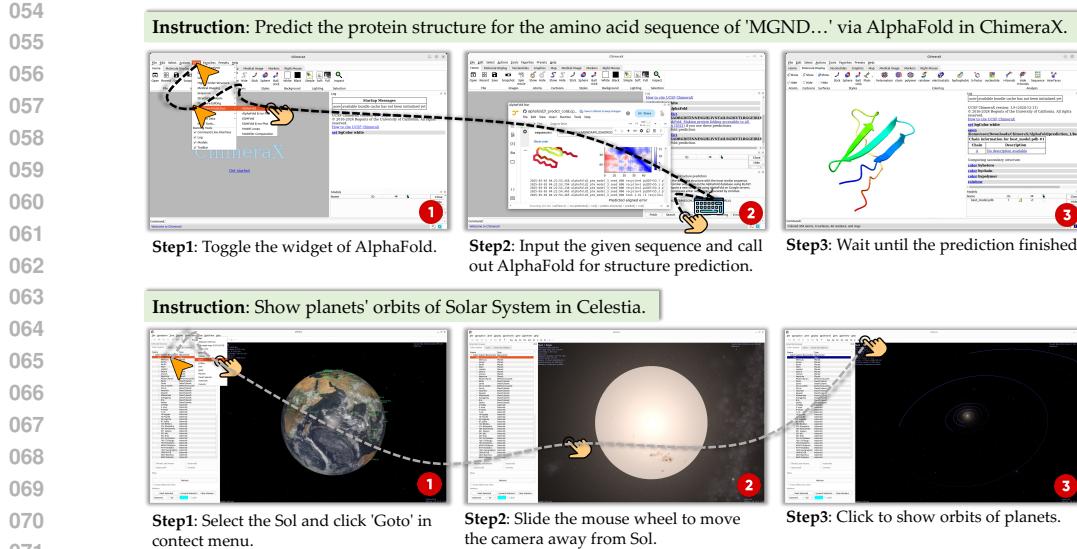


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SCIENCEBOARD: EVALUATING MULTIMODAL AUTONOMOUS AGENTS IN REALISTIC SCIENTIFIC WORKFLOWS

Anonymous authors

Paper under double-blind review

ABSTRACT


Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers’ workflows. Recognizing the transformative potential of these agents, we introduce SCIENCEBOARD, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (*e.g.*, GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, benchmark, and leaderboard are available at <https://anonymous.4open.science/r/ScienceBoard/>.

1 INTRODUCTION

In the pursuit of scientific advances, researchers combine ingenuity and expertise to perform novel research grounded in experimental explorations. In the modern era, scientific discovery is increasingly driven by specialized software and tools that empower scientists to engage deeply with the experimental world (Hacking, 1983). Tools like simulation engines (Hollingsworth & Dror, 2018), data analysis software (The MathWorks Inc., 2022), and visualization platforms (Goddard et al., 2018) are essential for formulating hypotheses, validating results, and advancing scientific understanding.

However, as scientific software grows more sophisticated and workflows become more demanding, the learning curve and operational burden on human researchers intensify (Sänger et al., 2024). These challenges motivate the vision of autonomous agents to play a central role in automating research pipelines and assisting human researchers as “AI co-scientists” (Luo et al., 2025; Schmidgall et al., 2025; Gottweis et al., 2025). For example, while a human scientist may take weeks to master a protein analysis tool (Meng et al., 2023) and spend hours making sufficient observations, an autonomous agent could perform the same tasks within minutes. By enabling fully autonomous workflows—from tool usage to making novel discoveries (Lu et al., 2024a)—such agents promise to accelerate science and empower researchers with unprecedented capabilities.

Recently emerging computer-using agents (Wu et al., 2024; OpenAI, 2025), capable of operating digital devices in a human-like manner, present a promising approach toward achieving these visions. These agents can interact with operating systems through Command-Line Interfaces (CLI; Sun et al., 2024a; Wang et al., 2024d) or perform mouse and keyboard actions via Graphical User

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
195

108 computer tasks as humans do, leading to the proliferation of computer-using agents (OpenAI, 2025).
 109 One line of research utilizes Command Line Interface (CLI), where agents generate executable scripts
 110 (*e.g.*, Python or Shell scripts) to interact with systems programmatically (Wang et al., 2024b). In this
 111 process, agents perform code synthesis (Sun et al., 2024a) or invoke APIs (Wu et al., 2024; Zhang
 112 et al., 2024). Another line of research focuses on Graphical User Interface (GUI) agents (Cheng et al.,
 113 2024; Wu et al., 2025b; Lin et al., 2024) that interact with digital devices through human-like mouse
 114 and keyboard actions (Niu et al., 2024; Zheng et al., 2024; Gou et al., 2025). These agents transform
 115 user instructions into executable actions within the operating system (*e.g.*, clicking an icon or scrolling
 116 through a page). Powered by VLMs, GUI agents have been applied to automate desktop (Xie et al.,
 117 2024) and mobile (Rawles et al., 2025) tasks, as well as specialized engineering workflows (Cao et al.,
 118 2024), showing promising paths toward digital automation. This work innovatively initiates the use
 119 of computer agents in scientific workflows, taking a step closer to autonomous research assistants.
 120

121 **AI for Scientific Discovery.** The rapid advancement of LLMs has reshaped the landscape of
 122 scientific discovery (Microsoft, 2023), boosting multiple stages of the research cycle (Luo et al.,
 123 2025). With the rise of LLM/VLM-based agents, there is a growing demand for these game-
 124 changers with college-level knowledge (Wang et al., 2024a) to transcend traditional tasks like
 125 question answering (Lu et al., 2022; Krishnareddy et al., 2023; Lu et al., 2024b). Recent efforts have
 126 been directed towards harnessing such power to assist with diverse components of the research cycle,
 127 including idea and hypothesis generation (Si et al., 2024; Liu et al., 2024b), data analysis (Chen
 128 et al., 2025; Gu et al., 2024; Majumder et al., 2024), scientific programming (Tian et al., 2024;
 129 Novikov et al., 2025), paper writing (Wang et al., 2024c), and peer-reviewing (Yu et al., 2024).
 130 Meanwhile, incorporating domain knowledge or even constructing foundation models (Microsoft,
 131 2025) can endow these agents with the capability to solve domain-specific problems, such as theorem
 132 proving (Song et al., 2025), chemical reasoning (Ouyang et al., 2024; Tang et al., 2025) and biological
 133 discovery (Wang et al., 2025; Zhao et al., 2025; Wang et al., 2025; Frey et al., 2025). With the vision
 134 of constructing autonomous research assistants (Schmidgall et al., 2025), our work represents the
 135 first to support agents in executing end-to-end scientific exploration workflows, thereby laying a
 136 cornerstone for advancing AI-powered scientific discovery.
 137

3 SCIENCEBOARD ENVIRONMENT

138 In this part, we introduce SCIENCEBOARD environment, which encompasses real-world science
 139 software that could be manipulated through GUI and CLI interfaces. The interface is developed
 140 based on an Ubuntu virtual machine (VM), serving as the underlying infrastructure. The dynamic and
 141 visually intensive environments distinguish SCIENCEBOARD from all previous works that evaluate
 142 the scientific capabilities of models or agents.
 143

3.1 PRELIMINARIES AND TASK DEFINITION

144 A computer-using agent receives task instructions, selects actions to manipulate software, and receives
 145 feedback reflecting changes in the environment (tabletop). This interaction is modeled as a Partially
 146 Observable Markov Decision Process (POMDP), defined by the tuple $\langle g, \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T} \rangle$, where g is the
 147 goal, \mathcal{S} is the state space, \mathcal{A} is the action space, \mathcal{O} is the observation space (including environment
 148 feedback), and $\mathcal{T} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ is the state transition function. Given a policy π , the agent
 149 predicts actions at each time step t based on the goal g and memory $m_t = o_j, a_j, o_{j+1}, a_{j+1}, \dots, o_t$
 150 ($0 \leq j < t$), which records the sequence of past actions and observations. The trajectory $\tau =$
 151 $[s_0, a_0, s_1, a_1, \dots, s_t]$ is determined by the policy and environment dynamics:
 152

$$p_\pi(\tau) = p(s_0) \prod_{t=0}^T \pi(a_t | g, s_t, m_t) \mathcal{T}(s_{t+1} | s_t, a_t) \quad (1)$$

153 **Observation and Memory.** We evaluate computer agents using three types of observation spaces:
 154 text-only, visual-only, and combined text-visual observations. For text-based observations, we
 155 use accessibility trees (a11ytree¹) to generate structured textual representations of screenshots.
 156 For visual observations, we capture high-resolution screenshots directly. The specific observation
 157 combinations used in our experiments are detailed in Section 5.1, with further information in
 158
 159
 160
 161

¹a11ytree: Accessibility (a11y) trees are hierarchical structures representing UI elements on the screen.

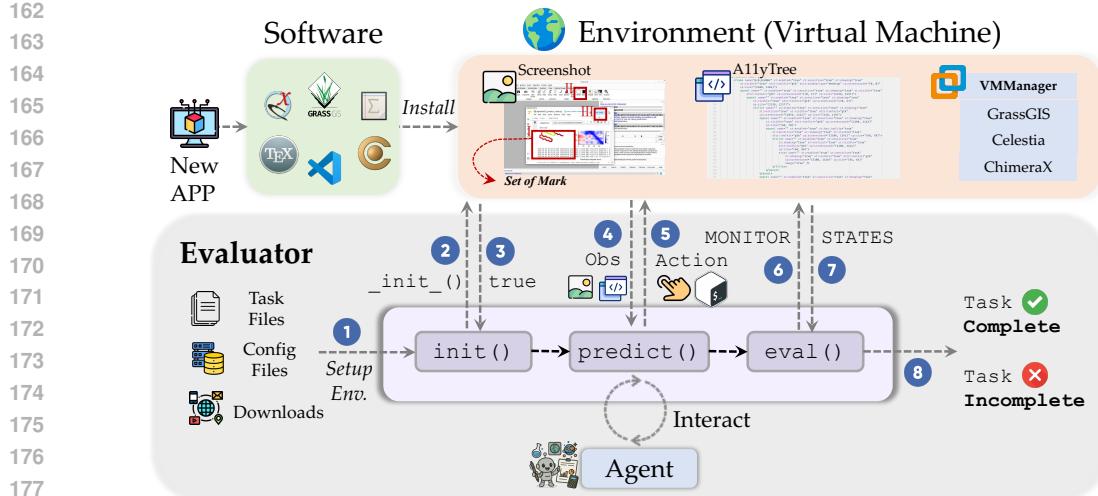


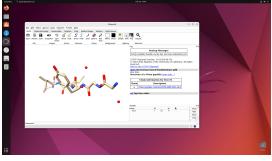
Figure 2: Overview of the SCIENCEBOARD infrastructure. The scalable environment is built upon a VM pre-installed with scientific discovery software. It supports both CLI and GUI interfaces to enable autonomous agent interaction. For each task designed to evaluate the agent’s capability as a research assistant, an initialization script, configs, and related files are provided. Agents perceive the environment through visual or textual modalities, and are expected to plan and act accordingly. After the interaction, an evaluation function determines completion based on the VM internal states.

Appendix B.5. Our POMDP agent requires memory to retain historical information. Following previous work (Yao et al., 2023; Ma et al., 2024), we construct this memory by concatenating the agent’s most recent observations.

Goal and Unified Action Space. Each task is specified by a natural language (NL) instruction, such as `Display atoms in sphere style`, describing the user’s intended goal. The policy model decomposes a complex goal instruction into a sequence of actions. We specially design a unified action space \mathcal{A} in SCIENCEBOARD, integrating diverse interaction modalities crucial for scientific tasks. For GUI actions, agents can perform the full range of human-computer interactions, including mouse movements, clicks, keystrokes, and other typical input behaviors as in prior work (Xie et al., 2024; Zhou et al., 2024) (e.g., `CLICK [991, 019]`). For CLI actions, agents can interact at two levels: (a) invoking system-level commands within the Ubuntu terminal, and (b) utilizing application-specific CLI or scripting mechanisms. Moreover, \mathcal{A} comprises an `answer` action, enabling agents to provide specific answers for QA tasks, and a `call_api` action, allowing agents to leverage predefined external APIs to broaden their capabilities. A comprehensive list of supported action types is available in Appendix B.4.

LLM/VLM-based Policy Model. An LLM / VLM model acts as the policy model to drive the agent’s behavior. The policy model receives the current observation and generates the next action accordingly. For pure-text observation, we adopt LLMs as the policy. Otherwise, we leverage VLMs.

3.2 SCIENTIFIC DISCOVERY EVALUATION FRAMEWORK


Unlike prior work that primarily focuses on static QA, coding, or single-step tasks, we aim to provide agents with a realistic and visually grounded environment to support autonomous exploration, which in turn introduces greater challenges for planning and action. In SCIENCEBOARD environment, as shown in Figure 2, we (1) simulate scenarios where scientific software is used to solve domain-specific problems, (2) enable agents to interact with the environment through diverse observations, and (3) ensure that agent behaviors can be rigorously evaluated.

Scientific Software Installation and Adaptation. For each domain, we select an open-source application that supports both visual and textual observations as the agent’s playground. To enable access to the internal state of each application within the VM, we adapt the software accordingly. Given the complexity and limited completeness of scientific applications, we inject a lightweight server that launches alongside the application’s main UI process to expose internal states via HTTP requests. This server is capable of querying the application’s runtime internal states, which serve as

the basis for downstream evaluation. For applications that do not natively support remote control via RESTful APIs, we modify and recompile their source code to ensure that both UI elements and internal states can be accessed. In addition, the server supports partial state control of the software, allowing us to initialize with specific configurations to simulate contextualized task environments. More about the software selected and further implementation details are provided in Appendix B.3.

Agent Interactions with the Environment. The LLM/VLM agent interacts with the environment as described in Section 3.1, receiving observations and executing actions accordingly. Scientific software processes these actions and returns updated states. The agent operates autonomously, continuing this loop until it outputs a signal (DONE or FAIL) or reaches the predefined attempt limit.

