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Abstract
We study the problem of minimizing the expectation of smooth nonconvex functions with the

help of several parallel workers whose role is to compute stochastic gradients. In particular, we
focus on the challenging situation where the workers’ compute times are arbitrarily heterogeneous
and random. In the simpler regime characterized by arbitrarily heterogeneous but deterministic
compute times, Tyurin and Richtárik [24] recently proposed the first optimal asynchronous SGD
method, called Rennala SGD, in terms of a novel complexity notion called time complexity. The
starting point of our work is the observation that Rennala SGD can have arbitrarily bad perfor-
mance in the presence of random compute times – a setting it was not designed to handle. To
advance our understanding of stochastic optimization in this challenging regime, we propose a new
asynchronous SGD method, for which we coin the name MindFlayer SGD. Our theory and empirical
results demonstrate the superiority of MindFlayer SGD over existing baselines, including Rennala
SGD, in cases when the noise is heavy tailed.

1. Introduction

We address the nonconvex optimization problem:

min
x∈Rd

{
f(x) := Eξ∼D [f(x; ξ)]

}
, (1)

where f : Rd × S → R, and ξ is a random variable with some distribution D on S. In the context
of machine learning, S could represent the space of all possible data, D denotes the distribution of
the training dataset, and f(·, ξ) denotes the loss of a data sample ξ.

The function f is assumed to be differentiable, and its gradient is L–Lipschitz continuous (see
Assumptions 1–2). We assume that we have n workers available to work in parallel, each able to
compute independent, unbiased stochastic gradients of f , whose variance is bounded by σ2 (see
Assumption 3). In this paper, we are interested in investigating the time complexity of methods
working in this natural setup.

1.1. Parallel Methods

In distributed systems with n clients computing stochastic gradients in parallel, the classic approach
is Minibatch SGD [5, 10, 11]:
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1. Receive stochastic gradients ∇f(xk; ξki ) from all workers i ∈ [n],

2. Update the model: xk+1 = xk − γ 1
n

∑n
i=1∇f(xk; ξki ),

where γ > 0 is the stepsize, and ξki are i.i.d. samples. However, Minibatch SGD is inefficient in
systems where workers have different compute times, as the overall step time is determined by the
slowest worker.

Asynchronous SGD. To better use all computational resources, ASGD algorithms [1, 4, 7, 16, 20,
22, 23] update the model as soon as any worker completes its computation:

1. Receive ∇f(xk−δk ; ξk−δk) from any worker,

2. Update: xk+1 = xk − γ∇f(xk−δk ; ξk−δk),

3. Send xk+1 back to the worker for the next gradient.

While ASGD can reduce idle time, it can suffer from delays due to outdated gradients, negatively
impacting convergence [24].

Rennala SGD. Tyurin and Richtárik [24] introduced Rennala SGD, which strikes a balance be-
tween efficiency and gradient staleness. It collects B gradients from workers at point xk, where
faster workers contribute more gradients:

1. Wait for B gradients at point xk,

2. Update: xk+1 = xk − γ 1
B

∑B
j=1∇f(xk; ξkj ).

This method is mini-max optimal for fixed compute times, but in practice, random compute times
are more realistic.

While it may seem that the story is over, we want to question the fixed time assumption, arguing
that a random time model is more realistic. The claim of optimality does not hold because of this
randomness, suggesting that the algorithms need to be reevaluated and redesigned. We believe that
a redesign is necessary to better fit this more realistic approach.

2. Problem Setup and Contributions

The deterministic compute time setup used by Tyurin and Richtárik [24] for Rennala SGD doesn’t
reflect the complexities of real-world distributed learning, where compute times are uncertain due
to hardware failures, job preemptions, GPU delays, and network inconsistencies [3, 6]. This issue
is even more severe in federated learning, where client unreliability leads to unpredictable compute
times or incomplete tasks [14].

To tackle these challenges, we introduce a setup that accounts for random compute times. We
define the stochastic gradient computation time for worker i as τi + ηi, where τi > 0 is the mini-
mum compute time, and ηi is a non-negative random variable from distribution Ji, representing the
uncertainties.

