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Abstract

The main goal of Visual Question Answering
(VQA) is to effectively learn useful informa-
tion from vision and language to perform an-
swer reasoning. However, recent studies have
shown that VQA models often have language
bias, which is the false correlations between
questions and answers, rather than truly ex-
tracting answers from multi-modal knowledge.
Existing methods mainly focus on modeling
the question part to capture the language bias,
while ignoring the influence of visual content
on the model. To address this issue, in this pa-
per, we combine potential causal models with
VQA models, using dual-attention as treatment,
and treating language bias as a confounding
factor in the model. We enhance the role of
visual information in the VQA model through
the construction of observed and counterfactual
outcomes, thus eliminating the impact of lan-
guage bias on the VQA model. We conduct
experiments on the VQA-CP v2 and VQA v2
datasets to demonstrate the effectiveness of our
proposed method.

1 Introduction

In recent years, visual question answering (VQA)
has gained significant attention in deep learning
research (Hudson and Manning, 2019). This task
(Goyal et al., 2017; Antol et al., 2015) aims to
answer questions about a given image through a
model, which is required to handle multi-modal
information from vision and language (Tan and
Bansal, 2019). However, recent studies (Kafle and
Kanan, 2017; Agrawal et al., 2016) have shown
that VQA are often vulnerable to language biases,
which cause models to rely on false associations
between questions and answers when responding
to questions. When the same question is presented
with a different image, the model may still incor-
rectly rely on the previous biased language associa-
tion to provide a wrong answer. Therefore, many

research studies have aimed to mitigate language
biases in VQA.

Several groundbreaking methods have been de-
veloped to address language bias. The most
straightforward method is using data augmenta-
tion methods to address language biases (Chen et
al., 2020). These methods (Liang et al., 2020;
Gokhale et al., 2020) build counterfactual samples
based on the VQA-CP v2 dataset (Agrawal et al.,
2018), and adopt strategies such as expanding train-
ing samples to balance this dataset and improve
the VQA model’s data generalization ability. How-
ever, it is worth noting that the VQA-CP v2 dataset
is used solely to verify whether VQA models can
recognize language biases. Therefore, while these
methods can enhance the model’s generalization
ability under unbiased sample conditions, how to
perform unbiased inference without data augmenta-
tion remains a challenging task. Another category
of methods (Jing et al., 2020; Cadene et al., 2019;
Clark et al., 2019; Han et al., 2021) is ensemble-
based regularization methods. These methods train
the two models as a whole, using a weak model
to capture shallow or spurious patterns. The main
model can then focus on the more difficult exam-
ples, thus removing bias effects. However, it should
be noted that this method does not utilize visual
information fully for true connections between im-
ages and questions to perform answer reasoning.

Thus, we believe that solving the language bias
can be achieved by enhancing the involvement of
visual information in the model. Similar to the
CF-VQA (Niu et al., 2021), we choose to leverage
causal models in our method. The main purpose
of causal models is to infer causal relationships
between variables in large datasets, seeking links
between results and causes. Therefore, for VQA,
causal models can efficiently capture the correla-
tions between inputs and outputs. In the CF-VQA,
the authors define language bias as a direct causal
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(a) The proposed DAP model uses a dual-attention mechanism. First, it lever-
ages the Top-Down attention method from UpDn to generate attention weight
distribution att;. This att; is then fed into an Attention Generation Network

(b) The Correspondence Between the
Three Elements in PCM and Bias Issues
in VQA

(GN) to produce atte. The visual information is fused with these two attention
types (depicted by the purple and green circles marked 1), and the final feature
fusion is done (purple and green circles marked 2). The acquired features are
then input to a classification layer to obtain Logit™ and Logit® F', which are

used for causality estimation.

Figure 1: Overview of the model.

effect of question-answer pairs using Structural
Causal Models(SCMs), and remove the causal ef-
fect of language bias from the overall model. How-
ever, the accuracy of a VQA model requires not
only correctly responding to visual content, but also
on the ability to answer incorrectly based on incor-
rect visual information (Han et al., 2021). This
demands not only a full understanding of the visual
content by the model, but also an ability to establish
the correspondence between visual and language
information. Therefore, simply removing the in-
fluence of language from the total causal effect
would greatly weaken the model’s understanding
of language.

