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ABSTRACT

Large Language Models (LLMs) have extended their impact beyond Natural Lan-
guage Processing, substantially fostering the development of interdisciplinary
research. Recently, various LLM-based agents have been developed to assist
scientific discovery progress across multiple aspects and domains. Among these,
computer-using agents, capable of interacting with operating systems as humans do,
are paving the way to automated scientific problem-solving and addressing routines
in researchers’ workflows. Recognizing the transformative potential of these agents,
we introduce SCIENCEBOARD, which encompasses two complementary contri-
butions: (i) a realistic, multi-domain environment featuring dynamic and visually
rich scientific workflows with integrated professional software, where agents can
autonomously interact via different interfaces to accelerate complex research tasks
and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously
validated real-world tasks curated by humans, spanning scientific-discovery work-
flows in domains such as biochemistry, astronomy, and geoinformatics. Extensive
evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7,
UI-TARS) show that, despite some promising results, they still fall short of reliably
assisting scientists in complex workflows, achieving only a 15% overall success
rate. In-depth analysis further provides valuable insights for addressing current
agent limitations and more effective design principles, paving the way to build more
capable agents for scientific discovery. Our code, benchmark, and leaderboard are
available at https://anonymous.4open.science/r/ScienceBoard/.

1 INTRODUCTION

In the pursuit of scientific advances, researchers combine ingenuity and expertise to perform novel
research grounded in experimental explorations. In the modern era, scientific discovery is increas-
ingly driven by specialized software and tools that empower scientists to engage deeply with the
experimental world (Hacking, 1983). Tools like simulation engines (Hollingsworth & Dror, 2018),
data analysis software (The MathWorks Inc., 2022), and visualization platforms (Goddard et al., 2018)
are essential for formulating hypotheses, validating results, and advancing scientific understanding.

However, as scientific software grows more sophisticated and workflows become more demanding,
the learning curve and operational burden on human researchers intensify (Sänger et al., 2024). These
challenges motivate the vision of autonomous agents to play a central role in automating research
pipelines and assisting human researchers as “AI co-scientists” (Luo et al., 2025; Schmidgall et al.,
2025; Gottweis et al., 2025). For example, while a human scientist may take weeks to master a protein
analysis tool (Meng et al., 2023) and spend hours making sufficient observations, an autonomous
agent could perform the same tasks within minutes. By enabling fully autonomous workflows—from
tool usage to making novel discoveries (Lu et al., 2024a)—such agents promise to accelerate science
and empower researchers with unprecedented capabilities.

Recently emerging computer-using agents (Wu et al., 2024; OpenAI, 2025), capable of operating
digital devices in a human-like manner, present a promising approach toward achieving these visions.
These agents can interact with operating systems through Command-Line Interfaces (CLI; Sun
et al., 2024a; Wang et al., 2024d) or perform mouse and keyboard actions via Graphical User
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Instruction: Predict the protein structure for the amino acid sequence of 'MGND…' via AlphaFold in ChimeraX.

Instruction: Show planets' orbits of Solar System in Celestia.

Step1: Toggle the widget of AlphaFold. Step2: Input the given sequence and call 
out AlphaFold for structure prediction.

Step3: Wait until the prediction finished. 

Step1: Select the Sol and click 'Goto' in 
contect menu.

Step2: Slide the mouse wheel to move 
the camera away from Sol.

Step3: Click to show orbits of planets.

Figure 1: SCIENCEBOARD is a pioneering computer environment for scientific discovery agents,
integrated with professional software. It enables agents to autonomously follow instructions and
complete realistic scientific tasks by interacting with the system via GUI or CLI.
Interfaces (GUI; Cheng et al., 2024; Wu et al., 2025b), mimicking the user experience to flexibly
automate complex workflows (Xie et al., 2024; Rawles et al., 2025; Hu et al., 2024). As illustrated in
Figure 1, to predict the protein structure of an amino acid sequence, the agent launches ChimeraX,
selects the AlphaFold widget, and inputs the sequence for prediction. In this way, scientific tasks
could be performed through step-by-step autonomous interaction with software.

To initiate the use of computer-using agents to assist human scientists with daily tasks, we intro-
duce SCIENCEBOARD, a novel realistic environment designed for developing AI-powered research
assistants. Our infrastructure comprises a scalable framework for scientific exploration that in-
tegrates: (1) a flexible ecosystem comprising scientific software across multiple domains, and (2)
standardized evaluation pipelines for rigorous assessment. It supports dual-mode interaction, allowing
LLM/VLM-based computer agents to operate through either CLI or GUI.

Building upon SCIENCEBOARD, we curate a benchmark comprising 169 tasks that encompass
scientific experiment workflows drawn from six scientific domains, including algebra, biochemistry,
theorem proving, geographic information systems, astronomy, and scientific documentation. These
high-quality and challenging tasks are meticulously designed by annotators with disciplinary back-
grounds, simulating the daily routines faced by human scientists. Task completion requires agents
to interact with the system via CLI and GUI, exercising a wide range of capabilities—including
visual and textual reasoning, tool manipulation, coding, mathematics, spatial understanding, and deep
domain-specific knowledge. Unlike widely used desktop applications, scientific software exhibits
considerable complexity in I/O formats. Consequently, we reconfigure all software involved to ensure
the accuracy and reliability of execution-based evaluation. We design a suite of evaluation functions
that verify task completion by retrieving the internal states of the system.

We evaluate widely used LLMs and VLMs as agents on SCIENCEBOARD, incorporating both
proprietary models and their open-source counterparts. Across different observation settings, the
average success rate of agents ranges between 0% to 15%, with performance peaking at 20% in the
most favorable subcategories. This demonstrates that current computer-using agents, while promising,
remain far from capable of serving as scientific assistants, largely due to their limited action capability
and domain knowledge. Our analysis further reveals their inherent limitations and explores design
principles for developing more agents for science.

2 RELATED WORKS
Computer-Using Agents. Language agents (Sumers et al., 2024) have recently garnered significant
attention due to their interactive capabilities (Li et al., 2023; Sun et al., 2024c; Hong et al., 2024; Liu
et al., 2024a). Recent studies indicate their potential to interact with operating systems and automate
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computer tasks as humans do, leading to the proliferation of computer-using agents (OpenAI, 2025).
One line of research utilizes Command Line Interface (CLI), where agents generate executable scripts
(e.g., Python or Shell scripts) to interact with systems programmatically (Wang et al., 2024b). In this
process, agents perform code synthesis (Sun et al., 2024a) or invoke APIs (Wu et al., 2024; Zhang
et al., 2024). Another line of research focuses on Graphical User Interface (GUI) agents (Cheng et al.,
2024; Wu et al., 2025b; Lin et al., 2024) that interact with digital devices through human-like mouse
and keyboard actions (Niu et al., 2024; Zheng et al., 2024; Gou et al., 2025). These agents transform
user instructions into executable actions within the operating system (e.g., clicking an icon or scrolling
through a page). Powered by VLMs, GUI agents have been applied to automate desktop (Xie et al.,
2024) and mobile (Rawles et al., 2025) tasks, as well as specialized engineering workflows (Cao et al.,
2024), showing promising paths toward digital automation. This work innovatively initiates the use
of computer agents in scientific workflows, taking a step closer to autonomous research assistants.

AI for Scientific Discovery. The rapid advancement of LLMs has reshaped the landscape of
scientific discovery (Microsoft, 2023), boosting multiple stages of the research cycle (Luo et al.,
2025). With the rise of LLM/VLM-based agents, there is a growing demand for these game-
changers with college-level knowledge (Wang et al., 2024a) to transcend traditional tasks like
question answering (Lu et al., 2022; Krithara et al., 2023; Lu et al., 2024b). Recent efforts have
been directed towards harnessing such power to assist with diverse components of the research cycle,
including idea and hypothesis generation (Si et al., 2024; Liu et al., 2024b), data analysis (Chen
et al., 2025; Gu et al., 2024; Majumder et al., 2024), scientific programming (Tian et al., 2024;
Novikov et al., 2025), paper writing (Wang et al., 2024c), and peer-reviewing (Yu et al., 2024).
Meanwhile, incorporating domain knowledge or even constructing foundation models (Microsoft,
2025) can endow these agents with the capability to solve domain-specific problems, such as theorem
proving (Song et al., 2025), chemical reasoning (Ouyang et al., 2024; Tang et al., 2025) and biological
discovery (Wang et al., 2025; Zhao et al., 2025; Wang et al., 2025; Frey et al., 2025). With the vision
of constructing autonomous research assistants (Schmidgall et al., 2025), our work represents the
first to support agents in executing end-to-end scientific exploration workflows, thereby laying a
cornerstone for advancing AI-powered scientific discovery.