In this more realistic setting, existing methods like Rennala SGD and ASGD can perform poorly
or even fail to converge. We can illustrate this with a simple example:

Consider a scenario where each time we request a device to compute a stochastic gradient, one
of two outcomes occurs. Either the device completes the computation exactly after the minimum
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Figure 1: We ran an empirical experiment2 where we employ the same Ji = Lognormal(0, s)
distribution for all clients i ∈ [n], with varying standard deviations s. Specifically, we set s = 1 for
the left, s = 10 for the middle, and s = 100 for the right. Additionally, we set τi =

√
i+ 1. As we

observe, with an increase in the variance of the distribution, MindFlayer SGD demonstrates the ability
to significantly outperform Rennala SGD and ASGD.

time τ without any delays, or something goes wrong and the computation is never completed. This
situation can be modeled using a random time η as follows:

η =

{
0, with probability 1− q,

∞, with probability q,
(2)

where 0 < q < 1. In this scenario, any method that waits for a certain number of batches on each
iteration to perform a step runs the risk of never receiving the required batch and getting stuck. This
includes methods like Rennala SGD or ASGD.

To overcome these limitations, we introduce, MindFlayer SGD 1 in Algorithm 1. Unlike Rennala
SGD or ASGD, which wait for a fixed number of gradients (one in the case of ASGD), MindFlayer SGD
allocates a specific time for computing a single stochastic gradient. If a client fails to complete its
computation within the allotted time, we discard the incomplete computation and start anew.

We show that our method is a generalization of Rennala SGD, meaning that it is optimal in the
deterministic compute time setup. Moreover, it can be arbitrarily faster than Rennala SGD or ASGD
depending on the randomness in compute times. Particularly, we show that if the distribution is
positively-skewed, then our method is faster, as shown in Figure 1 where Ji = Lognormal(0, s).
As s gets bigger, the distribution’s skewness coefficient gets bigger and the performance of Rennala
SGD or ASGD gets worse. Meanwhile, our method MindFlayer SGD is robust to the change of the
variance, as demonstrated by Theorem 5.

To the best of our knowledge, MindFlayer SGD is the first algorithm designed to work in the
presence of heterogeneous and random worker compute times. In Section 3, we present the theo-
retical time complexity for this method and demonstrate its versatility in working with any choice
of hyperparameters. Notably, it can operate without prior knowledge of the fixed times τi and the
distributions Ji.

1. We name our method MindFlayer SGD, drawing inspiration from The Mind Flayer from Stranger Things, due to its
ability to precisely control its clients (Algorithm 2), analogous to the creature’s control over its victims (The Flayed).

2. On a quadratic problem with n = 5 clients. We tuned stepsizes for all, and used theoretical trials Bi for MindFlayer
SGD from Theorem 5 and tuned batch size for Rennala SGD, see Appendix I.
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Furthermore, in Appendix D we expand our theory to develop Vecna SGD, tailored for the het-
erogeneous case, where workers have datasets that are coming from different distributions.

To illustrate our superior performance of MindFlayer SGD, we conduct an evaluation using various
functions and distributions, as detailed in Appendix I. For distributions, we consider the Lognormal,
Log-Cauchy, and the Infinite-Bernoulli (defined by Equation (2)) distributions. As for the functions,
we consider a quadratic loss and a neural network on the MNIST dataset [18]. This diverse testing
setup allows us to demonstrate MindFlayer SGD’s robustness and effectiveness across a variety of
challenging scenarios.

3. MindFlayer SGD

Here, we propose our MindFlayer SGD algorithm for multiple device case (n > 1). For the heteroge-
neous case, please refer to Appendix D.

Algorithm 1 MindFlayer SGD

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, allot-
ted times t1, . . . , tn ≥ 0, number of trials per client
B1, . . . , Bn ≥ 0

2: for k = 1, 2, . . . ,K do
3: Put gk = 0
4: Send xk to all clients
5: Run Method 2 in all clients i = 1, 2, . . . , n
6: while ∃ client that has trials to perform do
7: Wait for the fastest client
8: Receive gradient g
9: gk = gk + g

10: end while
11: gk = gk

B , ⋄ B =
∑n

i=1 piBi and pi = Fi(ti) = P (ηi ≤ ti).
12: xk+1 = xk − γgk

13: end for

Algorithm 2 Client i-s k-th step

1: Receive xk from the server
2: for j = 1, 2, . . . , Bi do
3: Sample ηji ∼ Ji

4: if τi + ηji ≤ ti then
5: g = ∇f(xk; ξji ), ξji ∼ D
6: Send g to the server
7: end if
8: end for

