
Ladder-Residual: Parallelism-Aware Architecture for Accelerating Large Model
Inference with Communication Overlapping

Muru Zhang * 1 2 Mayank Mishra * 3 Zhongzhu Zhou 1 4 William Brandon 5 Jue Wang 1 Yoon Kim 5

Jonathan Ragan-Kelley 5 Shuaiwen Leon Song 1 4 Ben Athiwaratkun 1 Tri Dao 1 6

Abstract

Large language model inference is both memory-
intensive and time-consuming, often requiring dis-
tributed algorithms to efficiently scale. Various
model parallelism strategies are used to partition
computation across multiple devices, reducing
memory load and computation time. However,
using model parallelism requires communication
of information between GPUs, which limits the
gains obtained by scaling up the number of de-
vices. We introduce Ladder Residual, a simple ar-
chitectural modification applicable to all residual-
based models that enables straightforward over-
lapping to hide the latency of communication.
Our insight is that in addition to system op-
timizations, the model architecture can also be
redesigned to decouple communication from
computation. While Ladder Residual can allow
communication-computation decoupling in con-
ventional parallelism patterns, we focus on Ten-
sor Parallelism in this paper, which is particularly
bottlenecked by its heavy communication. For a
Transformer model with 70B parameters, apply-
ing Ladder Residual to all its layers can achieve
29% end-to-end wall clock speedup at inference
time with sharding over 8 devices. We train a 1.2B
and 3.5B Ladder Residual based Transformer
models from scratch and observe comparable per-
formance to a standard dense transformer baseline.
We also show that it is possible to convert parts of
the Llama-3.1 8B model to our Ladder Residual
architecture with minimal accuracy degradation
by only retraining for 3B tokens.
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1. Introduction
With the rapid scaling of Large Language Models (LLMs)
(Smith et al., 2022; Workshop et al., 2023; Brown, 2020),
the compute and memory requirements for training and
inference have grown significantly. Tensor parallelism
(TP) (Shoeybi et al., 2020) is a widely used model paral-
lelism technique that partitions the weights and intermediate
activations across multiple GPUs. In contrast to pipeline
parallelism (Narayanan et al., 2021) and data parallelism (Li
et al., 2020), which rely on processing independent batches
of user requests on each device, TP enables multiple devices
to cooperate to process a single request, therefore in theory
allowing infinite scaling given a sufficient number of proces-
sors. However, TP requires synchronizing the partitioned
intermediate activations across the GPUs. This synchroniza-
tion is a blocking AllReduce operation on the activations
across the GPUs and is therefore bottlenecked by the net-
work communication latency. Even for GPUs connected
via fast interconnects (like NVLink (NVIDIA Corporation,
2024)), the communication costs can account for 38% of the
latency at inference time when running a 70B transformer
with batch size 4 and TP world size of 8.

Past works have attempted to overlap the communication
latency of TP by overlapping computation and commu-
nication. Chang et al. (2024) write fused kernels for
AllGather followed by matmul and matmul followed
by ReduceScatter. They break down matmuls into
tiles hide the latency of communicating a tile with the com-
putation of subsequent tiles. Jangda et al. (2022) propose
CoCoNet, a domain-specific language to express distributed
machine learning workloads. They propose to generate ef-
ficient GPU kernels for computation and communication
using a custom compiler for the DSL. This approach has
limited applicability with existing frameworks like PyTorch
(Paszke et al., 2019) and JAX (Frostig et al., 2018) since
the user needs to be well-acquainted with the DSL to gen-
erate efficient GPU kernels. Moreover, with the breakneck
pace of accelerator and interconnect changes, these low-
level systems optimizations require a rewrite for every new
generation of hardware. However, there is a fundamental
limit to how much communication latency can be reduced
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Figure 1. Illustration of a standard Transformer block (left) and a
Ladder Residual block (right). The blue edge denotes the residual
connection. In Ladder Residual, the residual connection remains
the same while each module hi takes the stale input ri−2.

with these approaches which do not change the underlying
model architecture. Instead of pure hardware optimizations
(e.g., larger NVLink domain connecting 36 or 72 NVIDIA
Blackwell GPUs) or pure low-level software optimization
(e.g., rewriting all matmuls to overlap with communication),
we explore model architectural changes that would enable
a reduction in communication latency while maintaining
accuracy. This makes our approach quite simple to apply in
practice using a high level machine learning framework like
PyTorch (Paszke et al., 2019) or JAX (Frostig et al., 2018)
without writing any low-level device code.