3 SCIENCEBOARD ENVIRONMENT

In this part, we introduce SCIENCEBOARD environment, which encompasses real-world science
software that could be manipulated through GUI and CLI interfaces. The interface is developed
based on an Ubuntu virtual machine (VM), serving as the underlying infrastructure. The dynamic and
visually intensive environments distinguish SCIENCEBOARD from all previous works that evaluate
the scientific capabilities of models or agents.

3.1 PRELIMINARIES AND TASK DEFINITION

A computer-using agent receives task instructions, selects actions to manipulate software, and receives
feedback reflecting changes in the environment (tabletop). This interaction is modeled as a Partially
Observable Markov Decision Process (POMDP), defined by the tuple ⟨g,S,A,O, T ⟩, where g is the
goal, S is the state space, A is the action space, O is the observation space (including environment
feedback), and T : S × A → S is the state transition function. Given a policy π, the agent
predicts actions at each time step t based on the goal g and memory mt = oj , aj , oj+1, aj+1, . . . , ot
(0 ≤ j < t), which records the sequence of past actions and observations. The trajectory τ =
[s0, a0, s1, a1, . . . , st] is determined by the policy and environment dynamics:

pπ(τ) = p(s0)

T∏
t=0

π(at|g, st,mt)T (st+1|st, at) (1)

Observation and Memory. We evaluate computer agents using three types of observation spaces:
text-only, visual-only, and combined text-visual observations. For text-based observations, we
use accessibility trees (a11ytree1) to generate structured textual representations of screenshots.
For visual observations, we capture high-resolution screenshots directly. The specific observation
combinations used in our experiments are detailed in Section 5.1, with further information in

1a11ytree: Accessibility (a11y) trees are hierarchical structures representing UI elements on the screen.
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Figure 2: Overview of the SCIENCEBOARD infrastructure. The scalable environment is built upon
a VM pre-installed with scientific discovery software. It supports both CLI and GUI interfaces to
enable autonomous agent interaction. For each task designed to evaluate the agent’s capability as a
research assistant, an initialization script, configs, and related files are provided. Agents perceive the
environment through visual or textual modalities, and are expected to plan and act accordingly. After
the interaction, an evaluation function determines completion based on the VM internal states.

Appendix B.5. Our POMDP agent requires memory to retain historical information. Following
previous work (Yao et al., 2023; Ma et al., 2024), we construct this memory by concatenating the
agent’s most recent observations.

Goal and Unified Action Space. Each task is specified by a natural language (NL) instruction, such
as Display atoms in sphere style, describing the user’s intended goal. The policy model
decomposes a complex goal instruction into a sequence of actions. We specially design a unified
action space A in SCIENCEBOARD, integrating diverse interaction modalities crucial for scientific
tasks. For GUI actions, agents can perform the full range of human-computer interactions, including
mouse movements, clicks, keystrokes, and other typical input behaviors as in prior work (Xie et al.,
2024; Zhou et al., 2024) (e.g., CLICK[991, 019]). For CLI actions, agents can interact at two
levels: (a) invoking system-level commands within the Ubuntu terminal, and (b) utilizing application-
specific CLI or scripting mechanisms. Moreover, A comprises an answer action, enabling agents
to provide specific answers for QA tasks, and a call_api action, allowing agents to leverage
predefined external APIs to broaden their capabilities. A comprehensive list of supported action types
is available in Appendix B.4.

LLM/VLM-based Policy Model. An LLM / VLM model acts as the policy model to drive the
agent’s behavior. The policy model receives the current observation and generates the next action
accordingly. For pure-text observation, we adopt LLMs as the policy. Otherwise, we leverage VLMs.

3.2 SCIENTIFIC DISCOVERY EVALUATION FRAMEWORK

Unlike prior work that primarily focuses on static QA, coding, or single-step tasks, we aim to provide
agents with a realistic and visually grounded environment to support autonomous exploration, which
in turn introduces greater challenges for planning and action. In SCIENCEBOARD environment, as
shown in Figure 2, we (1) simulate scenarios where scientific software is used to solve domain-specific
problems, (2) enable agents to interact with the environment through diverse observations, and (3)
ensure that agent behaviors can be rigorously evaluated.

Scientific Software Installation and Adaptation. For each domain, we select an open-source
application that supports both visual and textual observations as the agent’s playground. To enable
access to the internal state of each application within the VM, we adapt the software accordingly.
Given the complexity and limited completeness of scientific applications, we inject a lightweight
server that launches alongside the application’s main UI process to expose internal states via HTTP
requests. This server is capable of querying the application’s runtime internal states, which serve as
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the basis for downstream evaluation. For applications that do not natively support remote control
via RESTful APIs, we modify and recompile their source code to ensure that both UI elements and
internal states can be accessed. In addition, the server supports partial state control of the software,
allowing us to initialize with specific configurations to simulate contextualized task environments.
More about the software selected and further implementation details are provided in Appendix B.3.
Agent Interactions with the Environment. The LLM/VLM agent interacts with the environment
as described in Section 3.1, receiving observations and executing actions accordingly. Scientific
software processes these actions and returns updated states. The agent operates autonomously,
continuing this loop until it outputs a signal (DONE or FAIL) or reaches the predefined attempt limit.

Table 1: Typical evaluation cases of SCIENCEBOARD include exact matching, range-based assess-
ment, and numerical tasks with tolerance. We have tailored appropriate evaluation methods for each
task. Additional evaluation strategies are detailed in Appendix D.4.

Initial State Instruction Evaluation Script (Simplified)

Select all water molecules and
draw their centroids with radius of
1Å in ChimeraX.

{
"type":"info","key":"sell",
"value":["atom id #!1/A:201@O idatm_type O3"
"...",]

},{
"type":"states",
"find":"lambda k,v:k.endswith(’._name’)",
"key":"lambda k:’..._atoms_drawing’",
"value":"[[13.0012 1.7766 21.3672 1.]]"

}

Display and ONLY display the layer
of ’boundary_region’ in Grass GIS.

{
"type":"info",
"key":"lambda dump:len(dump[’layers’])",
"value":1

},{"type":"info"
"key":"lambda dump:dump[’layers’][0][’name’]",
"value":"boundary_region@PERMANENT"

}

Set the Julian date to 2400000 in
Celestia.

{
"type":"info",
"key":"simTime",
"value":2400000,
"pred":"lambda left, right:abs(left-right) < 1",

}

Evaluation Pipeline. Given the complexity of scientific tasks, conventional answer-matching
metrics and even execution-based evaluations (Xie et al., 2024; Zhou et al., 2024), often lack the
granularity required to assess workflows accurately. For instance, as shown in Table 1, the rotation of
a protein does not affect the correctness of visualization, whereas computational tasks in astronomy
are usually influenced by the current clock state. Therefore, we propose a fine-grained evaluation
based on both the correctness of key I/O during the workflow and the final state of the VM.

To handle the diverse criteria for determining task correctness (e.g., exact matching, range-based
assessment, numerical tolerance, file comparison), we design a set of evaluation templates. For each
specific task, the relevant template is then instantiated with the appropriate parameters and expected
gold standard values. This ensures both consistent validation and scalability for future extension.
More evaluation details are in Appendix B.2.

4 SCIENCEBOARD BENCHMARK

In this section, we present the covered domains, the annotation pipeline, and statistics of the bench-
mark constructed based on the SCIENCEBOARD environment.

4.1 DOMAIN AND TASK COVERAGE

As a pioneering benchmark for scientific exploration, SCIENCEBOARD spans six domains selected
for their relevance to key stages of the scientific workflow, such as simulation, modeling, prediction,
and knowledge (Microsoft, 2023). In selecting software for each domain, we consider not only its
representativeness, but also practical criteria for evaluation: open-source availability, a11ytree
compatibility, and no requirement for user authentication.

5
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(1) Biochemistry. We employ UCSF ChimeraX (Goddard et al., 2018; Meng et al., 2023), a
molecular analysis tool that supports structural modeling (e.g., AlphaFold (Jumper et al., 2021)).
The tasks assess the agent’s ability to manipulate biomolecular structures, as well as to reason
over spatial conformations and biochem annotations.

(2) Algebra. KAlgebra is employed to evaluate the agent’s potential in symbolic mathematics.
Tasks involve executing algebraic expressions, interpreting plots, and manipulating symbolic
functions. These scenarios require the agent to exhibit strong mathematical symbolic reasoning
and visual grounding capability.

(3) Theorem Proving. We use Lean 4 (Moura & Ullrich, 2021) as a proof assistant to assess
agents’ abilities in formal logic and deductive reasoning. The ATP tasks in this category
emphasize syntactic precision and logical coherence, evaluating the agent’s capability to generate
semantically valid formal proofs.