Table 1: Typical evaluation cases of SCIENCEBOARD include exact matching, range-based assessment, and numerical tasks with tolerance. We have tailored appropriate evaluation methods for each task. Additional evaluation strategies are detailed in Appendix D.4.

Initial State	Instruction	Evaluation Script (Simplified)
	Select all water molecules and draw their centroids with radius of 1Å in ChimeraX.	<pre>{ "type": "info", "key": "sell", "value": ["atom id #!1/A:201@O idatm_type O3", "..."], }, { "type": "states", "find": "lambda k,v:k.endswith('.name')", "key": "lambda k:'..._atoms_drawing'", "value": "[[13.0012 1.7766 21.3672 1.]]" } }</pre>
	Display and ONLY display the layer of 'boundary_region' in Grass GIS.	<pre>{ "type": "info", "key": "lambda dump:len(dump['layers'])", "value": 1 }, { "type": "info", "key": "lambda dump:dump['layers'][0]['name']", "value": "boundary_region@PERMANENT" }</pre>
	Set the Julian date to 2400000 in Celestia.	<pre>{ "type": "info", "key": "simTime", "value": 2400000, "pred": "lambda left, right:abs(left-right) < 1", }</pre>

Evaluation Pipeline. Given the complexity of scientific tasks, conventional answer-matching metrics and even execution-based evaluations (Xie et al., 2024; Zhou et al., 2024), often lack the granularity required to assess workflows accurately. For instance, as shown in Table 1, the rotation of a protein does not affect the correctness of visualization, whereas computational tasks in astronomy are usually influenced by the current clock state. Therefore, we propose a fine-grained evaluation based on both the correctness of key I/O during the workflow and the final state of the VM.

To handle the diverse criteria for determining task correctness (*e.g.*, exact matching, range-based assessment, numerical tolerance, file comparison), we design a set of evaluation templates. For each specific task, the relevant template is then instantiated with the appropriate parameters and expected gold standard values. This ensures both consistent validation and scalability for future extension. More evaluation details are in Appendix B.2.

4 SCIENCEBOARD BENCHMARK

In this section, we present the covered domains, the annotation pipeline, and statistics of the benchmark constructed based on the SCIENCEBOARD environment.

4.1 DOMAIN AND TASK COVERAGE

As a pioneering benchmark for scientific exploration, SCIENCEBOARD spans six domains selected for their relevance to key stages of the scientific workflow, such as simulation, modeling, prediction, and knowledge (Microsoft, 2023). In selecting software for each domain, we consider not only its representativeness, but also practical criteria for evaluation: open-source availability, allytree compatibility, and no requirement for user authentication.

270 (1) **Biochemistry.** We employ UCSF ChimeraX (Goddard et al., 2018; Meng et al., 2023), a
 271 molecular analysis tool that supports structural modeling (e.g., AlphaFold (Jumper et al., 2021)).
 272 The tasks assess the agent’s ability to manipulate biomolecular structures, as well as to reason
 273 over spatial conformations and biochem annotations.

274 (2) **Algebra.** KAlgebra is employed to evaluate the agent’s potential in symbolic mathematics.
 275 Tasks involve executing algebraic expressions, interpreting plots, and manipulating symbolic
 276 functions. These scenarios require the agent to exhibit strong mathematical symbolic reasoning
 277 and visual grounding capability.

278 (3) **Theorem Proving.** We use Lean 4 (Moura & Ullrich, 2021) as a proof assistant to assess
 279 agents’ abilities in formal logic and deductive reasoning. The ATP tasks in this category
 280 emphasize syntactic precision and logical coherence, evaluating the agent’s capability to generate
 281 semantically valid formal proofs.

282 (4) **Geographic Information System.** GrassGIS, a computational engine for raster, vector, and
 283 geospatial processing, is included to examine the agent’s skills in understanding terrain, hydrology,
 284 and handling spatio-temporal data, with support for functions such as ecosystem modeling.

285 (5) **Astronomy.** We integrate Celestia, a planetarium software simulating real-world astronomi-
 286 cal scenarios. Agents must demonstrate temporal-spatial awareness and knowledge of the cosmos
 287 and celestial objects by tracking planetary systems, simulating orbital events, and querying object
 288 metadata across time and space.

289 (6) **Scientific Documentation.** To simulate research documentation workflows, we adapt and
 290 incorporate TeXstudio to assess the agent’s technical writing capabilities. In standalone tasks,
 291 agents are expected to compose well-structured abstracts, generate plots, and produce formal
 292 reports based on provided instructions. In cross-application scenarios, TeXstudio is coupled
 293 with the aforementioned software to evaluate whether agents can extract meaningful insights
 294 from experiments and synthesize them into coherent narratives.

295 These domains enable evaluating a science agent’s capabilities across multiple dimensions, including
 296 visual / textual reasoning, math, coding, tool use, spatial understanding, domain-specific knowledge,
 297 and more. Additionally, to explore the potential for end-to-end scientific automation, documentation
 298 tasks are integrated with other domains to support cross-application workflows—such as automatically
 299 generating an experimental report based on completed upstream tasks. More details about the software
 300 platforms used to instantiate and convey the tasks in SCIENCEBOARD are provided in Appendix B.3.

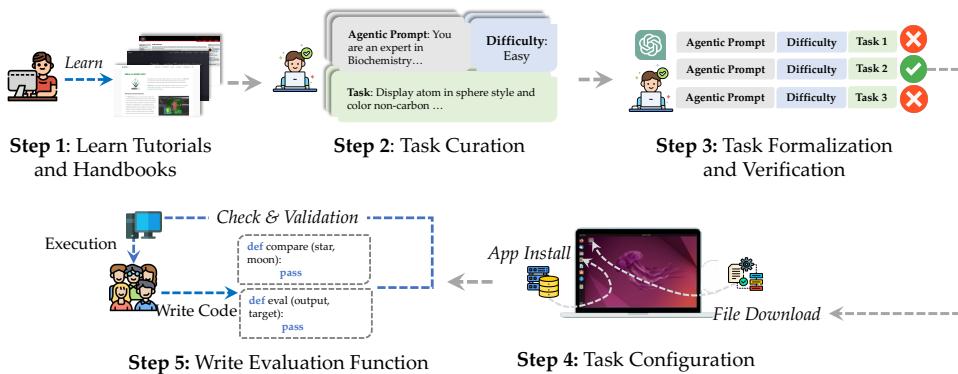


Figure 3: The annotation pipeline of the tasks in SCIENCEBOARD benchmark.

4.2 TASK ANNOTATION PIPELINE

To effectively construct tasks that are appropriately challenging, diverse, and aligned with the features of scientific software, we leverage a pipeline that spans from training annotators with tutorials and handbooks to conducting execution-based validation, as shown in Figure 3.

(1) **Tutorial Learning.** Five annotators initially collect and learn from tutorials and handbooks related to the software. After that, each annotator studies and explores a software’s basic unit operations, e.g., plotting the Bernoulli lemniscate in KAlgebra. Details are in Appendix D.1.

(2) **Task Curation.** Each annotator selects a scientific software, installs it within SCIENCEBOARD, and begins drafting task instructions based on its functionalities. Task types include but are not

324 limited to: configuration, simulation, QA, and domain-specific expertise. Each task is tentatively
 325 assigned a difficulty. Thereafter, agentic prompts aligned with the drafted tasks will be curated.
 326 (3) **Formalization and Selection.** Different annotators exhibit varying linguistic habits, we employ
 327 ChatGPT to standardize the task format. Annotators then conduct a cross-check, excluding those
 328 lacking diversity, poor executability, or non-unique answers, to finalize the set of tasks for use.
 329 (4) **Configuration Function Writing.** The purpose of this step is to initialize the software and pro-
 330 vide specific contexts, *e.g.*, supplying a map for GIS tasks or a protein sequence for biochemistry
 331 tasks. Annotators will write a set of functions for each software to modify the VM status, *i.e.*,
 332 the internal state of the software, along with general configuration functions (*e.g.*, downloading
 333 required files). Tasks commence only after all initialization have been successfully executed.
 334 (5) **Evaluation Function Writing and Validation.** Evaluation functions are developed to assess
 335 task outcomes rigorously. As described in Section 3.2, evaluations are state-based, with functions
 336 derived from a base evaluator template. Annotators retrieve the task state from the VM and assess
 337 it based on criteria such as I/O matching and predefined ranges. The function returns either “task
 338 complete” or “task fail.” Cross-validation is performed for consistency, with each task executed
 339 by two randomly selected annotators on separate VMs. The results are analyzed to ensure the
 340 evaluator’s correctness, even under intentional attempts by annotators to deceive the system.
 341

4.3 TASK STATISTICS

342 The task statistics of SCIENCEBOARD benchmark are presented in Table 2. Specifically, it comprises
 343 169 unique tasks across 6 domains, with task difficulty categorized into three levels. We curate a
 344 balanced number of tasks that are representative enough while keeping the evaluation cost manageable.
 345 During annotation, we define multiple task types to evaluate agents’ ability to perform diverse
 346 operation flows and leverage domain-specific knowledge.
 347

348 Table 2: Statistics of SCIENCEBOARD.
 349

Task Type	Statistics
Total Tasks	169 (100%)
- GUI	38 (22.5%)
- CLI	33 (19.5%)
- GUI + CLI	98 (58.0%)
Difficulty	
- Easy	91 (53.8%)
- Medium	48 (28.4%)
- Hard	28 (16.6%)
- Open Problems	2 (1.2%)
Instructions	
Avg. Length of Task Instructions	20.0
Avg. Length of Agentic Prompt	374.9
Execution	
Avg. Steps	9.0
Avg. Time Consumption	124(s)

366 The distribution of task types is shown in Figure 4. Beyond the innovation of a realistic environment,
 367 SCIENCEBOARD benchmark also improves upon prior work in terms of task design and content
 368 diversity. More details about task diversity, stability analysis, and comparison with representative
 369 scientific benchmarks are provided in Appendix D.
 370

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

374 **Backbones.** We employ three types of backbones for agents. These include **proprietary models**: GPT-4o (Hurst et al., 2024), Claude-3.7-Sonnet (Anthropic AI, 2024),
 375 Gemini-2.0-Flash (Team, 2024), and o3-mini (OpenAI, 2025); **open-source models**: Qwen2.5-VL-72B-Instruct (Bai et al., 2025), InternVL3-78B (Chen et al., 2024), QvQ-72B-
 376 Preview (Qwen Team, 2024), and GPT-oss-120B (Open AI, 2025); and **GUI action models**: OS-
 377

378 Atlas-Pro-7B (Wu et al., 2025b), UGround-V1-7B (Gou et al., 2025), UI-TARS-72B-DPO / UI-
 379 TARS-1.5-7B (Qin et al., 2025), and GUI-Actor-7B (Wu et al., 2025a). More details in Appendix E.1.
 380

381 **Observation Space.** We follow established observation settings (Xie et al., 2024; Zhou et al., 2024):
 382 (1) full desktop screenshots; (2) `allytree`, a structured text-only representation; (3) Screenshots +
 383 `allytree`; and (4) Set-of-Marks (Yang et al., 2023), which partitions images into marked regions
 384 to aid grounding. Further details are in Appendix B.5.

385 5.2 RESULTS

387 We compare the performance of computer-use agents powered by different LLMs and VLMs on
 388 SCIENCEBOARD, as presented in Table 3. We summarize our key empirical findings as follows:
 389

390 Table 3: Success rates on SCIENCEBOARD. We present the performance of each agent back-
 391 bone across different scientific domains under various observation settings. Proprietary Models ,
 392 Open-Source VLMs / LLMs , and GUI Action Model are distinguished by color.

393 Observations	394 Model	395 Success Rate (↑)						
		396 Algebra	397 Biochem	398 GIS	399 ATP	400 Astron	401 Doc	402 Overall
396 Screenshot	GPT-4o	3.23%	0.00%	0.00%	0.00%	0.00%	6.25%	1.58%
	Claude-3.7-Sonnet	9.67%	37.93%	2.94%	0.00%	6.06%	6.25%	10.48%
	Gemini-2.0-Flash	6.45%	3.45%	2.94%	0.00%	0.00%	6.06%	3.15%
	Qwen2.5-VL-72B	22.58%	27.59%	5.88%	0.00%	9.09%	12.50%	12.94%
	InternVL3-78B	6.45%	3.45%	0.00%	0.00%	0.00%	6.25%	2.69%
	UI-TARS-1.5-7B	12.90%	13.79%	0.00%	0.00%	6.06%	0.00%	2.69%
402 allytree	GPT-4o	12.90%	20.69%	2.94%	0.00%	6.06%	0.00%	7.10%
	Claude-3.7-Sonnet	19.35%	34.48%	2.94%	3.85%	12.12%	0.00%	12.12%
	Gemini-2.0-Flash	9.68%	17.24%	0.00%	0.00%	0.00%	0.00%	4.49%
	o3-mini	16.13%	20.69%	2.94%	3.85%	15.15%	6.25%	10.84%
	Qwen2.5-VL-72B	9.68%	10.34%	2.94%	0.00%	3.03%	0.00%	4.33%
	InternVL3-78B	3.23%	3.45%	0.00%	0.00%	0.00%	0.00%	1.11%
	GPT-oss-120B	19.35%	13.79%	0.00%	0.00%	9.09%	0.00%	7.04%
409 Screenshot + allytree	GPT-4o	22.58%	37.93%	2.94%	7.69%	3.03%	12.50%	14.45%
	Claude-3.7-Sonnet	12.90%	41.37%	8.82%	3.85%	9.09%	18.75%	15.79%
	Gemini-2.0-Flash	16.13%	24.14%	2.94%	0.00%	18.18%	12.50%	12.32%
	Qwen2.5-VL-72B	16.13%	20.69%	2.94%	0.00%	18.18%	12.50%	11.74%
	InternVL3-78B	6.45%	3.45%	0.00%	0.00%	3.03%	6.25%	3.20%
	Human Performance	74.19%	68.97%	55.88%	42.31%	51.52%	68.75%	60.27%

422 **Performance Hierarchy.** Existing agents remain far from being capable of effectively assisting
 423 human scientists in completing real-world scientific exploration tasks. Even SOTA models, such
 424 as GPT-4o and Claude, achieve an average success rate of only 15%. Across various settings,
 425 open-source counterparts can partially match proprietary models. However, they still exhibit markedly
 426 lower overall performance, with an average success rate of less than 12% and approaching nearly 0%
 427 in some task categories. The gap between agent and human performance underscores the limitations
 428 of the status quo and necessitates further research.