In current LLMs, communication is blocking because there
is a sequential structure between communication and compu-
tation in existing model designs: we wait for communication
in order to prepare the correct input for the next computation.
In the prevalent residual-based architectures, the computa-
tion flow can be written as xi+1 = hi+1(xi) + xi, where xi

is the residual stream after layer i and hi+1 is the compu-
tation at layer i+ 1. Notice that the communication of xi

needs to be done before executing hi+1 if hi is partitioned
across devices. Liu et al. (2023b) found that activation
changes slowly in Transformer, as the norm of each update
hi+1(xi) is small compared to the residual. Based on this
observation, we hypothesize that maintaining the regular
residual connection is enough to restrict the representation
shift, and we can feed each module a “stale” input to create
overlapping opportunities.

We propose Ladder Residual, a simple change where we
reroute the residual stream after module i − 1 (instead of
module i) as input to module i+1: xi+1 = hi+1(xi−1)+xi.
With this design, the computation of hi+1 is decoupled from
the communication of xi, enabling straightforward overlap-
ping to hide the latency of communication. Figure 1 shows
how Ladder Residual can be applied to the Transformer
architecture. At inference time with TP world size of 8,

Table 1. Inference speedup from applying Ladder Residual on a
Transformer model. The test setup is 1024 prompt length, 512 gen-
erated tokens, batch size 4, and TP world size of 8 for 1B, 3B, 8B,
34B, 70B, 176B model and TP world size of 16 for 405B model
(using two nodes). The models are designed according to Llama
model families (and Bloom-176B). The speedup value is calculated
by comparing Ladder Transformer with Standard Transformer’s in-
ference throughput in tokens per second. We measure the speedup
both with and without P2P communication (modern server nodes
usually support P2P communication). Note that disabling P2P
communication significantly increases the AllReduce latency.

Model size P2P disabled P2P enabled

1B 1.39x 1.56x
3B 1.50x 1.57x
8B 1.40x 1.46x
34B 1.47x 1.44x
70B 1.59x 1.29x

176B 1.54x 1.35x
405B 1.57x 1.31x

running a 70B Transformer with Ladder Residual can be
around 30% faster than the standard Transformer. In Ta-
ble 1, we provide the inference speedup on Transformers
of different sizes. The proposed Ladder Residual method
can also be used to accelerate other forms of parallelism,
although we focus on Tensor Parallelism in this paper as it is
particularly bottlenecked by the heavy communication. Our
method obtains 5-7% training speedup when training an 8B
model with 8k context length on 64 H100s with 3D paral-
lelism across the GPUs (Tensor Parallel, Sequence Parallel
and Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023;
Rajbhandari et al., 2020)), but we decide to focus on the
inference speed ups since training with pure FSDP is usually
faster because weights can be pre-fetched and gradient syn-
chronization using ReduceScatter can be overlapped
in FSDP making communications in FSDP non-blocking.

Because of the widespread use of Transformer (Vaswani,
2017) based Language models, we focus on applying Ladder
Residual on Transformer models in this paper, and we call
the resulting model as Ladder Transformer. However, it
should be noted that Ladder Residual is compatible with any
residual based model architecture. We conduct experiments
under two scenarios to verify if we can maintain the same
performance as standard Transformer:

• Pretraining from scratch: We train a 1.2B and a 3.5B
parameter Ladder Transformer model with 100B to-
kens on the FineWeb-edu dataset (Lozhkov et al., 2024)
and compared it with the standard transformer of the
same size trained on the same amount of tokens. We
find that the Ladder Transformer matches the perfor-
mance of the standard Transformer model.

• Post-training adaptation: We take the pretrained
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Llama-3.1-8B-instruct model (Dubey et al., 2024) and
apply Ladder Residual on the upper half layers. We
then fine-tune it on 3B tokens to adapt to the represen-
tation shift. With this relatively light retraining, we
can obtain a hybrid Ladder Llama that is on par with
the original Llama model across a variety of multiple-
choice and generative tasks.

In our paper, we propose to change the model architec-
ture to accelerate model parallelism without touching
low-level kernels, making it easily deployable on any
hardware. We show that such architecture modification per-
forms on-par with the standard transformer. As model size
grows, multi-gpu or even cross-node serving will become
more and more important, and our research provides a fresh
perspective on designing a model architecture with paral-
lelism optimizations in mind. Such design can be applied
to any architecture that suffers from blocking communi-
cation, although in this paper we conduct experiments on
Transformer-based language models due to their widespread
use and popularity.

