
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCIENCEBOARD:
EVALUATING MULTIMODAL AUTONOMOUS AGENTS IN
REALISTIC SCIENTIFIC WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have extended their impact beyond Natural Lan-
guage Processing, substantially fostering the development of interdisciplinary
research. Recently, various LLM-based agents have been developed to assist
scientific discovery progress across multiple aspects and domains. Among these,
computer-using agents, capable of interacting with operating systems as humans do,
are paving the way to automated scientific problem-solving and addressing routines
in researchers’ workflows. Recognizing the transformative potential of these agents,
we introduce SCIENCEBOARD, which encompasses two complementary contri-
butions: (i) a realistic, multi-domain environment featuring dynamic and visually
rich scientific workflows with integrated professional software, where agents can
autonomously interact via different interfaces to accelerate complex research tasks
and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously
validated real-world tasks curated by humans, spanning scientific-discovery work-
flows in domains such as biochemistry, astronomy, and geoinformatics. Extensive
evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7,
UI-TARS) show that, despite some promising results, they still fall short of reliably
assisting scientists in complex workflows, achieving only a 15% overall success
rate. In-depth analysis further provides valuable insights for addressing current
agent limitations and more effective design principles, paving the way to build more
capable agents for scientific discovery. Our code, benchmark, and leaderboard are
available at https://anonymous.4open.science/r/ScienceBoard/.

1 INTRODUCTION

In the pursuit of scientific advances, researchers combine ingenuity and expertise to perform novel
research grounded in experimental explorations. In the modern era, scientific discovery is increas-
ingly driven by specialized software and tools that empower scientists to engage deeply with the
experimental world (Hacking, 1983). Tools like simulation engines (Hollingsworth & Dror, 2018),
data analysis software (The MathWorks Inc., 2022), and visualization platforms (Goddard et al., 2018)
are essential for formulating hypotheses, validating results, and advancing scientific understanding.

However, as scientific software grows more sophisticated and workflows become more demanding,
the learning curve and operational burden on human researchers intensify (Sänger et al., 2024). These
challenges motivate the vision of autonomous agents to play a central role in automating research
pipelines and assisting human researchers as “AI co-scientists” (Luo et al., 2025; Schmidgall et al.,
2025; Gottweis et al., 2025). For example, while a human scientist may take weeks to master a protein
analysis tool (Meng et al., 2023) and spend hours making sufficient observations, an autonomous
agent could perform the same tasks within minutes. By enabling fully autonomous workflows—from
tool usage to making novel discoveries (Lu et al., 2024a)—such agents promise to accelerate science
and empower researchers with unprecedented capabilities.

Recently emerging computer-using agents (Wu et al., 2024; OpenAI, 2025), capable of operating
digital devices in a human-like manner, present a promising approach toward achieving these visions.
These agents can interact with operating systems through Command-Line Interfaces (CLI; Sun
et al., 2024a; Wang et al., 2024d) or perform mouse and keyboard actions via Graphical User

1

https://anonymous.4open.science/r/Science_Board/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Instruction: Predict the protein structure for the amino acid sequence of 'MGND…' via AlphaFold in ChimeraX.

Instruction: Show planets' orbits of Solar System in Celestia.

Step1: Toggle the widget of AlphaFold. Step2: Input the given sequence and call
out AlphaFold for structure prediction.

Step3: Wait until the prediction finished.

Step1: Select the Sol and click 'Goto' in
contect menu.

Step2: Slide the mouse wheel to move
the camera away from Sol.

Step3: Click to show orbits of planets.

Figure 1: SCIENCEBOARD is a pioneering computer environment for scientific discovery agents,
integrated with professional software. It enables agents to autonomously follow instructions and
complete realistic scientific tasks by interacting with the system via GUI or CLI.
Interfaces (GUI; Cheng et al., 2024; Wu et al., 2025b), mimicking the user experience to flexibly
automate complex workflows (Xie et al., 2024; Rawles et al., 2025; Hu et al., 2024). As illustrated in
Figure 1, to predict the protein structure of an amino acid sequence, the agent launches ChimeraX,
selects the AlphaFold widget, and inputs the sequence for prediction. In this way, scientific tasks
could be performed through step-by-step autonomous interaction with software.

To initiate the use of computer-using agents to assist human scientists with daily tasks, we intro-
duce SCIENCEBOARD, a novel realistic environment designed for developing AI-powered research
assistants. Our infrastructure comprises a scalable framework for scientific exploration that in-
tegrates: (1) a flexible ecosystem comprising scientific software across multiple domains, and (2)
standardized evaluation pipelines for rigorous assessment. It supports dual-mode interaction, allowing
LLM/VLM-based computer agents to operate through either CLI or GUI.

Building upon SCIENCEBOARD, we curate a benchmark comprising 169 tasks that encompass
scientific experiment workflows drawn from six scientific domains, including algebra, biochemistry,
theorem proving, geographic information systems, astronomy, and scientific documentation. These
high-quality and challenging tasks are meticulously designed by annotators with disciplinary back-
grounds, simulating the daily routines faced by human scientists. Task completion requires agents
to interact with the system via CLI and GUI, exercising a wide range of capabilities—including
visual and textual reasoning, tool manipulation, coding, mathematics, spatial understanding, and deep
domain-specific knowledge. Unlike widely used desktop applications, scientific software exhibits
considerable complexity in I/O formats. Consequently, we reconfigure all software involved to ensure
the accuracy and reliability of execution-based evaluation. We design a suite of evaluation functions
that verify task completion by retrieving the internal states of the system.

We evaluate widely used LLMs and VLMs as agents on SCIENCEBOARD, incorporating both
proprietary models and their open-source counterparts. Across different observation settings, the
average success rate of agents ranges between 0% to 15%, with performance peaking at 20% in the
most favorable subcategories. This demonstrates that current computer-using agents, while promising,
remain far from capable of serving as scientific assistants, largely due to their limited action capability
and domain knowledge. Our analysis further reveals their inherent limitations and explores design
principles for developing more agents for science.

2 RELATED WORKS
Computer-Using Agents. Language agents (Sumers et al., 2024) have recently garnered significant
attention due to their interactive capabilities (Li et al., 2023; Sun et al., 2024c; Hong et al., 2024; Liu
et al., 2024a). Recent studies indicate their potential to interact with operating systems and automate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

computer tasks as humans do, leading to the proliferation of computer-using agents (OpenAI, 2025).
One line of research utilizes Command Line Interface (CLI), where agents generate executable scripts
(e.g., Python or Shell scripts) to interact with systems programmatically (Wang et al., 2024b). In this
process, agents perform code synthesis (Sun et al., 2024a) or invoke APIs (Wu et al., 2024; Zhang
et al., 2024). Another line of research focuses on Graphical User Interface (GUI) agents (Cheng et al.,
2024; Wu et al., 2025b; Lin et al., 2024) that interact with digital devices through human-like mouse
and keyboard actions (Niu et al., 2024; Zheng et al., 2024; Gou et al., 2025). These agents transform
user instructions into executable actions within the operating system (e.g., clicking an icon or scrolling
through a page). Powered by VLMs, GUI agents have been applied to automate desktop (Xie et al.,
2024) and mobile (Rawles et al., 2025) tasks, as well as specialized engineering workflows (Cao et al.,
2024), showing promising paths toward digital automation. This work innovatively initiates the use
of computer agents in scientific workflows, taking a step closer to autonomous research assistants.

AI for Scientific Discovery. The rapid advancement of LLMs has reshaped the landscape of
scientific discovery (Microsoft, 2023), boosting multiple stages of the research cycle (Luo et al.,
2025). With the rise of LLM/VLM-based agents, there is a growing demand for these game-
changers with college-level knowledge (Wang et al., 2024a) to transcend traditional tasks like
question answering (Lu et al., 2022; Krithara et al., 2023; Lu et al., 2024b). Recent efforts have
been directed towards harnessing such power to assist with diverse components of the research cycle,
including idea and hypothesis generation (Si et al., 2024; Liu et al., 2024b), data analysis (Chen
et al., 2025; Gu et al., 2024; Majumder et al., 2024), scientific programming (Tian et al., 2024;
Novikov et al., 2025), paper writing (Wang et al., 2024c), and peer-reviewing (Yu et al., 2024).
Meanwhile, incorporating domain knowledge or even constructing foundation models (Microsoft,
2025) can endow these agents with the capability to solve domain-specific problems, such as theorem
proving (Song et al., 2025), chemical reasoning (Ouyang et al., 2024; Tang et al., 2025) and biological
discovery (Wang et al., 2025; Zhao et al., 2025; Wang et al., 2025; Frey et al., 2025). With the vision
of constructing autonomous research assistants (Schmidgall et al., 2025), our work represents the
first to support agents in executing end-to-end scientific exploration workflows, thereby laying a
cornerstone for advancing AI-powered scientific discovery.

3 SCIENCEBOARD ENVIRONMENT

In this part, we introduce SCIENCEBOARD environment, which encompasses real-world science
software that could be manipulated through GUI and CLI interfaces. The interface is developed
based on an Ubuntu virtual machine (VM), serving as the underlying infrastructure. The dynamic and
visually intensive environments distinguish SCIENCEBOARD from all previous works that evaluate
the scientific capabilities of models or agents.

3.1 PRELIMINARIES AND TASK DEFINITION

A computer-using agent receives task instructions, selects actions to manipulate software, and receives
feedback reflecting changes in the environment (tabletop). This interaction is modeled as a Partially
Observable Markov Decision Process (POMDP), defined by the tuple ⟨g,S,A,O, T ⟩, where g is the
goal, S is the state space, A is the action space, O is the observation space (including environment
feedback), and T : S × A → S is the state transition function. Given a policy π, the agent
predicts actions at each time step t based on the goal g and memory mt = oj , aj , oj+1, aj+1, . . . , ot
(0 ≤ j < t), which records the sequence of past actions and observations. The trajectory τ =
[s0, a0, s1, a1, . . . , st] is determined by the policy and environment dynamics:

pπ(τ) = p(s0)

T∏
t=0

π(at|g, st,mt)T (st+1|st, at) (1)

Observation and Memory. We evaluate computer agents using three types of observation spaces:
text-only, visual-only, and combined text-visual observations. For text-based observations, we
use accessibility trees (a11ytree1) to generate structured textual representations of screenshots.
For visual observations, we capture high-resolution screenshots directly. The specific observation
combinations used in our experiments are detailed in Section 5.1, with further information in

1a11ytree: Accessibility (a11y) trees are hierarchical structures representing UI elements on the screen.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Agent

init() predict() eval()

Evaluator STATESMONITOR

true_init_()

Config
Files

Environment (Virtual Machine)Software

Task
Complete

New
APP

Task
Incomplete

Task
Files

Downloads

GrassGIS

Celestia

ChimeraX

VMManager

Install

Interact

Setup
Env.