(4) Geographic Information System. GrassGIS, a computational engine for raster, vector, and
geospatial processing, is included to examine the agent’s skills in understanding terrain, hydrology,
and handling spatio-temporal data, with support for functions such as ecosystem modeling.

(5) Astronomy. We integrate Celestia, a planetarium software simulating real-world astronomi-
cal scenarios. Agents must demonstrate temporal-spatial awareness and knowledge of the cosmos
and celestial objects by tracking planetary systems, simulating orbital events, and querying object
metadata across time and space.

(6) Scientific Documentation. To simulate research documentation workflows, we adapt and
incorporate TeXstudio to assess the agent’s technical writing capabilities. In standalone tasks,
agents are expected to compose well-structured abstracts, generate plots, and produce formal
reports based on provided instructions. In cross-application scenarios, TeXstudio is coupled
with the aforementioned software to evaluate whether agents can extract meaningful insights
from experiments and synthesize them into coherent narratives.

These domains enable evaluating a science agent’s capabilities across multiple dimensions, including
visual / textual reasoning, math, coding, tool use, spatial understanding, domain-specific knowledge,
and more. Additionally, to explore the potential for end-to-end scientific automation, documentation
tasks are integrated with other domains to support cross-application workflows—such as automatically
generating an experimental report based on completed upstream tasks. More details about the software
platforms used to instantiate and convey the tasks in SCIENCEBOARD are provided in Appendix B.3.

Step 1: Learn Tutorials
and Handbooks

Learn

Step 2: Task Curation

Difficulty: 
Easy

Agentic Prompt: Your
are an expert in 
Biochemistry…

Task: Display atom in sphere style and 
color non-carbon …

Difficulty: 
Easy

Agentic Prompt: Your
are an expert in 
Biochemistry…

Task: Display atom in sphere style and 
color non-carbon …

Difficulty: 
Easy

Agentic Prompt: You 
are an expert in 
Biochemistry…

Task: Display atom in sphere style and 
color non-carbon …

Step 4: Task Configuration

App Install

File Download

Step 5: Write Evaluation Function

def compare (star, 
moon):

pass

def eval (output, 
target):

pass

Check & Validation

Step 3: Task Formalization
and Verification

Agentic Prompt Difficulty Task 1

Agentic Prompt Difficulty Task 2

Agentic Prompt Difficulty Task 3

Execution

Write Code

Figure 3: The annotation pipeline of the tasks in SCIENCEBOARD benchmark.

4.2 TASK ANNOTATION PIPELINE

To effectively construct tasks that are appropriately challenging, diverse, and aligned with the features
of scientific software, we leverage a pipeline that spans from training annotators with tutorials and
handbooks to conducting execution-based validation, as shown in Figure 3.

(1) Tutorial Learning. Five annotators initially collect and learn from tutorials and handbooks
related to the software. After that, each annotator studies and explores a software’s basic unit
operations, e.g., plotting the Bernoulli lemniscate in KAlgebra. Details are in Appendix D.1.

(2) Task Curation. Each annotator selects a scientific software, installs it within SCIENCEBOARD,
and begins drafting task instructions based on its functionalities. Task types include but are not
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limited to: configuration, simulation, QA, and domain-specific expertise. Each task is tentatively
assigned a difficulty. Thereafter, agentic prompts aligned with the drafted tasks will be curated.

(3) Formalization and Selection. Different annotators exhibit varying linguistic habits, we employ
ChatGPT to standardize the task format. Annotators then conduct a cross-check, excluding those
lacking diversity, poor executability, or non-unique answers, to finalize the set of tasks for use.

(4) Configuration Function Writing. The purpose of this step is to initialize the software and pro-
vide specific contexts, e.g., supplying a map for GIS tasks or a protein sequence for biochemistry
tasks. Annotators will write a set of functions for each software to modify the VM status, i.e.,
the internal state of the software, along with general configuration functions (e.g., downloading
required files). Tasks commence only after all initialization have been successfully executed.

(5) Evaluation Function Writing and Validation. Evaluation functions are developed to assess
task outcomes rigorously. As described in Section 3.2, evaluations are state-based, with functions
derived from a base evaluator template. Annotators retrieve the task state from the VM and assess
it based on criteria such as I/O matching and predefined ranges. The function returns either “task
complete” or “task fail.” Cross-validation is performed for consistency, with each task executed
by two randomly selected annotators on separate VMs. The results are analyzed to ensure the
evaluator’s correctness, even under intentional attempts by annotators to deceive the system.

4.3 TASK STATISTICS

The task statistics of SCIENCEBOARD benchmark are presented in Table 2. Specifically, it comprises
169 unique tasks across 6 domains, with task difficulty categorized into three levels. We curate a
balanced number of tasks that are representative enough while keeping the evaluation cost manageable.
During annotation, we define multiple task types to evaluate agents’ ability to perform diverse
operation flows and leverage domain-specific knowledge.

Table 2: Statistics of SCIENCEBOARD.

Task Type Statistics
Total Tasks 169 (100%)
- GUI 38 (22.5%)
- CLI 33 (19.5%)
- GUI + CLI 98 (58.0%)

Difficulty
- Easy 91 (53.8%)
- Medium 48 (28.4%)
- Hard 28 (16.6%)
- Open Problems 2 (1.2%)

Instructions
Avg. Length of Task Instructions 20.0
Avg. Length of Agentic Prompt 374.9

Execution
Avg. Steps 9.0
Avg. Time Consumption 124(s)
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Figure 4: Distribution of tasks in SCIENCE-
BOARD benchmark.

The distribution of task types is shown in Figure 4. Beyond the innovation of a realistic environment,
SCIENCEBOARD benchmark also improves upon prior work in terms of task design and content
diversity. More details about task diversity, stability analysis, and comparison with representative
scientific benchmarks are provided in Appendix D.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Backbones. We employ three types of backbones for agents. These include propri-
etary models: GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (Anthropic AI, 2024),
Gemini-2.0-Flash (Team, 2024), and o3-mini (OpenAI, 2025); open-source models:
Qwen2.5-VL-72B-Instruct (Bai et al., 2025), InternVL3-78B (Chen et al., 2024), QvQ-72B-
Preview (Qwen Team, 2024), and GPT-oss-120B (Open AI, 2025); and GUI action models: OS-
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Atlas-Pro-7B (Wu et al., 2025b), UGround-V1-7B (Gou et al., 2025), UI-TARS-72B-DPO / UI-
TARS-1.5-7B (Qin et al., 2025), and GUI-Actor-7B (Wu et al., 2025a). More details in Appendix E.1.
Observation Space. We follow established observation settings (Xie et al., 2024; Zhou et al., 2024):
(1) full desktop screenshots; (2) a11ytree, a structured text-only representation; (3) Screenshots +
a11ytree; and (4) Set-of-Marks (Yang et al., 2023), which partitions images into marked regions
to aid grounding. Further details are in Appendix B.5.

5.2 RESULTS

We compare the performance of computer-use agents powered by different LLMs and VLMs on
SCIENCEBOARD, as presented in Table 3. We summarize our key empirical findings as follows:

Table 3: Success rates on SCIENCEBOARD. We present the performance of each agent back-
bone across different scientific domains under various observation settings. Proprietary Models ,
Open-Source VLMs / LLMs , and GUI Action Model are distinguished by color.

Observations Model Success Rate (↑)

Algebra Biochem GIS ATP Astron Doc Overall

Screenshot

GPT-4o 3.23% 0.00% 0.00% 0.00% 0.00% 6.25% 1.58%
Claude-3.7-Sonnet 9.67% 37.93% 2.94% 0.00% 6.06% 6.25% 10.48%
Gemini-2.0-Flash 6.45% 3.45% 2.94% 0.00% 0.00% 6.06% 3.15%
Qwen2.5-VL-72B 22.58% 27.59% 5.88% 0.00% 9.09% 12.50% 12.94%

InternVL3-78B 6.45% 3.45% 0.00% 0.00% 0.00% 6.25% 2.69%
UI-TARS-1.5-7B 12.90% 13.79% 0.00% 0.00% 6.06% 0.00% 2.69%

a11ytree

GPT-4o 12.90% 20.69% 2.94% 0.00% 6.06% 0.00% 7.10%
Claude-3.7-Sonnet19.35% 34.48% 2.94% 3.85% 12.12% 0.00% 12.12%
Gemini-2.0-Flash 9.68% 17.24% 0.00% 0.00% 0.00% 0.00% 4.49%
o3-mini 16.13% 20.69% 2.94% 3.85% 15.15% 6.25% 10.84%
Qwen2.5-VL-72B 9.68% 10.34% 2.94% 0.00% 3.03% 0.00% 4.33%