2. Tensor Parallelism Background
Tensor parallelism (TP) (Shoeybi et al., 2020) is a widely
used technique in distributed training/inference. It partitions
weights and activations across devices and performs partial
computations on each device. Consider a sequence of 2
linear layers with weight matrices A and B and input acti-
vation X that is running on 2 GPUs (TP world size of 2),
we split A along the output dimension into [A1, A2], and

split B along the input dimension into
[
B1

B2

]
. Then the out-

put of the sequence of the 2 linear layers can be computed
as (XA)B = (XA1)B1 + (XA2)B2 and we effectively
partition the computation on the two devices. The final sum-
mation requires an AllReduce operation to aggregate the
partial sums on each device, which introduces communica-
tion overhead. The AllReduce overhead increases with
increasing message size and increasing number of devices
participating in the AllReduce. A transformer layer con-
sists of an attention block and an MLP block: both can be
considered as a sequence of two matrix multiplications and
therefore fit into the tensor parallelism paradigm described
above. Thus each transformer layer contains 2 AllReduce
operations: one for attention and another for MLP. Denoting
the input to the ith block as xi−1, the transformer can be
viewed as the following sequential structure:

x∗
i = hi(xi−1)

xi = AllReduce(x∗
i ) + xi−1

x∗
i+1 = hi+1(xi)

xi+1 = AllReduce(x∗
i+1) + xi

(1)

where the ∗ denotes a partial-sum that requires an
AllReduce to replicate full output across all the GPUs.

A Transformer with N layers needs to perform the
AllReduce 2N times and this can account for 38% of
the inference latency for a 70B model using TP world size
of 8, even with NVLink interconnect. If P2P communi-
cation is disabled, AllReduce latency can account for
over 50% of the end-to-end latency. Modern nodes connect
GPUs via NVLink but usually have no more than 8 GPUs
per node, due to limited PCIe lanes, power density and
cooling constraints in datacenters. There is a steep falloff
in communication bandwidth and sharp increase in latency
when the communication happens across nodes either over
InfiniBand or Ethernet thus making scaling TP practically
infeasible outside a node.

Algorithm 1 Ladder Transformer Layer with Tensor Paral-
lelism. Note that the AsyncAllReduce (ARR) returns a
handle which is passed to the next layer.

1: function LAYER(residual, attn out, mlp out,
attn work, mlp work)

2: attn work.wait()
3: residual← residual+ attn out
4:
5: attn out← AttentionNorm(residual)
6: attn out← Attention(attn out)
7: attn out, attn work← AAR(attn out)
8:
9: mlp work.wait()

10: residual← residual+ mlp out
11:
12: mlp out← MLPNorm(residual)
13: mlp out← MLP(mlp out)
14: mlp out, mlp work← AAR(mlp out)
15:
16: return residual, attn out, mlp out,
17: attn work, mlp work
18: end function

3. Ladder Transformer
In this section, we introduce the Ladder Residual archi-
tecture when applied to Transformer and benchmark its
efficiency under various model sizes and generation setups.

3.1. Architecture description

In Equation 1, the AllReduce operation is blocking the
next block from execution since hi+1 requires xi as the
input. Ladder Residual mitigates this problem by routing
the xi−1 to block hi+1, effectively making the input of hi+1

independent of the output of the AllReduce, therefore
allowing overlapping AllReduce(x∗

i ) with hi+1.
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Figure 2. Improvement in end-to-end inference throughput achieved by communication-efficient architectures relative to a standard
transformer, benchmarked on Llama-3 70B. Standard refers to the regular Llama-3, and Ladder is Llama-3 with our Ladder Residual
architecture. Ladder Residual architecture can achieve up to 29% greater throughput than the standard Transformer. With slower
communication (P2P disabled or P2P=0), we observe speedups up to 60%. All experiments were conducted on a generation task with
1024 prompt tokens and 512 completion tokens. Missing data points indicate CUDA OOM.

Specifically, we change the computation flow of Equation 1
into:

x∗
i = hi(xi−2)

xi = AllReduce(x∗
i ) + xi−1

x∗
i+1 = hi+1(xi−1)

xi+1 = AllReduce(x∗
i+1) + xi

(2)

Note that the residual stream of each block still takes the
output from the previous block as usual, this ensures block i
can still process information from all previous i− 2 blocks.