Screenshot A11yTree

ActionObs

Set of Mark

Ⅰ

Ⅱ

Ⅲ

Figure 2: Overview of the SCIENCEBOARD infrastructure. The scalable environment is built upon
a VM pre-installed with scientific discovery software. It supports both CLI and GUI interfaces to
enable autonomous agent interaction. For each task designed to evaluate the agent’s capability as a
research assistant, an initialization script, configs, and related files are provided. Agents perceive the
environment through visual or textual modalities, and are expected to plan and act accordingly. After
the interaction, an evaluation function determines completion based on the VM internal states.

Appendix B.5. Our POMDP agent requires memory to retain historical information. Following
previous work (Yao et al., 2023; Ma et al., 2024), we construct this memory by concatenating the
agent’s most recent observations.

Goal and Unified Action Space. Each task is specified by a natural language (NL) instruction, such
as Display atoms in sphere style, describing the user’s intended goal. The policy model
decomposes a complex goal instruction into a sequence of actions. We specially design a unified
action space A in SCIENCEBOARD, integrating diverse interaction modalities crucial for scientific
tasks. For GUI actions, agents can perform the full range of human-computer interactions, including
mouse movements, clicks, keystrokes, and other typical input behaviors as in prior work (Xie et al.,
2024; Zhou et al., 2024) (e.g., CLICK[991, 019]). For CLI actions, agents can interact at two
levels: (a) invoking system-level commands within the Ubuntu terminal, and (b) utilizing application-
specific CLI or scripting mechanisms. Moreover, A comprises an answer action, enabling agents
to provide specific answers for QA tasks, and a call_api action, allowing agents to leverage
predefined external APIs to broaden their capabilities. A comprehensive list of supported action types
is available in Appendix B.4.

LLM/VLM-based Policy Model. An LLM / VLM model acts as the policy model to drive the
agent’s behavior. The policy model receives the current observation and generates the next action
accordingly. For pure-text observation, we adopt LLMs as the policy. Otherwise, we leverage VLMs.

3.2 SCIENTIFIC DISCOVERY EVALUATION FRAMEWORK

Unlike prior work that primarily focuses on static QA, coding, or single-step tasks, we aim to provide
agents with a realistic and visually grounded environment to support autonomous exploration, which
in turn introduces greater challenges for planning and action. In SCIENCEBOARD environment, as
shown in Figure 2, we (1) simulate scenarios where scientific software is used to solve domain-specific
problems, (2) enable agents to interact with the environment through diverse observations, and (3)
ensure that agent behaviors can be rigorously evaluated.

Scientific Software Installation and Adaptation. For each domain, we select an open-source
application that supports both visual and textual observations as the agent’s playground. To enable
access to the internal state of each application within the VM, we adapt the software accordingly.
Given the complexity and limited completeness of scientific applications, we inject a lightweight
server that launches alongside the application’s main UI process to expose internal states via HTTP
requests. This server is capable of querying the application’s runtime internal states, which serve as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the basis for downstream evaluation. For applications that do not natively support remote control
via RESTful APIs, we modify and recompile their source code to ensure that both UI elements and
internal states can be accessed. In addition, the server supports partial state control of the software,
allowing us to initialize with specific configurations to simulate contextualized task environments.
More about the software selected and further implementation details are provided in Appendix B.3.
Agent Interactions with the Environment. The LLM/VLM agent interacts with the environment
as described in Section 3.1, receiving observations and executing actions accordingly. Scientific
software processes these actions and returns updated states. The agent operates autonomously,
continuing this loop until it outputs a signal (DONE or FAIL) or reaches the predefined attempt limit.

Table 1: Typical evaluation cases of SCIENCEBOARD include exact matching, range-based assess-
ment, and numerical tasks with tolerance. We have tailored appropriate evaluation methods for each
task. Additional evaluation strategies are detailed in Appendix D.4.

Initial State Instruction Evaluation Script (Simplified)

Select all water molecules and
draw their centroids with radius of
1Å in ChimeraX.

{
"type":"info","key":"sell",
"value":["atom id #!1/A:201@O idatm_type O3"
"...",]

},{
"type":"states",
"find":"lambda k,v:k.endswith(’._name’)",
"key":"lambda k:’..._atoms_drawing’",
"value":"[[13.0012 1.7766 21.3672 1.]]"

}

Display and ONLY display the layer
of ’boundary_region’ in Grass GIS.

{
"type":"info",
"key":"lambda dump:len(dump[’layers’])",
"value":1

},{"type":"info"
"key":"lambda dump:dump[’layers’][0][’name’]",
"value":"boundary_region@PERMANENT"

}

Set the Julian date to 2400000 in
Celestia.

{
"type":"info",
"key":"simTime",
"value":2400000,
"pred":"lambda left, right:abs(left-right) < 1",

}

Evaluation Pipeline. Given the complexity of scientific tasks, conventional answer-matching
metrics and even execution-based evaluations (Xie et al., 2024; Zhou et al., 2024), often lack the
granularity required to assess workflows accurately. For instance, as shown in Table 1, the rotation of
a protein does not affect the correctness of visualization, whereas computational tasks in astronomy
are usually influenced by the current clock state. Therefore, we propose a fine-grained evaluation
based on both the correctness of key I/O during the workflow and the final state of the VM.

To handle the diverse criteria for determining task correctness (e.g., exact matching, range-based
assessment, numerical tolerance, file comparison), we design a set of evaluation templates. For each
specific task, the relevant template is then instantiated with the appropriate parameters and expected
gold standard values. This ensures both consistent validation and scalability for future extension.
More evaluation details are in Appendix B.2.

4 SCIENCEBOARD BENCHMARK

In this section, we present the covered domains, the annotation pipeline, and statistics of the bench-
mark constructed based on the SCIENCEBOARD environment.

4.1 DOMAIN AND TASK COVERAGE

As a pioneering benchmark for scientific exploration, SCIENCEBOARD spans six domains selected
for their relevance to key stages of the scientific workflow, such as simulation, modeling, prediction,
and knowledge (Microsoft, 2023). In selecting software for each domain, we consider not only its
representativeness, but also practical criteria for evaluation: open-source availability, a11ytree
compatibility, and no requirement for user authentication.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(1) Biochemistry. We employ UCSF ChimeraX (Goddard et al., 2018; Meng et al., 2023), a
molecular analysis tool that supports structural modeling (e.g., AlphaFold (Jumper et al., 2021)).
The tasks assess the agent’s ability to manipulate biomolecular structures, as well as to reason
over spatial conformations and biochem annotations.

(2) Algebra. KAlgebra is employed to evaluate the agent’s potential in symbolic mathematics.
Tasks involve executing algebraic expressions, interpreting plots, and manipulating symbolic
functions. These scenarios require the agent to exhibit strong mathematical symbolic reasoning
and visual grounding capability.

(3) Theorem Proving. We use Lean 4 (Moura & Ullrich, 2021) as a proof assistant to assess
agents’ abilities in formal logic and deductive reasoning. The ATP tasks in this category
emphasize syntactic precision and logical coherence, evaluating the agent’s capability to generate
semantically valid formal proofs.

(4) Geographic Information System. GrassGIS, a computational engine for raster, vector, and
geospatial processing, is included to examine the agent’s skills in understanding terrain, hydrology,
and handling spatio-temporal data, with support for functions such as ecosystem modeling.

(5) Astronomy. We integrate Celestia, a planetarium software simulating real-world astronomi-
cal scenarios. Agents must demonstrate temporal-spatial awareness and knowledge of the cosmos
and celestial objects by tracking planetary systems, simulating orbital events, and querying object
metadata across time and space.

(6) Scientific Documentation. To simulate research documentation workflows, we adapt and
incorporate TeXstudio to assess the agent’s technical writing capabilities. In standalone tasks,
agents are expected to compose well-structured abstracts, generate plots, and produce formal
reports based on provided instructions. In cross-application scenarios, TeXstudio is coupled
with the aforementioned software to evaluate whether agents can extract meaningful insights
from experiments and synthesize them into coherent narratives.

These domains enable evaluating a science agent’s capabilities across multiple dimensions, including
visual / textual reasoning, math, coding, tool use, spatial understanding, domain-specific knowledge,
and more. Additionally, to explore the potential for end-to-end scientific automation, documentation
tasks are integrated with other domains to support cross-application workflows—such as automatically
generating an experimental report based on completed upstream tasks. More details about the software
platforms used to instantiate and convey the tasks in SCIENCEBOARD are provided in Appendix B.3.

Step 1: Learn Tutorials
and Handbooks

Learn

Step 2: Task Curation

Difficulty:
Easy

Agentic Prompt: Your
are an expert in
Biochemistry…

Task: Display atom in sphere style and
color non-carbon …

Difficulty:
Easy

Agentic Prompt: Your
are an expert in
Biochemistry…

Task: Display atom in sphere style and
color non-carbon …

Difficulty:
Easy

Agentic Prompt: You
are an expert in
Biochemistry…

Task: Display atom in sphere style and
color non-carbon …

Step 4: Task Configuration

App Install

File Download

Step 5: Write Evaluation Function

def compare (star,
moon):

pass

def eval (output,
target):

pass

Check & Validation

Step 3: Task Formalization
and Verification

Agentic Prompt Difficulty Task 1

Agentic Prompt Difficulty Task 2

Agentic Prompt Difficulty Task 3

Execution

Write Code

Figure 3: The annotation pipeline of the tasks in SCIENCEBOARD benchmark.

4.2 TASK ANNOTATION PIPELINE

To effectively construct tasks that are appropriately challenging, diverse, and aligned with the features
of scientific software, we leverage a pipeline that spans from training annotators with tutorials and
handbooks to conducting execution-based validation, as shown in Figure 3.

(1) Tutorial Learning. Five annotators initially collect and learn from tutorials and handbooks
related to the software. After that, each annotator studies and explores a software’s basic unit
operations, e.g., plotting the Bernoulli lemniscate in KAlgebra. Details are in Appendix D.1.

(2) Task Curation. Each annotator selects a scientific software, installs it within SCIENCEBOARD,
and begins drafting task instructions based on its functionalities. Task types include but are not

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

limited to: configuration, simulation, QA, and domain-specific expertise. Each task is tentatively
assigned a difficulty. Thereafter, agentic prompts aligned with the drafted tasks will be curated.

(3) Formalization and Selection. Different annotators exhibit varying linguistic habits, we employ
ChatGPT to standardize the task format. Annotators then conduct a cross-check, excluding those
lacking diversity, poor executability, or non-unique answers, to finalize the set of tasks for use.

(4) Configuration Function Writing. The purpose of this step is to initialize the software and pro-
vide specific contexts, e.g., supplying a map for GIS tasks or a protein sequence for biochemistry
tasks. Annotators will write a set of functions for each software to modify the VM status, i.e.,
the internal state of the software, along with general configuration functions (e.g., downloading
required files). Tasks commence only after all initialization have been successfully executed.

(5) Evaluation Function Writing and Validation. Evaluation functions are developed to assess
task outcomes rigorously. As described in Section 3.2, evaluations are state-based, with functions
derived from a base evaluator template. Annotators retrieve the task state from the VM and assess
it based on criteria such as I/O matching and predefined ranges. The function returns either “task
complete” or “task fail.” Cross-validation is performed for consistency, with each task executed
by two randomly selected annotators on separate VMs. The results are analyzed to ensure the
evaluator’s correctness, even under intentional attempts by annotators to deceive the system.