Compared to the prior works, we propose using
Potential Causal Models (PCMs) (Yao et al., 2021)
to capture the language biases in VQA models.
PCMs are typically used to observe the outcomes
of applying specific treatments to samples, such
as doctors observing symptoms to prescribe treat-
ment after a patient has taken a certain medication.
PCMs make inferences by obtaining the causal
effects between observed data. For VQA, we uti-
lize attention mechanisms to focus on the visual
content and construct observed and counterfactual
outcomes using PCMs. This allows us to optimize
attention’s ability to understand images, enhancing
the involvement of visual content in VQA. Mean-
while, prior to language bias removal in the model,
we evaluate the current questions’ significance in
the model during inference through a score for lan-
guage bias evaluation, and dynamically adjust lan-
guage bias removal in the model. Based on this, we
attempt to assess the causal effects of VQA by mea-
suring the relationship between the potential out-

comes of different treatments in PCMs. Therefore,
we propose a de-biasing algorithm based on PCMs
(DAP), which utilizes dual-attention to combine
PCMs with VQA to achieve the goal of de-biasing.

The key points of DAP lie in how to apply the
PCMs to the VQA, and to model the causal rela-
tionship among vision, language, and answer. First,
we employ dual-attention as a treatment to estimate
causality using observed outcomes and counterfac-
tual outcomes. Secondly, we define language bias
as a confounding factor in PCMs and aim to remove
the bias by eliminating its effect on the model. As
depicted in Figure 1(a), we obtain two forms of
attention during the model inference phase and use
them to calculate corresponding potential results
to perform causal estimation. Figure 1(b) delin-
eates the process of the dashed line in detail. We
show that our method achieves substantial perfor-
mance improvement via extensive experiments. In
summary, the main contributions of this paper are
twofold. First, we use PCMs to capture the causal
relationships between observed data and evaluate
the causal effects of VQA by measuring the rela-
tionships between different potential outcomes in
PCMs. Second, our method employs dual-attention
mechanism to enhance the model’s ability to un-
derstand visual information and eliminate language
bias.

2 Related Work

2.1 Language Bias

In recent studies, multiple researchers have focused
on addressing language biases that arise in VQA,
which stands for VQA (Agrawal et al., 2016; Jabri



et al., 2016; Manjunatha et al., 2019; Teney et al.,
2020b). Some of the forms of language biases in
VQA have been widely defined by scholars such
as Han er al. (Han et al., 2021) and Wen et al.
(Wen et al., 2021). One of the types of biases is
the statistical distribution bias that exists between
the train and test sets, which leads to a long-tail
phenomenon in the answer distribution of certain
question types in the dataset. Consequently, mod-
els can achieve high accuracy by simply providing
a "Yes" answer to a given question. Another type
is the shortcut bias between the question and its
answer, where there is a strong correlation between
the two. For example, when asked the question
"What sport?", the model can easily answer "ten-
nis" and still achieve a high accuracy rate. Finally,
Wen et al. (Wen et al., 2021) had introduced the
concept of visual bias, which refers to the tendency
of VQA models to focus on prominent objects in
the image when answering questions, leading to
the provision of incorrect answers.

2.2 De-bias Method

Recently, many researches have focused on miti-
gating the impact of language biases on models,
and a new VQA dataset (VQA-CP) has been pro-
posed by Agrawal et al. (Agrawal et al., 2018) to
evaluate the generalization ability of VQA mod-
els. Currently, Debiasing methods applied to this
dataset can be classified into several categories:
First, methods of architectural bias force the model
to predict answers by incorporating VQA knowl-
edge into the model’s architecture, as in the works
of Agrawal et al. (Agrawal et al., 2018) and Kumar
and Verma (Kv and Mittal, 2020). Second, adver-
sarial methods (Ramakrishnan et al., 2018) use ad-
versarial losses to reduce known sources of bias by
inducing errors in the model when presented with
only the question. Third, regularization methods in-
clude ensemble-based regularization (Cadene et al.,
2019; Clark et al., 2019; Niu et al., 2021; Han et al.,
2021; Han et al., 2023; Guo et al., 2019; Gat et al.,
2020) and data-augmentation based regularization
(Chen et al., 2020; Liang et al., 2020; Agarwal,
2020; Teney et al., 2020a; Si et al., 2022; Wen et
al., 2021; Chen et al., 2022; Zhu et al., 2020; Teney
et al., 2021) to improve the robustness of the main
model. Fourth, Structuring output loss methods,
such as Dancette and Lebret (Dancette et al., 2020),
Kervadec et al. (Kervadec et al., 2020), and Guo
et al. (Guo et al., 2021), helped the model under-
stand its errors by providing additional information

rather than correcting them.