3.2. Inference Implementation

Ladder Residual Implementation: We present the Lad-
der Transformer’s layer’s pseudo-code in Algorithm 1.

To implement the Ladder Transformer, following the de-
scription of Equation 2 we call AsyncAllReduce for
the Attention’s output. This returns a handle that
can be used to synchronize the output to ensure that the
AsyncAllReduce has finished. It should be noted that
NCCL collectives in PyTorch always run on a different
CUDA stream than the default compute stream used by
PyTorch thus making them asynchronous. As soon as the
AsyncAllReduce for Attention is called, we synchro-
nize the previous layer’s MLP’s output by calling wait on
the previous layer’s MLP’s AllReduce handle and sub-
sequently the CPU launches the kernels for MLPNorm and
then MLP on the default compute stream and eventually
calling the AsyncAllReduce for MLP. The handles for
these NCCL operations are then passed onto the next layer
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Table 2. Detailed breakdown for prefill latency, decode latency and generated token/sec improvement (%) for 70B model. The speedup
(%) is calculated by using latency of optimized model divided by original model. All the experiments are based on batch size 1, TP world
size of 8 GPUs.

Model Prefill Latency Improvement (%) Decode Latency Improvement (%) Token/sec Improvement (%)

UpperBound-Llama-70B (P2P=1) 30.54 30.00 42.90
Parallel-Llama-70B (P2P=1) 5.42 18.04 21.75
Ladder-Llama-70B (P2P=1) 5.78 23.71 30.79

UpperBound-Llama-70B (P2P=0) 35.84 52.71 110.7
Parallel-Llama-70B (P2P=0) 14.92 28.73 40.07
Ladder-Llama-70B (P2P=0) 6.94 37.71 59.87

which uses them for synchronization when needed.

Alignment with Real-World Scenarios: To evaluate the
practical benefits of Ladder Residual, we integrated this
mechanism into a standard Llama-like Transformer. Build-
ing upon gpt-fast (PyTorch Labs, 2024), we partition
the weights of the attention and feedforward modules for ten-
sor parallelism to optimize inference speed. We use CUDA
graphs (Coleman, 2020) via PyTorch compile (with “reduce-
overhead” mode) to generate static computation graphs for
both the prefill and decode phase to reduce CPU kernel
launch overheads which can be a big bottleneck especially
during the decode phase of Transformer inference. PyTorch
compile also additionally helps in accelerating inference
and reducing the memory footprint for inference by emit-
ting more efficient kernels.

3.3. Faster Inference with Ladder Residual

In this section, we benchmark Ladder Residual under var-
ious scenarios and show that across various model sizes,
batch sizes, and TP world sizes, Ladder Transformer can
obtain considerable speedup over the standard Transformer.
We also benchmark under the case where P2P communi-
cation is disabled (for testing in a scenario with increased
AllReduce latency), and show that our method can obtain
more than 50% speedup. Finally, we consider cross-node
Tensor Parallelism, which can be necessary for serving large
models like Llama 3.1 405B, and show that Ladder Residual
can improve inference throughput by more than 30%.

3.3.1. SETUP

We benchmark several algorithmic variants to evaluate their
performance in large-scale language model inference. The
candidates include:

• Standard Transformer: The standard transformer im-
plementation.

• Parallel Attention and MLP: Following the PaLM par-
allelization strategy (Chowdhery et al., 2022; Wang &
Komatsuzaki, 2021), we fuse the weights of the query,
key, value, gate, and up projections into a single matrix.
The outputs are then split, and the attention and swiglu

are performed in parallel. While not proposed for accel-
erating Tensor Parallelism, we realize this architecture
can effectively cut half of the communication, with the
extra benefit of being able to fuse attention and mlp
together, therefore we consider it as an alternative to
Ladder Residual.

• Ladder Residual: The architectural optimization we
propose to overlap computation with communication
required for Tensor Parallelism.

• Communication-Free Upper Bound: An upper bound
that removes all communication operations in the
model to represent the theoretical maximum speedup
achievable.

Note that different Transformer-based models usually have
slightly different designs. We choose to use Llama-3’s
model architecture since it’s one of the most widely used
models. The benchmarking results here are a good repre-
sentative of a variety of different design choices since the
communication patterns are mostly the same across various
transformer variants.

