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Federated Heterogeneous Graph Neural Network for
Privacy-preserving Recommendation

Anonymous Author(s)∗

ABSTRACT
Heterogeneous information network (HIN), which contains rich
semantics depicted by meta-paths, has become a powerful tool to
alleviate data sparsity in recommender systems. Existing HIN-based
recommendations hold the data centralized storage assumption and
conduct centralized model training. However, the real-world data is
often stored in a distributed manner for privacy concerns, resulting
in the failure of centralized HIN-based recommendations. In this
paper, we suggest the HIN is partitioned into private HINs stored
in the client side and shared HINs in the server. Following this set-
ting, we propose a federated heterogeneous graph neural network
(FedHGNN) based framework, which can collaboratively train a
recommendation model on distributed HINs without leaking user
privacy. Specifically, we first formalize the privacy definition in the
light of differential privacy for HIN-based federated recommenda-
tion, which aims to protect user-item interactions of private HIN
as well as user’s high-order patterns from shared HINs. To recover
the broken meta-path based semantics caused by distributed data
storage and satisfy the proposed privacy, we elaborately design a
semantic-preserving user interactions publishing method, which
locally perturbs user’s high-order patterns as well as related user-
item interactions for publishing. After that, we propose a HGNN
model for recommendation, which conducts node- and semantic-
level aggregations to capture recovered semantics. Extensive ex-
periments on three datasets demonstrate our model outperforms
existing methods by a large margin (up to 34% in HR@10 and 42%
in NDCG@10) under an acceptable privacy budget.
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Figure 1: Comparison of a HIN in the centralized setting and
federated setting

1 INTRODUCTION
Recommender systems play a crucial role in mitigating the chal-
lenges posed by information overload in various online applica-
tions [44]. However, their effectiveness is limited by the sparsity of
user interactions [17, 19, 42]. To tackle this issue, heterogeneous
information networks (HIN), containing multi-typed entities and
relations, have been extensively utilized to enhance the connec-
tions of users and items [12, 25, 26, 41]. As a core analysis tool in
HIN, meta-path [27], a relation sequence connecting node pairs,
is widely used to capture rich semantics of HIN. Different meta-
path can depict different semantics, as is shown in Figure 1, the
meta-path UMU in the HIN for movie recommendation presents
the semantics that two users have watched the same movie, and
the UMDMU depicts that two users have watched movies directed
by the same director. Most of HIN-based recommender methods
leverage meta-path based semantics to learn effective user and item
embeddings[11, 26]. Among them, early works integrate meta-path
based semantics into user-item interaction modeling to enhance
the representations of users and items [26, 41]. In recent years,
graph neural networks (GNNs) have emerged as a powerful tool
to capture meta-path based semantics and achieved remarkable re-
sults [6, 32, 43]. They aggregate node embeddings along meta-paths
to fuse different semantics, known as meth-path based neighbor
aggregation [5, 13, 31, 42], providing a more flexible framework for
HIN-based recommendations.

Existing HIN-based recommendations hold a basic assumption
that the data is centralized stored. As shown in Figure 1(a) and (c),
under this assumption, the entire HIN is visible and can be directly
utilized to capture meta-path based semantics for recommendation.
However, this assumption is not always hold. The user-item interac-
tion data is highly privacy-sensitive, and the centralized storage can
leak the user privacy. Furthermore, according to the strict privacy

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

protection by General Data Protection Regulation (GDPR)1, it is
prohibited that commercial companies collect and exchange user
data without the user’s permission. In this regard, centralized data
storage may be not feasible in the future.

As a more realistic learning paradigm, federated learning (FL)
[21, 36] has emerged to allow all users to train a global model collab-
oratively without privacy leakage. Unlike the traditional centralized
learning where data is stored in a central server, in FL the data is
kept by its owner and not visible to others. Federated recommenda-
tion (FedRec) is an essential application of FL in the recommender
scenario, in which user’s original interaction data is kept locally
and all users together train a global recommendation model by
only transmit intermediate parameters. Many works have been
dedicated to FedRec in recent years[1, 2, 15, 38]. Most of them focus
on traditional matrix factorization (MF) based FedRec [2, 15]. They
keep the user factors locally update and upload the gradients of
item factors to the server for aggregation. Recently, a few stud-
ies have explored GNN-based FedRec [18, 20, 33]. They train local
GNN models on the user-item bipartite graph and upload gradients
of embedding and model parameters to the server. Despite their
success, they still suffer from data sparsity issue, which might result
in making inaccurate recommendations.

A natural solution is utilizing HINs to enrich the sparse inter-
actions. However, developing HIN-based FedRec is non-trivial. It
faces two challenges. 1) There lacks of a formal privacy definition of
HIN-based FedRec. Compared to traditional FedRec only utilizing
private information (i.e., user-item interaction), HIN-based FedRec
can also utilize some shared knowledge that can be shared among
users (e.g., movie-type and movie-director relations in Figure 1(a)).
This shared knowledge may also leak user’s high-order patterns
(e.g., the user’s favorite types of movies). In this regard, the privacy
in HIN-based FedRec should be first clarified. 2) The meta-path
based semantics are broken in HIN-based FedRec. As shown in
Figure 1(b), the HIN is distributed stored and users can only ac-
cess their one-hop neighbors. As a result, the integral meta-path
is broken, leading to fails to conduct meta-path based neighbor
aggregations, which is the key component for HIN-based recom-
mendation. As shown in Figure 1(c) and (d), the meta-path based
neighbor aggregations fail because of the broken semantics UMU
and UMDMU. Therefore, it is the pain point of HIN-based FedRec to
design a mechanism that recover the broken semantics and achieve
privacy-preserving recommendations.