4.3 TASK STATISTICS

The task statistics of SCIENCEBOARD benchmark are presented in Table 2. Specifically, it comprises
169 unique tasks across 6 domains, with task difficulty categorized into three levels. We curate a
balanced number of tasks that are representative enough while keeping the evaluation cost manageable.
During annotation, we define multiple task types to evaluate agents’ ability to perform diverse
operation flows and leverage domain-specific knowledge.

Table 2: Statistics of SCIENCEBOARD.

Task Type Statistics
Total Tasks 169 (100%)
- GUI 38 (22.5%)
- CLI 33 (19.5%)
- GUI + CLI 98 (58.0%)

Difficulty
- Easy 91 (53.8%)
- Medium 48 (28.4%)
- Hard 28 (16.6%)
- Open Problems 2 (1.2%)

Instructions
Avg. Length of Task Instructions 20.0
Avg. Length of Agentic Prompt 374.9

Execution
Avg. Steps 9.0
Avg. Time Consumption 124(s)

Lean4

(15.5%)

K
al

ge
br

a
(1

8.
5%

)

ChimeraX(17.3%)

Cele
sti

a

(19.6%) G
rassG

IS

(20.2%
)

TeXStudio(8.9%)

Pure Math

Algebra
Geometry

Ana
lys

is

Ope
n

Pr
ob

le
m

s

Di
re

ct
 In

st
ru

ct
io

ns

Ba
si

c
O

ps
.

Adv. K
now

ledge

Com
p. Reasoning

Software Config.Struct. Analysis

Data Interp.

Struct. Prediction

Basic Settings

Spatia
l R

easoning

Da
ta

 Q
ue

rie
s

Si
m

ul
at

io
n

B
as

ic
 M

an
ip

ul
at

io
n M

ap D
isplay

Image Analysis

Data Editing

Basic Usage

Layout

Figure Editing

Figure 4: Distribution of tasks in SCIENCE-
BOARD benchmark.

The distribution of task types is shown in Figure 4. Beyond the innovation of a realistic environment,
SCIENCEBOARD benchmark also improves upon prior work in terms of task design and content
diversity. More details about task diversity, stability analysis, and comparison with representative
scientific benchmarks are provided in Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Backbones. We employ three types of backbones for agents. These include propri-
etary models: GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (Anthropic AI, 2024),
Gemini-2.0-Flash (Team, 2024), and o3-mini (OpenAI, 2025); open-source models:
Qwen2.5-VL-72B-Instruct (Bai et al., 2025), InternVL3-78B (Chen et al., 2024), QvQ-72B-
Preview (Qwen Team, 2024), and GPT-oss-120B (Open AI, 2025); and GUI action models: OS-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Atlas-Pro-7B (Wu et al., 2025b), UGround-V1-7B (Gou et al., 2025), UI-TARS-72B-DPO / UI-
TARS-1.5-7B (Qin et al., 2025), and GUI-Actor-7B (Wu et al., 2025a). More details in Appendix E.1.
Observation Space. We follow established observation settings (Xie et al., 2024; Zhou et al., 2024):
(1) full desktop screenshots; (2) a11ytree, a structured text-only representation; (3) Screenshots +
a11ytree; and (4) Set-of-Marks (Yang et al., 2023), which partitions images into marked regions
to aid grounding. Further details are in Appendix B.5.

5.2 RESULTS

We compare the performance of computer-use agents powered by different LLMs and VLMs on
SCIENCEBOARD, as presented in Table 3. We summarize our key empirical findings as follows:

Table 3: Success rates on SCIENCEBOARD. We present the performance of each agent back-
bone across different scientific domains under various observation settings. Proprietary Models ,
Open-Source VLMs / LLMs , and GUI Action Model are distinguished by color.

Observations Model Success Rate (↑)

Algebra Biochem GIS ATP Astron Doc Overall

Screenshot

GPT-4o 3.23% 0.00% 0.00% 0.00% 0.00% 6.25% 1.58%
Claude-3.7-Sonnet 9.67% 37.93% 2.94% 0.00% 6.06% 6.25% 10.48%
Gemini-2.0-Flash 6.45% 3.45% 2.94% 0.00% 0.00% 6.06% 3.15%
Qwen2.5-VL-72B 22.58% 27.59% 5.88% 0.00% 9.09% 12.50% 12.94%

InternVL3-78B 6.45% 3.45% 0.00% 0.00% 0.00% 6.25% 2.69%
UI-TARS-1.5-7B 12.90% 13.79% 0.00% 0.00% 6.06% 0.00% 2.69%

a11ytree

GPT-4o 12.90% 20.69% 2.94% 0.00% 6.06% 0.00% 7.10%
Claude-3.7-Sonnet19.35% 34.48% 2.94% 3.85% 12.12% 0.00% 12.12%
Gemini-2.0-Flash 9.68% 17.24% 0.00% 0.00% 0.00% 0.00% 4.49%
o3-mini 16.13% 20.69% 2.94% 3.85% 15.15% 6.25% 10.84%
Qwen2.5-VL-72B 9.68% 10.34% 2.94% 0.00% 3.03% 0.00% 4.33%

InternVL3-78B 3.23% 3.45% 0.00% 0.00% 0.00% 0.00% 1.11%
GPT-oss-120B 19.35% 13.79% 0.00% 0.00% 9.09% 0.00% 7.04%

Screenshot
+ a11ytree

GPT-4o 22.58% 37.93% 2.94% 7.69% 3.03% 12.50% 14.45%
Claude-3.7-Sonnet12.90% 41.37% 8.82% 3.85% 9.09% 18.75% 15.79%
Gemini-2.0-Flash 16.13% 24.14% 2.94% 0.00% 18.18% 12.50% 12.32%
Qwen2.5-VL-72B 16.13% 20.69% 2.94% 0.00% 18.18% 12.50% 11.74%

InternVL3-78B 6.45% 3.45% 0.00% 0.00% 3.03% 6.25% 3.20%

Set-of-Mark

GPT-4o 6.45% 3.45% 0.00% 0.00% 3.03% 12.50% 4.24%
Claude-3.7-Sonnet16.13% 31.03% 5.88% 0.00% 6.06% 12.50% 11.93%
Gemini-2.0-Flash 3.23% 0.00% 0.00% 0.00% 3.03% 6.25% 2.09%
Qwen2.5-VL-72B 6.45% 6.90% 2.94% 0.00% 3.03% 12.50% 6.36%

QvQ-72B-Preview 0.00% 0.00% 2.94% 0.00% 3.03% 0.00% 0.49%

InternVL3-78B 3.23% 6.90% 2.94% 0.00% 0.00% 0.00% 2.18%

Human Performance 74.19% 68.97% 55.88% 42.31% 51.52% 68.75% 60.27%

Performance Hierarchy. Existing agents remain far from being capable of effectively assisting
human scientists in completing real-world scientific exploration tasks. Even SOTA models, such
as GPT-4o and Claude, achieve an average success rate of only 15%. Across various settings,
open-source counterparts can partially match proprietary models. However, they still exhibit markedly
lower overall performance, with an average success rate of less than 12% and approaching nearly 0%
in some task categories. The gap between agent and human performance underscores the limitations
of the status quo and necessitates further research.

Domain-Specific Performance Insights. Across domains, we observe clear performance imbal-
ances: models perform moderately well on Algebra and Biochemistry but degrade notably on GIS
and Astronomy. We attribute this to: (1) Interfaces: Algebra and Biochemistry tasks often support
both CLI and GUI execution, whereas GIS and Astronomy rely mainly on GUI interactions. Agents

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

generally handle CLI commands more reliably than fine-grained GUI grounding, which demands
precise visual localization. (2) Task emphasis: Geographical and astronomical tasks involve dense
visual elements (e.g., maps, star charts), making it difficult for agents to identify and reason over
relevant information. This also indicates the limited 3D spatial reasoning ability of current VLMs.
Impact of Different Observations. Different observation modalities have a significant impact.
Overall, a11ytree + screenshots setting yields the best performance. In other settings, Qwen2.5-VL
performs exceptionally well under screenshot setting, which we attribute to its advanced GUI ability.
Under a11ytree, the attribute information of elements allows LLMs to complete certain tasks by
relying solely on textual observations. Meanwhile, we observe that the SoM sometimes introduces
negative effects. It is likely that although SoM provides bounding boxes to ease grounding, scientific
software often contains massive elements on screen (e.g., dense celestial objects and complex cosmic
backgrounds), which introduces substantial noise and increases the difficulty of visual reasoning.

6 ANALYSIS

To further investigate the factors influencing agents’ capabilities, we conduct additional analysis to
understand the underlying causes and the behavioral differences among heterogeneous models.
Disentangled Planning and Action. Observations from failure cases indicate that some models,
such as GPT-4o, can effectively plan tasks but lack sufficient grounding capabilities. Therefore, we
explore separating planning and action. Following existing practices (Wu et al., 2025b), we configure
GPT-4o as the planner and utilize various VLMs and GUI action models as the grounding models.

Table 4: Success rates of different VLM agent combinations under the planner + grounding model
setting on SCIENCEBOARD. The observation setting used in this experiment is screenshot. Colors
denote Proprietary Models , Open-Source VLMs and GUI Action Models.

Planner Grounding Model Success Rate (↑)
Algebra Biochem GIS Astron Overall

GPT-4o

OS-Atlas-Pro-7B 6.25% 10.34% 0.00% 3.03% 4.92%
UGround-V1-7B 0.00% 3.45% 0.00% 3.03% 1.62%
Qwen2.5-VL-72B 12.50% 34.48% 11.76% 9.09% 16.96%

UI-TARS-72B 3.23% 10.34% 5.88% 6.06% 6.38%
GUI-Actor-7B 21.88% 44.83% 2.94% 12.12% 20.44%

GPT-4o 3.23% 0.00% 0.00% 0.00% 0.81%

The results in Table 4 show that modular approaches yield significant improvements and are promising
for tackling complex and visually demanding tasks in scientific software workflows.
GUI vs. Hybrid. Some tasks support both GUI and CLI as interchangeable interfaces. For
example, ChimeraX offers nearly full functional coverage through both modes for biochemistry tasks.

GPT-4o Qwen2.5-VL InternVL3
0

5

10

15

20

Su
cc

es
s

R
at

e
(%

)

GUI + CLI
GUI Only

Figure 5: GUI + CLI v.s. GUI Only.

To test how computer-using agents handle such hybrid
software, we disable ChimeraX’s CLI, enforcing GUI-
only execution (a11ytree + screenshot). As shown
in Figure 5, GPT-4o and InternVL3 suffer clear drops
in performance, whereas Qwen2.5-VL remains largely
unaffected, indicating better adaptation to GUI execution.

These results suggest that future agents should be more
adaptable and equipped with stronger GUI capabilities
to remain robust across hybrid and vision-only settings.
Extended analyses are provided in Appendix F.