To simulate various inference scenarios, we select multiple
experimental configurations. The prompt length and gen-
eration length is fixed to 1024 and 512 respectively, while
we vary the tensor parallel world sizes among 1, 2, 4 and 8,
and batch sizes among 1, 4, 16 and 64 to understand perfor-
mance under different generation settings. All benchmarks
are done on NVIDIA H100 GPUs.

To evaluate the impact of hardware communication capabili-
ties, we attempt to simulate the performance in the presence
of slow interconnects. We set NCCL P2P DISABLE=1 to
disable the point-to-point communication. This significantly
slows down the NCCL communications and allows us to
assess the performance of difference algorithms in varying
communication environments. We observe a significant
slowdown (for 8 GPUs) for AllReduce when disabling
P2P communication. In our experiments and figures, we
refer to this setting as P2P=0 or P2P disabled. Unless other-
wise stated, P2P is always enabled (or P2P=1).
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Figure 3. End-to-end inference throughput improvement on Llama-
3-405B on a generation task with 1024 prompt tokens and 512
completion tokens. Here we use TP size 16 across two nodes
each with 8 GPUs, connected with InfiniBand. Due to the high
cost of cross-node communication, Ladder Residual architecture is
able to achieve more than 30% improvement across various batch
sizes with P2P enabled and around 50% with P2P communication
disabled.

3.3.2. BENCHMARKING

We characterize the inference efficiency improvements en-
abled by Ladder Residual in three different ways.

First, we measure the best latency achievable (batch size
1, TP degree 8) using both the Ladder Residual architecture
and a standard transformer baseline. We report end-to-end
latency broken down by inference phase (prefill vs decode)
in Table 2. In this latency-optimized regime, both with and
without NVLink, Ladder Residual outperforms the parallel
attn-mlp alternative in both prefill and decode latency.

Second, we measure the throughput across different TP
world size and batch sizes for 70B model in Figure 2. In
these throughput-oriented experiments, we again find that

0 5 10 15 20 25
Latency (ms)

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
 (t

ok
en

s/
se

c/
GP

U)

Latency vs. Throughput per GPU for 70B Models (Pareto Optimal Points Only)

Dense 70B
Dense 70B Pareto Frontier
Ladder 70B
Ladder 70B Pareto Frontier
Upper Bound 70B
Upper Bound 70B Pareto Frontier
Parallel 70B
Parallel 70B Pareto Frontier

Figure 4. Pareto frontier of completion latency vs aggregate
throughput per GPU for different 70B-scale model architectures
in a batched inference setting. For each architecture, we sweep
over both batch size and TP world size to find the Pareto-optimal
configurations. Using less TP size results in higher throughput
while using a higher TP size optimizes the latency, both have its
use-case and we found that ladder architecture achieves Pareto
improvements over the standard transformer architecture and the
parallel transformer. All experiments measure end-to-end time on
a generation task with 1024 prompt tokens and 512 completion
tokens per sequence.

the Ladder Residual architecture significantly outperforms
the standard transformer architecture, and that these im-
provements are larger when communication is slower. The
throughput gains from adopting the Ladder Residual archi-
tecture increase as the TP degree increases, reflecting the
greater proportion of run time spent in communication rel-
ative to compute as we partition the computation across a
larger number of devices. Lastly, as shown in Table 1, the
amount of improvement decrease as we increase from 8B to
70B when running with P2P communication, as the compu-
tation scales faster than communication. However, the trend
is reversed when running without P2P communication, due
to the much higher cost of communication in that scenario.

Finally, we consider serving model that is too large to be
loaded on one node. Cross-node TP communication is very
expensive, however the common practice of using intra-node
TP with cross-node Pipeline Parallelism (PP) is dependent
on batch size to reduce gpu idle time (for example, with
batch size = 1, half of the GPUs will be idle at any given
time). With the speedup from Ladder Residual, cross-node
TP can be a viable option. We benchmarked 405B under
such setting in Figure 3, found that even for nodes with fast
InfiniBand interconnect, Ladder Residual can achieve more
than 30% throughput improvement across batch sizes.

4. Experiments and Results
We empirically verify our assumption that applying Ladder
Residual does not hurt the performance. We show that
Ladder Residual can be either used when training from
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scratch, or be applied to a pre-trained model with hybrid
adaptation, and in both cases, the performance is on par with
the original architecture.

