (W = 0)]

=
1

N

N∑
i=1

(Yi(W = 1)− Yi(W = 0))

=
1

N

N∑
i=1

ITEi,

(10) 845

where Y (W = 1) and Y (W = 0) indicate 846

the observed and counterfactual outcomes re- 847

spectively, and N denotes the total number of 848

samples. 849

A.3 Confounding Factor 850

The essence of a confounding factor is mixing the 851

effects of various factors. When multiple factors in- 852

tertwine with the effects of the outcome, correctly 853

assessing the true impact of a specific factor on 854

the outcome can be challenging. Specifically, in 855

the context of the PCMs, confounding factors are 856

a special type of variables that influence treatment 857

allocation and the final outcome, resulting in spuri- 858

ous effects. 859

For instance, "age" can be regarded as a con- 860

founding factor when evaluating the effect of a 861

particular drug treatment on a given disease, and 862

failing to account for age can lead to biased out- 863

comes in the final assessment. This bias is a spuri- 864

ous effect of confounding factors on evaluating the 865

treatment. Therefore, in the PCMs, it is necessary 866

to account for the influence of confounding factors 867

to obtain a correct estimate of the treatment effect. 868
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A.4 Eliminating Confounding Factors869

Accounting for the influence of confounding fac-870

tors is a crucial element of causal inference mod-871

els. This subsection primarily describes the meth-872

ods for eliminating confounding factors (Yao et al.,873

2021; Imbens, 2004; Rosenbaum and Rubin, 1983;874

Rosenbaum, 1987).875

• Selection bias: The observed outcomes cannot876

indicate the outcomes of interest, due to the877

influence of confounding factors on the choice878

of treatment, leading to a biased phenomenon.879

• Propensity score: The probability of taking a880

specific treatment under a given background881

condition is defined as Eq.(11):882

e(xi) = Pr(W = 1|X = xi), (11)883

where Pr represents conditional probability,884

W = 1 indicates taking a specific treatment,885

X and xi respectively refer to the sample set886

and a specific sample i, and e(xi) denotes887

the probability of sample i taking a specific888

treatment given the sample set X .889

• Inverse propensity weighting: The re-890

weighting of samples based on the propensity891

score allotting a new weight to each sample,892

defined as Eq.(12):893

r =
W

e(xi)
+

1−W

1− e(xi)
, (12)894

where W denotes some treatment, e(xi) is895

the propensity score, and r indicates inverse896

propensity weighting. Specifically, when the897

given sample xi is inclined to select a certain898

treatment, it implies that this treatment would899

achieve better results under the model. There-900

fore, we use weight allocation to balance the901

effect of this treatment.902

• Inverse propensity weighting AT̂E: The903

AT̂E after re-weighting the sample, defined904

as Eq.(13):905

AT̂E =
1

N

N∑
i=1

WiY
F
i

e(xi)
− 1

N

N∑
i=1

(1−Wi)Y
CF
i

1− e(xi)
.

(13)906

After re-weighting the sample using propen-907

sity scores, it is sufficient to eliminate the in-908

fluence of selection bias when taking different909

treatments. At this point, the difference be- 910

tween the observed outcomes and the counter- 911

factual outcomes can be utilized to eliminate 912

the impact of confounding factors. 913

A.5 Language Bias Score 914

In Sections A.4 and 3.2.1, we introduce the conver- 915

sion from propensity score to language bias score, 916

but we do not maintain their formal unity. There- 917

fore, we will give a detailed introduction to Eq.(11) 918

and Eq.(4). 919

First, in Eq.(11), e(x) represents the conditional 920

probability that any study subject is allocated to 921

the treatment group or control group given the 922

conditions, ultimately achieving a balanced sam- 923

ple between different groups. However, in our 924

method, we adopt the dual-attention treatment for 925

each batch of samples simultaneously, so no sam- 926

ple grouping is done. Secondly, we redefine the 927

propensity score as a language bias score in Eq.(3), 928

which is the score for predicting the answer, in 929

the case of modeling the language bias. Therefore, 930

in Eq.(4), we only use 1
e(vi,qi)

as the re-weighted 931

score. Additionally, to maintain consistency with 932

the re-weighting method in Eq.(13) and the compu- 933

tation formula for AT̂E is defined as Eq.(14): 934

AT̂E =
1

N

N∑
i=1

(
LogitFi
e(vi, qi)

− LogitCF
i

1− e(vi, qi)
)−Qpred.

(14) 935

We also conduct experiments using the same 936

weighting method, as shown in Table 5. 937

A.6 Daul-Attention Simplified Version 938

In addition, to demonstrate the effectiveness of 939

dual-attention on PCMs, we conduct a simplified 940

version which is called DAP(att). Rather than using 941

an attention generation network to generate att2, 942

here we obtain att2 by simply using Eq. (15): 943

att2 = 1− att1. (15) 944

Alternatively, we obtain att2 directly by sub- 945

tracting the weights from att1 and combine it with 946

the PCMs for the experiment. As shown in Table 947

6, DAP(att) indicates a simplified version of our 948

dual attention approach. It is evident that the model 949

achieves higher overall accuracy, particularly for 950

question types that require more visual content. 951

A.7 Attention Visualization 952

Figure 5 displays the selected attention visualiza- 953

tion examples for analysis. In these specific exam- 954
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Table 5: The experimental results of re-weighting
method AT̂E calculation. Best results are displayed in
each column.

All Y/N Num. Other

UpDn 39.82 42.40 12.23 46.05

DAP(Ours) 57.61 80.66 48.94 45.15

Table 6: The experimental results of simplified version
of dual-attention. Best results are displayed in each
column.

All Y/N Num. Other

UpDn 39.82 42.40 12.23 46.05

DAP(att) 57.82 80.82 49.24 45.16

ples, att1 accurately captures visual information,955

but att2 only focuses on irrelevant image objects.956

The attention weight of the corresponding image957

is illustrated in Figure 6.958
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What drink is shown? att1 Visualization att2 Visualization

Where are the elephants? att1 Visualization att2 Visualization

What is this in the picture? att1 Visualization att2 Visualization

What color is the water? att1 Visualization att2 Visualization

What color is the water? att1 Visualization att2 Visualization

Figure 5: The visualization results of dual-attention indicate the original image and the visualized results of the two
types of attention, respectively.
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Att1 Att2

Att1 Att2

Att1 Att2

Att1 Att2

Att1 Att2

Figure 6: Example of Attention Weight Heatmap Distribution
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