7 CONCLUSION

We propose SCIENCEBOARD, a first-of-its-kind realistic environment designed to empower au-
tonomous agents in scientific exploration with rigorous validation. Building upon our infrastructure,
we curate a highly challenging benchmark of diverse scientific tasks meticulously crafted by human
experts. Through extensive experiments and analysis, we found that even state-of-the-art computer-
using agents perform significantly below human-level proficiency. Although the realization of
autonomous agents for scientific discovery remains a distant goal, this work offers actionable insights
for future development, and we believe it constitutes advancing AI-powered scientific discovery.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide an anonymous downloadable source code at this link. The deployment process of
SCIENCEBOARD is detailed in Appendix C, while the experimental settings for running evaluations
on SCIENCEBOARD are described in Section 5.1.

ETHICS STATEMENT

Computer-using agents operating in live OS environments could potentially affect the normal func-
tioning of the system. This is non-negligible in scientific workflows, where a poorly controlled
agent could potentially misconfigure experiments, corrupt sensitive research data, or even lead to
irreversible data loss. However, considering that all settings in this work are conducted within isolated
virtual environments, we do not view this as a concern.

REFERENCES

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
A compositional generalist-specialist framework for computer use agents, 2025. URL https:
//arxiv.org/abs/2504.00906.

Angelos Angelopoulos, James F. Cahoon, and Ron Alterovitz. Transforming science labs
into automated factories of discovery. Science Robotics, 9(95):eadm6991, 2024. doi:
10.1126/scirobotics.adm6991. URL https://www.science.org/doi/abs/10.1126/
scirobotics.adm6991.

Anthropic AI. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1:1, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Benjamin Burger, Phillip M Maffettone, Vladimir V Gusev, Catherine M Aitchison, Yang Bai,
Xiaoyan Wang, Xiaobo Li, Ben M Alston, Buyi Li, Rob Clowes, et al. A mobile robotic chemist.
Nature, 583(7815):237–241, 2020.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xiong
Xinzhuang, Hanchong Zhang, Wenjing Hu, Yuchen Mao, Tianbao Xie, Hongshen Xu, Danyang
Zhang, Sida Wang, Ruoxi Sun, Pengcheng Yin, Caiming Xiong, Ansong Ni, Qian Liu, Vic-
tor Zhong, Lu Chen, Kai Yu, and Tao Yu. Spider2-v: How far are multimodal agents from
automating data science and engineering workflows? In The Thirty-eight Conference on Neu-
ral Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=Qz2xmVhn4S.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
Liao, Chen Wei, Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N. Baker, Benjamin Burns,
Daniel Adu-Ampratwum, Xuhui Huang, Xia Ning, Song Gao, Yu Su, and Huan Sun. Sci-
enceagentbench: Toward rigorous assessment of language agents for data-driven scientific dis-
covery. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=6z4YKr0GK6.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong Wu.
SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9313–9332, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.505.

10

https://anonymous.4open.science/r/Science_Board/
https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.science.org/doi/abs/10.1126/scirobotics.adm6991
https://www.science.org/doi/abs/10.1126/scirobotics.adm6991
https://arxiv.org/abs/2502.13923
https://openreview.net/forum?id=Qz2xmVhn4S
https://openreview.net/forum?id=Qz2xmVhn4S
https://openreview.net/forum?id=6z4YKr0GK6
https://aclanthology.org/2024.acl-long.505

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nathan C Frey, Isidro Hötzel, Samuel D Stanton, Ryan Kelly, Robert G Alberstein, Emily Makowski,
Karolis Martinkus, Daniel Berenberg, Jack Bevers III, Tyler Bryson, et al. Lab-in-the-loop
therapeutic antibody design with deep learning. bioRxiv, pp. 2025–02, 2025.

Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery through
multi-agent intelligent graph reasoning. arXiv preprint arXiv:2409.05556, 2024.

Thomas D. Goddard, Conrad C. Huang, Elaine C. Meng, Eric F. Pettersen, Gregory S. Couch, John H.
Morris, and Thomas E. Ferrin. Ucsf chimerax: Meeting modern challenges in visualization
and analysis. Protein Science, 27(1):14–25, 2018. doi: https://doi.org/10.1002/pro.3235. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3235.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, Khaled Saab, Dan Popovici,
Jacob Blum, Fan Zhang, Katherine Chou, Avinatan Hassidim, Burak Gokturk, Amin Vahdat,
Pushmeet Kohli, Yossi Matias, Andrew Carroll, Kavita Kulkarni, Nenad Tomasev, Yuan Guan,
Vikram Dhillon, Eeshit Dhaval Vaishnav, Byron Lee, Tiago R D Costa, José R Penadés, Gary
Peltz, Yunhan Xu, Annalisa Pawlosky, Alan Karthikesalingam, and Vivek Natarajan. Towards an
ai co-scientist, 2025. URL https://arxiv.org/abs/2502.18864.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
agents. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=kxnoqaisCT.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,
Youran Pan, Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A Mer-
rill, Jeffrey Heer, and Tim Althoff. BLADE: Benchmarking language model agents for data-
driven science. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
13936–13971, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.815. URL https://aclanthology.org/2024.
findings-emnlp.815/.

Ian Hacking. Representing and intervening: Introductory topics in the philosophy of natural science.
Cambridge university press, 1983.

Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. Neuron, 99(6):
1129–1143, 2018.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary
case study with claude 3.5 computer use. arXiv preprint arXiv:2411.10323, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, and
Zhiyong Wu. Agentstore: Scalable integration of heterogeneous agents as specialized generalist
computer assistant. arXiv preprint arXiv:2410.18603, 2024a.

Chengyou Jia, Changliang Xia, Zhuohang Dang, Weijia Wu, Hangwei Qian, and Minnan Luo. Chat-
gen: Automatic text-to-image generation from freestyle chatting. arXiv preprint arXiv:2411.17176,
2024b.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,

11

https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3235
https://arxiv.org/abs/2502.18864
https://openreview.net/forum?id=kxnoqaisCT
https://aclanthology.org/2024.findings-emnlp.815/
https://aclanthology.org/2024.findings-emnlp.815/
https://openreview.net/forum?id=VtmBAGCN7o

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, Aug 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.
URL https://doi.org/10.1038/s41586-021-03819-2.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiatiotis, and Georgios Paliouras. Bioasq-
qa: A manually curated corpus for biomedical question answering. Scientific Data, 10(1):170,
2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
CAMEL: Communicative agents for “mind” exploration of large language model society. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=3IyL2XWDkG.

Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong Feng, Lingpeng Kong, and Qi Liu. Mul-
timodal ArXiv: A dataset for improving scientific comprehension of large vision-language
models. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 14369–14387, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.775. URL https:
//aclanthology.org/2024.acl-long.775/.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei
Li, Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Zhijiang Guo, Le Song, and Cheng-Lin Liu.
From system 1 to system 2: A survey of reasoning large language models, 2025. URL https:
//arxiv.org/abs/2502.17419.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
agent, 2024. URL https://arxiv.org/abs/2411.17465.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating LLMs as agents. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=zAdUB0aCTQ.

Zijun Liu, Kaiming Liu, Yiqi Zhu, Xuanyu Lei, Zonghan Yang, Zhenhe Zhang, Peng Li, and
Yang Liu. Aigs: Generating science from ai-powered automated falsification, 2024b. URL
https://arxiv.org/abs/2411.11910.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024a.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Pe-
ter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains
for science question answering. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=HjwK-Tc_Bc.

12

https://doi.org/10.1038/s41586-021-03819-2
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://aclanthology.org/2024.acl-long.775/
https://aclanthology.org/2024.acl-long.775/
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2411.17465
https://openreview.net/forum?id=zAdUB0aCTQ
https://arxiv.org/abs/2411.11910
https://openreview.net/forum?id=HjwK-Tc_Bc

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xingyu Lu, He Cao, Zijing Liu, Shengyuan Bai, Leqing Chen, Yuan Yao, Hai-Tao Zheng,
and Yu Li. MoleculeQA: A dataset to evaluate factual accuracy in molecular comprehen-
sion. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 3769–
3789, Miami, Florida, USA, November 2024b. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.216. URL https://aclanthology.org/2024.
findings-emnlp.216/.

Ziming Luo, Zonglin Yang, Zexin Xu, Wei Yang, and Xinya Du. Llm4sr: A survey on large language
models for scientific research, 2025. URL https://arxiv.org/abs/2501.04306.

Jakub Lála, Odhran O’Donoghue, Aleksandar Shtedritski, Sam Cox, Samuel G. Rodriques, and
Andrew D. White. Paperqa: Retrieval-augmented generative agent for scientific research. arXiv
preprint arXiv:2312.07559, 2024. URL https://doi.org/10.48550/arXiv.2312.
07559.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn LLM
agents. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=4S8agvKjle.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models, 2024. URL
https://arxiv.org/abs/2407.01725.

Elaine C. Meng, Thomas D. Goddard, Eric F. Pettersen, Greg S. Couch, Zach J. Pearson,
John H. Morris, and Thomas E. Ferrin. Ucsf chimerax: Tools for structure building and
analysis. Protein Science, 32(11):e4792, 2023. doi: https://doi.org/10.1002/pro.4792. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4792.

Microsoft. The impact of large language models on scientific discovery: a preliminary study using
gpt-4. arXiv preprint arXiv:2311.07361, 2023.

Microsoft. Nature language model: Deciphering the language of nature for scientific discovery, 2025.
URL https://arxiv.org/abs/2502.07527.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual
Event, July 12–15, 2021, Proceedings, pp. 625–635, Berlin, Heidelberg, 2021. Springer-Verlag.
ISBN 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37. URL https://doi.org/
10.1007/978-3-030-79876-5_37.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: a vision language model-driven computer control agent. In Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI ’24, 2024. URL
https://doi.org/10.24963/ijcai.2024/711.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic
discovery. https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-
for-designing-advanced-algorithms/, 2025.

OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world, 2025. URL https://openai.com/index/computer-using-agent.

Open AI. gpt-oss-120b & gpt-oss-20b model card. gpt-oss model card, 1:1, 2025.

OpenAI. Openai o3-mini system card, 2025.

Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, Yejin Choi, Jiawei Han, and Lianhui Qin. Struc-
tured chemistry reasoning with large language models. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

13

https://aclanthology.org/2024.findings-emnlp.216/
https://aclanthology.org/2024.findings-emnlp.216/
https://arxiv.org/abs/2501.04306
https://doi.org/10.48550/arXiv.2312.07559
https://doi.org/10.48550/arXiv.2312.07559
https://openreview.net/forum?id=4S8agvKjle
https://arxiv.org/abs/2407.01725
https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4792
https://arxiv.org/abs/2502.07527
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.24963/ijcai.2024/711
https://openai.com/index/computer-using-agent

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Qwen Team. Qvq: To see the world with wisdom, December 2024. URL https://qwenlm.
github.io/blog/qvq-72b-preview/.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William E Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Kenji Toyama,
Robert James Berry, Divya Tyamagundlu, Timothy P Lillicrap, and Oriana Riva. Androidworld:
A dynamic benchmarking environment for autonomous agents. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=il5yUQsrjC.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants, 2025.
URL https://arxiv.org/abs/2501.04227.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
large-scale human study with 100+ nlp researchers. arXiv preprint arXiv:2409.04109, 2024.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots for
theorem proving in lean. arXiv preprint arXiv:2404.12534, 2025.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
for language agents. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=1i6ZCvflQJ. Survey Certification.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024a.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024b.

Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, and Lingpeng Kong. Corex: Pushing
the boundaries of complex reasoning through multi-model collaboration. In First Conference on
Language Modeling, 2024c. URL https://openreview.net/forum?id=7BCmIWVT0V.

Mario Sänger, Ninon DeMecquenem, Katarzyna Ewa Lewińska, Vasilis Bountris, Fabian Lehmann,
Ulf Leser, and Thomas Kosch. A qualitative assessment of using chatgpt as large language model
for scientific workflow development. GigaScience, 13, 2024. ISSN 2047-217X. doi: 10.1093/
gigascience/giae030. URL http://dx.doi.org/10.1093/gigascience/giae030.

Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu
Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, Arman Cohan, and Mark Gerstein. Chemagent:
Self-updating memories in large language models improves chemical reasoning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=kuhIqeVg0e.

Gemini Team. Introducing gemini 2.0: our new ai model for the agentic era, 2024.

The MathWorks Inc. Statistics and machine learning toolbox documentation, 2022. URL https:
//www.mathworks.com/help/stats/index.html.

Minyang Tian, Luyu Gao, Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, HAO TONG, Kha Trinh,
Chenyu Tian, Zihan Wang, Bohao Wu, Shengzhu Yin, Minhui Zhu, Kilian Lieret, Yanxin Lu,
Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu A Huerta, and Hao Peng.
Scicode: A research coding benchmark curated by scientists. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=ADLaALtdoG.

14

https://qwenlm.github.io/blog/qvq-72b-preview/
https://qwenlm.github.io/blog/qvq-72b-preview/
https://openreview.net/forum?id=il5yUQsrjC
https://openreview.net/forum?id=il5yUQsrjC
https://arxiv.org/abs/2501.04227
https://openreview.net/forum?id=1i6ZCvflQJ
https://openreview.net/forum?id=7BCmIWVT0V
http://dx.doi.org/10.1093/gigascience/giae030
https://openreview.net/forum?id=kuhIqeVg0e
https://openreview.net/forum?id=kuhIqeVg0e
https://www.mathworks.com/help/stats/index.html
https://www.mathworks.com/help/stats/index.html
https://openreview.net/forum?id=ADLaALtdoG
https://openreview.net/forum?id=ADLaALtdoG

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Ma-
chine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Hanchen Wang, Yichun He, Paula P Coelho, Matthew Bucci, Abbas Nazir, Bob Chen, Linh Trinh,
Serena Zhang, Kexin Huang, Vineethkrishna Chandrasekar, et al. Spatialagent: An autonomous ai
agent for spatial biology. bioRxiv, pp. 2025–04, 2025.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating college-level
scientific problem-solving abilities of large language models. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 50622–50649. PMLR, 21–27 Jul 2024a. URL
https://proceedings.mlr.press/v235/wang24z.html.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Proceedings of the 41st International Conference
on Machine Learning, ICML’24. JMLR.org, 2024b.

Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang,
Xinyu Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, and Yue Zhang. Autosur-
vey: Large language models can automatically write surveys. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 115119–115145. Curran Associates, Inc.,
2024c. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/d07a9fc7da2e2ec0574c38d5f504d105-Paper-Conference.pdf.

Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried, and Graham Neubig. What are tools anyway?
a survey from the language model perspective. In First Conference on Language Modeling, 2024d.
URL https://openreview.net/forum?id=Xh1B90iBSR.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
agents. arXiv preprint arXiv:2506.03143, 2025a.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement,
2024. URL https://arxiv.org/abs/2402.07456.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: Foundation action model for
generalist GUI agents. In The Thirteenth International Conference on Learning Representations,
2025b. URL https://openreview.net/forum?id=n9PDaFNi8t.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=tN61DTr4Ed.

Yiheng Xu, Hongjin SU, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming Xiong,
and Tao Yu. Lemur: Harmonizing natural language and code for language agents. In The Twelfth
International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=hNhwSmtXRh.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2024b.

15

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.mlr.press/v235/wang24z.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/d07a9fc7da2e2ec0574c38d5f504d105-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d07a9fc7da2e2ec0574c38d5f504d105-Paper-Conference.pdf
https://openreview.net/forum?id=Xh1B90iBSR
https://arxiv.org/abs/2402.07456
https://openreview.net/forum?id=n9PDaFNi8t
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=hNhwSmtXRh
https://openreview.net/forum?id=hNhwSmtXRh

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Jianxiang Yu, Zichen Ding, Jiaqi Tan, Kangyang Luo, Zhenmin Weng, Chenghua Gong, Long
Zeng, RenJing Cui, Chengcheng Han, Qiushi Sun, et al. Automated peer reviewing in paper
sea: Standardization, evaluation, and analysis. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 10164–10184, 2024.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo: A ui-focused agent for windows os
interaction, 2024.

Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents. In
Findings of the Association for Computational Linguistics: ACL 2024, pp. 3132–3149, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.186. URL https://aclanthology.org/2024.findings-acl.186/.

Haiteng Zhao, Chang Ma, Fangzhi Xu, Lingpeng Kong, and Zhi-Hong Deng. Biomaze: Bench-
marking and enhancing large language models for biological pathway reasoning. arXiv preprint
arXiv:2502.16660, 2025.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=piecKJ2DlB.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web
environment for building autonomous agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=oKn9c6ytLx.

LARGE LANGUAGE MODEL USAGE

In this submission, we employed LLMs to aid and polish writing, including grammar and typo
checking, as well as for identifying related works.

LIMITATIONS AND BROADER IMPACTS

As a pioneering effort marking the early stages of integrating computer-using agents into scientific
workflows, it is important to acknowledge certain limitations. While our current evaluation, based on
both VM states and key I/O correctness, provides robust validation, its reliance on a binary success
flag may not fully capture process correctness or partial task completion (e.g., an agent succeeding
in most steps but failing at a final one). Introducing a “partial credit” could offer more granular
evaluation, but accurately defining and implementing such a system for open-ended, OS-level tasks
within diverse scientific software presents significant challenges due to vast state / action spaces. One
potential direction for improvement is to introduce VLMs to serve as judges capable of assigning
partial credit and providing richer feedback. We leave this as future work.

A DISCUSSION AND FUTURE DIRECTIONS

SCIENCEBOARD represents a significant advance in using autonomous agents for scientific workflows.
Our findings suggest several key directions for future research:

16

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/2024.findings-acl.186/
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=oKn9c6ytLx

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Harmonized Domain Knowledge and Agentic Capability. Our evaluations suggest that one
contributing factor to current agents’ limitations in scientific exploration is their insufficient domain
knowledge. For instance, the GUI action models we evaluated, while effective at automation, lack
the specialized understanding required for complex scientific tasks. Therefore, future advancements
may focus on enhancing domain-specific abilities, such as enhancing scientific comprehension (Li
et al., 2024), learning from highly relevant resources such as manuals and tutorials, and enabling
on-demand knowledge retrieval (Lála et al., 2024). A key challenge will be to effectively harmonize
this specialized knowledge with general agentic capabilities (Xu et al., 2024a).

Collaborative and Specialized Agents as a Solution. Analysis in Table 4 indicates that even a
basic modular approach of separating planning and action to different agents can yield significant
performance improvements in complex scientific software workflows. This points toward developing
sophisticated multi-agent systems composed of specialized, heterogeneous agents (Jia et al., 2024a;
Ghafarollahi & Buehler, 2024; Agashe et al., 2025). For example, responsibilities could be disentan-
gled by assigning planning to agents capable of deep reasoning (Li et al., 2025), action execution to
specialized GUI action models (Wu et al., 2025b; Xu et al., 2024b), and domain-specific capability
to models in particular disciplines (Microsoft, 2023; 2025). These agents could be plug-and-play,
allowing flexible application across broader aspects of the scientific lifecycle, such as data analy-
sis (Chen et al., 2025), scientific plotting (Jia et al., 2024b), and paper revision (Yu et al., 2024).
While promising, it also demands more sophisticated multi-agent designs to manage and coordinate
the intricate and multifaceted nature of scientific tasks.

Extending Digital Agents to Physical Laboratory. Current AI-assisted scientific workflows are
primarily at the digital level, focusing on tasks such as data analysis, simulation, and software control.
A natural and impactful next step is to extend the capabilities of such autonomous agents, as fostered
and benchmarked in SCIENCEBOARD, into physical laboratory environments. This transition involves
interfacing agents with robotic systems (Burger et al., 2020; Angelopoulos et al., 2024), applying
principles of embodied AI to perceive and interact with the physical world. Agents would manipulate
laboratory instruments and samples, carry out experimental protocols, and monitor physical processes
in real time, thereby fostering a “lab-in-the-loop” (Frey et al., 2025) future where experimentation
and AI-driven methods are mutually reinforcing.

B DETAILS OF SCIENCEBOARD ENVIRONMENT

B.1 ENVIRONMENT SETUP

Virtual machines can operate their own kernel and system, enabling compatibility with a wide variety
of operating systems. For experiments covered in this paper, we utilize a Linux environment (Ubuntu
22.04.1 LTS with kernel 6.8.0-57-generic) running on x64 personal computers.

B.2 EVALUATION CRITERIA

As stated in Section 3.2, we employ a fine-grained evaluation methodology based on:

• The final state of the VM (Determinant)
• I/O states and intermediate steps (Non-Determinant)

While the final state of the VM often provides a determinant measure of overall task completion,
the diverse nature of I/O and intermediate steps necessitates a varied set of criteria. The following
outlines the primary principles applied for I/O correctness:

• Exact Match:
– Strict equality: The output or relevant state must be exactly identical to the gold standard (e.g.,

for specific textual outputs or numerical values).
– Set equality of lines: For multi-line textual outputs, the content of all lines must match the gold

standard, but their order may not be strictly enforced.
– Question-answering: The agent’s provided answer to a question is compared against a correct

answer or set of acceptable answers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Predicate Satisfaction: Verifying if specific information and generated outputs satisfy predefined
logical conditions or predicates. This includes:
– Value Existence: A required value, file, or UI element is present as expected.
– Value Non-Existence: A specified value, file, or UI element is correctly absent.
– Range Check: A numerical output or parameter falls within a predefined acceptable range (often

with a specified tolerance).
• Correct Task Failure (FAIL): The agent correctly identifies a task as infeasible or terminates

appropriately when unable to complete the objective, outputting a designated FAIL signal.
• Domain-Specific Success Markers: For certain domains, unique success criteria are employed:

– Lean Tasks: Successful compilation of the generated Lean proof code is considered a primary
indicator.