The MindFlayer SGD algorithm begins with an initialization at a starting point x0 in Rd, with a
specified stepsize γ > 0, time allowances ti > 0, and trial counts Bi ≥ 0 for each client. In each
iteration k, the server distributes the current point xk to all clients. Each client i then executes a
subroutine (Method 2) to attempt to compute Bi stochastic gradients. During each attempt, client i
starts computing a stochastic gradient; if the computation exceeds the allotted time ti, they discard
the current gradient and begin another computation. Consequently, the actual number of stochastic
gradients received from each client i is a random variable, ranging from 0 to Bi. The expected num-
ber of gradients from client i is given by piBi, thus, the overall expected total of stochastic gradients
is B =

∑n
i=1 piBi. The server aggregates these received stochastic gradients and normalizes the

collective gradient by the expected batch size B. Finally, the point is updated to xk+1 = xk − γgk

following each aggregation round.
To give motivation in the design of our algorithm we consider the one device case in Section A.

To continue with the analysis of MindFlayer SGD, we first present the assumptions under which this
method is studied.

2. On a quadratic problem with theoretical hyperparameters, see Appendix I.
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3.1. Assumptions

We consider standard assumptions used in the nonconvex optimization [9].

Assumption 1 Function f is differentiable, and its gradient is L–Lipschitz continuous, i.e.,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, for all x, y ∈ Rd.

Assumption 2 There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.

Assumption 3 For all x ∈ Rd, stochastic gradients ∇f(x; ξ) are unbiased and σ2-variance-
bounded, i.e., Eξ [∇f(x; ξ)] = ∇f(x) and Eξ

[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ σ2, where σ2 ≥ 0.

3.2. Convergence theory

The following theorem gives iterations guarantees for the convergence of MindFlayer SGD.
Even though MindFlayer SGD is similar to Rennala SGD the convergence analysis require ad-

ditional considerations, since the batch size is a random variable here as apposed to the case of
Rennala SGD.

Theorem 4 (Proof in Appendix G.1) Assume that Assumptions 1, 2 and 3 hold. Let B =
∑n

i=1 piBi

and γ = 1
2L min

{
1, εB

σ2

}
in Method 1. Letting ∆ := f(x0)− f∗, we have that after

K ≥ max
{
1, σ2

εB

}
8∆L
ε

iterations, the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Note that in the deterministic case where ηi = 0 for all i ∈ [n], we have pi = P (ηi ≤ ti) = 1

for all i ∈ [n]. Therefore, we derive K ≥ max
{
1, σ2

εB

}
8∆L
ε , with B =

∑n
i=1Bi, yielding the

same result as in Rennala SGD.
We also achieve the same rate as ti → ∞ for all i, since in that scenario pi → 1. This is

expected because we will observe a consistent number of stochastic gradients each time, though the
timing may vary, as mentioned earlier.

However, if ti = 0 for all i ∈ [n], then K = ∞. This result is anticipated since, in this case, the
success probability is zero for all clients, and thus the server never receives stochastic gradients.

3.3. Time Complexity

The following theorem gives time complexity for MindFlayer SGD.

Theorem 5 (Proof in Appendix G.2) Assume that Assumptions 1, 2 and 3 hold. Let B =
∑n

i=1 piBi

and γ = 1
2L min

{
1, εB

σ2

}
in Method 1. Let t = (t1, . . . , tn), t1, . . . , tn ≥ 0. Without loss of gener-

ality assume that 0 < τ1 + t1 ≤ · · · ≤ τn + tn. Let

t(m) =

(
m∑
j=1

pj
τj+tj

)−1 (
S +

∑m
j=1 pj

)
,
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where S = max
{
1, σ

2

ε

}
. Let m∗ = arg min

m∈[n]
t(m), if there are several minimizers we take the

smallest one. Put

Bi = ⌈bi⌉, bi =

{
t(m∗)
τi+ti

− 1, if i ≤ m∗,

0, if i > m∗.

Then, MindFlayer SGD guarantees to find an ϵ-stationary point after

TMindFlayerSGD(t) ≥ 8×minm∈[n]


(

1
m

m∑
j=1

pj
τj+tj

)−1 (
S
m + 1

m

∑m
j=1 pj

)
∆L
ε

 seconds.