To tackle these challenges, in this paper, we study the HIN-based
FedRec and propose a Federated Heterogeneous Graph Neural
Network (FedHGNN) for privacy-preserving recommendations. 1)
To clarify the privacy that should be protected, we propose a formal
privacy definition for HIN-based FedRec. We suggest a setting for
HIN-based FedRec, in which the whole HIN is divided into private
HINs stored in the client side and shared HINs stored in the server.
Under this setting, we formalize two kinds of privacy of HIN-based
FedRec in the light of differential privacy (DP), including the privacy
reflecting user’s high-order patterns from shared HINs and privacy
of user-item interactions with specific patterns. 2) To recover the
broken semantics, we propose a semantic-preserving user interac-
tion publishing method. Since the user’s original interactions are

1https://gdpr-info.eu

privacy and should not be published, we design a two-stage pertur-
bation mechanism to perturb user interactions. Specifically, the first
stage perturbs user’s high-order patterns from shared HINs by expo-
nential mechanism (EM) [4]. To preserve the user’s true high-order
pattern, we select patterns similar to truly user high-order patterns
with high probabilities. The second stage perturbs truly user-item
interactions within each selected pattern by a degree-preserving
random response method[9], which avoids introducing more noise
and also enhances the interaction diversity. Each user perturbs local
interactions by the two-stage perturbation mechanism and uploads
them to the server for recovering meta-path based neighbors. We
also give rigorous privacy guarantees of the publishing process.
Based on the recovered semantics, we further propose a general
heterogeneous GNN model for recommendation, which captures
semantics through a two-level meta-path-guided aggregation.

The major contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work to study
the HIN-based FedRec, which is an important and practical
task in real-world scenarios.

• We design a FedHGNN framework for HIN-based FedRec.
We give a formal privacy definition and propose a novel
semantic-preserving perturbation method to publish user
interactions for recommendation. We also give rigorous
privacy guarantees of the publish process.

• We conduct extensive experiments on three real-world
datasets, which demonstrates that FedHGNN improves ex-
isting methods by a large margin (up to 34% in HR@10 and
42% in NDCG@10) under an acceptable privacy budget.

2 RELATEDWORK
Heterogeneous information network based recommendation.
HIN contains rich semantics for recommendation, which has been
extensively studied in recent years [10, 34, 42]. Specifically, HERec
[26] utilizes a meta-path based random walk to generate node
sequences and designs multiple fusion functions to enhance the
recommendation performance. MCRec [11] designs a co-attention
mechanism to explicitly learn the interactions between users, items,
and meta-path based context. In recent years, HGNNs have been
introduced for HIN modeling. To tackle the heterogeneous infor-
mation, one line aggregates neighbors after transforming heteroge-
neous attributes into the same embedding space [12, 25]. Typically,
RGCN [25] aggregates neighbors for each relation type individu-
ally. HetGNN [39] adopts different RNNs to aggregate nodes with
different types. HGT [12] introduces transformer architecture [28]
for modeling heterogeneous node and edge types. Another line is
performing meta-path based neighbor aggregation [5, 13, 31]. HAN
[31] proposes a dual attention mechanism to learn the importance
of different meta-paths. HGSRec [13] further designs tripartite het-
erogeneous GNNs to perform shared recommendations. Unlike
HAN performing homogeneous neighbor aggregation, Meirec [5]
proposes a meta-path guided heterogeneous neighbor aggregation
method for intent recommendation. Despite the great effectiveness
of these HIN-based recommendations, they are all designed under
centralized data storage and not geared for the federated setting,
especially with privacy-preserving requirements.
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Federated recommendation. Federated learning (FL) is pro-
posed to collaboratively train a global model based on the dis-
tributed data[7, 21, 35]. Accordingly, the global model in federated
recommendation is collectively trained based on the user’s local
interaction data [14, 16, 22]. Each client maintains a local recom-
mendation model and uploads intermediate data to the server for
aggregation. In this process, the user’s interaction behaviors (the set
of interacted items or rating scores) should be protected [3]. FCF [1]
is the first federated recommendation framework, which is based on
the traditional collaborative filter (FCF). The user embeddings are
stored and updated locally while the gradients of item embeddings
are uploaded to the server for aggregation. FedMF [2] proves that
the uploaded gradients of two continuous steps can also leak user
privacy and thus applies homomorphic encryption to encrypt gradi-
ents. SharedMF [38] utilizes secret sharing instead of homomorphic
encryption for better efficiency and FR-FMSS [15] further randomly
samples fake ratings for better privacy. Recently, federated recom-
mendations based on GNNs have emerged [18, 20, 33]. FedGNN
[33] applies local differential privacy (LDP) to uploads gradient and
samples pseudo-interacted items for anonymity. Besides, a trusted
third-party server is utilized to obtain high-order neighbors. To
perform federated social recommendations, FedSoG [18] employs
a relation attention mechanism to learn local node embeddings
and proposes a pseudo-labeling method to protect local private in-
teractions. Considering personalization and communication costs,
PerFedRec [20] clusters users and learned a personalized model by
combining different levels of parameters. Neither these federated
recommendation methods utilize the rich semantics of HINs nor
have rigorous privacy guarantees.

3 PRELIMINARY
In this paper, we conduct HIN-based recommendation for implicit
feedback. Let 𝑈 and 𝐼 denote the user set and item set. We give the
related concepts as follows.

3.1 Heterogeneous Information Network
Definition 3.1. Heterogeneous Information Network (HIN)

[29]. A HIN𝐺 = (𝑉 , 𝐸) consists of an object set𝑉 and a link set 𝐸. It is
also associated with an object type mapping function 𝜙 : 𝑉 → A and
a link type mapping function𝜓 : 𝐸 → R.A and R are the predefined
sets of object and link types, where |A| + |R| > 2.

Definition 3.2. Meta-path. Given a HIN 𝐺 with object types
A and link types R, a meta-path 𝜌 can be denoted as a path in the

form of 𝐴1
𝑅1−−→ 𝐴2

𝑅2−−→ · · · 𝑅𝑙−−→ 𝐴𝑙+1, where 𝐴𝑖 ∈ A and 𝑅𝑖 ∈ R.
Meta-path describes a composite relation 𝑅 = 𝑅1 ◦𝑅2 ◦ ...◦𝑅𝑙 between
object 𝐴1 and 𝐴𝑙+1, where ◦ denotes the composition operator on
relations. Then given a node 𝑣 and a meta-path 𝜌 , the meta-path
based neighbors N𝜌

𝑣 of 𝑣 are the nodes connecting with 𝑣 via the
meta-path 𝜌 . In a HIN, the rich semantics between two objects can be
captured by the meta-path.