429 **Domain-Specific Performance Insights.** Across domains, we observe clear performance imbal-
 430 ances: models perform moderately well on Algebra and Biochemistry but degrade notably on GIS
 431 and Astronomy. We attribute this to: (1) Interfaces: Algebra and Biochemistry tasks often support
 both CLI and GUI execution, whereas GIS and Astronomy rely mainly on GUI interactions. Agents

432 generally handle CLI commands more reliably than fine-grained GUI grounding, which demands
 433 precise visual localization. (2) Task emphasis: Geographical and astronomical tasks involve dense
 434 visual elements (e.g., maps, star charts), making it difficult for agents to identify and reason over
 435 relevant information. This also indicates the limited 3D spatial reasoning ability of current VLMs.

436 **Impact of Different Observations.** Different observation modalities have a significant impact.
 437 Overall, `a11ytree + screenshots` setting yields the best performance. In other settings, Qwen2.5-VL
 438 performs exceptionally well under screenshot setting, which we attribute to its advanced GUI ability.
 439 Under `a11ytree`, the attribute information of elements allows LLMs to complete certain tasks by
 440 relying solely on textual observations. Meanwhile, we observe that the SoM sometimes introduces
 441 negative effects. It is likely that although SoM provides bounding boxes to ease grounding, scientific
 442 software often contains massive elements on screen (e.g., dense celestial objects and complex cosmic
 443 backgrounds), which introduces substantial noise and increases the difficulty of visual reasoning.

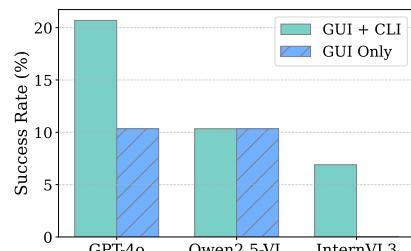
444 6 ANALYSIS

445 To further investigate the factors influencing agents’ capabilities, we conduct additional analysis to
 446 understand the underlying causes and the behavioral differences among heterogeneous models.

447 **Disentangled Planning and Action.** Observations from failure cases indicate that some models,
 448 such as GPT-4○, can effectively plan tasks but lack sufficient grounding capabilities. Therefore, we
 449 explore separating planning and action. Following existing practices (Wu et al., 2025b), we configure
 450 GPT-4○ as the planner and utilize various VLMs and GUI action models as the grounding models.

451 Table 4: Success rates of different VLM agent combinations under the planner + grounding model
 452 setting on SCIENCEBOARD. The observation setting used in this experiment is screenshot. Colors
 453 denote Proprietary Models, Open-Source VLMs and GUI Action Models.

455 Planner	456 Grounding Model	457 Success Rate (↑)				
		458 Algebra	459 Biochem	460 GIS	461 Astron	462 Overall
463 GPT-4○	464 OS-Atlas-Pro-7B	465 6.25%	466 10.34%	467 0.00%	468 3.03%	469 4.92%
	470 UGround-V1-7B	471 0.00%	472 3.45%	473 0.00%	474 3.03%	475 1.62%
	476 Qwen2.5-VL-72B	477 12.50%	478 34.48%	479 11.76%	480 9.09%	481 16.96%
	482 UI-TARS-72B	483 3.23%	484 10.34%	485 5.88%	486 6.06%	487 6.38%
	488 GUI-Actor-7B	489 21.88%	490 44.83%	491 2.94%	492 12.12%	493 20.44%
494 GPT-4○		495 3.23%	496 0.00%	497 0.00%	498 0.00%	499 0.81%


500 The results in Table 4 show that modular approaches yield significant improvements and are promising
 501 for tackling complex and visually demanding tasks in scientific software workflows.

502 **GUI vs. Hybrid.** Some tasks support both GUI and CLI as interchangeable interfaces. For
 503 example, ChimeraX offers nearly full functional coverage through both modes for biochemistry tasks.
 504 To test how computer-using agents handle such hybrid software, we disable ChimeraX’s CLI, enforcing GUI-
 505 only execution (`a11ytree + screenshot`). As shown in Figure 5, GPT-4○ and InternVL3 suffer clear drops
 506 in performance, whereas Qwen2.5-VL remains largely unaffected, indicating better adaptation to GUI execution.

507 These results suggest that future agents should be more
 508 adaptable and equipped with stronger GUI capabilities
 509 to remain robust across hybrid and vision-only settings.
 510 Extended analyses are provided in Appendix F.

511 7 CONCLUSION

512 We propose SCIENCEBOARD, a first-of-its-kind realistic environment designed to empower au-
 513 tonomous agents in scientific exploration with rigorous validation. Building upon our infrastructure,
 514 we curate a highly challenging benchmark of diverse scientific tasks meticulously crafted by human
 515 experts. Through extensive experiments and analysis, we found that even state-of-the-art computer-
 516 using agents perform significantly below human-level proficiency. Although the realization of
 517 autonomous agents for scientific discovery remains a distant goal, this work offers actionable insights
 518 for future development, and we believe it constitutes advancing AI-powered scientific discovery.

519 Figure 5: GUI + CLI v.s. GUI Only.

486 REPRODUCIBILITY STATEMENT
487488 We provide an anonymous downloadable source code at [this link](#). The deployment process of
489 SCIENCEBOARD is detailed in Appendix C, while the experimental settings for running evaluations
490 on SCIENCEBOARD are described in Section 5.1.
491492 ETHICS STATEMENT
493494 Computer-using agents operating in live OS environments could potentially affect the normal func-
495 tioning of the system. This is non-negligible in scientific workflows, where a poorly controlled
496 agent could potentially misconfigure experiments, corrupt sensitive research data, or even lead to
497 irreversible data loss. However, considering that all settings in this work are conducted within isolated
498 virtual environments, we do not view this as a concern.
499500 REFERENCES
501502 Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
503 A compositional generalist-specialist framework for computer use agents, 2025. URL <https://arxiv.org/abs/2504.00906>.
504505 Angelos Angelopoulos, James F. Cahoon, and Ron Alterovitz. Transforming science labs
506 into automated factories of discovery. *Science Robotics*, 9(95):eadm6991, 2024. doi:
507 10.1126/scirobotics.adm6991. URL <https://www.science.org/doi/abs/10.1126/scirobotics.adm6991>.
508509 Anthropic AI. The claude 3 model family: Opus, sonnet, haiku. *Claude-3 Model Card*, 1:1, 2024.
510511 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
512 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
513 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
514 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
515 <https://arxiv.org/abs/2502.13923>.516 Benjamin Burger, Phillip M Maffettone, Vladimir V Gusev, Catherine M Aitchison, Yang Bai,
517 Xiaoyan Wang, Xiaobo Li, Ben M Alston, Buyi Li, Rob Clowes, et al. A mobile robotic chemist.
518 *Nature*, 583(7815):237–241, 2020.519 Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xiong
520 Xinzhuan, Hanchong Zhang, Wenjing Hu, Yuchen Mao, Tianbao Xie, Hongshen Xu, Danyang
521 Zhang, Sida Wang, Ruoxi Sun, Pengcheng Yin, Caiming Xiong, Ansong Ni, Qian Liu, Vic-
522 tor Zhong, Lu Chen, Kai Yu, and Tao Yu. Spider2-v: How far are multimodal agents from
523 automating data science and engineering workflows? In *The Thirty-eight Conference on Neu-*
524 *ral Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=Qz2xmVhn4S>.
525526 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
527 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
528 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024.
529530 Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
531 Liao, Chen Wei, Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N. Baker, Benjamin Burns,
532 Daniel Adu-Ampratwum, Xuhui Huang, Xia Ning, Song Gao, Yu Su, and Huan Sun. Sci-
533 enceagentbench: Toward rigorous assessment of language agents for data-driven scientific dis-
534 covery. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
535 <https://openreview.net/forum?id=6z4YKr0GK6>.536 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong Wu.
537 SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In *Proceedings of the 62nd*
538 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
539 9313–9332, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
<https://aclanthology.org/2024.acl-long.505>.

540 Nathan C Frey, Isidro Hötzel, Samuel D Stanton, Ryan Kelly, Robert G Alberstein, Emily Makowski,
 541 Karolis Martinkus, Daniel Berenberg, Jack Bevers III, Tyler Bryson, et al. Lab-in-the-loop
 542 therapeutic antibody design with deep learning. *bioRxiv*, pp. 2025–02, 2025.

543

544 Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery through
 545 multi-agent intelligent graph reasoning. *arXiv preprint arXiv:2409.05556*, 2024.

546 Thomas D. Goddard, Conrad C. Huang, Elaine C. Meng, Eric F. Pettersen, Gregory S. Couch, John H.
 547 Morris, and Thomas E. Ferrin. Ucsf chimeraX: Meeting modern challenges in visualization
 548 and analysis. *Protein Science*, 27(1):14–25, 2018. doi: <https://doi.org/10.1002/pro.3235>. URL
 549 <https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.3235>.

550

551 Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
 552 Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, Khaled Saab, Dan Popovici,
 553 Jacob Blum, Fan Zhang, Katherine Chou, Avinatan Hassidim, Burak Gokturk, Amin Vahdat,
 554 Pushmeet Kohli, Yossi Matias, Andrew Carroll, Kavita Kulkarni, Nenad Tomasev, Yuan Guan,
 555 Vikram Dhillon, Eeshit Dhaval Vaishnav, Byron Lee, Tiago R D Costa, José R Penadés, Gary
 556 Peltz, Yunhan Xu, Annalisa Pawlosky, Alan Karthikesalingam, and Vivek Natarajan. Towards an
 557 ai co-scientist, 2025. URL <https://arxiv.org/abs/2502.18864>.

558

559 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
 560 and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
 561 agents. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
<https://openreview.net/forum?id=kxnoqaisCT>.

562

563 Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,
 564 Youran Pan, Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A Merrill,
 565 Jeffrey Heer, and Tim Althoff. BLADE: Benchmarking language model agents for data-
 566 driven science. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.
 567 13936–13971, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 568 doi: 10.18653/v1/2024.findings-emnlp.815. URL <https://aclanthology.org/2024.findings-emnlp.815/>.

569

570 Ian Hacking. *Representing and intervening: Introductory topics in the philosophy of natural science*.
 571 Cambridge university press, 1983.

572

573 Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. *Neuron*, 99(6):
 1129–1143, 2018.

574

575 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
 576 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
 577 Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
 578 collaborative framework. In *The Twelfth International Conference on Learning Representations*,
 2024. URL <https://openreview.net/forum?id=VtmBAGCN7o>.

579

580 Siyuan Hu, Mingyu Ouyang, Difei Gao, and Mike Zheng Shou. The dawn of gui agent: A preliminary
 581 case study with claude 3.5 computer use. *arXiv preprint arXiv:2411.10323*, 2024.

582

583 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 584 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 585 arXiv:2410.21276*, 2024.

586

587 Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, and
 588 Zhiyong Wu. Agentstore: Scalable integration of heterogeneous agents as specialized generalist
 589 computer assistant. *arXiv preprint arXiv:2410.18603*, 2024a.

590

591 Chengyou Jia, Changliang Xia, Zhuohang Dang, Weijia Wu, Hangwei Qian, and Minnan Luo. Chat-
 592 gen: Automatic text-to-image generation from freestyle chatting. *arXiv preprint arXiv:2411.17176*,
 593 2024b.

594

595 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 596 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,

594 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 595 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 596 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
 597 Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 598 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
 599 *Nature*, 596(7873):583–589, Aug 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.
 600 URL <https://doi.org/10.1038/s41586-021-03819-2>.

601 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 602 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 603 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

604

605 Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiatiotis, and Georgios Paliouras. Bioasq-
 606 qa: A manually curated corpus for biomedical question answering. *Scientific Data*, 10(1):170,
 607 2023.

608 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 609 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 610 serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems
 611 Principles*, pp. 611–626, 2023.

612

613 Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem.
 614 CAMEL: Communicative agents for “mind” exploration of large language model society. In
 615 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=3IyL2XWDkG>.

616

617 Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong Feng, Lingpeng Kong, and Qi Liu. Mul-
 618 timodal ArXiv: A dataset for improving scientific comprehension of large vision-language
 619 models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
 620 Linguistics (Volume 1: Long Papers)*, pp. 14369–14387, Bangkok, Thailand, August 2024. As-
 621 sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.775. URL <https://aclanthology.org/2024.acl-long.775/>.

622

623 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
 624 Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhiwei
 625 Li, Bao-Long Bi, Ling-Rui Mei, Junfeng Fang, Zhijiang Guo, Le Song, and Cheng-Lin Liu.
 626 From system 1 to system 2: A survey of reasoning large language models, 2025. URL <https://arxiv.org/abs/2502.17419>.

627

628 Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
 629 Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
 630 agent, 2024. URL <https://arxiv.org/abs/2411.17465>.

631

632 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 633 Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
 634 Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
 635 Agentbench: Evaluating LLMs as agents. In *The Twelfth International Conference on Learning
 636 Representations*, 2024a. URL <https://openreview.net/forum?id=zAdUB0aCTQ>.

637

638 Zijun Liu, Kaiming Liu, Yiqi Zhu, Xuanyu Lei, Zonghan Yang, Zhenhe Zhang, Peng Li, and
 639 Yang Liu. Aigs: Generating science from ai-powered automated falsification, 2024b. URL
 640 <https://arxiv.org/abs/2411.11910>.

641

642 Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
 643 Towards fully automated open-ended scientific discovery. *arXiv preprint arXiv:2408.06292*, 2024a.

644

645 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Pe-
 646 ter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains
 647 for science question answering. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
 Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
https://openreview.net/forum?id=HjwK-Tc_Bc.