The theorem indicates that the optimal strategy is to disregard devices with a high value of
τi+ti/pi. Therefore, we should prioritize devices that not only have a high probability pi of com-
pleting the gradient within the allotted time ti but also have a relatively small sum of τi + ti. This
approach is logical as it avoids including devices with substantial computation times and low prob-
abilities of completing their tasks within the specified duration.

In the deterministic case where ηi = 0 for all i ∈ [n], we have pi = 1 for all i. Consequently,
by considering the time complexity of MindFlayer SGD with this substitution, the optimal choice of
ti is ti = 0 for all i ∈ [n]. Therefore, the final time complexity becomes

TMindFlayerSGD(t) ≥ 8×minm∈[n]


(

1
m

m∑
j=1

1
τj

)−1 (
1
m + 1

)
∆L
ε

 .

This formulation recovers the time complexity for Rennala SGD.
We still have the freedom to choose the ti allocation times. The optimal strategy would be to

select them in a manner that minimizes the time complexity. As observed in Figure 2, setting ti =
Med [ηi] proves to be a viable choice. This is further confirmed by our experiments in Appendix I.

3.4. Comparing to Rennala SGD

Let B :=

{
(B1, B2, . . . , Bn) : Bi ∈ N0;

n∑
i=1

Bi = B

}
be the set of all possible batch sizes for each

device, the time TB required for one step with batch size B of Rennala SGD is given by:

TB = min
B

{
maxi∈[1,n]

{
Biτi +

∑Bi
j=1 η

j
i

}}
≥ T1 = mini∈[n]

{
τi + η1i

}
≥ mini∈[n] {τi}+mini∈[n]

{
η1i
}
.

Thus, E [TB] ≥ τmin + E
[
mini∈[n] ηi

]
,

and the expected time complexity is

TRennalaSGD ≥ 8×
(
τmin + E

[
mini∈[n] ηi

])
max

{
1, 2σ

2

εB

}
∆L
ε .

Note that if the distribution of mini∈[n] ηi is heavy-tailed, then the expected time complexity
becomes infinite, thus favoring MindFlayer SGD over Rennala SGD. A simple illustration of this occurs
when extending the Equation (2) case, where η is either zero or infinite, to scenarios involving
multiple devices. In such cases, the expectation of the minimum time across devices, mini∈[n] ηi,
also results in an infinite expected time complexity.
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Appendix A. Motivation and Single Device Case

To motivate our new method, consider a single device setup as described in Equation (2), where the
device either returns a gradient after τ time or fails with probability q. The optimal strategy here is
to wait exactly τ seconds. If no gradient is received within this time, it means none will be, so we
discard the computation and request a new gradient. Since the probability of getting stuck decreases,
we will eventually receive a gradient and progress.

More generally, consider the following two strategies for each step:

• Strategy 1: Rennala SGD. We wait for the first B stochastic gradients. Thus, the time for one
step for this strategy is the random variable:

TB =
∑B

j=1(τ + ηj).

• Strategy 2: MindFlayer SGD. We repeat the following random trial B times: allocate time t for
computing a stochastic gradient. If we do not receive a stochastic gradient within that time,
discard the current computation and start over. Then the time for the j-th trial is given by:

T j(t) =

{
τ + ηj , if ηj ≤ t,

τ + t, if ηj > t.
(3)

Thus, the time for one step for this strategy is the random variable:

T̃B(t) =
∑B

j=1 T
j(t).

In the second case, rather than waiting for B gradients, we attempt to compute B gradients.
Essentially, we limit the time spent on computing a stochastic gradient. In expectation, Strategy
2 will collect Bp gradients per iteration, where p = P (η ≤ t) is the probability of collecting a
gradient within a trial. Setting t = ∞ removes this restriction, resulting in the same strategy as the
first one, Rennala SGD.

Consider the iteration complexity of Rennala SGD. Assume it takes K iterations. For MindFlayer
SGD, each iteration, on average, receives only Bp gradients, making it akin to a scaled-down version
of Rennala SGD. Consequently, MindFlayer SGD is expected to require 1/p times more iterations than
Rennala SGD to achieve the same level of convergence.

Thus, the time complexities in this setting are given by:

TRennalaSGD = KE [TB] = KB(τ + E [η]),

TMindFlayerSGD(t) =
K

p
E
[
T̃B(t)

]
=

K

p
B(τ + (1− p)t+ pE [τ |τ ≤ t]) ≤ K

p
B(τ + t).