InternVL3-78B 3.23% 3.45% 0.00% 0.00% 0.00% 0.00% 1.11%
GPT-oss-120B 19.35% 13.79% 0.00% 0.00% 9.09% 0.00% 7.04%

Screenshot
+ a11ytree

GPT-4o 22.58% 37.93% 2.94% 7.69% 3.03% 12.50% 14.45%
Claude-3.7-Sonnet12.90% 41.37% 8.82% 3.85% 9.09% 18.75% 15.79%
Gemini-2.0-Flash 16.13% 24.14% 2.94% 0.00% 18.18% 12.50% 12.32%
Qwen2.5-VL-72B 16.13% 20.69% 2.94% 0.00% 18.18% 12.50% 11.74%

InternVL3-78B 6.45% 3.45% 0.00% 0.00% 3.03% 6.25% 3.20%

Set-of-Mark

GPT-4o 6.45% 3.45% 0.00% 0.00% 3.03% 12.50% 4.24%
Claude-3.7-Sonnet16.13% 31.03% 5.88% 0.00% 6.06% 12.50% 11.93%
Gemini-2.0-Flash 3.23% 0.00% 0.00% 0.00% 3.03% 6.25% 2.09%
Qwen2.5-VL-72B 6.45% 6.90% 2.94% 0.00% 3.03% 12.50% 6.36%

QvQ-72B-Preview 0.00% 0.00% 2.94% 0.00% 3.03% 0.00% 0.49%

InternVL3-78B 3.23% 6.90% 2.94% 0.00% 0.00% 0.00% 2.18%

Human Performance 74.19% 68.97% 55.88% 42.31% 51.52% 68.75% 60.27%

Performance Hierarchy. Existing agents remain far from being capable of effectively assisting
human scientists in completing real-world scientific exploration tasks. Even SOTA models, such
as GPT-4o and Claude, achieve an average success rate of only 15%. Across various settings,
open-source counterparts can partially match proprietary models. However, they still exhibit markedly
lower overall performance, with an average success rate of less than 12% and approaching nearly 0%
in some task categories. The gap between agent and human performance underscores the limitations
of the status quo and necessitates further research.

Domain-Specific Performance Insights. Across domains, we observe clear performance imbal-
ances: models perform moderately well on Algebra and Biochemistry but degrade notably on GIS
and Astronomy. We attribute this to: (1) Interfaces: Algebra and Biochemistry tasks often support
both CLI and GUI execution, whereas GIS and Astronomy rely mainly on GUI interactions. Agents
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generally handle CLI commands more reliably than fine-grained GUI grounding, which demands
precise visual localization. (2) Task emphasis: Geographical and astronomical tasks involve dense
visual elements (e.g., maps, star charts), making it difficult for agents to identify and reason over
relevant information. This also indicates the limited 3D spatial reasoning ability of current VLMs.
Impact of Different Observations. Different observation modalities have a significant impact.
Overall, a11ytree + screenshots setting yields the best performance. In other settings, Qwen2.5-VL
performs exceptionally well under screenshot setting, which we attribute to its advanced GUI ability.
Under a11ytree, the attribute information of elements allows LLMs to complete certain tasks by
relying solely on textual observations. Meanwhile, we observe that the SoM sometimes introduces
negative effects. It is likely that although SoM provides bounding boxes to ease grounding, scientific
software often contains massive elements on screen (e.g., dense celestial objects and complex cosmic
backgrounds), which introduces substantial noise and increases the difficulty of visual reasoning.

6 ANALYSIS

To further investigate the factors influencing agents’ capabilities, we conduct additional analysis to
understand the underlying causes and the behavioral differences among heterogeneous models.
Disentangled Planning and Action. Observations from failure cases indicate that some models,
such as GPT-4o, can effectively plan tasks but lack sufficient grounding capabilities. Therefore, we
explore separating planning and action. Following existing practices (Wu et al., 2025b), we configure
GPT-4o as the planner and utilize various VLMs and GUI action models as the grounding models.

Table 4: Success rates of different VLM agent combinations under the planner + grounding model
setting on SCIENCEBOARD. The observation setting used in this experiment is screenshot. Colors
denote Proprietary Models , Open-Source VLMs and GUI Action Models.

Planner Grounding Model Success Rate (↑)
Algebra Biochem GIS Astron Overall

GPT-4o

OS-Atlas-Pro-7B 6.25% 10.34% 0.00% 3.03% 4.92%
UGround-V1-7B 0.00% 3.45% 0.00% 3.03% 1.62%
Qwen2.5-VL-72B 12.50% 34.48% 11.76% 9.09% 16.96%

UI-TARS-72B 3.23% 10.34% 5.88% 6.06% 6.38%
GUI-Actor-7B 21.88% 44.83% 2.94% 12.12% 20.44%

GPT-4o 3.23% 0.00% 0.00% 0.00% 0.81%

The results in Table 4 show that modular approaches yield significant improvements and are promising
for tackling complex and visually demanding tasks in scientific software workflows.
GUI vs. Hybrid. Some tasks support both GUI and CLI as interchangeable interfaces. For
example, ChimeraX offers nearly full functional coverage through both modes for biochemistry tasks.

GPT-4o Qwen2.5-VL InternVL3
0
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GUI + CLI
GUI Only

Figure 5: GUI + CLI v.s. GUI Only.

To test how computer-using agents handle such hybrid
software, we disable ChimeraX’s CLI, enforcing GUI-
only execution (a11ytree + screenshot). As shown
in Figure 5, GPT-4o and InternVL3 suffer clear drops
in performance, whereas Qwen2.5-VL remains largely
unaffected, indicating better adaptation to GUI execution.

These results suggest that future agents should be more
adaptable and equipped with stronger GUI capabilities
to remain robust across hybrid and vision-only settings.
Extended analyses are provided in Appendix F.

7 CONCLUSION

We propose SCIENCEBOARD, a first-of-its-kind realistic environment designed to empower au-
tonomous agents in scientific exploration with rigorous validation. Building upon our infrastructure,
we curate a highly challenging benchmark of diverse scientific tasks meticulously crafted by human
experts. Through extensive experiments and analysis, we found that even state-of-the-art computer-
using agents perform significantly below human-level proficiency. Although the realization of
autonomous agents for scientific discovery remains a distant goal, this work offers actionable insights
for future development, and we believe it constitutes advancing AI-powered scientific discovery.
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REPRODUCIBILITY STATEMENT

We provide an anonymous downloadable source code at this link. The deployment process of
SCIENCEBOARD is detailed in Appendix C, while the experimental settings for running evaluations
on SCIENCEBOARD are described in Section 5.1.

ETHICS STATEMENT

Computer-using agents operating in live OS environments could potentially affect the normal func-
tioning of the system. This is non-negligible in scientific workflows, where a poorly controlled
agent could potentially misconfigure experiments, corrupt sensitive research data, or even lead to
irreversible data loss. However, considering that all settings in this work are conducted within isolated
virtual environments, we do not view this as a concern.
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LARGE LANGUAGE MODEL USAGE

In this submission, we employed LLMs to aid and polish writing, including grammar and typo
checking, as well as for identifying related works.

LIMITATIONS AND BROADER IMPACTS

As a pioneering effort marking the early stages of integrating computer-using agents into scientific
workflows, it is important to acknowledge certain limitations. While our current evaluation, based on
both VM states and key I/O correctness, provides robust validation, its reliance on a binary success
flag may not fully capture process correctness or partial task completion (e.g., an agent succeeding
in most steps but failing at a final one). Introducing a “partial credit” could offer more granular
evaluation, but accurately defining and implementing such a system for open-ended, OS-level tasks
within diverse scientific software presents significant challenges due to vast state / action spaces. One
potential direction for improvement is to introduce VLMs to serve as judges capable of assigning
partial credit and providing richer feedback. We leave this as future work.

A DISCUSSION AND FUTURE DIRECTIONS

SCIENCEBOARD represents a significant advance in using autonomous agents for scientific workflows.
Our findings suggest several key directions for future research:
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Harmonized Domain Knowledge and Agentic Capability. Our evaluations suggest that one
contributing factor to current agents’ limitations in scientific exploration is their insufficient domain
knowledge. For instance, the GUI action models we evaluated, while effective at automation, lack
the specialized understanding required for complex scientific tasks. Therefore, future advancements
may focus on enhancing domain-specific abilities, such as enhancing scientific comprehension (Li
et al., 2024), learning from highly relevant resources such as manuals and tutorials, and enabling
on-demand knowledge retrieval (Lála et al., 2024). A key challenge will be to effectively harmonize
this specialized knowledge with general agentic capabilities (Xu et al., 2024a).