648 Xingyu Lu, He Cao, Zijing Liu, Shengyuan Bai, Leqing Chen, Yuan Yao, Hai-Tao Zheng,
 649 and Yu Li. MoleculeQA: A dataset to evaluate factual accuracy in molecular comprehen-
 650 sion. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 3769–
 651 3789, Miami, Florida, USA, November 2024b. Association for Computational Linguistics.
 652 doi: 10.18653/v1/2024.findings-emnlp.216. URL [https://aclanthology.org/2024.
 653 findings-emnlp.216/](https://aclanthology.org/2024.findings-emnlp.216/).

654 Ziming Luo, Zonglin Yang, Zexin Xu, Wei Yang, and Xinya Du. Llm4sr: A survey on large language
 655 models for scientific research, 2025. URL <https://arxiv.org/abs/2501.04306>.

656 Jakub Lála, Odhran O'Donoghue, Aleksandar Shtedritski, Sam Cox, Samuel G. Rodrigues, and
 657 Andrew D. White. Paperqa: Retrieval-augmented generative agent for scientific research. *arXiv
 658 preprint arXiv:2312.07559*, 2024. URL [https://doi.org/10.48550/arXiv.2312.
 659 07559](https://doi.org/10.48550/arXiv.2312.07559).

660 Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
 661 Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn LLM
 662 agents. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and
 663 Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=4S8agvKjle>.

664 Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
 665 jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
 666 Discoverybench: Towards data-driven discovery with large language models, 2024. URL
 667 <https://arxiv.org/abs/2407.01725>.

668 Elaine C. Meng, Thomas D. Goddard, Eric F. Pettersen, Greg S. Couch, Zach J. Pearson,
 669 John H. Morris, and Thomas E. Ferrin. Ucsf chimeraX: Tools for structure building and
 670 analysis. *Protein Science*, 32(11):e4792, 2023. doi: <https://doi.org/10.1002/pro.4792>. URL
 671 <https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4792>.

672 Microsoft. The impact of large language models on scientific discovery: a preliminary study using
 673 gpt-4. *arXiv preprint arXiv:2311.07361*, 2023.

674 Microsoft. Nature language model: Deciphering the language of nature for scientific discovery, 2025.
 675 URL <https://arxiv.org/abs/2502.07527>.

676 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
 677 *Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual
 678 Event, July 12–15, 2021, Proceedings*, pp. 625–635, Berlin, Heidelberg, 2021. Springer-Verlag.
 679 ISBN 978-3-030-79875-8. doi: 10.1007/978-3-030-79876-5_37. URL [https://doi.org/
 680 10.1007/978-3-030-79876-5_37](https://doi.org/10.1007/978-3-030-79876-5_37).

681 Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
 682 Qi Wang. Screenagent: a vision language model-driven computer control agent. In *Proceedings of
 683 the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI ’24*, 2024. URL
<https://doi.org/10.24963/ijcai.2024/711>.

684 Alexander Novikov, Ngan Vuu, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
 685 ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan
 686 Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Push-
 687 meet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and algorithmic
 688 discovery. [https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-
 690 for-designing-advanced-algorithms/](https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-

 689 for-designing-advanced-algorithms/), 2025.

691 OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
 692 world, 2025. URL <https://openai.com/index/computer-using-agent>.

693 Open AI. gpt-oss-120b & gpt-oss-20b model card. *gpt-oss model card*, 1:1, 2025.

694 OpenAI. Openai o3-mini system card, 2025.

695 Siru Ouyang, Zhuseng Zhang, Bing Yan, Xuan Liu, Yeqin Choi, Jiawei Han, and Lianhui Qin. Struc-
 696 tured chemistry reasoning with large language models. In *Proceedings of the 41st International
 697 Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

702 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 703 Li, Yunxin Li, Shijue Huang, et al. Uti-tars: Pioneering automated gui interaction with native
 704 agents. *arXiv preprint arXiv:2501.12326*, 2025.

705 Qwen Team. Qvq: To see the world with wisdom, December 2024. URL <https://qwenlm.github.io/blog/qvq-72b-preview/>.

708 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
 709 Fair, Alice Li, William E Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Kenji Toyama,
 710 Robert James Berry, Divya Tyamagundlu, Timothy P Lillicrap, and Oriana Riva. Androidworld:
 711 A dynamic benchmarking environment for autonomous agents. In *The Thirteenth International
 712 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=il5yUQsrjC>.

714 Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 715 Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants, 2025.
 716 URL <https://arxiv.org/abs/2501.04227>.

718 Changlei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
 719 large-scale human study with 100+ nlp researchers. *arXiv preprint arXiv:2409.04109*, 2024.

720 Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots for
 721 theorem proving in lean. *arXiv preprint arXiv:2404.12534*, 2025.

723 Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
 724 for language agents. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 725 <https://openreview.net/forum?id=li6ZCvflQJ>. Survey Certification.

726 Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
 727 Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
 728 advances and beyond. *arXiv preprint arXiv:2403.14734*, 2024a.

729 Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
 730 Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
 731 construction via reverse task synthesis. *arXiv preprint arXiv:2412.19723*, 2024b.

733 Qiushi Sun, Zhangyue Yin, Xiang Li, Zhiyong Wu, Xipeng Qiu, and Lingpeng Kong. Corex: Pushing
 734 the boundaries of complex reasoning through multi-model collaboration. In *First Conference on
 735 Language Modeling*, 2024c. URL <https://openreview.net/forum?id=7BCmIWVT0V>.

736 Mario Sänger, Ninon DeMecquenem, Katarzyna Ewa Lewińska, Vasilis Bountris, Fabian Lehmann,
 737 Ulf Leser, and Thomas Kosch. A qualitative assessment of using chatgpt as large language model
 738 for scientific workflow development. *GigaScience*, 13, 2024. ISSN 2047-217X. doi: 10.1093/
 739 gigascience/giae030. URL <http://dx.doi.org/10.1093/gigascience/giae030>.

741 Xiangru Tang, Tianyu Hu, Muyang Ye, Yanjun Shao, Xunjian Yin, Siru Ouyang, Wangchunshu
 742 Zhou, Pan Lu, Zhuosheng Zhang, Yilun Zhao, Arman Cohan, and Mark Gerstein. Chemagent:
 743 Self-updating memories in large language models improves chemical reasoning. In *The Thirteenth
 744 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=kuhIqeVg0e>.

746 Gemini Team. Introducing gemini 2.0: our new ai model for the agentic era, 2024.

748 The MathWorks Inc. Statistics and machine learning toolbox documentation, 2022. URL <https://www.mathworks.com/help/stats/index.html>.

750 Minyang Tian, Luyu Gao, Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
 751 Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, HAO TONG, Kha Trinh,
 752 Chenyu Tian, Zihan Wang, Bohao Wu, Shengzhu Yin, Minhui Zhu, Kilian Lieret, Yanxin Lu,
 753 Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu A Huerta, and Hao Peng.
 754 Scicode: A research coding benchmark curated by scientists. In *The Thirty-eight Conference on
 755 Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=ADLaALtdoG>.

756 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Ma-
757 chine Learning Research*, 9(86):2579–2605, 2008. URL <http://jmlr.org/papers/v9/vandermaaten08a.html>.
758

760 Hanchen Wang, Yichun He, Paula P Coelho, Matthew Bucci, Abbas Nazir, Bob Chen, Linh Trinh,
761 Serena Zhang, Kexin Huang, Vineethkrishna Chandrasekar, et al. Spatialagent: An autonomous ai
762 agent for spatial biology. *bioRxiv*, pp. 2025–04, 2025.

763 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
764 Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. SciBench: Evaluating college-level
765 scientific problem-solving abilities of large language models. In Ruslan Salakhutdinov, Zico
766 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
767 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
768 *Proceedings of Machine Learning Research*, pp. 50622–50649. PMLR, 21–27 Jul 2024a. URL
769 <https://proceedings.mlr.press/v235/wang24z.html>.
770

771 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
772 Executable code actions elicit better llm agents. In *Proceedings of the 41st International Conference
773 on Machine Learning*, ICML’24. JMLR.org, 2024b.

774 Yidong Wang, Qi Guo, Wenjin Yao, Hongbo Zhang, Xin Zhang, Zhen Wu, Meishan Zhang,
775 Xinyu Dai, Min Zhang, Qingsong Wen, Wei Ye, Shikun Zhang, and Yue Zhang. Autosur-
776vey: Large language models can automatically write surveys. In A. Globerson, L. Mackey,
777 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural
778 Information Processing Systems*, volume 37, pp. 115119–115145. Curran Associates, Inc.,
779 2024c. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/d07a9fc7da2e2ec0574c38d5f504d105-Paper-Conference.pdf.
780

781 Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried, and Graham Neubig. What are tools anyway?
782 a survey from the language model perspective. In *First Conference on Language Modeling*, 2024d.
783 URL <https://openreview.net/forum?id=Xh1B90iBSR>.
784

785 Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
786 Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
787 agents. *arXiv preprint arXiv:2506.03143*, 2025a.

788 Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
789 Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement,
790 2024. URL <https://arxiv.org/abs/2402.07456>.
791

792 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
793 Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: Foundation action model for
794 generalist GUI agents. In *The Thirteenth International Conference on Learning Representations*,
795 2025b. URL <https://openreview.net/forum?id=n9PDAFNi8t>.
796

797 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
798 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
799 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
800 agents for open-ended tasks in real computer environments. In *The Thirty-eighth Conference on
801 Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=tN61DTr4Ed>.
802

803 Yiheng Xu, Hongjin SU, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
804 Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming Xiong,
805 and Tao Yu. Lemur: Harmonizing natural language and code for language agents. In *The Twelfth
806 International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=hNhwSmtXRh>.
807

808 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
809 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2024b.

810 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
 811 prompting unleashes extraordinary visual grounding in gpt-4v. *arXiv preprint arXiv:2310.11441*,
 812 2023.

813
 814 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 815 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International*
 816 *Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=WE_vluYUL-X.

817
 818 Jianxiang Yu, Zichen Ding, Jiaqi Tan, Kangyang Luo, Zhenmin Weng, Chenghua Gong, Long
 819 Zeng, RenJing Cui, Chengcheng Han, Qiushi Sun, et al. Automated peer reviewing in paper
 820 sea: Standardization, evaluation, and analysis. In *Findings of the Association for Computational*
 821 *Linguistics: EMNLP 2024*, pp. 10164–10184, 2024.

822
 823 Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
 824 Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo: A ui-focused agent for windows os
 825 interaction, 2024.

826
 827 Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents. In
 828 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 3132–3149, Bangkok,
 829 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 830 findings-acl.186. URL <https://aclanthology.org/2024.findings-acl.186/>.

831
 832 Haiteng Zhao, Chang Ma, Fangzhi Xu, Lingpeng Kong, and Zhi-Hong Deng. Biomaze: Bench-
 833 marking and enhancing large language models for biological pathway reasoning. *arXiv preprint*
arXiv:2502.16660, 2025.

834
 835 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
 836 agent, if grounded. In *Forty-first International Conference on Machine Learning*, 2024. URL
<https://openreview.net/forum?id=piEcKJ2D1B>.

837
 838 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 839 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web
 840 environment for building autonomous agents. In *The Twelfth International Conference on Learning*
841 Representations, 2024. URL <https://openreview.net/forum?id=oKn9c6ytLx>.

843 LARGE LANGUAGE MODEL USAGE

844
 845 In this submission, we employed LLMs to aid and polish writing, including grammar and typo
 846 checking, as well as for identifying related works.

847 LIMITATIONS AND BROADER IMPACTS

848
 849 As a pioneering effort marking the early stages of integrating computer-using agents into scientific
 850 workflows, it is important to acknowledge certain limitations. While our current evaluation, based on
 851 both VM states and key I/O correctness, provides robust validation, its reliance on a binary success
 852 flag may not fully capture process correctness or partial task completion (e.g., an agent succeeding
 853 in most steps but failing at a final one). Introducing a “partial credit” could offer more granular
 854 evaluation, but accurately defining and implementing such a system for open-ended, OS-level tasks
 855 within diverse scientific software presents significant challenges due to vast state / action spaces. One
 856 potential direction for improvement is to introduce VLMs to serve as judges capable of assigning
 857 partial credit and providing richer feedback. We leave this as future work.

859 A DISCUSSION AND FUTURE DIRECTIONS

860
 861 SCIENCEBOARD represents a significant advance in using autonomous agents for scientific workflows.
 862 Our findings suggest several key directions for future research:

864 **Harmonized Domain Knowledge and Agentic Capability.** Our evaluations suggest that one
 865 contributing factor to current agents’ limitations in scientific exploration is their insufficient domain
 866 knowledge. For instance, the GUI action models we evaluated, while effective at automation, lack
 867 the specialized understanding required for complex scientific tasks. Therefore, future advancements
 868 may focus on enhancing domain-specific abilities, such as enhancing scientific comprehension (Li
 869 et al., 2024), learning from highly relevant resources such as manuals and tutorials, and enabling
 870 on-demand knowledge retrieval (Lála et al., 2024). A key challenge will be to effectively harmonize
 871 this specialized knowledge with general agentic capabilities (Xu et al., 2024a).

872 **Collaborative and Specialized Agents as a Solution.** Analysis in Table 4 indicates that even a
 873 basic modular approach of separating planning and action to different agents can yield significant
 874 performance improvements in complex scientific software workflows. This points toward developing
 875 sophisticated multi-agent systems composed of specialized, heterogeneous agents (Jia et al., 2024a;
 876 Ghafarollahi & Buehler, 2024; Agashe et al., 2025). For example, responsibilities could be disentangled
 877 by assigning planning to agents capable of deep reasoning (Li et al., 2025), action execution to
 878 specialized GUI action models (Wu et al., 2025b; Xu et al., 2024b), and domain-specific capability
 879 to models in particular disciplines (Microsoft, 2023; 2025). These agents could be plug-and-play,
 880 allowing flexible application across broader aspects of the scientific lifecycle, such as data analysis
 881 (Chen et al., 2025), scientific plotting (Jia et al., 2024b), and paper revision (Yu et al., 2024).
 882 While promising, it also demands more sophisticated multi-agent designs to manage and coordinate
 883 the intricate and multifaceted nature of scientific tasks.