This leads us to the following proposition:

Proposition 6 For the n = 1 case, MindFlayer SGD is faster than Rennala SGD if there exist a time
threshold t > 0 for which the following holds

τ+t
P (η≤t) < τ + E [η] .

11
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Figure 2: Left: We compare the time complexity of MindFlayer SGD as a function of clipping time (t)
to the constant complexity of Rennala SGD, highlighting the adaptive efficiency of MindFlayer SGD
across different t values. Middle: Empirical validation shows consistent performance improve-
ments for MindFlayer SGD using the same clipping times as in the left graph. Right: The ratio of
time complexities between Rennala SGD and MindFlayer SGD is plotted against different standard
deviations (s), demonstrating exponential efficiency gains for MindFlayer SGD at optimal clipping
times, with similar trends at median clipping times.

Note that this can hold for a big range of values t and even for any finite value t. The latter
holds for example in the case when E [η] = ∞. An example of such a scenario was demonstrated in
Equation (2). There are many other distributions for which the expectation is not finite, such as the
Log-Cauchy distribution, Lévy distribution, Log-t distribution, Landau distribution, and so forth.

A less restrictive example of distributions are positively-skewed distributions. Let s = E [η] −
Med[η] be the skewness coefficient of the distribution J . If s > 0 we say that the distribution is
positively-skewed. Then we have the following proposition.

Proposition 7 For the n = 1 case, if s > τ +Med[η] then MindFlayer SGD is faster than Rennala
SGD. Moreover, if s = (τ +Med[η]) (2α− 1) then

TRennalaSGD
TMindFlayerSGD(Med[η]) ≥ α.

Therefore, Rennala SGD can be arbitrarily bad. As an example consider the Lognormal(µ, σ2)
distribution. For this distribution, we have:

s = E [η]−Med[η] = exp

(
µ+

σ2

2

)
− exp(µ).

Thus, as we increase σ, the difference becomes arbitrarily large.
To verify this, we also conducted a small experiment, see Figure 2. The right plot showcases how

the ratio of time complexity between Rennala SGD and MindFlayer SGD can get arbitrarily large for
the optimal clipping time t∗ := argmint TMindFlayerSGD(t) and even the median of the distribution
tmedian = Med[η]. The left and middle plots showcase the potential improvement, and even loss
from choosing the clipping times t.

12
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Appendix B. Related Work

There are several other related works. Dutta et al. [6] explore the error-runtime trade-offs in Dis-
tributed SGD, revealing how slower and stale gradients can sometimes enhance convergence pro-
cesses. Woodworth et al. [25] compare Local SGD with Minibatch SGD, analyzing the efficiency of
local updates in different distributed settings. Wu et al. [26] advance the understanding of asyn-
chronous methods by proposing delay-adaptive step-sizes that adjust to asynchronous learning en-
vironments, optimizing the convergence rates. Furthermore, Hanna et al. [12, 13] focus on adaptive
stochastic gradient descent to improve communication efficiency in distributed learning, offering
strategies that reduce communication demands while maintaining fast convergence.

Appendix C. Conclusion and Future Work

In this paper, we tackle the problem of minimizing nonconvex functions with Lipschitz gradients
using parallel workers for stochastic gradient computation. We focus on the challenging scenario
where worker compute times are heterogeneous and random, building on recent ASGD methods
like Rennala SGD. While Rennala SGD is effective under deterministic conditions, its performance
deteriorates with random compute times.

To address this, we propose a novel method called MindFlayer SGD, which adapts to computation
time variability by discarding and restarting delayed computations, rather than adhering to fixed
batch sizes. This approach enhances robustness, allowing MindFlayer SGD to outperform both Ren-
nala SGD and standard ASGD in theoretical and empirical tests, especially in environments with high
variance and heavy-tailed compute time distributions.

Our results show significant reductions in time complexity, validated through simulations un-
der diverse conditions. Future work will incorporate communication times and explore the use of
gradient estimators with varying variance bounds to further improve optimization performance in
federated learning settings.

Appendix D. Heterogeneous Regime

Up to this point, we discussed the regime when all workers calculate i.i.d. stochastic gradients.
In distributed optimization and federated learning [17], it can be possible that the workers hold
different datasets. Let us consider the following optimization problem:

min
x∈Rd

{
f(x) := 1

n

∑n
i=1 Eξi∼Di

[fi(x; ξi)]
}
, (4)

where fi : Rd × Si → Rd and ξi are random variables with some distributions Di on Si. Problem
(4) generalizes problem (??). Here we have the same goal as in the previous sections.