B.3 SELECTION AND MODIFICATION OF SCIENTIFIC SOFTWARE

To ensure both technical feasibility and representative task diversity, we selected software tools based
on the following criteria:

1. Accessibility. The software must be open-source or freely available, allowing transparent integra-
tion and reproducibility of experiments.

2. GUI Compatibility. The software must expose a usable accessibility tree (a11y tree) to support
fine-grained GUI grounding and interaction.

3. Domain Representativeness. The software should be representative of key scientific and technical
domains, enabling meaningful assessment of multimodal agent capabilities across different types
of tasks.

Based on these principles, we selected the following software for each target domain:

• Lean. A functional programming language and interactive theorem prover grounded in dependent
type theory (specifically Martin-Löf Type Theory). Lean enables formal verification of mathe-
matical theorems and software correctness through rigorous type checking and logical inference,
supporting robust development of maintainable and accurate code.

• ChimeraX. A next-generation molecular visualization software developed by UCSF, designed for
detailed interactive exploration, visualization, and analysis of protein and biomolecular structures.
ChimeraX enhances performance and user experience compared to its predecessor, UCSF Chimera,
offering improved graphics rendering, extensibility via plugins, and streamlined workflows for
structural biology research.

• KAlgebra. An educational calculator and graphical plotting application within the KDE Education
Project. It supports a wide range of numerical, logical, symbolic, and analytical computations,
enabling users to visualize mathematical functions interactively in both two-dimensional (2D) and
three-dimensional (3D) environments, thus effectively bridging computational mathematics and
educational usability.

• Celestia. A cross-platform, interactive real-time 3D astronomical simulation software that allows
users to explore the universe through detailed, dynamic visualizations. Celestia is highly extensible
via scripting, empowering educational and professional users to model and visualize celestial
phenomena and space missions with precision and customization.

• GrassGIS. An advanced Geographic Information System (GIS) supporting both raster and vector
geospatial data, along with powerful analytical capabilities for spatial modeling, hydrological
analysis, and environmental simulations. GrassGIS includes a comprehensive Python API for
automation and custom analysis, enabling complex geospatial and temporal analyses tailored to
diverse research and application scenarios.

• TeXstudio. An integrated LATEX editor that provides a writing environment tailored specifically
for creating and managing complex technical and scientific documents. TeXstudio enhances
productivity through features such as syntax highlighting, real-time document preview, automatic
reference checking, and intuitive assistance tools, greatly simplifying the process of technical
writing and document preparation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 DETAILS OF ACTION SPACE

The action space employed in SCIENCEBOARD is shown in Table 5. We combine standard interaction
primitives (such as GUI operations) with the flexibility of system-level and application-specific
Command-Line Interfaces (CLIs), and has been further expanded with several augmented actions
tailored for scientific workflows.

Table 5: Action space of SCIENCEBOARD environment.

Action Description

moveTo(x, y) Moves the mouse to the target coordinate.
moveRel(x, y) Moves the mouse by an offset from current position.
dragTo(x, y) Drags the mouse to the target coordinate.
dragRel(x, y) Drags the mouse by an offset from current position.
click(x, y) Clicks at the target coordinate.
rightClick(x, y) Performs a right click at the target coordinate.
middleClick(x, y) Performs a middle click at the target coordinate.
doubleClick(x, y) Performs double clicks at the target coordinate.
tripleClick(x, y) Performs triple clicks at the target coordinate.
mouseDown(x, y, button) Presses a mouse button down.
mouseUp(x, y, button) Releases a mouse button up.

DONE Agent decides the task is finished.
FAIL Agent decides the task is infeasible.
WAIT [n] Agent decides it should wait, ‘n’ defaults to 5(s).
ANS [s] Agent decides it should submit an answer, ‘s’ denotes the answer.
API [name, args] Invokes a registered API call with name and arguments.

CODE Run a generated code script (for in-app / system-level tasks, or custom functions).

B.5 DETAILS OF OBSERVATION SPACE

We primarily adhere to well-established settings (Xie et al., 2024; Zhou et al., 2024) for observation
space, encompassing: (1) Screenshots, which consist of a full desktop screenshot as observed by
human users; (2) a11ytree, a structured text-only representation without visual information,
applicable for agents that take pure text input; (3) Screenshots + a11ytree, a hybrid approach
that combines and complements both textual and visual modalities; and (4) Set-of-Marks (Yang
et al., 2023), a visual prompting method aimed at enhancing the visual grounding capabilities by
partitioning an image into marked regions. Details are as follows:

Screenshot. We capture a screenshot of the entire computer screen. For screen resolution, we
set a default value of 1920×1080, and it also offers a 16:9 aspect ratio. Following OSWorld (Xie
et al., 2024), our environment also supports modifying the resolution of virtual machines to avoid
potential memorization of absolute pixel values and to assist studies on topics like generalization
across different resolutions.

A11ytree. An a11ytree refers to an intricate structure generated by the browser or OS accessi-
bility APIs that renders a representative model of the content, providing a means of interaction for
assistive technologies. Each node within the accessibility tree hosts important information about a UI
element. In SCIENCEBOARD, which utilizes an Ubuntu-based GNOME desktop environment, we
employ the Assistive Technology Service Provider Interface 2. Specifically, we adopt pyatspi to
programmatically retrieve the accessibility tree on Ubuntu.

To make complex a11ytree tractable, and critically, to ensure they fit within the context length
of open-source models, we filter out non-essential elements. This filtering is performed based on
element attributes such as their tag, visibility, and availability. For the elements that remain after
filtering, only key information—specifically their tag, name, text, position, and size—is retained and
subsequently concatenated to form the input representation for the agent.

2https://docs.gtk.org/atspi2/

19

https://docs.gtk.org/atspi2/

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Screenshot + a11ytree. To further enhance the action execution capabilities of computer-using
agents, especially for models with weaker grounding abilities, we utilize a combined input of
screenshots and a11ytree.

Set-of-Mark. We follow the official implementation of Set-of-Mark (Yang et al., 2023). We
leverage the information from the filtered a11ytree and mark the elements on the screenshot with
a numbered bounding box. Following VisualWebArena (Koh et al., 2024) and UFO (Zhang et al.,
2024), we further combine the annotated screenshot with the text metadata from a11ytree.

C ACCESSING SCIENCEBOARD ENVIRONMENT

To facilitate broader adoption and reproducibility, we provide several methods for accessing SCI-
ENCEBOARD environment. Researchers can choose the most suitable option based on their technical
requirements and resources:

Direct Deployment. The entire framework, including all scientific software and evaluation scripts,
is available for direct deployment on a native Ubuntu system. Full setup instructions and dependency
lists are provided in our repository.

Docker Container. We also provide a Docker image that encapsulates the environment, making it
easy to run SCIENCEBOARD across different machines and operating systems, which is available at
https://anonymous.4open.science/r/ScienceBoard/.

Cloud Platforms. For scalability and powerful computational resources, SCIENCEBOARD can be
deployed on cloud platforms like Amazon Web Services (AWS). We will provide guidelines upon
acceptance.

D DETAILS OF SCIENCEBOARD BENCHMARK

D.1 TASK ANNOTATION

During the task annotation process, we primarily utilize the tutorials and handbooks listed in Table 6
to guide annotators in exploring the relevant domain and corresponding software and tools. All app
data collection and task creation are completed by the authors.

D.2 TASK DIVERSITY

To explore the diversity of tasks in SCIENCEBOARD, we perform a t-SNE (van der Maaten & Hinton,
2008) visualization, as shown in Figure 6. We obtain embeddings for all task instructions using
text-embedding-3-small and then apply t-SNE to reduce their dimensionality to two for
visualization. The semantic distribution of instructions clearly distinguishes tasks across different
domains, while also revealing considerable diversity within each individual domain. Furthermore,
we can observe some intersections between Scientific Documentation tasks and tasks from other
domains, which reflects the presence of cross-application workflows in our benchmark.

D.3 COMPARISON WITH EXISTING BENCHMARKS

We compare SCIENCEBOARD with existing well-established benchmarks for scientific tasks, as
shown in Table 7.

SCIENCEBOARD is the first to offer a realistic environment for evaluating scientific tasks. In terms of
I/O, it incorporates structured code input and visual information, which are critical for simulating
scientific experiment workflows. It also supports GUI automation, making it well-suited for visual
agents to fulfill tasks like humans do. Additionally, SCIENCEBOARD covers a broader range of task
types compared to existing works, including but not limited to question-answering and scientific
computing. These unique features make SCIENCEBOARD both a versatile playground and an
expandable framework for evaluating agents’ scientific capabilities.

20

https://anonymous.4open.science/r/Science_Board/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Sources of the tutorials and handbooks employed in the task annotation process.

Software Tutorial & Handbook Sources

Kalgebra https://docs.kde.org/stable5/en/kalgebra/
kalgebra/index.html

ChimeraX
https://www.cgl.ucsf.edu/chimerax/tutorials.html

https://kpwulab.com/wp-content/uploads/2022/04/
chimerax-tutorial-kpwulab-2022-0429.pdf

Lean 4

https://lean-lang.org/theorem_proving_in_lean4/

https://leanprover-community.github.io/
mathematics_in_lean/index.html

https://lean-lang.org/doc/reference/latest/

Grass GIS
https://grass.osgeo.org/grass84/manuals/index.
html

https://neteler.gitlab.io/grass-gis-analysis/

Celestia

https://celestiaproject.space/guides.html

https://en.wikibooks.org/wiki/Celestia

https://celestiaproject.space/docs/
CELScriptingGuide/Cel_Script_Guide_v1_0g.htm

TeXStudio
https://texstudio-org.github.io/getting_started.
html

https://latex-tutorial.com/tutorials/

15 10 5 0 5 10
Dimension 1

10

5

0

5

10

D
im

en
si

on
 2

Algebra
Astronomy
Biochemistry
Documentation
GIS
Theorem Proving

15 10 5 0 5 10 15
Dimension 1

10

5

0

5

10

15

D
im

en
si

on
 2

Algebra
Astronomy
Biochemistry
Documentation
GIS
Theorem Proving

15 10 5 0 5 10
Dimension 1

15

10

5

0

5

10

15

D
im

en
si

on
 2

Algebra
Astronomy
Biochemistry
Documentation
GIS
Theorem Proving

Figure 6: t-SNE visualization of task instructions distribution. The seeds of t-SNE are randomly
sampled for each plot.

21

https://docs.kde.org/stable5/en/kalgebra/kalgebra/index.html
https://docs.kde.org/stable5/en/kalgebra/kalgebra/index.html
https://www.cgl.ucsf.edu/chimerax/tutorials.html
https://kpwulab.com/wp-content/uploads/2022/04/chimerax-tutorial-kpwulab-2022-0429.pdf
https://kpwulab.com/wp-content/uploads/2022/04/chimerax-tutorial-kpwulab-2022-0429.pdf
https://lean-lang.org/theorem_proving_in_lean4/
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://lean-lang.org/doc/reference/latest/
https://grass.osgeo.org/grass84/manuals/index.html
https://grass.osgeo.org/grass84/manuals/index.html
https://neteler.gitlab.io/grass-gis-analysis/
https://celestiaproject.space/guides.html
https://en.wikibooks.org/wiki/Celestia
https://celestiaproject.space/docs/CELScriptingGuide/Cel_Script_Guide_v1_0g.htm
https://celestiaproject.space/docs/CELScriptingGuide/Cel_Script_Guide_v1_0g.htm
https://texstudio-org.github.io/getting_started.html
https://texstudio-org.github.io/getting_started.html
https://latex-tutorial.com/tutorials/

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Feature SCIENCEBOARD
(our work) ScienceQA (Lu et al., 2022) SciCode (Tian et al., 2024) ScienceAgentBench (Chen et al., 2025)

I/O Formats
Code / Structured Input ! % ! !