2.3 Causal Inference

Deep causal models have become a core method
based on unbiased estimation in the field of deep
learning (Li and Zhu, 2022). Similarly, causal
inference has made progress in visual-language
tasks. Agarwal et al. (Agarwal, 2020) proposed
a new metric for analyzing and measuring model
robustness based on the dependence of VQA on
language-relatedness, and generate an additional
VQA dataset through semantic operations. Shah et
al. (Shah et al., 2019) proposed a model-agnostic
cyclic consistent training scheme to increase the
model’s robustness by semantic change. Ray et al.
(Ray et al., 2019) introduced a new VQA dataset
and a quantitative metric to evaluate VQA consis-
tency. Wang et al. (Wang et al., 2020) proposed an
unsupervised region feature learning method that
captures inter-object relationships through causal
relationships and applies them to VQA. Meanwhile,
Niu et al. (Niu et al., 2021) proposed a counterfac-
tual VQA method using SCMs that indicate essen-
tial elements of VQA in causal graphs, removing
language biases through direct and indirect effects.
In this paper, we strengthen the involvement of
visual content in multi-modal inference through
attention mechanisms, balance confounding fac-
tors and enhance the model’s understanding of the
visual content to mitigate language biases.

3 Method

This section will cover how we apply the PCMs
to VQA task. For information related to PCMs,
please refer to Appendix 6. For the VQA, we need
to provide the model with inputs for vision and
language, denoted as V' and @) respectively. As
illustrated in Figure 1(b), we juxtapose the con-
cepts in PCMs with the key elements in VQA, and
use dual-attention as treatment to obtain the cor-
responding observed and counterfactual outcomes
for the data V' and @, enabling the estimation of
causality.

3.1 Dual Attention

In the previous section, we discuss the impact of
confounding factors in the PCMs, which can lead
to false effects on the outcomes and affect the over-
all assessment of the model. Thus, we also take
into account the impact of confounding factors on
the VQA model when combining it with the PCMs.
Specifically, we define the language bias in the



(a) Bottom-Up attention feature repre-
sentation

Figure 2: Diagram of dual attention, where Visual Features indicate the visual features processed by Fast R-CNN,
and Question Tokens indicate the question vector with a maximum length. (a) indicates the attention mechanism in
the UpDn model, and (b) indicates a simple example of the opposite attention generated in our method. The depth
of the colors indicates the degree that the model pays attention. (c) indicates the feature representation formed by

the image under the Bottom-Up attention mechanism.

VQA model as the confounding factor and elimi-
nate its effect on the model by balancing confound-
ing factors using the method.

The presence of attention allows models in VQA
to extract key information from different modali-
ties efficiently and reason to produce answers. In
previous work, visual-guided attention is usually
used for multi-modal reasoning. Inspired by the
concept of information theory (Saxe et al., 2019),
we believe that something less likely to happen
contains much more information than something
certain. Analogous to the VQA, we believe that
when a model applies a certain forward attention,
it pays extra attention to certain objects, whereas
its focus may shift dramatically when applying a
reversed attention.

Therefore, the difference in the information con-
tained between the two attention distributions is
greater when they are opposite, and the model can
learn more knowledge from the reversed attention.
Therefore, to estimate the impact of language bias
in VQA, we relate the predicted results generated
by both the forward and reversed attention distri-
butions to the relationship between observed out-
comes and counterfactual outcomes in PCMs. Con-
sequently, we introduce the notion of dual-attention.
As shown in Figure 2(a), the model generates k sets
of visual features V' = {v1, ..., vx } via the Bottom-
Up attention mechanism (Anderson, 2018), and a
set of attention distributions att; via the Top-Down
attention mechanism after weighting. As shown
in Figure 2(b), given the visual features and text
length, att; indicates the attention weight distri-
bution of each feature in the image under normal
conditions. In Figure 2(c), atts indicates the atten-

tion distribution completely opposite to atty, where
objects worth attention in att; receive less attention
in atty. The color scheme in the diagram indicates
the level of focus the model should have on a given
feature following a proper comprehension of the
question and image content. Accordingly, darker
colors signify greater focus the model should direct
toward the feature, thus yielding more information.

Specifically, our method generates two forms of
attention during the model inference phase. Firstly,
atty is calculated by the UpDn model, which
weights each feature using the Top-Down atten-
tion mechanism. Secondly, after obtaining atty,
we introduce an attention generation network to ob-
tain atty, which has the opposite attention weight
distribution to att;. The attention calculation is
defined in Eq.(1):

atty = f(V,Q)

attg = F(attl), (1)

where f denotes the Top-Down attention mech-
anism, and F represents the attention generation
network.

Finally, we utilize the two forms of attention
as treatments to strengthen the visual information,
establish the relationships between entities across
modalities, balance the confounding factors, and
weaken the false correlation between question and
answer.