884 **Extending Digital Agents to Physical Laboratory.** Current AI-assisted scientific workflows are
 885 primarily at the digital level, focusing on tasks such as data analysis, simulation, and software control.
 886 A natural and impactful next step is to extend the capabilities of such autonomous agents, as fostered
 887 and benchmarked in SCIENCEBOARD, into physical laboratory environments. This transition involves
 888 interfacing agents with robotic systems (Burger et al., 2020; Angelopoulos et al., 2024), applying
 889 principles of embodied AI to perceive and interact with the physical world. Agents would manipulate
 890 laboratory instruments and samples, carry out experimental protocols, and monitor physical processes
 891 in real time, thereby fostering a “lab-in-the-loop” (Frey et al., 2025) future where experimentation
 892 and AI-driven methods are mutually reinforcing.

893 B DETAILS OF SCIENCEBOARD ENVIRONMENT

894 B.1 ENVIRONMENT SETUP

895 Virtual machines can operate their own kernel and system, enabling compatibility with a wide variety
 896 of operating systems. For experiments covered in this paper, we utilize a Linux environment (Ubuntu
 897 22.04.1 LTS with kernel 6.8.0-57-generic) running on x64 personal computers.

901 B.2 EVALUATION CRITERIA

902 As stated in Section 3.2, we employ a fine-grained evaluation methodology based on:

- 903 • The final state of the VM (Determinant)
- 904 • I/O states and intermediate steps (Non-Determinant)

905 While the final state of the VM often provides a determinant measure of overall task completion,
 906 the diverse nature of I/O and intermediate steps necessitates a varied set of criteria. The following
 907 outlines the primary principles applied for I/O correctness:

911 • Exact Match:

- 912 – Strict equality: The output or relevant state must be exactly identical to the gold standard (e.g.,
 913 for specific textual outputs or numerical values).
- 914 – Set equality of lines: For multi-line textual outputs, the content of all lines must match the gold
 915 standard, but their order may not be strictly enforced.
- 916 – Question-answering: The agent’s provided answer to a question is compared against a correct
 917 answer or set of acceptable answers.

918 • **Predicate Satisfaction:** Verifying if specific information and generated outputs satisfy predefined
 919 logical conditions or predicates. This includes:
 920

- Value Existence: A required value, file, or UI element is present as expected.
- Value Non-Existence: A specified value, file, or UI element is correctly absent.
- Range Check: A numerical output or parameter falls within a predefined acceptable range (often with a specified tolerance).

925 • **Correct Task Failure (FAIL):** The agent correctly identifies a task as infeasible or terminates
 926 appropriately when unable to complete the objective, outputting a designated FAIL signal.

927 • **Domain-Specific Success Markers:** For certain domains, unique success criteria are employed:
 928

- Lean Tasks: Successful compilation of the generated Lean proof code is considered a primary
 929 indicator.

931 **B.3 SELECTION AND MODIFICATION OF SCIENTIFIC SOFTWARE**
 932

933 To ensure both technical feasibility and representative task diversity, we selected software tools based
 934 on the following criteria:

935

1. **Accessibility.** The software must be open-source or freely available, allowing transparent integration
 936 and reproducibility of experiments.
2. **GUI Compatibility.** The software must expose a usable accessibility tree (a11y tree) to support
 937 fine-grained GUI grounding and interaction.
3. **Domain Representativeness.** The software should be representative of key scientific and technical
 938 domains, enabling meaningful assessment of multimodal agent capabilities across different types
 939 of tasks.

943 Based on these principles, we selected the following software for each target domain:
 944

945

- **Lean.** A functional programming language and interactive theorem prover grounded in dependent
 946 type theory (specifically Martin-Löf Type Theory). Lean enables formal verification of mathematical
 947 theorems and software correctness through rigorous type checking and logical inference,
 948 supporting robust development of maintainable and accurate code.
- **ChimeraX.** A next-generation molecular visualization software developed by UCSF, designed for
 949 detailed interactive exploration, visualization, and analysis of protein and biomolecular structures.
 950 ChimeraX enhances performance and user experience compared to its predecessor, UCSF Chimera,
 951 offering improved graphics rendering, extensibility via plugins, and streamlined workflows for
 952 structural biology research.
- **KAlgebra.** An educational calculator and graphical plotting application within the KDE Education
 953 Project. It supports a wide range of numerical, logical, symbolic, and analytical computations,
 954 enabling users to visualize mathematical functions interactively in both two-dimensional (2D) and
 955 three-dimensional (3D) environments, thus effectively bridging computational mathematics and
 956 educational usability.
- **Celestia.** A cross-platform, interactive real-time 3D astronomical simulation software that allows
 957 users to explore the universe through detailed, dynamic visualizations. Celestia is highly extensible
 958 via scripting, empowering educational and professional users to model and visualize celestial
 959 phenomena and space missions with precision and customization.
- **GrassGIS.** An advanced Geographic Information System (GIS) supporting both raster and vector
 960 geospatial data, along with powerful analytical capabilities for spatial modeling, hydrological
 961 analysis, and environmental simulations. GrassGIS includes a comprehensive Python API for
 962 automation and custom analysis, enabling complex geospatial and temporal analyses tailored to
 963 diverse research and application scenarios.
- **TeXstudio.** An integrated L^AT_EX editor that provides a writing environment tailored specifically
 964 for creating and managing complex technical and scientific documents. TeXstudio enhances
 965 productivity through features such as syntax highlighting, real-time document preview, automatic
 966 reference checking, and intuitive assistance tools, greatly simplifying the process of technical
 967 writing and document preparation.

972 B.4 DETAILS OF ACTION SPACE
973

974 The action space employed in SCIENCEBOARD is shown in Table 5. We combine standard interaction
975 primitives (such as GUI operations) with the flexibility of system-level and application-specific
976 Command-Line Interfaces (CLIs), and has been further expanded with several augmented actions
977 tailored for scientific workflows.

978
979 Table 5: Action space of SCIENCEBOARD environment.
980

Action	Description
moveTo(x, y)	Moves the mouse to the target coordinate.
moveRel(x, y)	Moves the mouse by an offset from current position.
dragTo(x, y)	Drags the mouse to the target coordinate.
dragRel(x, y)	Drags the mouse by an offset from current position.
click(x, y)	Clicks at the target coordinate.
rightClick(x, y)	Performs a right click at the target coordinate.
middleClick(x, y)	Performs a middle click at the target coordinate.
doubleClick(x, y)	Performs double clicks at the target coordinate.
tripleClick(x, y)	Performs triple clicks at the target coordinate.
mouseDown(x, y, button)	Presses a mouse button down.
mouseUp(x, y, button)	Releases a mouse button up.
DONE	Agent decides the task is finished.
FAIL	Agent decides the task is infeasible.
WAIT [n]	Agent decides it should wait, 'n' defaults to 5(s).
ANS [s]	Agent decides it should submit an answer, 's' denotes the answer.
API [name, args]	Invokes a registered API call with name and arguments.
CODE	Run a generated code script (for in-app / system-level tasks, or custom functions).

996
997 B.5 DETAILS OF OBSERVATION SPACE
998

1000 We primarily adhere to well-established settings (Xie et al., 2024; Zhou et al., 2024) for observation
1001 space, encompassing: (1) Screenshots, which consist of a full desktop screenshot as observed by
1002 human users; (2) `allytree`, a structured text-only representation without visual information,
1003 applicable for agents that take pure text input; (3) Screenshots + `allytree`, a hybrid approach
1004 that combines and complements both textual and visual modalities; and (4) Set-of-Marks (Yang
1005 et al., 2023), a visual prompting method aimed at enhancing the visual grounding capabilities by
1006 partitioning an image into marked regions. Details are as follows:

1007 **Screenshot.** We capture a screenshot of the entire computer screen. For screen resolution, we
1008 set a default value of 1920×1080, and it also offers a 16:9 aspect ratio. Following OSWorld (Xie
1009 et al., 2024), our environment also supports modifying the resolution of virtual machines to avoid
1010 potential memorization of absolute pixel values and to assist studies on topics like generalization
1011 across different resolutions.

1012 **A11ytree.** An `allytree` refers to an intricate structure generated by the browser or OS accessibility
1013 APIs that renders a representative model of the content, providing a means of interaction for
1014 assistive technologies. Each node within the accessibility tree hosts important information about a UI
1015 element. In SCIENCEBOARD, which utilizes an Ubuntu-based GNOME desktop environment, we
1016 employ the Assistive Technology Service Provider Interface ². Specifically, we adopt `pyatspi` to
1017 programmatically retrieve the accessibility tree on Ubuntu.

1018 To make complex `allytree` tractable, and critically, to ensure they fit within the context length
1019 of open-source models, we filter out non-essential elements. This filtering is performed based on
1020 element attributes such as their tag, visibility, and availability. For the elements that remain after
1021 filtering, only key information—specifically their tag, name, text, position, and size—is retained and
1022 subsequently concatenated to form the input representation for the agent.

1023
1024
1025 ²<https://docs.gtk.org/atspi2/>

1026
 1027 **Screenshot + a11ytree.** To further enhance the action execution capabilities of computer-using
 1028 agents, especially for models with weaker grounding abilities, we utilize a combined input of
 1029 screenshots and a11ytree.

1030 **Set-of-Mark.** We follow the official implementation of Set-of-Mark (Yang et al., 2023). We
 1031 leverage the information from the filtered a11ytree and mark the elements on the screenshot with
 1032 a numbered bounding box. Following VisualWebArena (Koh et al., 2024) and UFO (Zhang et al.,
 1033 2024), we further combine the annotated screenshot with the text metadata from a11ytree.

1034

1035 C ACCESSING SCIENCEBOARD ENVIRONMENT

1036
 1037 To facilitate broader adoption and reproducibility, we provide several methods for accessing SCI-
 1038 ENCEBOARD environment. Researchers can choose the most suitable option based on their technical
 1039 requirements and resources:

1040
 1041 **Direct Deployment.** The entire framework, including all scientific software and evaluation scripts,
 1042 is available for direct deployment on a native Ubuntu system. Full setup instructions and dependency
 1043 lists are provided in our repository.

1044

1045 **Docker Container.** We also provide a Docker image that encapsulates the environment, making it
 1046 easy to run SCIENCEBOARD across different machines and operating systems, which is available at
 1047 <https://anonymous.4open.science/r/ScienceBoard/>.

1048

1049 **Cloud Platforms.** For scalability and powerful computational resources, SCIENCEBOARD can be
 1050 deployed on cloud platforms like Amazon Web Services (AWS). We will provide guidelines upon
 1051 acceptance.

1052

1053 D DETAILS OF SCIENCEBOARD BENCHMARK

1054 D.1 TASK ANNOTATION

1055 During the task annotation process, we primarily utilize the tutorials and handbooks listed in Table 6
 1056 to guide annotators in exploring the relevant domain and corresponding software and tools. All app
 1057 data collection and task creation are completed by the authors.

1058

1059 D.2 TASK DIVERSITY

1060 To explore the diversity of tasks in SCIENCEBOARD, we perform a t-SNE (van der Maaten & Hinton,
 1061 2008) visualization, as shown in Figure 6. We obtain embeddings for all task instructions using
 1062 text-embedding-3-small and then apply t-SNE to reduce their dimensionality to two for
 1063 visualization. The semantic distribution of instructions clearly distinguishes tasks across different
 1064 domains, while also revealing considerable diversity within each individual domain. Furthermore,
 1065 we can observe some intersections between Scientific Documentation tasks and tasks from other
 1066 domains, which reflects the presence of cross-application workflows in our benchmark.

1067

1068 D.3 COMPARISON WITH EXISTING BENCHMARKS

1069 We compare SCIENCEBOARD with existing well-established benchmarks for scientific tasks, as
 1070 shown in Table 7.

1071 SCIENCEBOARD is the first to offer a realistic environment for evaluating scientific tasks. In terms of
 1072 I/O, it incorporates structured code input and visual information, which are critical for simulating
 1073 scientific experiment workflows. It also supports GUI automation, making it well-suited for visual
 1074 agents to fulfill tasks like humans do. Additionally, SCIENCEBOARD covers a broader range of task
 1075 types compared to existing works, including but not limited to question-answering and scientific
 1076 computing. These unique features make SCIENCEBOARD both a versatile playground and an
 1077 expandable framework for evaluating agents' scientific capabilities.

Table 6: Sources of the tutorials and handbooks employed in the task annotation process.

Software	Tutorial & Handbook Sources
Kalgebra	https://docs.kde.org/stable5/en/kalgebra/kalgebra/index.html
ChimeraX	https://www.cgl.ucsf.edu/chimerax/tutorials.html https://kpwulab.com/wp-content/uploads/2022/04/chimerax-tutorial-kpwulab-2022-0429.pdf
Lean 4	https://lean-lang.org/theorem_proving_in_lean4/ https://leanprover-community.github.io/mathematics_in_lean/index.html https://lean-lang.org/doc/reference/latest/
Grass GIS	https://grass.osgeo.org/grass84/manuals/index.html https://neteler.gitlab.io/grass-gis-analysis/
Celestia	https://celestiaproject.space/guides.html https://en.wikibooks.org/wiki/Celestia https://celestiaproject.space/docs/CELScriptingGuide/Cel_Script_Guide_v1_0g.htm
TeXStudio	https://texstudio-org.github.io/getting_started.html https://latex-tutorial.com/tutorials/

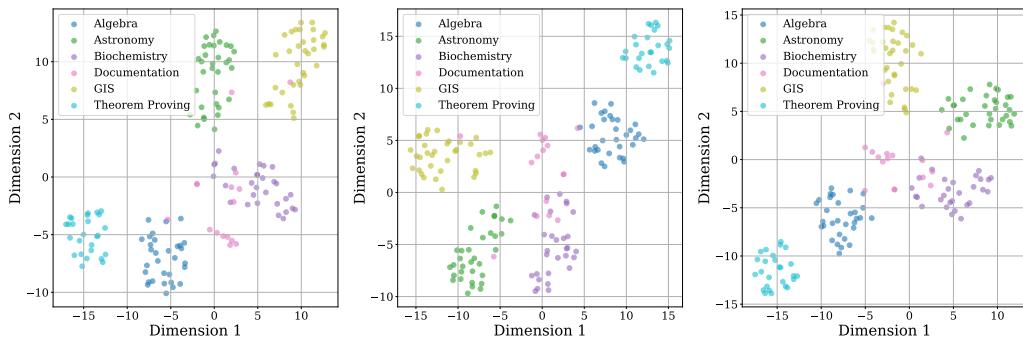


Figure 6: t-SNE visualization of task instructions distribution. The seeds of t-SNE are randomly sampled for each plot.