Collaborative and Specialized Agents as a Solution. Analysis in Table 4 indicates that even a
basic modular approach of separating planning and action to different agents can yield significant
performance improvements in complex scientific software workflows. This points toward developing
sophisticated multi-agent systems composed of specialized, heterogeneous agents (Jia et al., 2024a;
Ghafarollahi & Buehler, 2024; Agashe et al., 2025). For example, responsibilities could be disentan-
gled by assigning planning to agents capable of deep reasoning (Li et al., 2025), action execution to
specialized GUI action models (Wu et al., 2025b; Xu et al., 2024b), and domain-specific capability
to models in particular disciplines (Microsoft, 2023; 2025). These agents could be plug-and-play,
allowing flexible application across broader aspects of the scientific lifecycle, such as data analy-
sis (Chen et al., 2025), scientific plotting (Jia et al., 2024b), and paper revision (Yu et al., 2024).
While promising, it also demands more sophisticated multi-agent designs to manage and coordinate
the intricate and multifaceted nature of scientific tasks.

Extending Digital Agents to Physical Laboratory. Current AI-assisted scientific workflows are
primarily at the digital level, focusing on tasks such as data analysis, simulation, and software control.
A natural and impactful next step is to extend the capabilities of such autonomous agents, as fostered
and benchmarked in SCIENCEBOARD, into physical laboratory environments. This transition involves
interfacing agents with robotic systems (Burger et al., 2020; Angelopoulos et al., 2024), applying
principles of embodied AI to perceive and interact with the physical world. Agents would manipulate
laboratory instruments and samples, carry out experimental protocols, and monitor physical processes
in real time, thereby fostering a “lab-in-the-loop” (Frey et al., 2025) future where experimentation
and AI-driven methods are mutually reinforcing.

B DETAILS OF SCIENCEBOARD ENVIRONMENT

B.1 ENVIRONMENT SETUP

Virtual machines can operate their own kernel and system, enabling compatibility with a wide variety
of operating systems. For experiments covered in this paper, we utilize a Linux environment (Ubuntu
22.04.1 LTS with kernel 6.8.0-57-generic) running on x64 personal computers.

B.2 EVALUATION CRITERIA

As stated in Section 3.2, we employ a fine-grained evaluation methodology based on:

• The final state of the VM (Determinant)
• I/O states and intermediate steps (Non-Determinant)

While the final state of the VM often provides a determinant measure of overall task completion,
the diverse nature of I/O and intermediate steps necessitates a varied set of criteria. The following
outlines the primary principles applied for I/O correctness:

• Exact Match:
– Strict equality: The output or relevant state must be exactly identical to the gold standard (e.g.,

for specific textual outputs or numerical values).
– Set equality of lines: For multi-line textual outputs, the content of all lines must match the gold

standard, but their order may not be strictly enforced.
– Question-answering: The agent’s provided answer to a question is compared against a correct

answer or set of acceptable answers.
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• Predicate Satisfaction: Verifying if specific information and generated outputs satisfy predefined
logical conditions or predicates. This includes:
– Value Existence: A required value, file, or UI element is present as expected.
– Value Non-Existence: A specified value, file, or UI element is correctly absent.
– Range Check: A numerical output or parameter falls within a predefined acceptable range (often

with a specified tolerance).
• Correct Task Failure (FAIL): The agent correctly identifies a task as infeasible or terminates

appropriately when unable to complete the objective, outputting a designated FAIL signal.
• Domain-Specific Success Markers: For certain domains, unique success criteria are employed:

– Lean Tasks: Successful compilation of the generated Lean proof code is considered a primary
indicator.

B.3 SELECTION AND MODIFICATION OF SCIENTIFIC SOFTWARE

To ensure both technical feasibility and representative task diversity, we selected software tools based
on the following criteria:

1. Accessibility. The software must be open-source or freely available, allowing transparent integra-
tion and reproducibility of experiments.

2. GUI Compatibility. The software must expose a usable accessibility tree (a11y tree) to support
fine-grained GUI grounding and interaction.

3. Domain Representativeness. The software should be representative of key scientific and technical
domains, enabling meaningful assessment of multimodal agent capabilities across different types
of tasks.

Based on these principles, we selected the following software for each target domain:

• Lean. A functional programming language and interactive theorem prover grounded in dependent
type theory (specifically Martin-Löf Type Theory). Lean enables formal verification of mathe-
matical theorems and software correctness through rigorous type checking and logical inference,
supporting robust development of maintainable and accurate code.

• ChimeraX. A next-generation molecular visualization software developed by UCSF, designed for
detailed interactive exploration, visualization, and analysis of protein and biomolecular structures.
ChimeraX enhances performance and user experience compared to its predecessor, UCSF Chimera,
offering improved graphics rendering, extensibility via plugins, and streamlined workflows for
structural biology research.

• KAlgebra. An educational calculator and graphical plotting application within the KDE Education
Project. It supports a wide range of numerical, logical, symbolic, and analytical computations,
enabling users to visualize mathematical functions interactively in both two-dimensional (2D) and
three-dimensional (3D) environments, thus effectively bridging computational mathematics and
educational usability.

• Celestia. A cross-platform, interactive real-time 3D astronomical simulation software that allows
users to explore the universe through detailed, dynamic visualizations. Celestia is highly extensible
via scripting, empowering educational and professional users to model and visualize celestial
phenomena and space missions with precision and customization.

• GrassGIS. An advanced Geographic Information System (GIS) supporting both raster and vector
geospatial data, along with powerful analytical capabilities for spatial modeling, hydrological
analysis, and environmental simulations. GrassGIS includes a comprehensive Python API for
automation and custom analysis, enabling complex geospatial and temporal analyses tailored to
diverse research and application scenarios.

• TeXstudio. An integrated LATEX editor that provides a writing environment tailored specifically
for creating and managing complex technical and scientific documents. TeXstudio enhances
productivity through features such as syntax highlighting, real-time document preview, automatic
reference checking, and intuitive assistance tools, greatly simplifying the process of technical
writing and document preparation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 DETAILS OF ACTION SPACE

The action space employed in SCIENCEBOARD is shown in Table 5. We combine standard interaction
primitives (such as GUI operations) with the flexibility of system-level and application-specific
Command-Line Interfaces (CLIs), and has been further expanded with several augmented actions
tailored for scientific workflows.

Table 5: Action space of SCIENCEBOARD environment.

Action Description

moveTo(x, y) Moves the mouse to the target coordinate.
moveRel(x, y) Moves the mouse by an offset from current position.
dragTo(x, y) Drags the mouse to the target coordinate.
dragRel(x, y) Drags the mouse by an offset from current position.
click(x, y) Clicks at the target coordinate.
rightClick(x, y) Performs a right click at the target coordinate.
middleClick(x, y) Performs a middle click at the target coordinate.
doubleClick(x, y) Performs double clicks at the target coordinate.
tripleClick(x, y) Performs triple clicks at the target coordinate.
mouseDown(x, y, button) Presses a mouse button down.
mouseUp(x, y, button) Releases a mouse button up.

DONE Agent decides the task is finished.
FAIL Agent decides the task is infeasible.
WAIT [n] Agent decides it should wait, ‘n’ defaults to 5(s).
ANS [s] Agent decides it should submit an answer, ‘s’ denotes the answer.
API [name, args] Invokes a registered API call with name and arguments.

CODE Run a generated code script (for in-app / system-level tasks, or custom functions).

B.5 DETAILS OF OBSERVATION SPACE

We primarily adhere to well-established settings (Xie et al., 2024; Zhou et al., 2024) for observation
space, encompassing: (1) Screenshots, which consist of a full desktop screenshot as observed by
human users; (2) a11ytree, a structured text-only representation without visual information,
applicable for agents that take pure text input; (3) Screenshots + a11ytree, a hybrid approach
that combines and complements both textual and visual modalities; and (4) Set-of-Marks (Yang
et al., 2023), a visual prompting method aimed at enhancing the visual grounding capabilities by
partitioning an image into marked regions. Details are as follows:

Screenshot. We capture a screenshot of the entire computer screen. For screen resolution, we
set a default value of 1920×1080, and it also offers a 16:9 aspect ratio. Following OSWorld (Xie
et al., 2024), our environment also supports modifying the resolution of virtual machines to avoid
potential memorization of absolute pixel values and to assist studies on topics like generalization
across different resolutions.

A11ytree. An a11ytree refers to an intricate structure generated by the browser or OS accessi-
bility APIs that renders a representative model of the content, providing a means of interaction for
assistive technologies. Each node within the accessibility tree hosts important information about a UI
element. In SCIENCEBOARD, which utilizes an Ubuntu-based GNOME desktop environment, we
employ the Assistive Technology Service Provider Interface 2. Specifically, we adopt pyatspi to
programmatically retrieve the accessibility tree on Ubuntu.