3.2 Eliminating Bias

After the previous description, we can clearly de-
fine the main objective of our method: to use dual-
attention to balance confounding factors and re-
move the impact of language bias on the VQA



model.

Initially, we indicate the data in VQA as bi-
nary pairs (v;,q;), which are the basic samples
in our model, where v; € V = {vy,...,v,} and
g € Q = {q1,-,qn}. The dual-attention is
defined as W = {W,Ws}, which denotes the
treatments applied to the samples. Logitf and
LogitiCF denote the observed and counterfactual
outcomes, respectively. In the VQA model, they
indicate the predicted answer probabilities under
the corresponding attentions. The causal effect of
a single sample under different treatments can be
given by Eq.(2):

LogitlF = H((W7 xv;) % q;)
LogitiCF = H((Wa % v;) * q;) )
ITE; = Logit!’ — Logit¢'T

where H indicates the linear layer for answer clas-
sification based on multi-modal knowledge. TE;
stands for the difference in the results between the
observed outcome and the counterfactual outcome
under different treatments for a given sample.

3.2.1 Language Bias Score

To eliminate confounding factors, we allocate at-
tention to the given sample to focus on visual infor-
mation. Our method directly applies att; and atto
treatments simultaneously to the sample (v;, ¢;) and
considers the corresponding results as the observed
and counterfactual outcomes. Moreover, we rede-
fine the propensity score mentioned in Section A.4
as e(v;, ¢;), and rewrite Eq.(11) as Eq.(3):

Qpred = Z(V = QaQ = Qi)
B(Ui, Qi) = Softmax(Qpred)a

where V' = @ and ) = ¢; indicate that we only
input the question branch into our model, ignoring
visual information, to evaluate the impact of the
question branch alone on the model. This evalua-
tion provides us with the score reflecting the impact
of biases on answer distribution. Q¢4 denotes the
answer distribution of the question branch after
prediction by the model.

3)

3.2.2 Causal Estimation

After defining the language bias scores, we proceed
the AT'E on our samples to eliminate their impact
on VQA data. Firstly, for a given dataset (Q, V),
we rephrase the ATE calculation formula from

Eq.(13) to Eq.(4):
. 1 Y Logit!" — Logit¢"
ATE = — ¢ L — Qpred;
N Zz;( e(vi;Qi) ) QP ed
4)
where ﬁ denotes the bias-to-answer’s impact

transformed into weight. We perform causal in-
ference for our sample by calculating the value of
AT'E with visual information enhancement weight-
ing for model prediction. Specifically, Logit!" —
Logz’tch indicates the ITE, which is the differ-
ence between the answer distribution in the pres-
ence and absence of counterfactual attention. This
method increases the contribution of essential vi-
sual information. Finally, to eliminate the effect
of bias, we subtract )},;.q from the overall model
prediction.

3.2.3 Training and Testing

Given (Q, V), as shown in Figure 3(a), the model
optimizes the entire network by minimizing the
cross-entropy loss between the predicted results
and labels. During the training phase, the causal re-
lationship AT'E obtained from different attention,
shown in Figure 3(b), serves as the output of the
proposed method and is used as the prediction re-
sult. Simultaneously, our optimization strategy in-
volves minimizing the cross-entropy loss between
ATE and the label. Therefore, The final loss is the
combination of L. and Lge:

Loss = Ecls + Eatea (5)

where L refers to the cross-entropy loss between
the model’s predicted probability and the ground
truth label. L, refers to the cross-entropy ob-
tained by AT'E and the labels.

As shown in Figure 3(b), during the training
phase, DAP generates dual-attention for a given
(Q, V). This process entails generating observed
and counterfactual outcomes. Additionally, we al-
low att; to learn the differences in information
quantity between the two , thereby allowing it to
pay closer attention to the visual region that is most
relevant to the question. However, as shown in
Figure 3(c), during the testing phase, we no longer
generate atty and instead only use the same net-
work structure as the UpDn model for testing.

4 Experiments

Our experiments are conducted primarily on the
VQA-CP v2 (Agrawal et al., 2018) and VQA v2
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Figure 3: The diagram illustrates the DAP during both the training and testing stages. (a) UpDn model using
attention for reasoning. (b) DAP generates two types of attention during the training phase, to enhance visual
information. (c) During the testing phase, the model remains consistent with UpDn by using only one type of

attention.

(Goyal et al., 2017) datasets. These experiments
aim to validate the effectiveness of our method in
mitigating language bias and its adaptability on gen-
eral datasets. To facilitate comparison, we choose
the UpDn model (Anderson, 2018) as the baseline
and evaluate results according to the VQA evalu-
ation metrics (Antol et al., 2015). Due to our use
of attention methods, we conduct experiments and
comparisons on the UpDn model.