4.1. Training From Scratch

We train a 1.2B and 3.5B Ladder Transformer from scratch
and compare its performance with an equally sized standard
Transformer model. All our models are trained on 100B
tokens of FineWeb-edu dataset (HuggingFaceFW, 2024)
using the StarCoder tokenizer (Li et al., 2023b). We also
compare our model with the Parallel Attention/MLP archi-
tecture (Chowdhery et al., 2022; Wang & Komatsuzaki,
2021) which parallelizes the computation of the attention
and the MLP module. This effectively reduces the commu-
nication cost by 50% for the tensor parallel AllReduce in
both the forward and backward computation.

4.1.1. EXPERIMENTAL DETAILS

We use DDP (Distributed Data Parallel) (Li et al., 2020)
to train the 1.2B and HSDP (Hybrid Sharded Data Par-
allel) (Zhao et al., 2023; Rajbhandari et al., 2020) to
train the 3.5B models. For HSDP, we shard the model
within 1 node (equipped with 8x H100 GPUs) and repli-
cate the model outside the node. We use mixed precision
training (Micikevicius et al., 2018) in BF16 (Kalamkar
et al., 2019) with gradient accumulation and gradient
AllReduce/ReduceScatter in FP32 for training sta-
bility. We train all our models with 2048 context length with
a batch size of 4M tokens in a batch. The models are trained
with cosine scheduler with a warmup of 8B tokens to a peak
learning rate of 3× 10−4. The learning rate is then decayed
over 92B tokens to 3× 10−5.

We use EleutherAI’s LM eval harness (Gao et al., 2024) to
evaluate models on ARC (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), SciQ (Welbl
et al., 2017) and Winogrande (Trinh & Le, 2018). We also
evaluate perplexity on Wikitext (Merity et al., 2017).

4.1.2. RESULTS

The full results can be found at Table 3. We find that at
the 1.2B model scale, Ladder Transformer achieves perfor-
mance similar to Standard Transformer while beating the
Parallel Transformer. At 3.5B parameter scale, we find that
Standard Transformer is better than Ladder Transformer
model with 3.2% lower perplexity and 1.2 points of abso-
lute difference in accuracy. The Parallel Transformer has
almost the same performance as Ladder Transformer at the
3.5B scale.

4.2. Post-training adaptation

We investigate the feasibility of directly applying Ladder
Residual on an existing pre-trained model. We applied Lad-
der Residual to the upper half of the Llama-3.1 8B Instruct
to keep the performance since we found that touching the
lower layers can destroy knowledge that is hard to recover
without large-scale retraining. We evaluate the adapted
models on 8 benchmarks across a range of domains: ac-
curacy on MMLU (5-shots) (Hendrycks et al., 2021) and
ARC-Challenge (ARC-C, 25-shots) (Clark et al., 2018),
normalized accuracy on OpenBookQA (OBQA) (Mihaylov
et al., 2018), HellaSwag (HS, 10-shots) (Zellers et al., 2019),
and TruthfulQA (TQ, mc1) (Lin et al., 2022). exact-match
accuracy on GSM8K(GSM, 8-shots) (Cobbe et al., 2021),
pass@1 on HumanEval+(HE+) (Chen et al., 2021), aggre-
gated accuracy on IFEval (Zhou et al., 2023), and length
controlled win rate (Dubois et al., 2024) against gpt4-turbo
on AlpacaEval (Li et al., 2023c). The evaluation of Hu-
manEval+ is conducted with EvalPlus (Liu et al., 2023a), Al-
pacaEval is done with the AlpacaEval2 library, and the rest
of the evaluations are conducted with the LM-Evaluation-
Harness library (Gao et al., 2024).

4.2.1. EXPERIMENTAL DETAILS

We convert a state-of-the-art open-source model, Llama-
3.1-8B-Instruct into a hybrid Ladder Residual structure, by
applying Ladder Residual to the upper half of the model
(layers 16-32 for LLaMA-3.1-8B-Instruct). We call this vari-
ant Hybrid-Ladder-8B-16L in Table 4. We also experiment
with more aggressive adaptation where we applied Ladder
Residual to the layers 12-32 and we call this experiment
Hybrid-Ladder-8B-20L. We conduct supervised fine-tuning
(SFT) for the resulting model on the 7M subset and the Gen
subset of the Infinity-Instruct dataset1, which contains 3B
tokens. We train for 2 epochs with AdamW optimizer with
a batch size of 32. We use 5× 10−6 learning rate with 200
steps of linear warmup, followed by cosine annealing to the
end. We use Axolotl2 for our SFT experiments and Open
LM Engine3 for our pretraining experiments.