3.2 Privacy Definition
Definition 3.3. Private HIN. A private HIN 𝐺𝑝 = (𝑉𝑝 , 𝐸𝑝 )

is defined as a subgraph of 𝐺 . It is associated with an object type
mapping function 𝜙𝑝 : 𝑉𝑝 → A and a link type mapping function

𝜓𝑝 : 𝐸𝑝 → R𝑝 , where R𝑝 ⊂ R is the set of private link types. A
user-level private HIN contains a user 𝑢 ∈ 𝑉𝑝 and its interacted
item set 𝐼𝑢 ⊂ 𝐼 . The link set 𝐸𝑢𝑝 exists between 𝑢 and 𝐼𝑢 denoting
personally private interactions.

Definition 3.4. Shared HIN. A shared HIN 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 ) is
defined as a subgraph of𝐺 . It is associated with an object typemapping
function 𝜙𝑠 : 𝑉𝑠 → A and a link type mapping function𝜓𝑠 : 𝐸𝑠 →
R𝑠 , where R𝑠 is the set of shared link types.

As depicted in Figure 1(a) and (b), under federated setting, the
movie network is divided into user-level private HINs stored in each
client and shared HINs stored in the server. A user-level private
HIN includes a user’s private interactions and shared HINs contain
shared knowledge such as movie-director relations.

A user 𝑢 could associate with many shared HINs based on inter-
acted items. For example, Figure 1 (a) and (b) depict that two shared
HINs are related to Tom and one shared HINs are related to Mary.
These user-related shared HINs reflect high-order patterns of users
(e.g., favorite types of movies) and should be protected. We call this
privacy as semantic privacy, denoted as a user-related shared HIN
list 𝑔 = (𝑔1, · · · , 𝑔 | G𝑠 | ) ∈ {0, 1} | G𝑠 | , where G𝑠 denotes the whole
shared HIN set. Then we formalize semantic privacy as follows:

Definition 3.5. 𝜖-Semantic Privacy. Given a user-related shared
HIN list 𝑔, a perturbation mechanism M satisfies 𝜖-semantic privacy
if and only if for any 𝑔, such that 𝑔 and 𝑔 only differ in one bit, and
any 𝑔 ∈ 𝑟𝑎𝑛𝑔𝑒 (M), we have 𝑃𝑟 [M(𝑔)=𝑔]

𝑃𝑟 [M(𝑔)=𝑔] ≤ 𝑒𝜖 .

Besides, each user also owns a adjacency list 𝑎 = (𝑎1, · · · , 𝑎 |𝐼 | ) ∈
{0, 1} |𝐼 | . Given 𝑔, we can extract a subset 𝐼𝑠 from the whole item set
𝐼 , which is called semantic guided item set. Similarly, we can obtain
semantic guided adjacency list denoted as 𝑎𝑠 = (𝑎𝑠1, · · · , 𝑎𝑠 |𝐼𝑠 | ) ∈
{0, 1} |𝐼𝑠 | , which depicts the user-item interactions with specific pat-
terns and should also be protected. we call this privacy as semantic
guided interaction privacy and formalize as:

Definition 3.6. 𝜖-SemanticGuided Interaction Privacy. Given
a semantic guided adjacency list 𝑎𝑠 , a perturbation mechanism M
satisfies 𝜖-semantic guided interaction privacy if and only if for any
𝑎𝑠 , such that 𝑎𝑠 and 𝑎𝑠 only differ in one bit, and any 𝑎𝑠 ∈ 𝑟𝑎𝑛𝑔𝑒 (M),
we have 𝑃𝑟 [M(𝑎𝑠 )=𝑎𝑠 ]

𝑃𝑟 [M(𝑎𝑠 )=𝑎𝑠 ] ≤ 𝑒𝜖 .

𝜖 is called the privacy budget that controls the strength of privacy
protection. It is obvious that if a perturbation algorithm satisfies
these definitions, the attacker is difficult to distinguish the user’s
high-order pattern as well as the true interacted items.

3.3 Task Formulation
Based on above preliminaries, we define our task as follows:

Definition 3.7. FederatedHIN-based recommendation. Given
user-level private HINs G𝑝 = {𝐺𝑢1

𝑝 ,𝐺
𝑢2
𝑝 , ...,𝐺

𝑢 |𝑈 |
𝑝 } and shared HINs

G𝑠 = {𝐺1
𝑠 ,𝐺

2
𝑠 , ...,𝐺

𝑚
𝑠 }. The 𝐺𝑢𝑖

𝑝 corresponding to the user 𝑢𝑖 ∈ 𝑈 is
stored in the 𝑖-th client, while G𝑠 is stored in the server. We aim to
collaboratively train a global model based on these distributed HINs
with satisfying 𝜖-semantic privacy and 𝜖-semantic guided interaction
privacy, which can recommend a ranked list of interested items for
each user 𝑢 ∈ 𝑈 .
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Figure 2: The overall framework of FedHGNN

4 METHODOLOGY
In this section, we give a detailed introduction to the proposed
model FedHGNN. We first give a overview of FedHGNN. Then we
present two main modules of FedHGNN, the semantic-preserving
user-item interaction publishing and heterogeneous graph neural
networks (HGNN) for recommendation. Finally we give a privacy
analysis of proposed publishing process.

4.1 Overview of FedHGNN
Different from existing FedRec systems only utilizing user-item
interactions, FedHGNN also incorporates HINs into user and item
modeling, which can largely alleviate the cold-start issue caused by
data sparsity. Besides, as a core component of FedHGNN, semantic-
preserving user-item publishing mechanism recovers semantics
with rigorous privacy guarantees, which can be applied to all meta-
path based FedRec systems technically. We present the overall
framework of FedHGNN in Figure 2. As can be seen, it mainly in-
cludes two steps, i.e., user-item interaction publishing and HGNN
based federated training. At the user-item interaction publishing
step, each client perturbs local interactions using our two-stage per-
turbation mechanism, and then uploads the perturbed results to the
server. After the server receiving local interactions from all clients,
it can form a integral perturbed HIN, which is then distributed to
each client to recover the meta-path based semantics. Note that
the publishing step only conduct once in the whole federated train-
ing process. At the federated training step, clients collaboratively
train a global recommendation model based on recovered neigh-
bors, which performs node-level neighbor aggregations followed by
semantic-level aggregations. Then a ranking loss is adapted to opti-
mize embedding and model parameters. At each communication
round, each participated client locally trains the model and uploads
the embedding and model gradients to the server for aggregations.
To further protect the privacy when uploading gradients, we apply
local differential privacy (LDP) to the uploaded gradients. Besides,

following previous work [18, 33], we also utilize pseudo interacted
items during local training.