4.1 Quantitative Analysis

4.1.1 Comparison with Other Methods

We conduct experiments on the VQA-CP v2 and
VQA v2 datasets using our method and compare
them with other state-of-the-art methods on these
datasets. The experimental results are presented in
Tablel. Specifically, we show on the VQA-CP v2
dataset:

(1) Our method shows significant improvement
over the UpDn baseline model, increasing the over-
all performance by 19%.

(2) Additionally, compared to the CF-VQA
model, which also utilizes a causal model and the
same baseline model as ours, our method outper-
forms CF-VQA by approximately 5% in terms
of the overall performance. However, for spe-
cific question types, CF-VQA is better than our
method in answering "Y/N" questions, it may be
attributed to CF-VQA'’s stronger ability to correct
distributional biases in the dataset. However, for
other question types that require more visual in-
formation, our method significantly outperforms
CF-VQA. This is because our dual-attention de-
sign continually optimizes attention and enhances
visual content involvement in understanding visual
information during training.

(3) Moreover, we also compare our method with
some other visual-aware methods. AdaVQA (Guo
et al., 2021) achieves better results in the "Num."
question type, but is inferior to our method in the
"Other" question type. This is because AdaVQA

eliminates answer bias from a feature perspective
but overlooks the impact of visual content and an-
swer diversity on the model.

(4) In addition, our method demonstrates com-
petitiveness when compare with other methods that
use data augmentation and balanced datasets.

Finally, in experiments on the VQA v2 dataset,
our method also achieves reasonable performance.

4.1.2 Analysis of Other Metrics

In our approach, we aim to increase the role of
visual content in reasoning. To assess its effective-
ness, we use additional metrics. In Table 2, we
compare our results with other methods using the
CGD metric. For a more detailed understanding of
CGD, please refer to (Han et al., 2021; Shrestha et
al., 2020). As shown in Table 1, compared to GGE,
our method performs better in "Num." question
type but slightly worse in "Other" question type. In
these two types of questions that require more vi-
sual information, our method demonstrates strong
competitiveness compared to them. Furthermore,
we compare our method with GGE using the CGD
evaluation metrics, as shown in Table 2. As the
CGD is used to evaluate whether visual informa-
tion is utilized for answer prediction, the results
indicate that our method score higher than the GGE
method in CGD evaluations. Therefore, this sug-
gests some improvements in our method’s ability
to utilize visual information for answer prediction.

4.2 Abalation Experiments

In this section, we design a series of ablation ex-
periments to verify the effectiveness of our DAP
method in bias mitigation. These experiments are
primarily conducted on the VQA-CP v2 dataset.
The Efficacy of Dual-Attention In the first
group of experiments, we aim to verify the impact
of dual-attention method on VQA models. Using
atty in conjunction with two opposing weight dis-
tributions, dual-attention enables att; to contain
more information. We compare our method with



Table 1: The results of VQA-CP v2 test set and VQA v2 validation set are presented in the following table. Each
column illustrates the Best performances of each method, excluding data augmentation techniques. Our DAP
method has been compared with state-of-the-art methods on both datasets.

Data set VQA-CP v2 test VQA v2 val

Method Base All Y/N Num. Other All Y/N Num. Other
GVQA - 31.30 5799 13.68 22.14 48.24 72.03 31.17 34.65
SAN - 2496 38.35 11.14 21.74 5241 70.06 39.28 47.84
UpDn - 39.96 43.01 12.07 4582 63.48 81.18 42.14 55.66
S-MRL - 38.46 42.85 12.81 4320 63.10 - - -
HINT UpDn 46.73 67.27 10.61 4588 6338 81.18 42.99 55.56
SCR UpDn 4945 7236 1093 48.02 622 788 416 545
RUBI UpDn 44.23 67.05 17.48 39.61 - - - -
LMH UpDn 52.01 7258 31.12 4697 5635 65.06 37.63 54.69
DLP UpDn 48.87 7099 18.72 4557 5796 76.82 3933 48.54
DLR UpDn 48.87 7099 18.72 4557 5796 76.82 39.33 48.54
AttAlign UpDn 39.37 43.02 11.89 4500 6324 8099 4255 5522
CF-VQA(SUM) UpDn 53.55 91.15 13.03 4497 63.54 82.51 43.96 54.30
GGE-DQ-tog UpDn 57.32 87.04 27.75 49.59 59.11 7327 3999 54.39
AdaVQA UpDn 54.67 7247 53.81 4558 - - - -
DAP(Ours) UpDn 59.00 86.23 47.70 48.19 60.54 7534 40.92 5448
Methods of data augmentation and additional annotation:

CSS UpDn 58.95 8437 4942 4824 5991 7.25 3977 55.11
Mutant UpDn 61.72 8890 49.68 50.78 62.56 82.07 42.52 53.28
D-VQA UpDn 61.91 8893 5232 5039 6496 82.18 44.05 57.54
KDDAug UpDn 60.24 86.13 55.08 48.08 62.86 80.55 41.05 55.18
OLP UpDn 57.59 86.53 29.87 50.03 - - - -

the HINT (Selvaraju et al., 2019), SCR (Wu et al.,
2019) methods on an attention level perspective.

As shown in Table 3, applying the dual-attention
method solely to the UpDn baseline model also
yield performance improvement. Additionally,
compared to other attention-based methods, our
method demonstrate certain performance advance-
ments, particularly in question types that require
visual context.

The dual-attention method is also shown to be
competitive in these scenarios.

PCMs Ablation Experiments In this section,
we conduct ablation experiments to verify the im-
pact of PCMs on debiasing. As mentioned earlier,
the key idea of DAP is to make full use of visual
information to reduce the influence of bias. There-
fore, we consider comparing other works to vali-
date the effectiveness of PCMs. Specifically, we
transform from causal inference at the visual level
to causal inference at the language level. Similar to
other works, we model bias in the question-answer

branch, and bias is considered as the counterfactual
outcomes in PCMs.

Therefore, we combine the PCMs with the VQA
framework using the aforementioned method and
compare our method to CF-VQA, which also em-
ploys causal models. As shown in Table 4, our
method exhibit similar overall performance to CF-
VQA. However, for specific question types, such as
"Y/N", PCMs underperform compared to CF-VQA.
Conversely, for "Num." and "Other" types, PCMs
outperform CF-VQA.

4.3 Visual Qualitative Analysis

In this section, we will present visual experimen-
tal results to demonstrate the effectiveness of our
method in mitigating language bias. As shown in
Figure 4, in the first image, DAP not only provide
the correct answer when ask about the shape of
an object, but also increase the credibility of the
response. For judgment-type questions, the model
must effectively understand the image’s content to



Table 2: Experiment on the evaluation metric CGD
using the DAP method on the VQA-CP v2 dataset. Best
results are displayed in each column.

Method CGR CGW CGD
UpDn 44.277 40.63 391
HINT 45.21 34.87 10.34
RUBIi 39.60 33.33 6.27

LM 47.30 35.97 11.33
LMH 46.44 35.84 10.60
CSS 46.70 37.89 8.87
GGE-D 38.79 24.48 14.31
GGE-DQ:-iter 44.35 2791 16.44
GGE-DQ-tog 42.74 27.47 15.27
DAP(Ours) 46.83 30.21 16.62
Table 3: For the ablation experiments with dual-

attention on VQA-CP v2 dataset, DAP method is com-
pared with other attention-related VQA debiasing tech-
niques, using UpDn as the baseline model. Best results
are displayed in each column.

All Y/N Num. Other

UpDn 3996 43.01 12.07 45382
LMH 52.01 7258 31.12 46.97
HINT 46.73 67.27 10.61 45.88
SCR 4945 7236 10.93 48.02
DAP(Ours) 51.15 83.25 24.02 41.78

provide an accurate answer. DAP correctly com-
prehend the scene of the second image and provide
the correct response. Counting problems are the
most challenging types of questions in VQA. In
the third image, DAP accurately identify the red
luggage object and correctly answer the question.
Additionally, in the fourth image, the model needs
to understand the image’s content and respond to
the counting question. The UpDn baseline model’s
reasoning process leads to a low possibility of ob-
taining the correct response. However, our method
generates precise reasoning and provides accurate
responses. This method increases the participation
of visual information in multi-modal reasoning.

5 Conclusion

In this paper, we propose a de-biasing method
based on PCMs (DAP). We aim to eliminate lan-
guage bias in VQA models while enhancing the
influence of the visual content on the model. We
consider language bias as a confounding factor in

Table 4: For the ablation experiments of the PCMs on
the VQA-CP v2 dataset, the DAP method indicates us-
ing only the PCMs, while the DAP(att) method indicates
the simplified version with dual-attention. Best results
are displayed in each column.