Visual Information ! ! % %
Task Type

Question-Answering ! ! % %

Scientific Computing ! % ! !

GUI Automation ! % % %

Table 7: A comparison of SCIENCEBOARD to notable and recent AI4Science benchmarks.

D.4 MORE EVALUATION SCRIPT EXAMPLES

Beyond the evaluation cases listed in Section 3.2, Table 8 showcases a broader variety of evaluation
pipelines created using our templates.

Table 8: More evaluation cases of SCIENCEBOARD include exact matching, range-based assessment,
and numerical tasks with tolerance.

Initial State Instruction Evaluation Script (Simplified)

Select all ligand(s) and color them
into magenta in ChimeraX.

{
"type": "info",
"key": "sel",
"value": ["atom id /A:9@N1 idatm_type N3+",
...

]
},{

"type": "info",
"key": "rescolor /A",
"value": ["#1/A:1 color #d2b48c",
...

]
}

There is a point located in the
Mediterranean Sea. Please find and
delete it.

{
"type": "db",
"cmd": "v.to.db",
"kwargs": {
"flags": "p",
"map": "countries@PERMANENT",
"type": "point",
"option": "coor"

},
"key": "lambda out: out.strip()",
"value": "cat|x|y|z\n...|8.348947891274|0",
"pred": "lambda key, value: key == value"

}

Approach to the Earth and display
a solar eclipse in Celestia.

{
"type": "info",
"key": "lambda ...[’Earth’][’distance’]",
"value": 0,
"pred": "lambda k, v: abs(k - v) < 450000"

},{
"type": "info",
"key": "lambda ...[’Sol’][’visible’]",
"value": false

},{
"type": "info",
"key": "lambda ...[’Moon’][’visible’]",
"value": true

},{
"type": "info",
"key": "lambda ...",
"value": 0.99,
"pred": "lambda key, value: key > value"

}

theorem TP_3
[TopologicalSpace X]
[TopologicalSpace Y]
(f : X -> Y)
(Z : Set X)
(h1 : Continuous f)
(h2 : IsConnected Z)
: IsConnected {y :

Y |
∃ z ∈ Z, f z = y}

:= by sorry

{
"type": "placeholder"

}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.5 HUMAN PERFORMANCE

In our main experiments, as reflected in Table 3, we recruit college-level students to establish normal
human performance on SCIENCEBOARD benchmark. Before attempting the tasks, participants are
required to familiarize themselves with foundational knowledge of the relevant scientific disciplines
and study the provided operational manuals. They were then given instructions, as shown in Instruc-
tion 1, to complete the assigned tasks. Participants were compensated at a rate of $10 per hour for
their involvement.

The SCIENCEBOARD environment and scientific software used do not record any personal infor-
mation, and all participants provide informed consent. The experiment does not involve surveys,
interviews, or any behavioral tracking.

D.6 STABILITY ANALYSIS

Considering that dynamic environments could potentially lead to experimental instability, we conduct
an additional set of experiments focusing on consistency. For these, we utilize GPT-4o under the
a11ytree + screenshot setting, with results and error bars reported in Figure 7.

Algebra Biochem
0

5

10

15

20

25

30

35

40

Su
cc

es
s

R
at

e
(%

)

Figure 7: Stability analysis.

Across three independent runs, performance on Algebra tasks remains stable. However, Biochemistry
tasks exhibited minor fluctuations in success rates. Upon closer inspection of individual cases, we
hypothesize that these variations likely stem from network connectivity issues or transient system lag
encountered during task execution.

D.7 EVALUATION COST

We use API keys to access proprietary models. On average, a single run on all SCIENCE-
BOARD tasks costs $64 using GPT-4o, $86 using Claude-3.7-Sonnet, and $45 using
Gemini-2.0-Flash.

E DETAILS OF EXPERIMENTS

E.1 BACKBONE MODELS

We briefly discuss the backbones we used to build our computer-using agents.

Proprietary Models. Proprietary models now demonstrate striking capabilities in complex reason-
ing and are increasingly exhibiting agentic potential for dynamic real-world interaction, prompting a
closer look at their diverse forms. In the experimental section, we accessed the following proprietary
models via API keys:

• GPT-4o (Hurst et al., 2024).
• Claude-3.7-Sonnet (Anthropic AI, 2024).
• Gemini-2.0-Flash (Team, 2024).
• o3-mini (OpenAI, 2025).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Open-source Models. Open-source models are demonstrating remarkable advancements, steadily
narrowing the performance gap with proprietary models. Crucially, the open-source community
recognized the significance of agentic capabilities early on, fostering development in this direction.
This foresight has translated into exceptional performance, particularly within GUI scenarios where
these models now excel on various challenging benchmarks. Our evaluation is based on the following
open-source models, which are characterized by their advanced grounding capabilities:

• Qwen2.5-VL-72B-Instruct (Bai et al., 2025): The latest evolution in the Qwen vision-language
model family, primarily distinguished by its robust agentic capabilities. It operates directly as a
visual agent, proficient in reasoning, dynamically utilizing tools, and executing tasks for computer
and phone operation. Complementing its agentic prowess, Qwen2.5-VL-72B-Instruct demonstrates
advanced proficiency in detailed visual analysis (including texts, charts, icons, and layouts within
images), comprehension of videos exceeding one hour with event pinpointing, precise object
localization with structured coordinate output, and the generation of structured data from documents
such as invoices and forms. In our experiments, this model is deployed using interconnected clusters
of 8 × A100 80GB GPUs with vLLM (Kwon et al., 2023).

• InternVL3-78B (Chen et al., 2024): An advanced MLLM recognized for its superior overall perfor-
mance and significantly enhanced multimodal perception and reasoning. A key advancement is its
robust agentic functionality, demonstrated through proficient tool usage and GUI agent operations,
alongside extended capabilities in areas like industrial image analysis and 3D vision perception.
These comprehensive abilities are underpinned by innovations such as a native multimodal pre-
training approach, supervised fine-tuning with diverse, high-quality data tailored to these advanced
tasks, and mixed preference optimization for refined reasoning. In our experiments, this model is
deployed using interconnected clusters of 8 × A100 80GB GPUs with vLLM.

• QvQ-72B-Preview (Qwen Team, 2024): An experimental research model focused on advancing
visual reasoning capabilities. It has achieved compelling performance in complex multidisciplinary
understanding and problem-solving, highlighting its specialized strength in sophisticated visual
cognitive tasks. However, it exhibits some limitations in instruction following, appearing less adept
in agent scenarios that require precise action outputs. In our experiments, this model is deployed
using interconnected clusters of 8 × A100 80GB GPUs with vLLM.

GUI Action Models. While foundational models provide impressive general-purpose intelligence,
their intrinsic agentic capabilities for nuanced GUI manipulation are still under active exploration,
often requiring further specialization. Consequently, a prominent line of research involves adapting
open-source VLMs by fine-tuning them on extensive, GUI-specific datasets. This targeted training
methodology yields dedicated action models equipped with significantly enhanced proficiencies
for understanding and interacting with GUIs. The GUI action models adopted in this paper are as
follows:

• OS-Atlas-Pro-7B (Wu et al., 2025b): A foundational GUI action model that significantly advances
open-source VLMs for agentic tasks, excelling in GUI grounding and out-of-distribution scenarios
through innovations in modeling and the creation of the largest open-source, cross-platform GUI
grounding corpus with over 13 million elements. It demonstrates state-of-the-art performance
across six diverse benchmarks (mobile, desktop, web) and verifies the existence of model scaling
laws in GUI scenarios. In our experiments, this model is deployed using a single A100 80GB GPU
with vLLM (Kwon et al., 2023).

• UGround-V1-7B (Gou et al., 2025): A universal visual grounding model that identifies GUI action
elements by pixel coordinates. It powers the SeeAct-V framework (Zheng et al., 2024), which
enables purely visual GUI perception and pixel-level operations. Agents using SeeAct-V with
UGround have achieved SOTA results across five distinct benchmarks spanning web, mobile, and
desktop evaluations. In our experiments, this model is deployed on a single A100 80GB GPU with
vLLM.

• UI-TARS-72B-DPO (Qin et al., 2025): An end-to-end native GUI agent that uniquely perceives
screenshots as its sole input to perform human-like keyboard and mouse interactions, outperforming
prevailing agent frameworks that depend on heavily wrapped commercial models with expert-
crafted prompts. It has established state-of-the-art performance across more than ten GUI agent
benchmarks. This advanced capability stems from key innovations including enhanced perception,
unified action modeling, System-2 reasoning, iterative training with reflective online traces, and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

a final Direct Preference Optimization (DPO) phase, which refines its ability to make precise,
context-aware decisions. In our experiments, UI-TARS-72B-DPO utilizes vLLM for inference and
is deployed on interconnected clusters of 8 × A100 80GB GPUs.

• GUI-Actor-7B (Wu et al., 2025a): A recently proposed GUI grounding model that introduces a
novel coordinate-free visual grounding approach. It utilizes an action head to direct the special
token <ACTOR> to the target screenshot patches for localization. It claims to surpass the text-based
coordinate prediction baseline and demonstrates better generalization in out-of-distribution (OOD)
scenarios. In our experiments, we used the 7B version of GUI-Actor based on the Qwen2.5-VL
backbone.

E.2 EVALUATION SETTINGS - MAIN EXPERIMENTS

We adhered to common prompt engineering strategies from previous works (Sun et al., 2024b; Zhou
et al., 2024; Zhang & Zhang, 2024) for the agents under evaluation. For each domain, the agent
interacts with the environment under the guidance of a meta-prompt, which includes information
about the software being operated, executable special actions, and related details. When taking
actions, the agent generates outputs in the ReAct style (Yao et al., 2023), with its step-by-step
thoughts recorded in the interaction history.

Throughout the evaluation, we set the temperature parameter to 0.5, top_p to 0.9, and
max_tokens to 1500. We list some prompt examples in Prompt 14, Prompt 15, Prompt 16 and
Prompt 17.

E.3 EVALUATION SETTINGS - ANALYSIS

In experiments with interleaved planning and action, we first address inconsistencies in coordinate
outputs from different GUI action models. While InternVL3-78B (Chen et al., 2024) outputs
coordinates on a [0, 1] scale, models such as OS-Atlas, UI-TARS, and UGround use a [0,
1000] scale. To ensure uniformity, we normalized all coordinate outputs to a [0, 1] scale prior
to execution.