To make complex a11ytree tractable, and critically, to ensure they fit within the context length
of open-source models, we filter out non-essential elements. This filtering is performed based on
element attributes such as their tag, visibility, and availability. For the elements that remain after
filtering, only key information—specifically their tag, name, text, position, and size—is retained and
subsequently concatenated to form the input representation for the agent.

2https://docs.gtk.org/atspi2/
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Screenshot + a11ytree. To further enhance the action execution capabilities of computer-using
agents, especially for models with weaker grounding abilities, we utilize a combined input of
screenshots and a11ytree.

Set-of-Mark. We follow the official implementation of Set-of-Mark (Yang et al., 2023). We
leverage the information from the filtered a11ytree and mark the elements on the screenshot with
a numbered bounding box. Following VisualWebArena (Koh et al., 2024) and UFO (Zhang et al.,
2024), we further combine the annotated screenshot with the text metadata from a11ytree.

C ACCESSING SCIENCEBOARD ENVIRONMENT

To facilitate broader adoption and reproducibility, we provide several methods for accessing SCI-
ENCEBOARD environment. Researchers can choose the most suitable option based on their technical
requirements and resources:

Direct Deployment. The entire framework, including all scientific software and evaluation scripts,
is available for direct deployment on a native Ubuntu system. Full setup instructions and dependency
lists are provided in our repository.

Docker Container. We also provide a Docker image that encapsulates the environment, making it
easy to run SCIENCEBOARD across different machines and operating systems, which is available at
https://anonymous.4open.science/r/ScienceBoard/.

Cloud Platforms. For scalability and powerful computational resources, SCIENCEBOARD can be
deployed on cloud platforms like Amazon Web Services (AWS). We will provide guidelines upon
acceptance.

D DETAILS OF SCIENCEBOARD BENCHMARK

D.1 TASK ANNOTATION

During the task annotation process, we primarily utilize the tutorials and handbooks listed in Table 6
to guide annotators in exploring the relevant domain and corresponding software and tools. All app
data collection and task creation are completed by the authors.

D.2 TASK DIVERSITY

To explore the diversity of tasks in SCIENCEBOARD, we perform a t-SNE (van der Maaten & Hinton,
2008) visualization, as shown in Figure 6. We obtain embeddings for all task instructions using
text-embedding-3-small and then apply t-SNE to reduce their dimensionality to two for
visualization. The semantic distribution of instructions clearly distinguishes tasks across different
domains, while also revealing considerable diversity within each individual domain. Furthermore,
we can observe some intersections between Scientific Documentation tasks and tasks from other
domains, which reflects the presence of cross-application workflows in our benchmark.

D.3 COMPARISON WITH EXISTING BENCHMARKS

We compare SCIENCEBOARD with existing well-established benchmarks for scientific tasks, as
shown in Table 7.

SCIENCEBOARD is the first to offer a realistic environment for evaluating scientific tasks. In terms of
I/O, it incorporates structured code input and visual information, which are critical for simulating
scientific experiment workflows. It also supports GUI automation, making it well-suited for visual
agents to fulfill tasks like humans do. Additionally, SCIENCEBOARD covers a broader range of task
types compared to existing works, including but not limited to question-answering and scientific
computing. These unique features make SCIENCEBOARD both a versatile playground and an
expandable framework for evaluating agents’ scientific capabilities.
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Table 6: Sources of the tutorials and handbooks employed in the task annotation process.

Software Tutorial & Handbook Sources

Kalgebra https://docs.kde.org/stable5/en/kalgebra/
kalgebra/index.html

ChimeraX
https://www.cgl.ucsf.edu/chimerax/tutorials.html

https://kpwulab.com/wp-content/uploads/2022/04/
chimerax-tutorial-kpwulab-2022-0429.pdf

Lean 4

https://lean-lang.org/theorem_proving_in_lean4/

https://leanprover-community.github.io/
mathematics_in_lean/index.html

https://lean-lang.org/doc/reference/latest/

Grass GIS
https://grass.osgeo.org/grass84/manuals/index.
html

https://neteler.gitlab.io/grass-gis-analysis/

Celestia

https://celestiaproject.space/guides.html

https://en.wikibooks.org/wiki/Celestia

https://celestiaproject.space/docs/
CELScriptingGuide/Cel_Script_Guide_v1_0g.htm

TeXStudio
https://texstudio-org.github.io/getting_started.
html

https://latex-tutorial.com/tutorials/
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Figure 6: t-SNE visualization of task instructions distribution. The seeds of t-SNE are randomly
sampled for each plot.
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Feature SCIENCEBOARD
(our work) ScienceQA (Lu et al., 2022) SciCode (Tian et al., 2024) ScienceAgentBench (Chen et al., 2025)

I/O Formats
Code / Structured Input ! % ! !

Visual Information ! ! % %
Task Type

Question-Answering ! ! % %

Scientific Computing ! % ! !

GUI Automation ! % % %

Table 7: A comparison of SCIENCEBOARD to notable and recent AI4Science benchmarks.

D.4 MORE EVALUATION SCRIPT EXAMPLES

Beyond the evaluation cases listed in Section 3.2, Table 8 showcases a broader variety of evaluation
pipelines created using our templates.

Table 8: More evaluation cases of SCIENCEBOARD include exact matching, range-based assessment,
and numerical tasks with tolerance.

Initial State Instruction Evaluation Script (Simplified)

Select all ligand(s) and color them
into magenta in ChimeraX.

{
"type": "info",
"key": "sel",
"value": ["atom id /A:9@N1 idatm_type N3+",
...

]
},{

"type": "info",
"key": "rescolor /A",
"value": ["#1/A:1 color #d2b48c",
...

]
}

There is a point located in the
Mediterranean Sea. Please find and
delete it.

{
"type": "db",
"cmd": "v.to.db",
"kwargs": {
"flags": "p",
"map": "countries@PERMANENT",
"type": "point",
"option": "coor"

},
"key": "lambda out: out.strip()",
"value": "cat|x|y|z\n...|8.348947891274|0",
"pred": "lambda key, value: key == value"

}

Approach to the Earth and display
a solar eclipse in Celestia.

{
"type": "info",
"key": "lambda ...[’Earth’][’distance’]",
"value": 0,
"pred": "lambda k, v: abs(k - v) < 450000"

},{
"type": "info",
"key": "lambda ...[’Sol’][’visible’]",
"value": false

},{
"type": "info",
"key": "lambda ...[’Moon’][’visible’]",
"value": true

},{
"type": "info",
"key": "lambda ...",
"value": 0.99,
"pred": "lambda key, value: key > value"

}

theorem TP_3
[TopologicalSpace X]
[TopologicalSpace Y]
(f : X -> Y)
(Z : Set X)
(h1 : Continuous f)
(h2 : IsConnected Z)
: IsConnected {y :

Y |
∃ z ∈ Z, f z = y}

:= by sorry

{
"type": "placeholder"

}
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D.5 HUMAN PERFORMANCE

In our main experiments, as reflected in Table 3, we recruit college-level students to establish normal
human performance on SCIENCEBOARD benchmark. Before attempting the tasks, participants are
required to familiarize themselves with foundational knowledge of the relevant scientific disciplines
and study the provided operational manuals. They were then given instructions, as shown in Instruc-
tion 1, to complete the assigned tasks. Participants were compensated at a rate of $10 per hour for
their involvement.

The SCIENCEBOARD environment and scientific software used do not record any personal infor-
mation, and all participants provide informed consent. The experiment does not involve surveys,
interviews, or any behavioral tracking.

D.6 STABILITY ANALYSIS

Considering that dynamic environments could potentially lead to experimental instability, we conduct
an additional set of experiments focusing on consistency. For these, we utilize GPT-4o under the
a11ytree + screenshot setting, with results and error bars reported in Figure 7.
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Figure 7: Stability analysis.

Across three independent runs, performance on Algebra tasks remains stable. However, Biochemistry
tasks exhibited minor fluctuations in success rates. Upon closer inspection of individual cases, we
hypothesize that these variations likely stem from network connectivity issues or transient system lag
encountered during task execution.

D.7 EVALUATION COST

We use API keys to access proprietary models. On average, a single run on all SCIENCE-
BOARD tasks costs $64 using GPT-4o, $86 using Claude-3.7-Sonnet, and $45 using
Gemini-2.0-Flash.

E DETAILS OF EXPERIMENTS

E.1 BACKBONE MODELS

We briefly discuss the backbones we used to build our computer-using agents.