All Y/N Num. Other

UpDn 39.82 4240 1223 46.05
CF-VQA(SUM) 53.72 90.86 13.08 44.98
DAP(Ours) 53.77 79.02 22.69 49.07

Figure 4: The results of qualitative analysis show the
flow of our model when making predictions by masking
different image regions so that the model focuses on the
effective ones

the PCMs and propose to use dual-attention to
construct observed and counterfactual outcomes.
Through balancing the confounding factors, we are
able to eliminate the influence of the language bias
on the model. The effectiveness of our method is
demonstrated through extensive experiments. In
addition, we believe that enhancing the model’s
understanding of visual content is a future research
direction for the elimination of language bias. Our
study demonstrates the significant experimental sig-
nificance of the causal model in visual language
tasks with reasonable experimental designs.

6 Limitations

Firstly, our method’s performance depends on the
dual-attention algorithm, and when this algorithm
fails to effectively focus on relevant areas of the
image, it significantly impacts model performance.
Secondly, the correspondence between biases in
VQA and causal effects may be more complex in
real situations. Different types of biases may affect
the model’s causal effects differently, thus requir-
ing distinct considerations.
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A Appendix
A.1 The Three Fundamental Elements

This section introduces the three fundamental ele-
ments of PCMs: unit, treatment, and outcome. A
unit is the smallest physical entity used in causal
inference. Consistent with the original paper (Yao



et al., 2021), we use the terms "sample" and "unit"
interchangeably in this paper. Treatment refers to
the action or policy that the model applies to a unit,
and the outcome indicates the state of the unit after
a certain treatment. That is, by applying some treat-
ment to a unit, we can observe the corresponding
outcome.

The outcomes under PCMs can be classified into
three categories based on the effects of treatment
(Yao et al., 2021):

* Potential outcomes: For any sample, there ex-
ist potential outcomes corresponding to any
treatment, denoted as Y (w;), where w; indi-
cates one of the treatments, and the set of all
treatments is denoted by W = {wy, ...w, }.

Observed outcomes: Observed outcome Y
indicates the actual manifestation of potential
outcomes when a treatment is applied to a
sample. The relationship between observed
and potential outcomes is defined by Eq.(6):
YE =Y (w), (6)
where Y indicates the observed outcomes,

and Y (w;) is the outcome of actually applying
a specific treatment w;.

Counterfactual outcomes: The outcome of a
sample under an alternative treatment is de-
fined by Eq.(7):

YO = v (w;), (7)
where Y ¥ indicates the potential outcomes
that are not observed. Y (w;) denotes the out-

come under a different treatment w;, where
w; € Wand j # 1.

Notably, counterfactual outcomes are also po-
tential outcomes, and potential outcomes com-
prise both observed and counterfactual out-
comes. Furthermore, for binary treatments
(w € {0,1}), observed and counterfactual
outcomes can be defined by Eq.(8):

YE =Y (w)

®)
YOr = v (1 —w),

where w € {0,1} denotes the treatment ap-
plied to the sample, while 1 — w indicates the
alternative potential treatment applied to the
sample at the same time.
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A.2 Treatment Effect

Treatment effect defines the performance of a unit
before and after taking a treatment, and is typically
estimated by the outcomes (Yao et al., 2021; Rubin,
1974; Splawa-Neyman et al., 1990).

* Individual Treatment Effect (1 TE): The dif-
ference between the observed and counterfac-
tual outcomes of the i-th unit. The ITE of
unit ¢ is defined as Eq.(9):

ITE; =Y, (W =1) - Y;(W=0) (9

where Y;(W = 1) and Y;(W = 0) denote the
observed and counterfactual outcomes for unit
1 respectively.

* Average Treatment Effect (ATE ): The differ-
ence between the observed and counterfactual

outcomes in the overall sample, as defined as
Eq.(10):

ATE =E[Y(W =1) =Y (W = 0)]
N
= Do = 1) = v =)
1 1;1
= N;ITEi,

(10)
where Y(W = 1) and Y (W = 0) indicate
the observed and counterfactual outcomes re-
spectively, and /N denotes the total number of
samples.

A.3 Confounding Factor

The essence of a confounding factor is mixing the
effects of various factors. When multiple factors in-
tertwine with the effects of the outcome, correctly
assessing the true impact of a specific factor on
the outcome can be challenging. Specifically, in
the context of the PCMs, confounding factors are
a special type of variables that influence treatment
allocation and the final outcome, resulting in spuri-
ous effects.

For instance, "age" can be regarded as a con-
founding factor when evaluating the effect of a
particular drug treatment on a given disease, and
failing to account for age can lead to biased out-
comes in the final assessment. This bias is a spuri-
ous effect of confounding factors on evaluating the
treatment. Therefore, in the PCMs, it is necessary
to account for the influence of confounding factors
to obtain a correct estimate of the treatment effect.