As shown in Table 4, after adaptation, there is a huge perfor-
mance drop mainly on generative tasks as the computation
flow is messed up. But after light retraining, the hybrid Lad-
der Llama is able to reach the same level of performance
with the original Llama. By applying Ladder Residual on
the last 16 layers, we can obtain 21% end-to-end wall clock
speed up for inference with TP world size of 8 and batch

1https://huggingface.co/datasets/BAAI/
Infinity-Instruct

2https://github.com/axolotl-ai-cloud/
axolotl

3https://github.com/open-lm-engine/
lm-engine
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Table 3. Performance of three architectures under two sizes, trained on FineWeb-edu for 100B tokens.
Model ARC-C ARC-E HellaSwag PIQA SciQ Winogrande Average Wikitext PPL

Standard-Transformer-1.2B 34.22 70.33 41.10 71.49 87.30 55.41 59.98 18.54
Parallel-Transformer-1.2B 30.46 67.97 40.35 71.16 87.40 55.17 58.75 18.95
Ladder-Transformer-1.2B 31.31 67.76 41.18 71.49 86.60 55.17 58.92 18.42

Standard-Transformer-3.5B 38.99 74.12 46.48 74.59 92.00 58.48 64.11 14.48
Parallel-Transformer-3.5B 38.48 73.02 45.55 73.67 90.00 57.46 63.03 14.96
Ladder-Transformer-3.5B 36.77 72.43 45.66 73.72 89.90 58.96 62.91 14.90

Table 4. All models are either LLama-3.1 models or are adapted from Llama-3.1 8B Instruct in this table. Performance comparison
across various benchmarks. Zeroshot denotes directly applying Ladder Residual without any retraining. nL denotes that n layers of the
Llama-3.1-8B-Instruct are adapted with Ladder Residual.

Model MMLU ARC-C OBQA HS TQ GSM HE+ IE AE Average

Llama-3.1-8B-Instruct 68.14 60.32 43.00 80.04 36.84 84.99 60.40 52.57 18.69 56.11
Hybrid-Ladder-8B-16L-zeroshot 63.19 56.57 42.60 77.70 35.50 10.54 30.50 46.25 11.99 41.65
Hybrid-Ladder-8B-16L-retrained 65.93 59.13 42.20 78.86 39.66 80.29 59.10 59.02 21.95 56.24
Hybrid-Ladder-8B-20L-retrained 62.31 59.90 42.60 77.49 36.72 76.19 48.80 59.05 21.72 53.86

size of 1. Our results demonstrate the potential of Ladder
Residual being a drop-in adaptation technique to make the
model faster without sacrificing performance. We addition-
ally experiment with applying Ladder Residual to the last
20 layers of Llama and found that it leads to a slight drop in
performance. There is a chance that with longer adaptation,
or smarter adaptation techniques like distillation or iterative
training, we can obtain a Ladder-Llama with more layers
adapted. We leave the further exploration to future work.

5. Discussion
5.1. Compatibility with other Parallelism Techniques

It should be noted that Ladder Residual is fully compati-
ble with other model parallelism techniques like Pipeline
Parallelism (PP). The AllReduce communication for TP
is still asynchronous except at the PP boundary where
the AllReduce needs to be waited upon to complete.
Once the AllReduce result is available, we can for-
ward 3 tensors (residual, current mlp output and
current attention output) to the next pipeline
stage. It should be noted that this is still pretty cheap
since generally the P2P communication during inference
is latency bound and can be implemented easily using the
batch isend irecv API in PyTorch. Our approach
also seemlessly works with Distributed Data Parallel (DDP)
and Fully Sharded Data Parallel (FSDP).

5.2. Comparison to a 30% larger Ladder Transformer

Since the 70B Ladder Tranformer model achieves 30%
higher tokens/sec compared to the 70B standard transformer
as shown in Table 2, we compare the standard transformer
to a 30% larger ladder transformer in Table 5. We find that
the 30% larger ladder transformer is better than the standard
transformer at both the 1.2B and 3.5B scale on average ac-

curacy across bechmarks and wikitext perplexity while still
achieving a much higher inference throughput.