1134	Feature	SCIENCEBOARD (our work)	ScienceQA (Lu et al., 2022)	SciCode (Tian et al., 2024)	ScienceAgentBench (Chen et al., 2025)
1135	<i>I/O Formats</i>				
1136	Code / Structured Input	✓	✗	✓	✓
1137	Visual Information	✓	✓	✗	✗
1138	<i>Task Type</i>				
1139	Question-Answering	✓	✓	✗	✗
1140	Scientific Computing	✓	✗	✓	✓
1141	GUI Automation	✓	✗	✗	✗

Table 7: A comparison of SCIENCEBOARD to notable and recent AI4Science benchmarks.

D.4 MORE EVALUATION SCRIPT EXAMPLES

Beyond the evaluation cases listed in Section 3.2, Table 8 showcases a broader variety of evaluation pipelines created using our templates.

Table 8: More evaluation cases of SCIENCEBOARD include exact matching, range-based assessment, and numerical tasks with tolerance.

1152	Initial State	Instruction	Evaluation Script (Simplified)
1153		Select all ligand(s) and color them into magenta in ChimeraX.	{ "type": "info", "key": "sel", "value": ["atom id /A:9@N1 idatm_type N3+", ...], "cmd": "v.set_color /A", "key": "sel", "value": ["#1/A:1 color #d2b48c", ...] }
1154			
1155			
1156			
1157			
1158			
1159			
1160			
1161		There is a point located in the Mediterranean Sea. Please find and delete it.	{ "cmd": "v.to.db", "key": "sel", "value": ["point"], "pred": "lambda key, value: key == value" } { "cmd": "db", "key": "sel", "value": ["point"], "pred": "lambda key, value: key == value" }
1162			
1163			
1164			
1165			
1166			
1167			
1168			
1169			
1170		Approach to the Earth and display a solar eclipse in Celestia.	{ "cmd": "v.set_color /A", "key": "sel", "value": "#d2b48c", "pred": "lambda key, value: key == value" } { "cmd": "db", "key": "sel", "value": ["point"], "pred": "lambda key, value: key == value" }
1171			
1172			
1173			
1174			
1175			
1176			
1177			
1178			
1179			
1180			
1181	 theorem TP_3 [TopologicalSpace X] [TopologicalSpace Y] (f : X → Y) (Z : Set X) (h ₁ : Continuous f) (h ₂ : IsConnected Z) : IsConnected {y : Y $\exists z \in Z, f z = y$ } := by sorry		{ "cmd": "info", "key": "sel", "value": ["atom id /A:9@N1 idatm_type N3+", ...], "cmd": "v.set_color /A", "key": "sel", "value": ["#1/A:1 color #d2b48c", ...] }
1182			
1183			
1184			
1185			
1186			
1187			

1188
1189

D.5 HUMAN PERFORMANCE

1190
1191
1192
1193
1194
1195

In our main experiments, as reflected in Table 3, we recruit college-level students to establish normal human performance on SCIENCEBOARD benchmark. Before attempting the tasks, participants are required to familiarize themselves with foundational knowledge of the relevant scientific disciplines and study the provided operational manuals. They were then given instructions, as shown in Instruction 1, to complete the assigned tasks. Participants were compensated at a rate of \$10 per hour for their involvement.

1196
1197
1198

The SCIENCEBOARD environment and scientific software used do not record any personal information, and all participants provide informed consent. The experiment does not involve surveys, interviews, or any behavioral tracking.

1199

D.6 STABILITY ANALYSIS

1200
1201
1202
1203
1204

Considering that dynamic environments could potentially lead to experimental instability, we conduct an additional set of experiments focusing on consistency. For these, we utilize GPT-4o under the allytree + screenshot setting, with results and error bars reported in Figure 7.

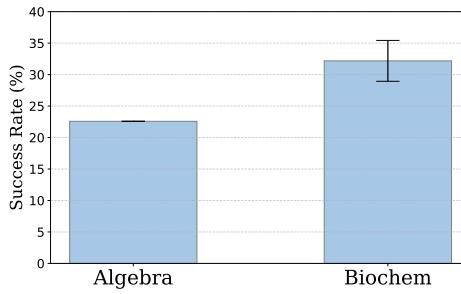

1205
1206
1207
1208
1209
1210
1211
1212
1213
12141215
1216

Figure 7: Stability analysis.

1217
1218
1219
1220

Across three independent runs, performance on Algebra tasks remains stable. However, Biochemistry tasks exhibited minor fluctuations in success rates. Upon closer inspection of individual cases, we hypothesize that these variations likely stem from network connectivity issues or transient system lag encountered during task execution.

1221

D.7 EVALUATION COST

1222
1223
1224
1225
1226

We use API keys to access proprietary models. On average, a single run on all SCIENCEBOARD tasks costs \$64 using GPT-4o, \$86 using Claude-3.7-Sonnet, and \$45 using Gemini-2.0-Flash.

1227

E DETAILS OF EXPERIMENTS

1228
1229

E.1 BACKBONE MODELS

1230
1231
1232

We briefly discuss the backbones we used to build our computer-using agents.

1233
1234
1235
1236
1237

Proprietary Models. Proprietary models now demonstrate striking capabilities in complex reasoning and are increasingly exhibiting agentic potential for dynamic real-world interaction, prompting a closer look at their diverse forms. In the experimental section, we accessed the following proprietary models via API keys:

1238
1239
1240
1241

- GPT-4o (Hurst et al., 2024).
- Claude-3.7-Sonnet (Anthropic AI, 2024).
- Gemini-2.0-Flash (Team, 2024).
- o3-mini (OpenAI, 2025).

1242 **Open-source Models.** Open-source models are demonstrating remarkable advancements, steadily
 1243 narrowing the performance gap with proprietary models. Crucially, the open-source community
 1244 recognized the significance of agentic capabilities early on, fostering development in this direction.
 1245 This foresight has translated into exceptional performance, particularly within GUI scenarios where
 1246 these models now excel on various challenging benchmarks. Our evaluation is based on the following
 1247 open-source models, which are characterized by their advanced grounding capabilities:

- 1248 • Qwen2.5-VL-72B-Instruct (Bai et al., 2025): The latest evolution in the Qwen vision-language
 1249 model family, primarily distinguished by its robust agentic capabilities. It operates directly as a
 1250 visual agent, proficient in reasoning, dynamically utilizing tools, and executing tasks for computer
 1251 and phone operation. Complementing its agentic prowess, Qwen2.5-VL-72B-Instruct demonstrates
 1252 advanced proficiency in detailed visual analysis (including texts, charts, icons, and layouts within
 1253 images), comprehension of videos exceeding one hour with event pinpointing, precise object
 1254 localization with structured coordinate output, and the generation of structured data from documents
 1255 such as invoices and forms. In our experiments, this model is deployed using interconnected clusters
 1256 of $8 \times$ A100 80GB GPUs with vLLM (Kwon et al., 2023).
- 1257 • InternVL3-78B (Chen et al., 2024): An advanced MLLM recognized for its superior overall perfor-
 1258 mance and significantly enhanced multimodal perception and reasoning. A key advancement is its
 1259 robust agentic functionality, demonstrated through proficient tool usage and GUI agent operations,
 1260 alongside extended capabilities in areas like industrial image analysis and 3D vision perception.
 1261 These comprehensive abilities are underpinned by innovations such as a native multimodal pre-
 1262 training approach, supervised fine-tuning with diverse, high-quality data tailored to these advanced
 1263 tasks, and mixed preference optimization for refined reasoning. In our experiments, this model is
 1264 deployed using interconnected clusters of $8 \times$ A100 80GB GPUs with vLLM.
- 1265 • QvQ-72B-Preview (Qwen Team, 2024): An experimental research model focused on advancing
 1266 visual reasoning capabilities. It has achieved compelling performance in complex multidisciplinary
 1267 understanding and problem-solving, highlighting its specialized strength in sophisticated visual
 1268 cognitive tasks. However, it exhibits some limitations in instruction following, appearing less adept
 1269 in agent scenarios that require precise action outputs. In our experiments, this model is deployed
 1270 using interconnected clusters of $8 \times$ A100 80GB GPUs with vLLM.

1271 **GUI Action Models.** While foundational models provide impressive general-purpose intelligence,
 1272 their intrinsic agentic capabilities for nuanced GUI manipulation are still under active exploration,
 1273 often requiring further specialization. Consequently, a prominent line of research involves adapting
 1274 open-source VLMs by fine-tuning them on extensive, GUI-specific datasets. This targeted training
 1275 methodology yields dedicated action models equipped with significantly enhanced proficiencies
 1276 for understanding and interacting with GUIs. The GUI action models adopted in this paper are as
 1277 follows:

- 1278 • OS-Atlas-Pro-7B (Wu et al., 2025b): A foundational GUI action model that significantly advances
 1279 open-source VLMs for agentic tasks, excelling in GUI grounding and out-of-distribution scenarios
 1280 through innovations in modeling and the creation of the largest open-source, cross-platform GUI
 1281 grounding corpus with over 13 million elements. It demonstrates state-of-the-art performance
 1282 across six diverse benchmarks (mobile, desktop, web) and verifies the existence of model scaling
 1283 laws in GUI scenarios. In our experiments, this model is deployed using a single A100 80GB GPU
 1284 with vLLM (Kwon et al., 2023).
- 1285 • UGround-V1-7B (Gou et al., 2025): A universal visual grounding model that identifies GUI action
 1286 elements by pixel coordinates. It powers the SeeAct-V framework (Zheng et al., 2024), which
 1287 enables purely visual GUI perception and pixel-level operations. Agents using SeeAct-V with
 1288 UGround have achieved SOTA results across five distinct benchmarks spanning web, mobile, and
 1289 desktop evaluations. In our experiments, this model is deployed on a single A100 80GB GPU with
 1290 vLLM.
- 1291 • UI-TARS-72B-DPO (Qin et al., 2025): An end-to-end native GUI agent that uniquely perceives
 1292 screenshots as its sole input to perform human-like keyboard and mouse interactions, outperforming
 1293 prevailing agent frameworks that depend on heavily wrapped commercial models with expert-
 1294 crafted prompts. It has established state-of-the-art performance across more than ten GUI agent
 1295 benchmarks. This advanced capability stems from key innovations including enhanced perception,
 1296 unified action modeling, System-2 reasoning, iterative training with reflective online traces, and

1296 a final Direct Preference Optimization (DPO) phase, which refines its ability to make precise,
 1297 context-aware decisions. In our experiments, UI-TARS-72B-DPO utilizes vLLM for inference and
 1298 is deployed on interconnected clusters of $8 \times$ A100 80GB GPUs.

1299 • GUI-Actor-7B (Wu et al., 2025a): A recently proposed GUI grounding model that introduces a
 1300 novel coordinate-free visual grounding approach. It utilizes an action head to direct the special
 1301 token <ACTOR> to the target screenshot patches for localization. It claims to surpass the text-based
 1302 coordinate prediction baseline and demonstrates better generalization in out-of-distribution (OOD)
 1303 scenarios. In our experiments, we used the 7B version of GUI-Actor based on the Qwen2.5-VL
 1304 backbone.

1305 **E.2 EVALUATION SETTINGS - MAIN EXPERIMENTS**

1306 We adhered to common prompt engineering strategies from previous works (Sun et al., 2024b; Zhou
 1307 et al., 2024; Zhang & Zhang, 2024) for the agents under evaluation. For each domain, the agent
 1308 interacts with the environment under the guidance of a meta-prompt, which includes information
 1309 about the software being operated, executable special actions, and related details. When taking
 1310 actions, the agent generates outputs in the ReAct style (Yao et al., 2023), with its step-by-step
 1311 thoughts recorded in the interaction history.

1312 Throughout the evaluation, we set the `temperature` parameter to 0.5, `top_p` to 0.9, and
 1313 `max_tokens` to 1500. We list some prompt examples in Prompt 14, Prompt 15, Prompt 16 and
 1314 Prompt 17.

1315 **E.3 EVALUATION SETTINGS - ANALYSIS**

1316 In experiments with interleaved planning and action, we first address inconsistencies in coordinate
 1317 outputs from different GUI action models. While InternVL3-78B (Chen et al., 2024) outputs
 1318 coordinates on a $[0, 1]$ scale, models such as OS-Atlas, UI-TARS, and UGround use a $[0, 1000]$ scale.
 1319 To ensure uniformity, we normalized all coordinate outputs to a $[0, 1]$ scale prior
 1320 to execution.

1321 This part of the experiments employs a two-stage process: First, the planner model receives the
 1322 current observation (`obs`) and task instruction to generate a high-level plan or a specific action. If the
 1323 planner outputted a directly executable primitive action (e.g., a non-GUI system-level command or a
 1324 special control token like `DONE`), that action will be performed immediately, and the action model
 1325 was not invoked for that step. Otherwise, the grounding model received the current observation and
 1326 the plan (or sub-task) from the planner. Its role was to output low-level executable instructions. If
 1327 the grounding model generate `pyautogui` actions directly, these commands were executed. For
 1328 models outputting in their specific native formats, we implement custom parsers to translate these
 1329 into `pyautogui` actions: for UGround and UI-TARS, all coordinate-based outputs were interpreted
 1330 as `click`, whereas for OS-Atlas, its outputs were parsed to differentiate between `click`, `type`,
 1331 and `scroll` based on its defined schema.