D.1. Related work and discussion

The optimization problem (4) is well-investigated by many papers, including [2, 16, 19–21, 26].
There were attempts to analyze Asynchronous SGD in the heterogeneous regime. For instance,
Mishchenko et al. [20] proved the convergence to a neighborhood of a solution only. In general, it
is quite challenging to get good rates for Asynchronous SGD without additional assumptions about
the similarity of the functions fi [16, 20].

13
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In the non-stochastic case, when σ2 = 0, Wu et al. [26] analyzed the PIAG method in the non-
stochastic heterogeneous regime and showed convergence. Although the performance of PIAG can
be good in practice, in the worst case PIAG requires O

(
τnL̂∆/ε

)
seconds to converge, where τn

is the time delay of the slowest worker, L̂ :=
√∑n

i=1 L
2
i , and Li is a Lipschitz constant of ∇fi.

Note that the synchronous Minibatch SGD (see Section ??) method has the complexity O(τnL∆/ε) ,
which is always better.3

Our lower bound in Theorem ?? does not leave hope of breaking the dependence on the worst
straggler in the heterogeneous case. In the stochastic case, the lower bound is slightly more opti-
mistic in the regimes when the statistical term (the second term in (??)) is large. If the stragglers do
not have too large delays, then their contributions to the arithmetic mean can be small. Note that in
Theorem ?? in the homogeneous case, we have the harmonic mean of the delays instead.

D.2. Vecna SGD

Here we describe our method called Vecna SGD 4.

Algorithm 3 Vecna SGD

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, allotted times t1, . . . , tn ≥ 0, number of trials
per client B1, . . . , Bn ≥ 0

2: for k = 1, 2, . . . ,K do
3: Put gki = 0
4: Send xk to all clients
5: Run Method 4 in all clients i = 1, 2, . . . , n
6: while there is a client that has trials to perform do
7: Wait for the fastest client
8: Receive gradient gi from client i
9: gki = gki + g

10: end while
11: gk = 1

n

∑n
i=1

gki
piBi

, ⋄ pi = Fi(ti) = P (ηi ≤ ti).
12: xk+1 = xk − γgk

13: end for

Algorithm 4 Client i-s k-th step

1: Receive xk from the server
2: for j = 1, 2, . . . , Bi do
3: Sample ηji ∼ Ji ⋄ Start computing gradient estimator.
4: if τi + ηji ≤ ti then
5: g = ∇f(xk; ξji ), ξji ∼ D ⋄ The computation completes within the allotted time ti.
6: Send g to the server
7: end if
8: end for

3. In the nonconvex case, L̂ can be arbitrarily larger than L.
4. We name our method Vecna SGD, drawing inspiration from Vecna from Stranger Things.

14
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The MindFlayer SGD algorithm begins with an initialization at a starting point x0 in Rd, with
a specified stepsize γ, time allowances ti, and trial counts Bi for each client. In each iteration k,
ranging from k = 1 to K, the server distributes the current point xk to all clients. Each client i then
executes a subroutine (Method 2) to attempt to compute Bi stochastic gradients from samples ξji
drawn from a distribution D. During each attempt, client i starts computing a stochastic gradient;
if the computation exceeds the allotted time ti, they discard the current gradient and begin another
computation. Consequently, the actual number of stochastic gradients received from each client i
becomes a random variable, ranging from 0 to Bi. The expected number of gradients from client i
is given by piBi, leading to an overall expected total of stochastic gradients B =

∑n
i=1 piBi. The

server aggregates these received stochastic gradients and normalizes the collective gradient by the
expected batch size B. Finally, the point is updated to xk+1 = xk−γgk following each aggregation
round.

D.3. Result

Theorem 8 (Proof in Appendix H.1) Assume that Assumptions 1, 2 hold for the function f and
Assumption 3 holds for the function fi for all i ∈ [n]. Let γ = min

{
1√

LAK
, 1
LB , ε

2LC

}
in Method 3.

Then after

K ≥ 12∆L

ε
max

{
B,

12∆A

ε
,
2C

ε

}
,

iterations, the method guarantees that min0≤k≤K E
[∥∥∇f(xk)

∥∥2] ≤ ε, where

A =
L

n2

n∑
i=1

1− pi
piBi

, B = 1, C =
σ2

n2

n∑
i=1

1

piBi
.