A.4 Eliminating Confounding Factors

Accounting for the influence of confounding fac-
tors is a crucial element of causal inference mod-
els. This subsection primarily describes the meth-
ods for eliminating confounding factors (Yao et al.,
2021; Imbens, 2004; Rosenbaum and Rubin, 1983;
Rosenbaum, 1987).

¢ Selection bias: The observed outcomes cannot
indicate the outcomes of interest, due to the
influence of confounding factors on the choice
of treatment, leading to a biased phenomenon.

Propensity score: The probability of taking a
specific treatment under a given background
condition is defined as Eq.(11):

e(xi)

where Pr represents conditional probability,
W = 1 indicates taking a specific treatment,
X and x; respectively refer to the sample set
and a specific sample 4, and e(x;) denotes
the probability of sample ¢ taking a specific
treatment given the sample set X.

=Pr(W=1X =1;), (1)

Inverse propensity weighting: The re-
weighting of samples based on the propensity
score allotting a new weight to each sample,

defined as Eq.(12):
w 1-W
= 12
e(x;) + 1—e(x;)’ (12)

where W denotes some treatment, e(z;) is
the propensity score, and r indicates inverse
propensity weighting. Specifically, when the
given sample x; is inclined to select a certain
treatment, it implies that this treatment would
achieve better results under the model. There-
fore, we use weight allocation to balance the
effect of this treatment.

Inverse propensity weighting ATE: The
ATFE after re-weighting the sample, defined
as Eq.(13):

1

N
Z lfex
1:1 z

(13)
After re-weighting the sample using propen-

sity scores, it is sufficient to eliminate the in-
fluence of selection bias when taking different
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treatments. At this point, the difference be-
tween the observed outcomes and the counter-
factual outcomes can be utilized to eliminate
the impact of confounding factors.

A.5 Language Bias Score

In Sections A.4 and 3.2.1, we introduce the conver-
sion from propensity score to language bias score,
but we do not maintain their formal unity. There-
fore, we will give a detailed introduction to Eq.(11)
and Eq.(4).

First, in Eq.(11), e(z) represents the conditional
probability that any study subject is allocated to
the treatment group or control group given the
conditions, ultimately achieving a balanced sam-
ple between different groups. However, in our
method, we adopt the dual-attention treatment for
each batch of samples simultaneously, so no sam-
ple grouping is done. Secondly, we redefine the
propensity score as a language bias score in Eq.(3),
which is the score for predicting the answer, in
the case of modeling the language bias. Therefore,
in Eq.(4), we only use e 17q y as the re-weighted
score. Additionally, to maintain consistency with
the re-weighting method in Eq.(13) and the compu-
tation formula for AT'E is defined as Eq.(14):

N . .
N 1 Logth Logzt-OF
ATE = — i YO
N ;(6(%%) 1- e(viaQi)) pred
(14)

We also conduct experiments using the same
weighting method, as shown in Table 5.

A.6 Daul-Attention Simplified Version

In addition, to demonstrate the effectiveness of
dual-attention on PCMs, we conduct a simplified
version which is called DAP(att). Rather than using
an attention generation network to generate atts,
here we obtain atty by simply using Eq. (15):

atto = 1-— atty. (15)

Alternatively, we obtain atts directly by sub-
tracting the weights from att; and combine it with
the PCMs for the experiment. As shown in Table
6, DAP(att) indicates a simplified version of our

)YCF dual attention approach. It is evident that the model

———achieves higher overall accuracy, particularly for
question types that require more visual content.
A.7 Attention Visualization

Figure 5 displays the selected attention visualiza-
tion examples for analysis. In these specific exam-



Table 5: The experimental results of re-weighting
method AT E calculation. Best results are displayed in
each column.

All Y/N Num. Other
UpDn 39.82 4240 12.23 46.05
DAP(Ours) 57.61 80.66 48.94 45.15

Table 6: The experimental results of simplified version
of dual-attention. Best results are displayed in each
column.

All Y/N Num. Other
UpDn 30.82 4240 12.23 46.05
DAP(att) 57.82 80.82 49.24 45.16

ples, att; accurately captures visual information,
but att, only focuses on irrelevant image objects.

The attention weight of the corresponding image
is illustrated in Figure 6.
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What drink is shown? atty Visualization att, Visualization
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Where are the elephants? atty Visualization att, Visualization
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Figure 5: The visualization results of dual-attention indicate the original image and the visualized results of the two
types of attention, respectively.
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Figure 6: Example of Attention Weight Heatmap Distribution
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