6. Related Work
Communication overlapping in parallelism Overlap-
ping communication has been a widely explored area
in prior works in order to achieve higher performance
for distributed training. For Tensor Parallelism, prior
works (Jangda et al., 2022; Wang et al., 2022; NVIDIA,
2023) decompose the communication into more fine-grained
operations in order to find computations with no depen-
dency to overlap. Our work doesn’t rely on such decompo-
sitions and therefore doesn’t require Sequence Parallelism
to handle the partitioned activations before all-gather. In
FSDP (FairScale authors, 2021), the all-gather commu-
nication is usually prefetched to be overlapped with the
communication. Pipeline Parallelism (NVIDIA, 2023; Li
et al., 2023a; Lamy-Poirier, 2023) on the other hand, chunks
the data into mini-batches which creates more opportunity
for overlapping. Compared to these other parallelism ap-
proaches, TP has the advantage to be independent of the
batch size or sequence length, and can partition the compu-
tation as much as possible given enough GPUs in theory.

Efficiency-aware architecture improvements Prior
works have explored various alternative designs for Trans-
former, for example parallel attention and mlp (Chowdh-
ery et al., 2022; Wang & Komatsuzaki, 2021), linear atten-
tion (Katharopoulos et al., 2020), Grouped Query Atten-
tion (Ainslie et al., 2023), Cross-Layer Attention (Brandon
et al., 2024) to improve the training and inference efficiency.
Some of these variants are more widely adopted than others,
due to the degree of impact they have on performance and
efficiency. Past works have also considered adapting an
existing checkpoint to these efficient variants. Ainslie et al.
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Table 5. Performance of the Standard Transformer compared to a 30% larger Ladder Transformer at 1.2B and 3.5B scale, trained on
FineWeb-edu for 100B tokens.

Model ARC-C ARC-E HellaSwag PIQA SciQ Winogrande Average Wikitext PPL Tokens/sec

Standard-Transformer-1.2B 34.22 70.33 41.10 71.49 87.30 55.41 59.98 18.54 1008.29
Ladder-Transformer-1.5B 33.96 70.16 42.58 71.98 87.90 55.41 60.33 17.47 1277.66
Standard-Transformer-3.5B 38.99 74.12 46.48 74.59 92.00 58.48 64.11 14.48 949.6
Ladder-Transformer-4.5B 40.96 75.00 46.81 73.99 90.80 57.70 64.21 14.05 1217.71

(2023) extracted grouped-query attention from a multi-head
attention model, and Wang et al. (2024) converted a Llama
model to a Mamba model by retraining on 50B tokens to
close the performance gap. Comparatively, our adaptation
is much lighter (3B tokens), showing that the representa-
tion shift introduced by Ladder Residual is easier to recover.
Wang et al. (2024) considered converting a Llama model
to a Mamba model and used distillation to retrain the con-
verted model. Such training paradigms that specifically tune
the model to align with the original model could further
improve the Ladder Residual based models.

7. Conclusion
We introduce Ladder Residual, architectural modifications
that allow overlapping communication with computation-
for model parallelism. We show that when running Ten-
sor Parallelism, Ladder Residual can achieve great speed
up across various model sizes, batch sizes, and number of
GPUs. When applying Ladder Residual to Llama-3.1 8B
Instruct, we only need lightweight retraining to reach the
same level of performance as the original model while be-
ing 21% faster, showing its potential to be a plug-in for any
pretrained Transformer. We also trained a 1.2B and 3.5B
Ladder Transformer from scratch, and found that they are
comparable to the standard Transformer of the same size
while achieving over 55% speedup. Given that such a sim-
ple architectural change can obviate the need for expensive
interconnects while maintaining model quality, we hope
that our method will inspire even closer co-design between
model architecture and inference systems.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Molano, D., Yu, D., Manjavacas, E., Barth, F., Fuhrimann,
F., Altay, G., Bayrak, G., Burns, G., Vrabec, H. U., Bello,
I., Dash, I., Kang, J., Giorgi, J., Golde, J., Posada, J. D.,
Sivaraman, K. R., Bulchandani, L., Liu, L., Shinzato, L.,
de Bykhovetz, M. H., Takeuchi, M., Pàmies, M., Castillo,
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Figure 5. Traces generated by PyTorch Profiler. As shown in the
plot for Standard transformer the NCCL operations block the com-
putation whereas in Ladder Transformer the NCCL operations can
be overlapped with the computation.

A. Appendix
A.1. PyTorch Profiler Trace

Here we provide the trace generated by the PyTorch Profiler4

in Figure 5.

4https://pytorch.org/tutorials/recipes/
recipes/profiler_recipe.html
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