This part of the experiments employs a two-stage process: First, the planner model receives the
current observation (obs) and task instruction to generate a high-level plan or a specific action. If the
planner outputted a directly executable primitive action (e.g., a non-GUI system-level command or a
special control token like DONE), that action will be performed immediately, and the action model
was not invoked for that step. Otherwise, the grounding model received the current observation and
the plan (or sub-task) from the planner. Its role was to output low-level executable instructions. If
the grounding model generate pyautogui actions directly, these commands were executed. For
models outputting in their specific native formats, we implement custom parsers to translate these
into pyautogui actions: for UGround and UI-TARS, all coordinate-based outputs were interpreted
as click, whereas for OS-Atlas, its outputs were parsed to differentiate between click, type,
and scroll based on its defined schema.

We list some prompt examples in Prompt 18, Prompt 19, Prompt 20 and Prompt 21.

F EXTENDED ANALYSIS

F.1 INTERFACES

In Section 6, we analyze the performance difference between Vision-Only and Hybrid Interface
settings under the a11ytree + screenshot. Here, we present empirical results under the other three
observation settings.

As shown in Figure 8, the hybrid GUI + CLI setting consistently achieves performance that is
comparable to or better than the GUI-Only setting across all scenarios. Interestingly, while GPT-4o
achieves state-of-the-art performance under other observation settings, it exhibits very weak action
capabilities when using screenshot setting, indicating the reliance on structured observations for
effective reasoning and planning.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

GPT-4o Qwen2.5-VL InternVL3
0

5

10

15

20

25

30

Su
cc

es
s

R
at

e
(%

)

a11ytree

GPT-4o Qwen2.5-VL InternVL3

Screenshot

GPT-4o Qwen2.5-VL InternVL3

SoM

GUI + CLI
GUI Only

Figure 8: Extended analysis of Vision-Only vs. Hybrid Interface.

F.2 INTERACTIVE ENVIRONMENTS

ATP represents one of the most logic-intensive tasks for agents and has been traditionally studied in
textual settings in prior works (e.g., plain text or bash terminal).

GPT-4o Claude-3.5 Qwen2.5-VL
0

5

10

15

20

Su
cc

es
s

R
at

e
(%

)

Textual
Interactive

Figure 9: Textual v.s. Interactive

We extend ATP to live OS in SCIENCEBOARD and further compare agents’ performance under textual
and interactive settings. The latter, similar to environments commonly used by humans, provides
a live VSCode interface with features such as syntax highlighting, autocompletion, type inference,
and other functionalities. As shown in Figure 9, in the textual setting, the agent applies heuristic
strategies (e.g., Monte Carlo search) to make predictions over the proof tree without interacting
with the environment. In contrast, in the interactive setting, the agent must autonomously decide
which PROOFSTATE to proceed with. Moreover, the agent is also required to localize the relevant
code segments within the interface. Completing formal methods tasks becomes substantially more
challenging in realistic environments, which significantly increases the cognitive complexity.

F.3 DIFFICULTY ANALYSIS

We further analyze the success rates of computer-using agents on the SCIENCEBOARD benchmark
across different task difficulty levels. We employ Claude-3.7-Sonnet, GPT-4o, and Qwen2.5-
VL, with results presented in Figure 10.

The findings indicate that solvable tasks are primarily concentrated among a subset of “Easy” problems
and a few “Medium” tasks. All “hard” tasks, which involve complex computations, cross-application
workflows, or long-horizon planning, could not be completed by any of the evaluated agents.

F.4 FAILURE ANALYSIS

To further investigate the reasons why computer-using agents fail when planning or taking actions on
scientific tasks, here we include and discuss several typical examples of such errors.

Opening the Wrong File. This error is frequently caused by grounding issues. The agent initially
clicks on an incorrect file and then attempts to perform subsequent actions, such as inputting data,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Easy Medium Hard
0

20

40

60

80

100

N
um

be
r

of
 P

ro
bl

em
s

Claude-3.7-Sonnet
Screenshot+a11ytree
SoM

Easy Medium Hard

GPT-4o
Screenshot+a11ytree
SoM

Easy Medium Hard

Qwen2.5-VL-72B
Screenshot+a11ytree
Screenshot

Figure 10: Comparative analysis of task difficulty solve rates.

within that wrong file. This often leads to the agent repeatedly making the same mistake or getting
stuck in an unproductive loop. A typical case is shown in Figure 11.

Figure 11: Use wrong file.

Inability to Invoke the Correct Function. In some instances, agents need to identify and use a
specific function within a software application but attempt to do so by directly typing an assumed
function name into a search bar or command input. If the exact function name is unknown or guessed
incorrectly, a more robust strategy would be to browse available menus or function lists. Instead,
agents may incorrectly assume knowledge of the function name and attempt to look up its usage,
leading to failure. A typical example of this behavior is presented in Figure 12.

Figure 12: Function invocation error.

Incorrect CLI Code. Failures also occur when agents formulate CLI commands incorrectly. This
can involve syntax errors, wrong command names, or incorrect parameters. Notably, in some of

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

these failed CLI attempts, the intended task could have been accomplished more straightforwardly
by interacting with a corresponding button or element in the GUI. A typical example is shown in
Figure 13.

Figure 13: CLI code error.

G PROMPTS

The prompt examples we used in SCIENCEBOARD are listed below.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Agentic Prompt - ChimeraX with screenshot

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of ChimeraX, a molecular visualization software;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by an
accessibility tree, which is based on AT-SPI library, and you will
predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
DO NOT introduce any unrelated models or easily close existing models,
otherwise the task might be evaluated as FAILED.
DO NOT close the current ChimeraX session, or every effort you made will
be in vain.
NEVER try to reopen the command line interface in ChimeraX if it is
hidden, because it has been deactivated and cannot do anything. But you
are welcome to use it once it is presented.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Fetch 2OLX from PDB in
ChimeraX.

Prompt 14: Prompts for ChimeraX with screenshot

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Agentic Prompt - Celestia with screenshot

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
and you will predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
The criterion for a celestial body to be displayed on the screen is that
the object’s center is within the window range and is not blocked by
others.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 15: Prompts for Celestia with screenshot

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Agentic Prompt - ChimeraX with set-of-marks

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of ChimeraX, a molecular visualization software;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by 1) an
accessibility tree, which is based on AT-SPI library; and 2) a screenshot
with interact-able elements marked with numerical tags, and you will
predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

You can replace x, y in the code with the tag of elements you want to
operate with, such as:
“‘
pyautogui.moveTo(tag_3)
pyautogui.click(tag_2)
pyautogui.dragTo(tag_1, button=’left’)
“‘
When you think you can directly output precise x and y coordinates or
there is no tag on which you want to interact, you can also use them
directly; but you should be careful to ensure the correct of coordinates.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
DO NOT introduce any unrelated models or easily close existing models,
otherwise the task might be evaluated as FAILED.
DO NOT close the current ChimeraX session, or every effort you made will
be in vain.
NEVER try to reopen the command line interface in ChimeraX if it is
hidden, because it has been deactivated and cannot do anything. But you
are welcome to use it once it is presented.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Fetch 2OLX from PDB in
ChimeraX.

Prompt 16: Prompts for ChimeraX with Set-of-Marks

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Agentic Prompt - Celestia with set-of-marks

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by 1) an
accessibility tree, which is based on AT-SPI library; and 2) a screenshot
with interact-able elements marked with numerical tags, and you will
predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

You can replace x, y in the code with the tag of elements you want to
operate with, such as:
“‘
pyautogui.moveTo(tag_3)
pyautogui.click(tag_2)
pyautogui.dragTo(tag_1, button=’left’)
“‘
When you think you can directly output precise x and y coordinates or
there is no tag on which you want to interact, you can also use them
directly; but you should be careful to ensure the correct of coordinates.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
The criterion for a celestial body to be displayed on the screen is that
the object’s center is within the window range and is not blocked by
others.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 17: Prompts for Celestia with Set-of-Marks

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Human Instructions

You are required to finish the given tasks manually to provide sample
data of human accuracy.
First, please start up the evaluation script with debug option ON and
headless option OFF. Then, wait for the environment to be initialized
and perform your actions when you receive corresponding logs from stdout.
Press ENTER after you finish operating and the script will evaluate your
result submitted automatically.
Attention:
1. If you need to finish the task with primitives other than TIMEOUT,
please input directly into stdin;
2. You can search for documents or manuals if you encounter
domain-specific knowledge you are not familiar with;
3. Make sure that the number of your steps is less than expected. To be
more precise, a popup without possibility to predict its position should
be split into different steps.

Instruction 1: Instruction for humans.

Agentic Prompt - OS-Atlas

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use your grounding ability to perform the action
grounded to the observation and the plan.
You need to return a basic action together with arguments, of which the
available ones are listed below:
CLICK: to click at the specified position.

- format: CLICK <point>[[x-axis, y-axis]]</point>
- example usage: CLICK <point>[[101, 872]]</point>

TYPE: to enter specified text at the designated location.
- format: TYPE [input text]
- example usage: TYPE [Shanghai shopping mall]

SCROLL: to scroll in the specified direction.
- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
- example usage: SCROLL [UP]

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 18: Prompts for OS-Atlas

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Agentic Prompt - UGround

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use your grounding ability to perform the action
grounded to the observation and the plan.
You need to return a 2d coordinate (x, y) indicating the position you
want to click.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 19: Prompts for UGround

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Agentic Prompt - Qwen

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use ‘pyautogui‘ to perform the action
grounded to the observation and the plan, but DO NOT use the
‘pyautogui.locateCenterOnScreen‘ function to locate the element you want
to operate with since we have no image of the element you want to operate
with. DO NOT USE ‘pyautogui.screenshot()‘ to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING
ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 20: Prompts for Qwen

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Agentic Prompt - UI-Tars

You are an agent which follow my instructions and performs desktop
computer tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use your grounding ability to perform the action
grounded to the observation and the plan.
You need to return a 2d coordinate (x, y) indicating the position you
want to click.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 21: Prompts for UI-TARS

36

	Introduction
	Related Works
	ScienceBoard Environment
	Preliminaries and Task Definition
	Scientific Discovery Evaluation Framework

	ScienceBoard Benchmark
	Domain and Task Coverage
	Task Annotation Pipeline
	Task Statistics

	Experiments
	Experimental Settings
	Results

	Analysis
	Conclusion
	Discussion and Future Directions
	Details of ScienceBoard Environment
	Environment Setup
	Evaluation Criteria
	Selection and Modification of Scientific Software
	Details of Action Space
	Details of Observation Space

	Accessing ScienceBoard Environment
	Details of ScienceBoard Benchmark
	Task Annotation
	Task Diversity
	Comparison with Existing Benchmarks
	More Evaluation Script Examples
	Human Performance
	Stability Analysis
	Evaluation Cost

	Details of Experiments
	Backbone Models
	Evaluation Settings - Main Experiments
	Evaluation Settings - Analysis

	Extended Analysis
	Interfaces
	Interactive Environments
	Difficulty Analysis
	Failure Analysis

	Prompts