4.2 Semantic-preserving User-item Interactions
Publishing

To recover the semantics of the centralized HIN (obtaining the
meta-path based neighbors), directly uploading the adjacency list
𝑎𝑢 to the server can not satisfy the privacy definition because the
user-item interactions are exposed. To address this, we first present
a naive solution based on random response (RR) [4] and illustrate
its defects of direct applications to our task. Then we give detailed
introductions of our proposed two-stage perturbation mechanism
for user-item interaction publishing. As depicted in Figure 3, it first
perturbs the user-related shared HINs then perturbs the user-item
interactions within selected shared HINs, which not only achieves
semantic-preserving but also satisfies the defined privacy.
Random response (RR). As many homogeneous graph metrics
publishing [9, 23, 37], a straw-man approach is directly utilizing RR
[4] to perturb each user’s adjacency list 𝑎𝑢 , i.e., the user flips each bit
of 𝑎𝑢 with probability 𝑝 = 1

1+𝑒𝜖 . However, this naive strategy faces
both privacy and utility limitations. For privacy, although it satisfies
the 𝜖-semantic guided interaction privacy, it can not achieve our 𝜖-
semantic privacy goal. As for utility, it has been theoretically proved
that RR would make a graph denser [23]. Unfortunately, there
exists perturbation enlargement phenomenon [40] in the HGNNs,
i.e., introducing more edges may harm the HGNN’s performance,
which is also confirmed in our latter experiments. Besides, RR fails
to accommodate the semantic-preserving since it perturbs all bits
of 𝑎𝑢 . We can only perturb the semantic guided item set to preserve
semantics but exposing the user high-order patterns. Furthermore,
the denser graph largely hinders the training speed and compounds
the communication overhead in the federated setting.
User-related shared HIN perturbation. From the above anal-
ysis, we propose a two-stage perturbation mechanism. The first
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Figure 3: The two-stage perturbation mechanism for user-
item interaction publishing

stage performs user-related shared HIN perturbation, which uti-
lizes EM to select shared HINs for publishing. Intuitively, the true
user-related shared HIN should be selected with a high probability.
Therefore, according to the theory of EM, for a user 𝑢 with related
shared HIN set 𝑔, we design the utility of selecting a shared HIN as
follows:

𝑞(𝑔,𝑢,𝐺𝑠 ) = 𝑠𝑖𝑚(𝐺𝑠 ,G𝑢
𝑠 )

= max
𝐺

′
𝑠 ∈G𝑢

𝑠

{ 1
2
(𝑐𝑜𝑠 (𝑒𝐺𝑠

, 𝑒
𝐺

′
𝑠
) + 1}, (1)

where G𝑢
𝑠 is the shared HIN set of 𝑢 and 𝐺𝑠 ∈ G𝑢

𝑠 is the selected
shared HIN. 𝑒𝐺𝑠

is the representation of𝐺𝑠 which is the average of
related items’ embeddings. Eq. (1) indicates that if a shared HIN𝐺𝑠

is more similar with user-related shared HIN set G𝑢
𝑠 , it should be

selected with a high probability. In this regard, similarity function
has multiple choices. We choose the highest cosine similarity score
among G𝑢

𝑠 as the similarity function mainly in consideration of
achieving a smaller sensitivity to obtain higher utility. In this way,
the sensitivity Δ𝑞 is:

Δ𝑞 = max
𝐺𝑠

max
𝑔∼𝑔

|𝑞(𝑔,𝑢,𝐺𝑠 ) − 𝑞(𝑔,𝑢,𝐺𝑠 ) | = 1, (2)

where 𝑔 ∼ 𝑔 denotes that 𝑔 and 𝑔 only differ in one bit. Then
according to the EM, a shared HIN 𝐺𝑠 is selected with probability:

Pr(𝐺𝑠 ) =
exp(𝜖𝑞(𝑔,𝑢,𝐺𝑠 )/(2Δ𝑞))∑

𝐺 ′
𝑠⊂G𝑠

exp(𝜖𝑞(𝑔,𝑢,𝐺 ′
𝑠 )/(2Δ𝑞))

. (3)

The above selection process is repeated |G𝑢
𝑠 | times without re-

placement to ensure diversity. Then we can obtain the perturbed
user’s shared HIN list 𝑔𝑢 . By this mechanism, the user’s high-order
patterns are maximum preserved since we select similar shared
knowledge with high probability.
User-item interaction perturbation. After obtaining the per-
turbed 𝑔𝑢 , we can extract a semantic guided item set 𝐼𝑢𝑠 . The user-
item interaction perturbation is conducted within the 𝐼𝑢𝑠 rather
than the whole item set. Since our 𝜖-semantic guided interaction
privacy is defined within the 𝐼𝑢𝑠 , ignoring the items outside of 𝐼𝑢𝑠
has no effect on privacy guarantees. Besides, it also avoids intro-
ducing more irrelevant items and reduces the communication cost.
In light of the user-related shared HIN having been perturbed in
the first stage, we can directly apply RR to perturb 𝐼𝑢𝑠 . However,
in HIN-based recommendations, the size of 𝐼𝑢𝑠 is still large due to

the relative small number of shared HINs, thus introducing more
irrelevant items.