1332 We list some prompt examples in Prompt 18, Prompt 19, Prompt 20 and Prompt 21.

1333 **F EXTENDED ANALYSIS**

1334 **F.1 INTERFACES**

1335 In Section 6, we analyze the performance difference between Vision-Only and Hybrid Interface
 1336 settings under the `allytree + screenshot`. Here, we present empirical results under the other three
 1337 observation settings.

1338 As shown in Figure 8, the hybrid GUI + CLI setting consistently achieves performance that is
 1339 comparable to or better than the GUI-Only setting across all scenarios. Interestingly, while GPT-4o
 1340 achieves state-of-the-art performance under other observation settings, it exhibits very weak action
 1341 capabilities when using screenshot setting, indicating the reliance on structured observations for
 1342 effective reasoning and planning.

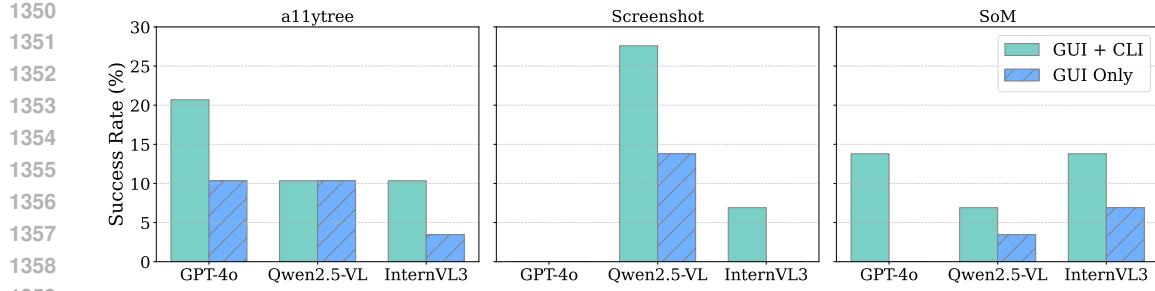


Figure 8: Extended analysis of Vision-Only vs. Hybrid Interface.

F.2 INTERACTIVE ENVIRONMENTS

ATP represents one of the most logic-intensive tasks for agents and has been traditionally studied in textual settings in prior works (*e.g.*, plain text or bash terminal).

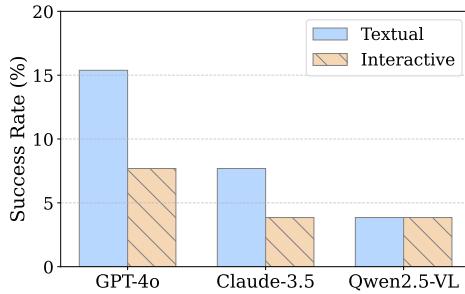


Figure 9: Textual v.s. Interactive

We extend ATP to live OS in SCIENCEBOARD and further compare agents' performance under textual and interactive settings. The latter, similar to environments commonly used by humans, provides a live VSCode interface with features such as syntax highlighting, autocompletion, type inference, and other functionalities. As shown in Figure 9, in the textual setting, the agent applies heuristic strategies (*e.g.*, Monte Carlo search) to make predictions over the proof tree without interacting with the environment. In contrast, in the interactive setting, the agent must autonomously decide which PROOFSTATE to proceed with. Moreover, the agent is also required to localize the relevant code segments within the interface. Completing formal methods tasks becomes substantially more challenging in realistic environments, which significantly increases the cognitive complexity.

F.3 DIFFICULTY ANALYSIS

We further analyze the success rates of computer-using agents on the SCIENCEBOARD benchmark across different task difficulty levels. We employ Claude-3.7-Sonnet, GPT-4o, and Qwen2.5-VL, with results presented in Figure 10.

The findings indicate that solvable tasks are primarily concentrated among a subset of “Easy” problems and a few “Medium” tasks. All “hard” tasks, which involve complex computations, cross-application workflows, or long-horizon planning, could not be completed by any of the evaluated agents.

F.4 FAILURE ANALYSIS

To further investigate the reasons why computer-using agents fail when planning or taking actions on scientific tasks, here we include and discuss several typical examples of such errors.

Opening the Wrong File. This error is frequently caused by grounding issues. The agent initially clicks on an incorrect file and then attempts to perform subsequent actions, such as inputting data,

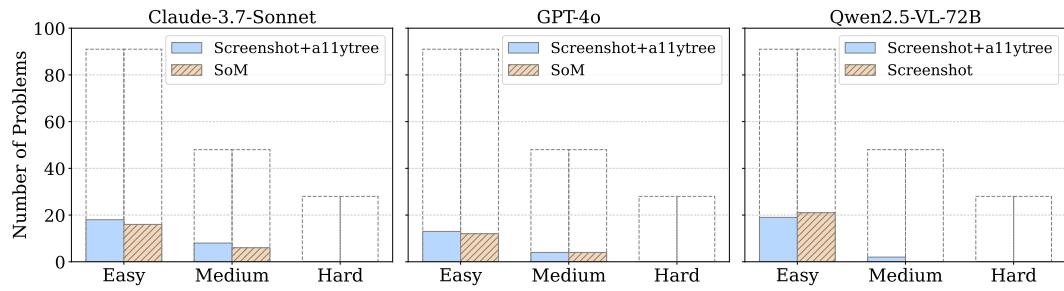


Figure 10: Comparative analysis of task difficulty solve rates.

within that wrong file. This often leads to the agent repeatedly making the same mistake or getting stuck in an unproductive loop. A typical case is shown in Figure 11.

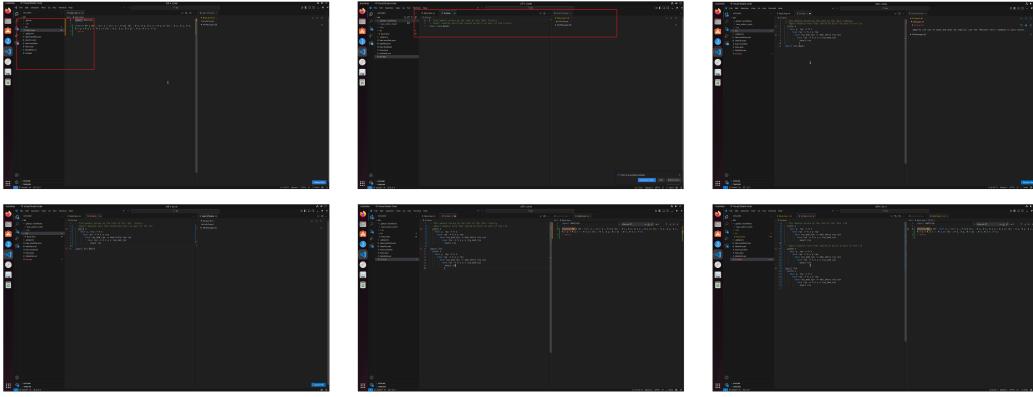


Figure 11: Use wrong file.

Inability to Invoke the Correct Function. In some instances, agents need to identify and use a specific function within a software application but attempt to do so by directly typing an assumed function name into a search bar or command input. If the exact function name is unknown or guessed incorrectly, a more robust strategy would be to browse available menus or function lists. Instead, agents may incorrectly assume knowledge of the function name and attempt to look up its usage, leading to failure. A typical example of this behavior is presented in Figure 12.

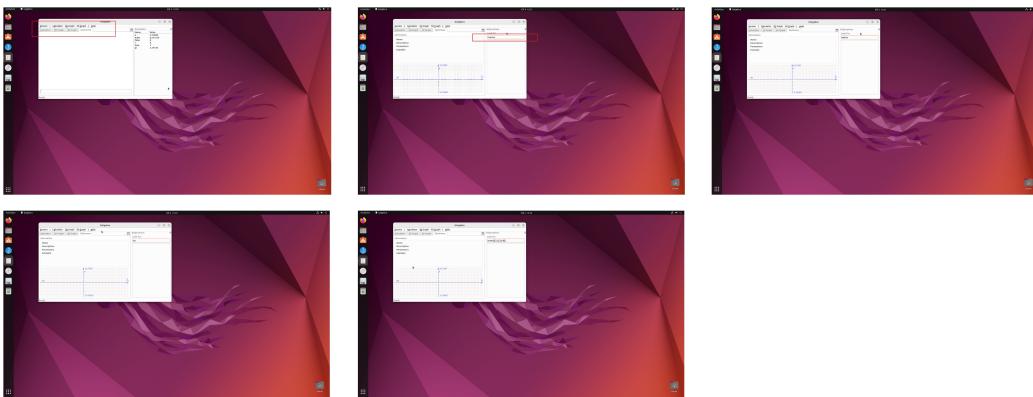


Figure 12: Function invocation error.

Incorrect CLI Code. Failures also occur when agents formulate CLI commands incorrectly. This can involve syntax errors, wrong command names, or incorrect parameters. Notably, in some of

1458 these failed CLI attempts, the intended task could have been accomplished more straightforwardly
 1459 by interacting with a corresponding button or element in the GUI. A typical example is shown in
 1460 Figure 13.

1461

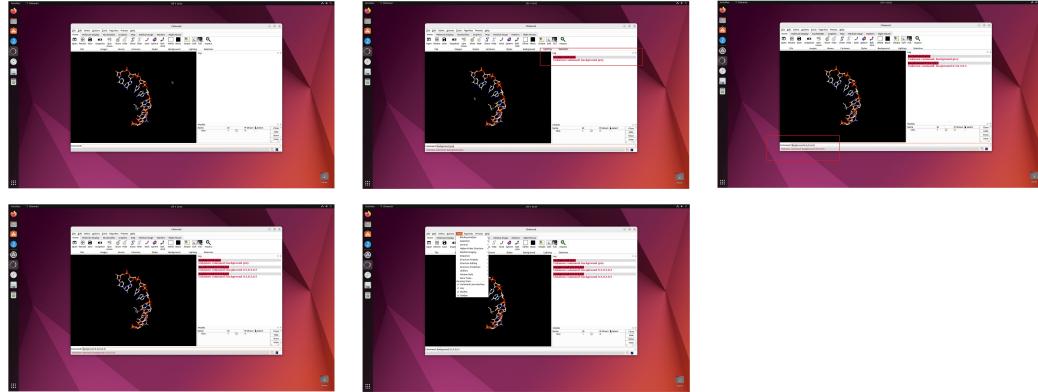


Figure 13: CLI code error.

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

G PROMPTS

1480

The prompt examples we used in SCIENCEBOARD are listed below.

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512
 1513
 1514
 1515
 1516
 1517 **Agentic Prompt - ChimeraX with screenshot**
 1518
 1519 You are an agent which follow my instruction and perform desktop computer
 1520 tasks as instructed.
 1521 You have good knowledge of ChimeraX, a molecular visualization software;
 1522 and assume your code will run on a computer controlling the mouse and
 1523 keyboard.
 1524 For each step, you will get an observation of the desktop by an
 1525 accessibility tree, which is based on AT-SPI library, and you will
 1526 predict actions of the next step based on that.
 1527
 1528 You are required to use 'pyautogui' to perform the action grounded to the
 1529 observation, but DO NOT use the 'pyautogui.locateCenterOnScreen' function
 1530 to locate the element you want to operate with since we have no image of
 1531 the element you want to operate with. DO NOT USE 'pyautogui.screenshot()'`
 1532 to make screenshot.
 1533 You ONLY need to return the code inside a code block, like this:
 1534 ``
 1535 # your code here
 1536 ``
 1537 Return one line or multiple lines of python code to perform the action
 1538 each time, and be time efficient. When predicting multiple lines of
 1539 code, make some small sleep like 'time.sleep(0.5);' interval so that the
 1540 machine could take breaks. Each time you need to predict a complete code,
 1541 and no variables or function can be shared from history.
 1542
 1543 Specially, it is also allowed to return the following special code:
 1544 When you think the task is done, return "DONE";
 1545 When you think the task can not be done, return "FAIL". Don't easily
 1546 say "'FAIL'; try your best to do the task;
 1547 When you think you have to wait for some time, return "WAIT" or "WAIT
 1548 n", in which n defaults to 5(s);
 1549 When you are asked to submit an answer, return "ANS s" without
 1550 quotation marks surrounding s, and use 'FAIL' if there is no answer to
 1551 the question.
 1552
 1553 My computer's password is 'password', feel free to use it when you need
 1554 sudo rights.
 1555 DO NOT introduce any unrelated models or easily close existing models,
 1556 otherwise the task might be evaluated as FAILED.
 1557 DO NOT close the current ChimeraX session, or every effort you made will
 1558 be in vain.
 1559 NEVER try to reopen the command line interface in ChimeraX if it is
 1560 hidden, because it has been deactivated and cannot do anything. But you
 1561 are welcome to use it once it is presented.
 1562
 1563 First give the current observation and previous things we did a short
 1564 reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
 1565 EVER RETURN ME ANYTHING ELSE.
 1566 You are asked to complete the following task: Fetch 2OLX from PDB in
 1567 ChimeraX.