Proprietary Models. Proprietary models now demonstrate striking capabilities in complex reason-
ing and are increasingly exhibiting agentic potential for dynamic real-world interaction, prompting a
closer look at their diverse forms. In the experimental section, we accessed the following proprietary
models via API keys:

• GPT-4o (Hurst et al., 2024).
• Claude-3.7-Sonnet (Anthropic AI, 2024).
• Gemini-2.0-Flash (Team, 2024).
• o3-mini (OpenAI, 2025).
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Open-source Models. Open-source models are demonstrating remarkable advancements, steadily
narrowing the performance gap with proprietary models. Crucially, the open-source community
recognized the significance of agentic capabilities early on, fostering development in this direction.
This foresight has translated into exceptional performance, particularly within GUI scenarios where
these models now excel on various challenging benchmarks. Our evaluation is based on the following
open-source models, which are characterized by their advanced grounding capabilities:

• Qwen2.5-VL-72B-Instruct (Bai et al., 2025): The latest evolution in the Qwen vision-language
model family, primarily distinguished by its robust agentic capabilities. It operates directly as a
visual agent, proficient in reasoning, dynamically utilizing tools, and executing tasks for computer
and phone operation. Complementing its agentic prowess, Qwen2.5-VL-72B-Instruct demonstrates
advanced proficiency in detailed visual analysis (including texts, charts, icons, and layouts within
images), comprehension of videos exceeding one hour with event pinpointing, precise object
localization with structured coordinate output, and the generation of structured data from documents
such as invoices and forms. In our experiments, this model is deployed using interconnected clusters
of 8 × A100 80GB GPUs with vLLM (Kwon et al., 2023).

• InternVL3-78B (Chen et al., 2024): An advanced MLLM recognized for its superior overall perfor-
mance and significantly enhanced multimodal perception and reasoning. A key advancement is its
robust agentic functionality, demonstrated through proficient tool usage and GUI agent operations,
alongside extended capabilities in areas like industrial image analysis and 3D vision perception.
These comprehensive abilities are underpinned by innovations such as a native multimodal pre-
training approach, supervised fine-tuning with diverse, high-quality data tailored to these advanced
tasks, and mixed preference optimization for refined reasoning. In our experiments, this model is
deployed using interconnected clusters of 8 × A100 80GB GPUs with vLLM.

• QvQ-72B-Preview (Qwen Team, 2024): An experimental research model focused on advancing
visual reasoning capabilities. It has achieved compelling performance in complex multidisciplinary
understanding and problem-solving, highlighting its specialized strength in sophisticated visual
cognitive tasks. However, it exhibits some limitations in instruction following, appearing less adept
in agent scenarios that require precise action outputs. In our experiments, this model is deployed
using interconnected clusters of 8 × A100 80GB GPUs with vLLM.

GUI Action Models. While foundational models provide impressive general-purpose intelligence,
their intrinsic agentic capabilities for nuanced GUI manipulation are still under active exploration,
often requiring further specialization. Consequently, a prominent line of research involves adapting
open-source VLMs by fine-tuning them on extensive, GUI-specific datasets. This targeted training
methodology yields dedicated action models equipped with significantly enhanced proficiencies
for understanding and interacting with GUIs. The GUI action models adopted in this paper are as
follows:

• OS-Atlas-Pro-7B (Wu et al., 2025b): A foundational GUI action model that significantly advances
open-source VLMs for agentic tasks, excelling in GUI grounding and out-of-distribution scenarios
through innovations in modeling and the creation of the largest open-source, cross-platform GUI
grounding corpus with over 13 million elements. It demonstrates state-of-the-art performance
across six diverse benchmarks (mobile, desktop, web) and verifies the existence of model scaling
laws in GUI scenarios. In our experiments, this model is deployed using a single A100 80GB GPU
with vLLM (Kwon et al., 2023).

• UGround-V1-7B (Gou et al., 2025): A universal visual grounding model that identifies GUI action
elements by pixel coordinates. It powers the SeeAct-V framework (Zheng et al., 2024), which
enables purely visual GUI perception and pixel-level operations. Agents using SeeAct-V with
UGround have achieved SOTA results across five distinct benchmarks spanning web, mobile, and
desktop evaluations. In our experiments, this model is deployed on a single A100 80GB GPU with
vLLM.

• UI-TARS-72B-DPO (Qin et al., 2025): An end-to-end native GUI agent that uniquely perceives
screenshots as its sole input to perform human-like keyboard and mouse interactions, outperforming
prevailing agent frameworks that depend on heavily wrapped commercial models with expert-
crafted prompts. It has established state-of-the-art performance across more than ten GUI agent
benchmarks. This advanced capability stems from key innovations including enhanced perception,
unified action modeling, System-2 reasoning, iterative training with reflective online traces, and
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a final Direct Preference Optimization (DPO) phase, which refines its ability to make precise,
context-aware decisions. In our experiments, UI-TARS-72B-DPO utilizes vLLM for inference and
is deployed on interconnected clusters of 8 × A100 80GB GPUs.

• GUI-Actor-7B (Wu et al., 2025a): A recently proposed GUI grounding model that introduces a
novel coordinate-free visual grounding approach. It utilizes an action head to direct the special
token <ACTOR> to the target screenshot patches for localization. It claims to surpass the text-based
coordinate prediction baseline and demonstrates better generalization in out-of-distribution (OOD)
scenarios. In our experiments, we used the 7B version of GUI-Actor based on the Qwen2.5-VL
backbone.

E.2 EVALUATION SETTINGS - MAIN EXPERIMENTS

We adhered to common prompt engineering strategies from previous works (Sun et al., 2024b; Zhou
et al., 2024; Zhang & Zhang, 2024) for the agents under evaluation. For each domain, the agent
interacts with the environment under the guidance of a meta-prompt, which includes information
about the software being operated, executable special actions, and related details. When taking
actions, the agent generates outputs in the ReAct style (Yao et al., 2023), with its step-by-step
thoughts recorded in the interaction history.

Throughout the evaluation, we set the temperature parameter to 0.5, top_p to 0.9, and
max_tokens to 1500. We list some prompt examples in Prompt 14, Prompt 15, Prompt 16 and
Prompt 17.

E.3 EVALUATION SETTINGS - ANALYSIS

In experiments with interleaved planning and action, we first address inconsistencies in coordinate
outputs from different GUI action models. While InternVL3-78B (Chen et al., 2024) outputs
coordinates on a [0, 1] scale, models such as OS-Atlas, UI-TARS, and UGround use a [0,
1000] scale. To ensure uniformity, we normalized all coordinate outputs to a [0, 1] scale prior
to execution.

This part of the experiments employs a two-stage process: First, the planner model receives the
current observation (obs) and task instruction to generate a high-level plan or a specific action. If the
planner outputted a directly executable primitive action (e.g., a non-GUI system-level command or a
special control token like DONE), that action will be performed immediately, and the action model
was not invoked for that step. Otherwise, the grounding model received the current observation and
the plan (or sub-task) from the planner. Its role was to output low-level executable instructions. If
the grounding model generate pyautogui actions directly, these commands were executed. For
models outputting in their specific native formats, we implement custom parsers to translate these
into pyautogui actions: for UGround and UI-TARS, all coordinate-based outputs were interpreted
as click, whereas for OS-Atlas, its outputs were parsed to differentiate between click, type,
and scroll based on its defined schema.

We list some prompt examples in Prompt 18, Prompt 19, Prompt 20 and Prompt 21.

F EXTENDED ANALYSIS

F.1 INTERFACES

In Section 6, we analyze the performance difference between Vision-Only and Hybrid Interface
settings under the a11ytree + screenshot. Here, we present empirical results under the other three
observation settings.

As shown in Figure 8, the hybrid GUI + CLI setting consistently achieves performance that is
comparable to or better than the GUI-Only setting across all scenarios. Interestingly, while GPT-4o
achieves state-of-the-art performance under other observation settings, it exhibits very weak action
capabilities when using screenshot setting, indicating the reliance on structured observations for
effective reasoning and planning.
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Figure 8: Extended analysis of Vision-Only vs. Hybrid Interface.

F.2 INTERACTIVE ENVIRONMENTS

ATP represents one of the most logic-intensive tasks for agents and has been traditionally studied in
textual settings in prior works (e.g., plain text or bash terminal).
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Figure 9: Textual v.s. Interactive

We extend ATP to live OS in SCIENCEBOARD and further compare agents’ performance under textual
and interactive settings. The latter, similar to environments commonly used by humans, provides
a live VSCode interface with features such as syntax highlighting, autocompletion, type inference,
and other functionalities. As shown in Figure 9, in the textual setting, the agent applies heuristic
strategies (e.g., Monte Carlo search) to make predictions over the proof tree without interacting
with the environment. In contrast, in the interactive setting, the agent must autonomously decide
which PROOFSTATE to proceed with. Moreover, the agent is also required to localize the relevant
code segments within the interface. Completing formal methods tasks becomes substantially more
challenging in realistic environments, which significantly increases the cognitive complexity.