Inspired by [9], we propose a user-item interaction perturbation
mechanism, which performs degree-preserving RR (DPRR) [9] on
each of semantic guided item set. Specifically, given user 𝑢 and
related shared HIN set G𝑢

𝑠 , we can split semantic guided item set
𝐼𝑢𝑠 into |G𝑢

𝑠 | subsets. For each subset 𝐼𝑢𝑠𝑖 , we use a adjacency list
𝑎𝑢𝑠𝑖 = (𝑎𝑢

𝑠𝑖1, . . . , 𝑎
𝑢
𝑠𝑖 |𝐼𝑢𝑠𝑖 |

) ∈ {0, 1} |𝐼
𝑢
𝑠𝑖
| to denote the user-item inter-

actions. DPRR perturbs each bit of 𝑎𝑢𝑠𝑖 by first applying RR then
with probability 𝑞𝑢𝑠𝑖 to keep a result of 1 (a user-item interaction)
unchanged. Thus the probability of each bit being perturbed to 1 is:

Pr(𝑎𝑢𝑠𝑖 𝑗 = 1) =
{
(1 − 𝑝)𝑞𝑢𝑠𝑖 (if 𝑎𝑢𝑠𝑖 𝑗 = 1)
𝑝𝑞𝑢𝑠𝑖 (if 𝑎𝑢𝑠𝑖 𝑗 = 0).

(4)

Assuming the true degree of user 𝑢 within the subset 𝐼𝑢𝑠𝑖 is 𝑑𝑢𝑠𝑖
(i.e., the number of 1 in 𝑎𝑢𝑠𝑖 ), according to the degree preservation
property [9], the 𝑞𝑢𝑠𝑖 should be set as follows:

𝑞𝑢𝑠𝑖 =
𝑑𝑢𝑠𝑖

𝑑𝑢𝑠𝑖 (1 − 2𝑝) + |𝐼𝑢𝑠𝑖 |𝑝
. (5)

In practice, the 𝑞𝑢𝑠𝑖 will be further clipped to [0, 1] to form probabil-
ity. Note that the subset 𝐼𝑢𝑠𝑖 may not contain user-item interactions
due to the perturbation on the shared HINs, in which case 𝑞𝑢𝑠𝑖=0.
That is, we abandon a part of the interacted items, leading to seman-
tic losses. Instead of that, we randomly select some items within 𝐼𝑢𝑠𝑖
so that the total degree is equal to the true degree 𝑑𝑢 . We argue that
in this way the semantics of user-item interactions are preserved
in light of our shared HIN selection mechanism.

4.3 Heterogeneous Graph Neural Networks for
Recommendation

Given a recovered meta-path, our HGNN first utilizes node-level
attention to learn the weights of different neighbors under the
meta-path. Then the weighted aggregated embeddings are fed into
a semantic-level attention to aggregate embeddings under differ-
ent meta-paths. Following this process, we give an illustration of
obtaining user embeddings, and item embeddings are the same.
Node-level aggregation. Let ℎ𝑢𝑖 denotes the raw feature of a user
𝑢𝑖 . Giving a meta-path 𝜌𝑘 and the recovered meta-path based neigh-
borsN𝜌𝑘

𝑢𝑖 of𝑢𝑖 , the HGNN learns the weights of different neighbors
via self-attention [28] followed by a softmax normalization layer:

𝛼
𝜌𝑘
𝑢𝑖𝑢 𝑗

= softmax
𝑢 𝑗 ∈N

𝜌𝑘
𝑢𝑖

(𝜎 (a𝑇𝜌𝑘 · [W𝜌𝑘 · ℎ𝑢𝑖 | |W𝜌𝑘 · ℎ𝑢 𝑗
])), (6)

where W𝜌𝑘 and a𝜌𝑘 are the meta-path-specific learnable param-
eters. Note that N𝜌𝑘

𝑢𝑖 only keeps the user neighbors along with
the meta-path. After obtaining the attention weights, the model
performs node-level aggregations to get the meta-path based user
embeddings:

𝑧
𝜌𝑘
𝑢𝑖 = 𝜎 (

∑︁
𝑢 𝑗 ∈N

𝜌𝑘
𝑢𝑖

𝛼
𝜌𝑘
𝑢𝑖𝑢 𝑗

· ℎ𝑢 𝑗
). (7)

Since the neighbors are all in the meta-path 𝜌𝑘 , the semantics of 𝜌𝑘
are fused into the user’s embeddings. Thus given the meta-path set
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P = {𝜌1, . . . , 𝜌𝑚}, we can obtain𝑚 meta-path based embeddings
{𝑧𝜌1𝑢𝑖 , . . . , 𝑧

𝜌𝑚
𝑢𝑖 } of 𝑢𝑖 .

Semantic-level aggregation. User embedding with the specific
meta-path only contains a single semantic (e.g., U-M-U). After we
obtain user embeddings from different meta-paths, an attention-
based semantic-level aggregation is conducted to fuse different se-
mantics. Specifically, The importance (attention weights) of specific
meta-path 𝜌𝑘 is explained as averaging all corresponding trans-
formed user embeddings, which is learned as follows:

𝛽𝜌𝑘 = softmax𝜌𝑘 ∈P ( 1
|U|

∑︁
𝑢𝑖 ∈U

qT · tanh(W · 𝑧𝜌𝑘𝑢𝑖 + b)), (8)

whereW andq are the semantic-level parameters that are shared for
all meta-paths and b is the bias vector. Then we perform semantic-
level aggregations based on learned attention weights to obtain the
final user embedding 𝑧𝑢𝑖 :

𝑧𝑢𝑖 =
∑︁
𝜌𝑘 ∈P

𝛽𝜌𝑘 · 𝑧𝜌𝑘𝑢𝑖 . (9)

Ranking loss. Through the above process, we can obtain the final
individual user embedding 𝑧𝑢𝑖 and item embedding 𝑧𝑣𝑗 respectively.
The ranking score is defined as the inner product of them: 𝑦𝑢𝑖 𝑣𝑗 =
𝑧T𝑢𝑖𝑧𝑣𝑗 . Then a typical bayesian personalized ranking (BPR) loss
function [24] is applied to optimize the parameters:

𝐿𝑢𝑖 = −
∑︁

𝑣𝑗 ∈𝐼𝑢𝑖

∑︁
𝑣𝑘∉𝐼

𝑢𝑖

ln𝜎 (𝑦𝑢𝑖 𝑣𝑗 − 𝑦𝑢 𝑗𝑢𝑘 ). (10)

4.4 Privacy Analysis
In this section, we give a analysis of our proposed semantic-preserving
user-item interactions publishing, which satisfies both 𝜖1-semantic
privacy and 𝜖2-semantic guided interaction privacy.