Theorem 9 (Proof in Appendix H.2) Assume that Assumptions 1, 2 hold for the function f and
Assumption 3 holds for the function fi for all i ∈ [n]. Let γ = min

{
1√

LAK
, 1
LB , ε

2LC

}
in Method 3.

Let t = (t1, . . . , tn), t1, . . . , tn ≥ 0. Without loss of generality assume that 0 < τ1 + t1 ≤ · · · ≤
τn + tn. Let

T = τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε
.

Put
Bi = ⌈bi⌉, bi =

T

τi + ti
.

Then, Vecna SGD guarantees to find an ϵ-stationary point after

TVecnaSGD(t) ≥ 288× ∆L

ε

(
τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε

)

seconds.

15



MINDFALYER SGD

Appendix E. The Rennala Algorithm

Algorithm 5 Rennala SGD

1: Input: starting point x0, stepsize γ, batch size S
2: Run Method 6 in all workers
3: for k = 0, 1, . . . ,K − 1 do
4: Init gk = 0 and s = 1
5: while s ≤ S do
6: Wait for the next worker
7: Receive gradient and iteration index (g, k′)
8: if k′ = k then
9: gk = gk + 1

S g; s = s+ 1
10: end if
11: Send (xk, k) to the worker
12: end while
13: xk+1 = xk − γgk

14: end for

Algorithm 6 Worker’s Infinite Loop

1: Init g = 0 and k′ = −1
2: while True do
3: Send (g, k′) to the server
4: Receive (xk, k) from the server
5: k′ = k
6: g = ∇f(xk; ξ), ξ ∼ D
7: end while

We mention the Rennala SGD throughout the paper, here we provide a brief introduction to the
method and its development. Algorithm Algorithm 5 shows the work done by the server. Essentially,
the server asynchronously waits to collect a batch of size S, whenever it recieves a gradient from a
worker that has the same iteration as the algorithm, it assigns it to compute a gradient at the same
point xk. After collecting the batch, we preform a synchronous update (given that all gradients were
made on the same point xk), using an average of the collected batch.

Appendix F. The classical SGD theory

In this section, we present the classical SGD theory as developed by Ghadimi and Lan [8] and Khaled
and Richtárik [15]. Our analysis will follow the approach of the latter.

We consider the stochastic gradient descent (SGD) method:

xk+1 = xk − γg(xk),

where x0 ∈ Rd is the initial point, and g(x) is a stochastic gradient estimator at x.
We make the following assumption:

Assumption 10 The stochastic gradient estimator g(x) satisfies:

E [g(x)] = ∇f(x)

E
[
∥g(x)∥2

]
≤ 2A (f(x)− f∗) +B ∥∇f(x)∥2 + C,

for all x ∈ Rd and some constants A,B,C ≥ 0.

This assumption is both general and reasonable, and it is satisfied by many modern SGD-type
methods. For further details, refer to Khaled and Richtárik [15].

Under this assumption, we can derive the following convergence result.
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Theorem 11 (Corollary 1 [15]) Assume that Assumptions 1, 2 and 10 hold. Then for any ε > 0

min
0≤k≤K

E
[∥∥∥∇f(xk)

∥∥∥2] ≤ ε

for

γ = min

{
1√

LAK
,

1

LB
,

ε

2LC

}
,

and

K ≥ 12∆L

ε
max

{
B,

12∆A

ε
,
2C

ε

}
.

Appendix G. Proofs for Homogeneous Regime

G.1. Proof of Theorem 4

First, we rewrite MindFlayer SGD in a classical SGD way where we do gradient step with an unbiased
estimator of the gradient at each iteration.

Algorithm 7 MindFlayer SGD

1: Input: starting point x0, stepsize γ, time budgets t1, . . . , tn ≥ 0, batch sizes B1, . . . , Bn ≥ 0,
2: for k = 0, 1, . . . ,K − 1 do

3: gk = 1
B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
xk; ξji

)
4: xk+1 = xk − γgk

5: end for

where B =
∑n

i=1 piBi, pi = F (ti) = P (ηi ≤ ti) and I(·) denotes the indicator function. To
prove the theorem we need to establish some properties of the gradient estimator. First, we need an
unbiased estimator.

Lemma 12 (Proof in ?? G.1.1) The gradient estimator in Algorithm 7 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd.