F.3 DIFFICULTY ANALYSIS

We further analyze the success rates of computer-using agents on the SCIENCEBOARD benchmark
across different task difficulty levels. We employ Claude-3.7-Sonnet, GPT-4o, and Qwen2.5-
VL, with results presented in Figure 10.

The findings indicate that solvable tasks are primarily concentrated among a subset of “Easy” problems
and a few “Medium” tasks. All “hard” tasks, which involve complex computations, cross-application
workflows, or long-horizon planning, could not be completed by any of the evaluated agents.

F.4 FAILURE ANALYSIS

To further investigate the reasons why computer-using agents fail when planning or taking actions on
scientific tasks, here we include and discuss several typical examples of such errors.

Opening the Wrong File. This error is frequently caused by grounding issues. The agent initially
clicks on an incorrect file and then attempts to perform subsequent actions, such as inputting data,
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Figure 10: Comparative analysis of task difficulty solve rates.

within that wrong file. This often leads to the agent repeatedly making the same mistake or getting
stuck in an unproductive loop. A typical case is shown in Figure 11.

Figure 11: Use wrong file.

Inability to Invoke the Correct Function. In some instances, agents need to identify and use a
specific function within a software application but attempt to do so by directly typing an assumed
function name into a search bar or command input. If the exact function name is unknown or guessed
incorrectly, a more robust strategy would be to browse available menus or function lists. Instead,
agents may incorrectly assume knowledge of the function name and attempt to look up its usage,
leading to failure. A typical example of this behavior is presented in Figure 12.

Figure 12: Function invocation error.

Incorrect CLI Code. Failures also occur when agents formulate CLI commands incorrectly. This
can involve syntax errors, wrong command names, or incorrect parameters. Notably, in some of
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these failed CLI attempts, the intended task could have been accomplished more straightforwardly
by interacting with a corresponding button or element in the GUI. A typical example is shown in
Figure 13.

Figure 13: CLI code error.

G PROMPTS

The prompt examples we used in SCIENCEBOARD are listed below.
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Agentic Prompt - ChimeraX with screenshot

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of ChimeraX, a molecular visualization software;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by an
accessibility tree, which is based on AT-SPI library, and you will
predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
# your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
DO NOT introduce any unrelated models or easily close existing models,
otherwise the task might be evaluated as FAILED.
DO NOT close the current ChimeraX session, or every effort you made will
be in vain.
NEVER try to reopen the command line interface in ChimeraX if it is
hidden, because it has been deactivated and cannot do anything. But you
are welcome to use it once it is presented.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Fetch 2OLX from PDB in
ChimeraX.

Prompt 14: Prompts for ChimeraX with screenshot
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Agentic Prompt - Celestia with screenshot

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
and you will predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
# your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
The criterion for a celestial body to be displayed on the screen is that
the object’s center is within the window range and is not blocked by
others.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 15: Prompts for Celestia with screenshot
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Agentic Prompt - ChimeraX with set-of-marks

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of ChimeraX, a molecular visualization software;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by 1) an
accessibility tree, which is based on AT-SPI library; and 2) a screenshot
with interact-able elements marked with numerical tags, and you will
predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
# your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

You can replace x, y in the code with the tag of elements you want to
operate with, such as:
“‘
pyautogui.moveTo(tag_3)
pyautogui.click(tag_2)
pyautogui.dragTo(tag_1, button=’left’)
“‘
When you think you can directly output precise x and y coordinates or
there is no tag on which you want to interact, you can also use them
directly; but you should be careful to ensure the correct of coordinates.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
DO NOT introduce any unrelated models or easily close existing models,
otherwise the task might be evaluated as FAILED.
DO NOT close the current ChimeraX session, or every effort you made will
be in vain.
NEVER try to reopen the command line interface in ChimeraX if it is
hidden, because it has been deactivated and cannot do anything. But you
are welcome to use it once it is presented.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Fetch 2OLX from PDB in
ChimeraX.

Prompt 16: Prompts for ChimeraX with Set-of-Marks
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Agentic Prompt - Celestia with set-of-marks

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by 1) an
accessibility tree, which is based on AT-SPI library; and 2) a screenshot
with interact-able elements marked with numerical tags, and you will
predict actions of the next step based on that.

You are required to use ‘pyautogui‘ to perform the action grounded to the
observation, but DO NOT use the ‘pyautogui.locateCenterOnScreen‘ function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DO NOT USE ‘pyautogui.screenshot()‘
to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
# your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

You can replace x, y in the code with the tag of elements you want to
operate with, such as:
“‘
pyautogui.moveTo(tag_3)
pyautogui.click(tag_2)
pyautogui.dragTo(tag_1, button=’left’)
“‘
When you think you can directly output precise x and y coordinates or
there is no tag on which you want to interact, you can also use them
directly; but you should be careful to ensure the correct of coordinates.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
The criterion for a celestial body to be displayed on the screen is that
the object’s center is within the window range and is not blocked by
others.

First give the current observation and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 17: Prompts for Celestia with Set-of-Marks
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Human Instructions

You are required to finish the given tasks manually to provide sample
data of human accuracy.
First, please start up the evaluation script with debug option ON and
headless option OFF. Then, wait for the environment to be initialized
and perform your actions when you receive corresponding logs from stdout.
Press ENTER after you finish operating and the script will evaluate your
result submitted automatically.
Attention:
1. If you need to finish the task with primitives other than TIMEOUT,
please input directly into stdin;
2. You can search for documents or manuals if you encounter
domain-specific knowledge you are not familiar with;
3. Make sure that the number of your steps is less than expected. To be
more precise, a popup without possibility to predict its position should
be split into different steps.

Instruction 1: Instruction for humans.

Agentic Prompt - OS-Atlas

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use your grounding ability to perform the action
grounded to the observation and the plan.
You need to return a basic action together with arguments, of which the
available ones are listed below:
CLICK: to click at the specified position.

- format: CLICK <point>[[x-axis, y-axis]]</point>
- example usage: CLICK <point>[[101, 872]]</point>

TYPE: to enter specified text at the designated location.
- format: TYPE [input text]
- example usage: TYPE [Shanghai shopping mall]

SCROLL: to scroll in the specified direction.
- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
- example usage: SCROLL [UP]

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 18: Prompts for OS-Atlas
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Agentic Prompt - UGround

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use your grounding ability to perform the action
grounded to the observation and the plan.
You need to return a 2d coordinate (x, y) indicating the position you
want to click.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 19: Prompts for UGround

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Agentic Prompt - Qwen

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use ‘pyautogui‘ to perform the action
grounded to the observation and the plan, but DO NOT use the
‘pyautogui.locateCenterOnScreen‘ function to locate the element you want
to operate with since we have no image of the element you want to operate
with. DO NOT USE ‘pyautogui.screenshot()‘ to make screenshot.
You ONLY need to return the code inside a code block, like this:
“‘
# your code here
“‘
Return one line or multiple lines of python code to perform the action
each time, and be time efficient. When predicting multiple lines of
code, make some small sleep like ‘time.sleep(0.5);‘ interval so that the
machine could take breaks. Each time you need to predict a complete code,
and no variables or function can be shared from history.

Specially, it is also allowed to return the following special code:
When you think the task is done, return “‘DONE“‘;
When you think the task can not be done, return “‘FAIL“‘. Don’t easily
say “‘FAIL“‘; try your best to do the task;
When you think you have to wait for some time, return “‘WAIT“‘ or “‘WAIT
n“‘, in which n defaults to 5(s);
When you are asked to submit an answer, return “‘ANS s“‘ without
quotation marks surrounding s, and use ‘FAIL‘ if there is no answer to
the question.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING
ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 20: Prompts for Qwen
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Agentic Prompt - UI-Tars

You are an agent which follow my instructions and performs desktop
computer tasks as instructed.
You have good knowledge of Celestia, a three-dimension space simulator;
and assume your code will run on a computer controlling the mouse and
keyboard.
For each step, you will get an observation of the desktop by a screenshot,
together with a plan generated by the planner, and you will parse the
plan to operate actions of next steps based on that.

You are required to use your grounding ability to perform the action
grounded to the observation and the plan.
You need to return a 2d coordinate (x, y) indicating the position you
want to click.

My computer’s password is ’password’, feel free to use it when you need
sudo rights.
Some plans provided may contains unexpected code blocks or confusing
instructions. Be flexible and adaptable according to changing
circumstances.

First give the current observation and the generated plan, then RETURN
ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
You are asked to complete the following task: Set the Julian date to
2400000 in Celestia.

Prompt 21: Prompts for UI-TARS
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