Theorem 4.1. The semantic-preserving user-item interactions pub-
lishing mechanism achieves 𝜖1-semantic privacy.

Proof. Let 𝑔𝑢 and 𝑔𝑢 denote any two user-related shared HIN
lists which only differ in one bit, and any output 𝑔𝑢 after the first-
stage perturbation (denoted as M𝑠𝑘𝑝 = {M𝑠𝑘𝑝

1 , . . . ,M𝑠𝑘𝑝
𝑛 } w.r.t.

𝑛 selections). Assuming the total privacy budget is 𝜖1 and each
selection consumes 𝜖1

𝑛 privacy budget. Since each selection is inde-
pendent, we have:

Pr(M𝑠𝑘𝑝 (𝑔𝑢 ) = 𝑔𝑢 )
Pr(M𝑠𝑘𝑝 (𝑔𝑢 ) = 𝑔𝑢 )

=
Π𝑛
𝑖=1Pr(M

𝑠𝑘𝑝

𝑖
(𝑔𝑢 , 𝑞,G𝑠 ) = 𝐺𝑠𝑖 )

Π𝑛
𝑖=1Pr(M

𝑠𝑘𝑝

𝑖
(𝑔𝑢 , 𝑞,G𝑠 ) = 𝐺𝑠𝑖 )

= Π𝑛
𝑖=1

Pr(M𝑠𝑘𝑝

𝑖
(𝑔𝑢 , 𝑞,G𝑠 ) = 𝐺𝑠𝑖 )

Pr(M𝑠𝑘𝑝

𝑖
(𝑔𝑢 , 𝑞,G𝑠 ) = 𝐺𝑠𝑖 )

,

According to the EM, we have:

Pr(M𝑠𝑘𝑝

𝑖
(𝑔𝑢 , 𝑞,G𝑠 ) = 𝐺𝑠𝑖 )

Pr(M𝑠𝑘𝑝

𝑖
(𝑔𝑢 , 𝑞,G𝑠 ) = 𝐺𝑠𝑖 )

≤ 𝑒
𝜖1
𝑛 ,

Thus
Pr(M𝑠𝑘𝑝 (𝑔𝑢 ) = 𝑔𝑢 )
Pr(M𝑠𝑘𝑝 (𝑔𝑢 ) = 𝑔𝑢 )

≤ Π𝑛
𝑖=1𝑒

𝜖1
𝑛 = 𝑒𝜖1 .

□

Theorem 4.2. The semantic-preserving user-item interactions pub-
lishing mechanism achieves 𝜖2-semantic guided interaction privacy.

Proof. After the first-stage perturbation, we can obtain the
semantic guided item set 𝐼𝑢𝑠 and semantic guided adjacency list 𝑎𝑢𝑠
based on 𝑔𝑢 . Let 𝑎𝑢𝑠 denotes any adjacency list that only differs one
bit with 𝑎𝑢𝑠 . Without loss of generality, we assume 𝑎𝑢

𝑠1 ≠
ˆ𝑎𝑢
𝑠1. The

second-stage perturbation is equivalent to first applying RR and
then flipping each bit of 1 with probability 1−𝑞𝑢𝑠𝑖 . Denoting the RR
perturbation as M𝑅𝑅 , we have:

Pr(M𝑅𝑅 (𝑎𝑢𝑠 ) = 𝑎𝑢𝑠 )
Pr(M𝑅𝑅 (𝑎𝑢𝑠 ) = 𝑎𝑢𝑠 )

=
Pr(𝑎𝑢

𝑠1 → ˜𝑎𝑢
𝑠1) . . . Pr(𝑎

𝑢
𝑠 |𝐼𝑢𝑠 | →

˜𝑎𝑢
𝑠 |𝐼𝑢𝑠 | )

Pr( ˆ𝑎𝑢
𝑠1 → 𝑎𝑢𝑠 ) . . . Pr( ˆ𝑎𝑢

𝑠 |𝐼𝑢𝑠 | →
˜𝑎𝑢

𝑠 |𝐼𝑢𝑠 | )

=
Pr(𝑎𝑢

𝑠1 → ˜𝑎𝑢
𝑠1)

Pr( ˆ𝑎𝑢
𝑠1 → ˜𝑎𝑢

𝑠1)
≤ 1 − 𝑝

𝑝

= 𝑒𝜖2 .

The subsequent flipping operation can be viewed as post-processing
on the 𝑎𝑢𝑠 , thus the whole perturbation also achieving 𝜖2-semantic
guided interaction privacy. □

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We employ three real HIN datasets, including two cita-
tion datasets (ACM and DBLP) and one E-commerce dataset (Yelp),
where the basic information is summarized in Table 1. The user
nodes and the private link types are marked in bold.

Table 1: Dataset statistics.

Dataset # Nodes # Private/Shared
Links Meta-paths

ACM
Paper (P): 4025
Author (A): 17431
Conference (C): 14

P-A: 9703
P-C: 4025

P-A-P
P-C-P
A-P-A

DBLP
Paper (P): 14328
Author (A): 4057
Conference (C): 20

P-A: 15368
P-C: 14328

P-A-P
P-C-P
A-P-A

Yelp
User (U): 8743

Business (B): 3985
Category (C): 511

U-B: 11187
B-C: 11853

U-B-U
U-B-C-B-U
B-U-B

Baselines. Following [33], we compare FedHGNN with two
kinds of baselines: recommendation model based on centralized
data-storage (including HERec [26], HAN [31], NGCF [30], light-
GCN [8], RGCN [25], HGT [12]) and federated setting for privacy-
preserving (including FedMF [2], FedGNN [33], FedSog [18], PerFe-
dRec [20]). The details of them are shown in Appendix A.

Implementation Details. For all the baselines, the node fea-
tures are randomly initialized and the hidden dimension is set 64.
We tune other hyper-parameters to report the best performance.
We keep the available heterogeneous information (e.g., meta-paths)
the same for all HIN-based methods. For FedGNN and FedSog, we
modify the loss function as BPR loss because they originally focus
on rating prediction. In FedHGNN, the learning rate is set as 0.01,
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Table 2: Overall performance of different methods on three datasets. The best result is in bold.