1568 **Prompt 14: Prompts for ChimeraX with screenshot**
 1569

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573 **Agentic Prompt - Celestia with screenshot**
 1574
 1575 You are an agent which follow my instruction and perform desktop computer
 1576 tasks as instructed.
 1577 You have good knowledge of Celestia, a three-dimension space simulator;
 1578 and assume your code will run on a computer controlling the mouse and
 1579 keyboard.
 1580 For each step, you will get an observation of the desktop by a screenshot,
 1581 and you will predict actions of the next step based on that.
 1582
 1583 You are required to use 'pyautogui' to perform the action grounded to the
 1584 observation, but DO NOT use the 'pyautogui.locateCenterOnScreen' function
 1585 to locate the element you want to operate with since we have no image of
 1586 the element you want to operate with. DO NOT USE 'pyautogui.screenshot()' '
 1587 to make screenshot.
 1588 You ONLY need to return the code inside a code block, like this:
 1589 ``
 1590 # your code here
 1591 ``
 1592 Return one line or multiple lines of python code to perform the action
 1593 each time, and be time efficient. When predicting multiple lines of
 1594 code, make some small sleep like 'time.sleep(0.5);' interval so that the
 1595 machine could take breaks. Each time you need to predict a complete code,
 1596 and no variables or function can be shared from history.
 1597
 1598 Specially, it is also allowed to return the following special code:
 1599 When you think the task is done, return "DONE";
 1600 When you think the task can not be done, return "FAIL". Don't easily
 1601 say "FAIL"; try your best to do the task;
 1602 When you think you have to wait for some time, return "WAIT" or "WAIT
 1603 n", in which n defaults to 5(s);
 1604 When you are asked to submit an answer, return "ANS s" without
 1605 quotation marks surrounding s, and use 'FAIL' if there is no answer to
 1606 the question.
 1607
 1608 My computer's password is 'password', feel free to use it when you need
 1609 sudo rights.
 1610 The criterion for a celestial body to be displayed on the screen is that
 1611 the object's center is within the window range and is not blocked by
 1612 others.
 1613 First give the current observation and previous things we did a short
 1614 reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
 1615 EVER RETURN ME ANYTHING ELSE.
 1616 You are asked to complete the following task: Set the Julian date to
 1617 2400000 in Celestia.
 1618
 1619

Prompt 15: Prompts for Celestia with screenshot

1620 **Agentic Prompt - ChimeraX with set-of-marks**
 1621
 1622 You are an agent which follow my instruction and perform desktop computer
 1623 tasks as instructed.
 1624 You have good knowledge of ChimeraX, a molecular visualization software;
 1625 and assume your code will run on a computer controlling the mouse and
 1626 keyboard.
 1627 For each step, you will get an observation of the desktop by 1) an
 1628 accessibility tree, which is based on AT-SPI library; and 2) a screenshot
 1629 with interactable elements marked with numerical tags, and you will
 1630 predict actions of the next step based on that.
 1631
 1632 You are required to use 'pyautogui' to perform the action grounded to the
 1633 observation, but DO NOT use the 'pyautogui.locateCenterOnScreen' function
 1634 to locate the element you want to operate with since we have no image of
 1635 the element you want to operate with. DO NOT USE 'pyautogui.screenshot()' to
 1636 make screenshot.
 1637 You ONLY need to return the code inside a code block, like this:
 1638 ``
 1639 # your code here
 1640 ``
 1641 Return one line or multiple lines of python code to perform the action
 1642 each time, and be time efficient. When predicting multiple lines of
 1643 code, make some small sleep like 'time.sleep(0.5);' interval so that the
 1644 machine could take breaks. Each time you need to predict a complete code,
 1645 and no variables or function can be shared from history.
 1646
 1647 You can replace x, y in the code with the tag of elements you want to
 1648 operate with, such as:
 1649 ``
 1650 pyautogui.moveTo(tag_3)
 1651 pyautogui.click(tag_2)
 1652 pyautogui.dragTo(tag_1, button='left')
 1653 ``
 1654 When you think you can directly output precise x and y coordinates or
 1655 there is no tag on which you want to interact, you can also use them
 1656 directly; but you should be careful to ensure the correct of coordinates.
 1657
 1658 Specially, it is also allowed to return the following special code:
 1659 When you think the task is done, return "DONE";
 1660 When you think the task can not be done, return "FAIL". Don't easily
 1661 say "FAIL"; try your best to do the task;
 1662 When you think you have to wait for some time, return "WAIT" or "WAIT
 1663 n", in which n defaults to 5(s);
 1664 When you are asked to submit an answer, return "ANS s" without
 1665 quotation marks surrounding s, and use 'FAIL' if there is no answer to
 1666 the question.
 1667
 1668 My computer's password is 'password', feel free to use it when you need
 1669 sudo rights.
 1670 DO NOT introduce any unrelated models or easily close existing models,
 1671 otherwise the task might be evaluated as FAILED.
 1672 DO NOT close the current ChimeraX session, or every effort you made will
 1673 be in vain.
 1674 NEVER try to reopen the command line interface in ChimeraX if it is
 1675 hidden, because it has been deactivated and cannot do anything. But you
 1676 are welcome to use it once it is presented.
 1677
 1678 First give the current observation and previous things we did a short
 1679 reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
 1680 EVER RETURN ME ANYTHING ELSE.
 1681 You are asked to complete the following task: Fetch 2OLX from PDB in
 1682 ChimeraX.
 1683

1674
 1675
 1676 **Agentic Prompt - Celestia with set-of-marks**
 1677
 1678 You are an agent which follow my instruction and perform desktop computer
 1679 tasks as instructed.
 1680 You have good knowledge of Celestia, a three-dimension space simulator;
 1681 and assume your code will run on a computer controlling the mouse and
 1682 keyboard.
 1683 For each step, you will get an observation of the desktop by 1) an
 1684 accessibility tree, which is based on AT-SPI library; and 2) a screenshot
 1685 with interact-able elements marked with numerical tags, and you will
 1686 predict actions of the next step based on that.
 1687
 1688 You are required to use 'pyautogui' to perform the action grounded to the
 1689 observation, but DO NOT use the 'pyautogui.locateCenterOnScreen' function
 1690 to locate the element you want to operate with since we have no image of
 1691 the element you want to operate with. DO NOT USE 'pyautogui.screenshot()' '
 1692 to make screenshot.
 1693 You ONLY need to return the code inside a code block, like this:
 1694 ``
 1695 # your code here
 1696 ``
 1697 Return one line or multiple lines of python code to perform the action
 1698 each time, and be time efficient. When predicting multiple lines of
 1699 code, make some small sleep like 'time.sleep(0.5);' interval so that the
 1700 machine could take breaks. Each time you need to predict a complete code,
 1701 and no variables or function can be shared from history.
 1702
 1703 You can replace x, y in the code with the tag of elements you want to
 1704 operate with, such as:
 1705 ``
 1706 pyautogui.moveTo(tag_3)
 1707 pyautogui.click(tag_2)
 1708 pyautogui.dragTo(tag_1, button='left')
 1709 ``
 1710 When you think you can directly output precise x and y coordinates or
 1711 there is no tag on which you want to interact, you can also use them
 1712 directly; but you should be careful to ensure the correct of coordinates.
 1713
 1714 Specially, it is also allowed to return the following special code:
 1715 When you think the task is done, return "DONE";
 1716 When you think the task can not be done, return "FAIL". Don't easily
 1717 say "FAIL"; try your best to do the task;
 1718 When you think you have to wait for some time, return "WAIT" or "WAIT
 1719 n", in which n defaults to 5(s);
 1720 When you are asked to submit an answer, return "ANS s" without
 1721 quotation marks surrounding s, and use 'FAIL' if there is no answer to
 1722 the question.
 1723
 1724 My computer's password is 'password', feel free to use it when you need
 1725 sudo rights.
 1726 The criterion for a celestial body to be displayed on the screen is that
 1727 the object's center is within the window range and is not blocked by
 1728 others.
 1729
 1730 First give the current observation and previous things we did a short
 1731 reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
 1732 EVER RETURN ME ANYTHING ELSE.
 1733 You are asked to complete the following task: Set the Julian date to
 1734 2400000 in Celestia.

1725 Prompt 17: Prompts for Celestia with Set-of-Marks
 1726
 1727

1728

1729

1730

Human Instructions

1731

1732

You are required to finish the given tasks manually to provide sample data of human accuracy.

1733

1734

First, please start up the evaluation script with debug option ON and headless option OFF. Then, wait for the environment to be initialized and perform your actions when you receive corresponding logs from stdout. Press ENTER after you finish operating and the script will evaluate your result submitted automatically.

1735

Attention:

1736

1737

1. If you need to finish the task with primitives other than TIMEOUT, please input directly into stdin;
2. You can search for documents or manuals if you encounter domain-specific knowledge you are not familiar with;
3. Make sure that the number of your steps is less than expected. To be more precise, a popup without possibility to predict its position should be split into different steps.

1738

1739

1740

1741

1742

1743

Instruction 1: Instruction for humans.

1744

1745

1746

1747

1748

1749

Agentic Prompt - OS-Atlas

1750

1751

You are an agent which follow my instruction and perform desktop computer tasks as instructed.

1752

1753

You have good knowledge of Celestia, a three-dimension space simulator; and assume your code will run on a computer controlling the mouse and keyboard.

1754

1755

For each step, you will get an observation of the desktop by a screenshot, together with a plan generated by the planner, and you will parse the plan to operate actions of next steps based on that.

1756

1757

1758

You are required to use your grounding ability to perform the action grounded to the observation and the plan.

1759

1760

You need to return a basic action together with arguments, of which the available ones are listed below:

CLICK: to click at the specified position.

1761

1762

- format: CLICK <point>[[x-axis, y-axis]]</point>
- example usage: CLICK <point>[[101, 872]]</point>

TYPE: to enter specified text at the designated location.

1763

1764

- format: TYPE [input text]
- example usage: TYPE [Shanghai shopping mall]

SCROLL: to scroll in the specified direction.

1765

1766

- format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]
- example usage: SCROLL [UP]

1767

1768

My computer's password is 'password', feel free to use it when you need sudo rights.

1769

1770

Some plans provided may contains unexpected code blocks or confusing instructions. Be flexible and adaptable according to changing circumstances.

1771

1772

First give the current observation and the generated plan, then RETURN ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.

1773

1774

You are asked to complete the following task: Set the Julian date to 2400000 in Celestia.

1775

1776

1777

1778

1779

Prompt 18: Prompts for OS-Atlas

1780

1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797

1798 Agentic Prompt - UGround

1799 You are an agent which follow my instruction and perform desktop computer
 1800 tasks as instructed.
 1801 You have good knowledge of Celestia, a three-dimension space simulator;
 1802 and assume your code will run on a computer controlling the mouse and
 1803 keyboard.
 1804 For each step, you will get an observation of the desktop by a screenshot,
 1805 together with a plan generated by the planner, and you will parse the
 1806 plan to operate actions of next steps based on that.
 1807 You are required to use your grounding ability to perform the action
 1808 grounded to the observation and the plan.
 1809 You need to return a 2d coordinate (x, y) indicating the position you
 1810 want to click.
 1811 My computer's password is 'password', feel free to use it when you need
 1812 sudo rights.
 1813 Some plans provided may contains unexpected code blocks or confusing
 1814 instructions. Be flexible and adaptable according to changing
 1815 circumstances.
 1816 First give the current observation and the generated plan, then RETURN
 1817 ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
 1818 You are asked to complete the following task: Set the Julian date to
 1819 2400000 in Celestia.

1820 **Prompt 19: Prompts for UGround**
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836
 1837
 1838
 1839
 1840
 1841
 1842

1843 Agentic Prompt - Qwen

1844 You are an agent which follow my instruction and perform desktop computer
 1845 tasks as instructed.
 1846 You have good knowledge of Celestia, a three-dimension space simulator;
 1847 and assume your code will run on a computer controlling the mouse and
 1848 keyboard.
 1849 For each step, you will get an observation of the desktop by a screenshot,
 1850 together with a plan generated by the planner, and you will parse the
 1851 plan to operate actions of next steps based on that.
 1852
 1853 You are required to use 'pyautogui' to perform the action
 1854 grounded to the observation and the plan, but DO NOT use the
 1855 'pyautogui.locateCenterOnScreen' function to locate the element you want
 1856 to operate with since we have no image of the element you want to operate
 1857 with. DO NOT USE 'pyautogui.screenshot()' to make screenshot.
 1858 You ONLY need to return the code inside a code block, like this:
 1859
 1860 ``
 1861 # your code here
 1862 ``
 1863 Return one line or multiple lines of python code to perform the action
 1864 each time, and be time efficient. When predicting multiple lines of
 1865 code, make some small sleep like 'time.sleep(0.5);' interval so that the
 1866 machine could take breaks. Each time you need to predict a complete code,
 1867 and no variables or function can be shared from history.
 1868
 1869 Specially, it is also allowed to return the following special code:
 1870 When you think the task is done, return "'DONE'";
 1871 When you think the task can not be done, return "'FAIL'". Don't easily
 1872 say "'FAIL"'; try your best to do the task;
 1873 When you think you have to wait for some time, return "'WAIT'" or "'WAIT
 1874 n'", in which n defaults to 5(s);
 1875 When you are asked to submit an answer, return "'ANS s'" without
 1876 quotation marks surrounding s, and use 'FAIL' if there is no answer to
 1877 the question.
 1878
 1879 My computer's password is 'password', feel free to use it when you need
 1880 sudo rights.
 1881 Some plans provided may contains unexpected code blocks or confusing
 1882 instructions. Be flexible and adaptable according to changing
 1883 circumstances.
 1884
 1885 First give the current observation and the generated plan, then RETURN
 1886 ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING
 1887 ELSE.
 1888 You are asked to complete the following task: Set the Julian date to
 1889 2400000 in Celestia.

1883 **Prompt 20: Prompts for Qwen**

1884
 1885
 1886
 1887
 1888
 1889

1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
1907 Agentic Prompt - UI-Tars
 1908 You are an agent which follow my instructions and performs desktop
 computer tasks as instructed.
 1909 You have good knowledge of Celestia, a three-dimension space simulator;
 1910 and assume your code will run on a computer controlling the mouse and
 keyboard.
 1911 For each step, you will get an observation of the desktop by a screenshot,
 1912 together with a plan generated by the planner, and you will parse the
 1913 plan to operate actions of next steps based on that.
 1914
 1915 You are required to use your grounding ability to perform the action
 grounded to the observation and the plan.
 1916 You need to return a 2d coordinate (x, y) indicating the position you
 1917 want to click.
 1918
 1919 My computer's password is 'password', feel free to use it when you need
 sudo rights.
 1920 Some plans provided may contains unexpected code blocks or confusing
 1921 instructions. Be flexible and adaptable according to changing
 1922 circumstances.
 1923
 1924 First give the current observation and the generated plan, then RETURN
 1925 ME THE CODE I ASKED FOR. NEVER EVER RETURN ME ANYTHING ELSE.
 1926 You are asked to complete the following task: Set the Julian date to
 1927 2400000 in Celestia.
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

Prompt 21: Prompts for UI-TARS