Model HERec HAN NGCF lightGCN RGCN HGT FedMF FedGNN FedSog PerFedRec FedHGNN

ACM

HR@5 0.3874 0.4152 0.3845 0.3684 0.2929 0.3834 0.0834 0.2608 0.2905 0.2516 0.3593
HR@10 0.4525 0.4727 0.4379 0.4737 0.4619 0.5035 0.1331 0.345 0.3642 0.3229 0.4185
NDCG@5 0.3222 0.335 0.322 0.2624 0.1752 0.2612 0.056 0.193 0.2201 0.1824 0.2787
NDCG@10 0.3333 0.3537 0.3393 0.2968 0.2302 0.3001 0.072 0.2202 0.2438 0.2055 0.298

DBLP

HR@5 0.3265 0.3877 0.3161 0.3256 0.387 0.3252 0.0998 0.2301 0.1978 0.1676 0.3376
HR@10 0.3882 0.4498 0.3895 0.4419 0.5074 0.4763 0.1606 0.3252 0.2691 0.2619 0.4373
NDCG@5 0.2586 0.33 0.246 0.2281 0.2763 0.2264 0.0603 0.167 0.14 0.105 0.2481
NDCG@10 0.2717 0.3503 0.27 0.2646 0.3151 0.2748 0.0732 0.1963 0.163 0.1352 0.2778

Yelp

HR@5 0.2322 0.2877 0.1831 0.2368 0.2844 0.3322 0.0712 0.1801 0.1839 0.1513 0.2178
HR@10 0.3322 0.4077 0.2958 0.3684 0.3907 0.4635 0.1259 0.2596 0.2715 0.237 0.2977
NDCG@5 0.1637 0.1929 0.1127 0.1881 0.2003 0.2311 0.0444 0.1221 0.1227 0.1002 0.1578
NDCG@10 0.1961 0.2316 0.1493 0.2307 0.2346 0.2733 0.0619 0.1477 0.1508 0.1277 0.1834

𝜖1 and 𝜖2 are all set as 1. For each dataset, we first perform item
clustering based on shared knowledge so that each item only be-
longs to one shared HIN. The number of shared HIN (number of
clustering) is set as 20 for all datasets. The number of attention head
is set to 2 and we set early stopping if there is no improvement
for 40 epochs. For LDP and pseudo interacted items, we set the
hyper-parameters as the same with [18, 33]. Following [20], we
apply the leave-one-out strategy for evaluation and use HR@K and
NDCG@K as metrics.

5.2 Overall Performance
Table 2 shows the overall results of all baselines on three datasets.
The following findings entail from the Table 2: (1) FedHGNN out-
performs all the federated recommendation models by a big margin
(up to 34% in HR@10 and 42% in NDCG@10), which demonstrates
the effectiveness of our model. Surprisingly, FedHGNN also outper-
forms several centralized models (notably non-HIN based methods,
e.g., NGCF), which is attributed to that more heterogeneous in-
formation is utilized. (2) Among centralized baselines, HIN-based
methods perform better, especially on sparse datsets (e.g., dblp),
owing to introducing additional semantic information to alleviate
cold-start issue. It has also been observed that HAN achieves better
results than other HIN-based methods, indicating that meta-path
based neighbor aggregation may be more potent than non-GNN
based methods (HREec) and heterogeneous neighbor aggregation
methods (RGCN and HGT). Therefore, we choose HAN as our base
recommendation model. (3) Among federated baselines, FedMF per-
forms poorly because it ignores the high-order interactions which
is significant for cold-start recommendation. The other three feder-
ated models improve this by privacy-preserving graph expansion
(FedSog assumes social relation is public). In contrast, our Fed-
HGNN further considers semantic information with theoretically
guaranteed privacy protection.

5.3 Ablation Study
To have a in-depth analysis of our two-stage perturbation mech-
anism, we conduct ablation studies to dissect the effectiveness of
different modules. We design 7 variants based on FedHGNN and

the performance of these variants is outlined in Table 3. FedHGNN∗

is the FedHGNN model without two-stage perturbation. RR means
random response and DPRR is the degree-preserving RR. +S indi-
cates adding corresponding perturbation to each semantic guided
adjacency list 𝑎𝑢𝑠𝑖 , otherwise to each user’s adjacency list 𝑎𝑢 . Note
that SDPRR∗ indicates performing DPRR to the whole semantic
guided adjacency list 𝑎𝑢𝑠 , which is the only difference with our Fed-
HGNN. +E indicates adding EM perturbation. We set 𝜖2 = 𝜖2 = 1
for all variants except that 𝜖2 = 6 for RR-related variants, due to a
smaller 𝜖2 makes the graph denser, which sharply increases training
time and consumed memory.

From the table we have several findings: (1) After two-stage per-
turbation of adjacency lists, the performance of FedHGNN is even
superior to the model without perturbation. We find that the num-
ber of user-item edges slightly increase after perturbation. Consid-
ering the datasets are relatively sparse, we assume the perturbation
can be seen as an effective data augmentation method to alleviate
cold-start recommendation issues. (2) Pure RR and DPRR perform
poorly since they perturb user-item interactions randomly with-
out considering semantic-preserving. Pure RR perform even worse
due to it makes a graph denser and cause perturbation enlarge-
ments [40]. DPRR preserves degrees but fail to preserve user-item
interaction features. Thus we can draw a conclusion that semantic-
preserving requires both degree-preserving and feature-preserving.
On the contrary, perturbation within the semantic guided item set
(+SRR and +SDPRR) performs much better, which further verifies
our conclusion. (3) Adding first-stage perturbation (EM) will harm
the performance but is necessary, otherwise we can not protect the
user high-order patterns. Thanks to our designed similarity-based
EM, the performance has not decreased dramatically. Note that
FedHGNN also outperforms +ESDPRR∗, indicating we should keep
the diversity of user-item interactions after EM, i.e., the interacted
items should exist in each selected shared HIN.

5.4 Parameter Analysis
In this section, we investigate the impacts of some significant pa-
rameters in FedHGNN, including the number of shared HINs, as
well as the privacy budgets 𝜖1 and 𝜖2.
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Table 3: Performance of different variants of FedHGNN on three datasets.

Model FedHGNN∗ +RR +DPRR +SRR +SDPRR +E +ESRR +ESDPRR∗ FedHGNN

ACM

HR@5 0.3118 0.0495 0.1749 0.3437 0.389 0.3461 0.2959 0.3475 0.3593
HR@10 0.3961 0.1118 0.2268 0.4998 0.5027 0.4004 0.3861 0.4069 0.4185
NDCG@5 0.2293 0.0345 0.1326 0.2312 0.2865 0.266 0.215 0.266 0.2787
NDCG@10 0.2567 0.0491 0.1492 0.2845 0.323 0.2835 0.2438 0.2852 0.298

DBLP

HR@5 0.2824 0.0694 0.1678 0.2224 0.3346 0.2616 0.2729 0.3156 0.3376
HR@10 0.3934 0.1237 0.2394 0.3154 0.4557 0.3701 0.3718 0.4227 0.4373
NDCG@5 0.2176 0.0429 0.1115 0.1458 0.2484 0.1835 0.1929 0.2273 0.2481
NDCG@10 0.241 0.0602 0.1413 0.1757 0.2801 0.2176 0.2249 0.2619 0.2778

Yelp

HR@5 0.2583 0.0663 0.1383 0.1172 0.2364 0.2244 0.223 0.1871 0.2178
HR@10 0.3482 0.1232 0.2079 0.1803 0.3245 0.3242 0.3257 0.2624 0.2977
NDCG@5 0.1859 0.0392 0.0963 0.0672 0.171 0.152 0.1538 0.1321 0.1578
NDCG@10 0.2201 0.0575 0.1185 0.0789 0.1976 0.1875 0.1804 0.1563 0.1834
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Figure 4: Effects of different number 𝑛 of shared HINs
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Figure 5: Effects of different privacy budget 𝜖1 and 𝜖2

Analysis of different number of shared HINs. To demon-
strate the effects of different number 𝑛 of shared HINs, we fix
other hyper-parameters unchanged and vary 𝑛 to compare the per-
formance. The results are depicted in Figure 4. Considering two
extreme conditions: when 𝑛 = 1, the two-stage perturbation degen-
erate to solely second-stage perturbation, i.e., perturbation by DPRR
on the whole item set, which fails to preserve user-item interaction
patterns as discussed in Section 5.3; When 𝑛 = |𝐼 |, according to Eq.
5, it is equivalent to performing RR in each 1’s bit after the first-
stage perturbation, which intuitively perform better than 𝑛 ≤ |𝐼 |.

According to this theory, the performance will increase when 𝑛 is
larger. However, as can be seen, the performance of all datasets
has a dramatic incremental trend at the initial stage of increasing 𝑛
(𝑛 ≤ 20), then the curve becomes smooth and even has a decrement
trend (𝑛 ≥ 20). We attribute this phenomenon to that the model
with perturbed user-item interactions is performing better than
with true interactions, as depicted in Table 3, and a large 𝑛 will
reduce this effects. In summary, 𝑛 controls the trade-off between
utility and privacy, a larger 𝑛 may bring relatively higher utility
but weaker privacy protection, since the attacker can conclude the
user-item interactions within a small scope.

Analysis of different privacy budget. To analyze the effects
of different 𝜖1 and 𝜖2, we fix one parameter as 1 and change an-
other one from 0.5 to 16 to depict the performance in Figure. 5. 𝜖1
controls the protection strength of user behavior patterns (related-
shared HINs). We can see that the metrics gradually increase with
𝜖1, indicating the user behavior patterns are significant for recom-
mendation and this patterns are undermined when 𝜖1 is too small
(e.g., 0.5). When fixing 𝜖1 = 1, the performance curve of 𝜖2 will
first increase then slightly decrease. We suppose that due to the
user behavior patterns are already perturbed in the first stage, the
second stage perturbation is conducted on a contaminated inter-
actions, thus the performance may still drop when 𝜖2 is large. It
also shows that conducting moderate perturbation will promote
the performance (e.g., 𝜖 = 1).

6 CONCLUSION
In this paper, we first explore the challenge problem of HIN-based
federated recommendation. We formulate the privacy in feder-
ated HIN and propose a semantic-preserving user-item publish-
ing method with rigorous privacy guarantees. Incorporating this
publishing method into advanced heterogeneous graph neural net-
works, we propose a FedHGNN framework for recommendation.
Experiments show that the model achieves satisfied utility under
an accepted privacy budget.
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A DESCRIPTION OF BASELINES
The detailed descriptions of baselines are presented as follows:
• HERec [26] is a HIN-enhanced recommender framework based

on matrix factorization. It first trains HIN-based embeddings
then incorporates them into matrix factorization.

• HAN [31] introduces meta-path based neighbor aggregation to
learn node embeddings. We utilize the learned embeddings to
perform recommendation in an end-to-end fashion.

• NGCF [30] is a GNN-based recommender method which learns
embedding via message passing on user-item bipartite graph.

• lightGCN [8] improves NGCF by removing feature transforma-
tion and nonlinear activation.

• RGCN [25] utilizes GCN to learn node embeddings of knowledge
graph. It performs message-passing along different relations.

• HGT [12] proposes a transformer architecture for HIN model-
ing, which conducts heterogeneous attention when aggregating
neighbors.

• FedMF [2] is a federated recommender framework based on
matrix factorization. The user embedding is updated locally and
encrypted item gradient is uploaded to the server for aggregation.

• FedGNN [33] is a GNN-based federated recommender frame-
work. It obtains high-order user neighbors through a third-party
trustworthy server and utilizes pseudo-interacted item sampling
to achieve privacy-preserving.

• FedSog [18] is another GNN-based federated recommender frame-
work. It proposes a relational graph attention network to perform
social recommendations.

• PerFedRec [20] is a personalized federated recommendermethod.
It performs user clustering on the server and then aggregates
parameters within each cluster to achieve personalization.
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