Next, we obtain an upper bound for the variance of this estimator.

Lemma 13 (Proof in ?? G.1.2) The gradient estimator in Algorithm 7 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2 ∥∇f(x)∥2 + 1

B
σ2.

17
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We are ready to prove the Theorem 4.

Theorem 4 Assume that Assumptions 1, 2 and 3 hold. Let B =
∑n

i=1 piBi and γ = 1
2L min

{
1, εB

σ2

}
in Method 1. Letting ∆ := f(x0)− f∗, we have that after

K ≥ max

{
1,

σ2

εB

}
8∆L

ε

iterations, the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Proof Note that Algorithm 1 can be viewed as a special case of classical stochastic gradient descent
(SGD), as reformulated in Algorithm 7. We need to verify that the gradient estimator fulfills the
conditions required by classical SGD (Theorem 11). The two preceding lemmas address this require-
ment precisely. Specifically, Theorem 12 confirms that the gradient estimator used in Algorithm 7
is unbiased, while Theorem 13 verifies that the variance of this estimator meets the conditions spec-
ified in Assumption 10, with A = 0, B = 2 and C = σ2

B . Consequently, it remains to apply
Theorem 11.

G.1.1. PROOF OF THEOREM 12

Lemma 12 The gradient estimator in Algorithm 7 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd, where B =

∑n
i=1 piBi.

Proof This follows from direct computation:

E [g(x)] = E

 1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
=

1

B

n∑
i=1

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)
∇f

(
x; ξji

)]
(ηji⊥⊥ξji )

=
1

B

n∑
i=1

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)]
E
[
∇f

(
x; ξji

)]

=
1

B

n∑
i=1

Bi∑
j=1

pi∇f(x)

= ∇f(x)
1

B

n∑
i=1

piBi

= ∇f(x).
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G.1.2. PROOF OF THEOREM 13

Lemma 13 The gradient estimator in Algorithm 7 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2 ∥∇f(x)∥2 + 1

B
σ2,

where B =
∑n

i=1 piBi.

Proof In order to simplify notation, let

ai :=

Bi∑
j=1

bji ,

where
bji := I

(
ηji ≤ ti

)
∇f

(
x; ξji

)
.

Step 1 (Initial expression). We express E
[
∥g(x)∥2

]
in terms of ai:

E
[
∥g(x)∥2

]
= E

∥∥∥∥∥ 1B
n∑

i=1

ai

∥∥∥∥∥
2
 =

1

B2
E

 n∑
i=1

∥ai∥2 +
∑
i ̸=j

⟨ai, aj⟩

 .

We further simplify both terms via:

∥ai∥2 =

∥∥∥∥∥∥
Bi∑
j=1

bji

∥∥∥∥∥∥
2

=

Bi∑
j=1

∥∥∥bji∥∥∥2 +∑
k ̸=l

〈
bki , b

l
i

〉
, (5)

⟨ai, aj⟩ =

〈
Bi∑
k=1

bki ,

Bj∑
l=1

blj

〉
=

Bi∑
k=1

Bj∑
l=1

〈
bki , b

l
j

〉
. (6)

Step 2. (Finding the expectations). Further

E
[∥∥∥bji∥∥∥2] = E

[(
I
(
ηji ≤ ti

))2 ∥∥∥∇f
(
x; ξji

)∥∥∥2]
(ηji⊥⊥ξji )

= E
[(

I
(
ηji ≤ ti

))2]
E
[∥∥∥∇f

(
x; ξji

)∥∥∥2]
≤ pi

(
∥∇f(x)∥2 + E

[∥∥∥∇f
(
x; ξji

)
−∇f(x)

∥∥∥2])
(Assumption 3)

≤ pi

(
∥∇f(x)∥2 + σ2

)
, (7)
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and

E
[〈

bki , b
l
j

〉]
= E

[〈
I
(
ηki ≤ ti

)
∇f

(
x; ξki

)
, I
(
ηlj ≤ tj

)
∇f

(
x; ξlj

)〉]
(⊥⊥)
= E

[
I
(
ηki ≤ ti

)]
E
[
I
(
ηlj ≤ tj

)]〈
E
[
∇f

(
x; ξki

)]
,E
[
∇f

(
x; ξlj

)]〉
= pipj ∥∇f(x)∥2 . (8)

Step 3 (Putting everything together). We start with

E
[
∥ai∥2

] (5,7,8)

≤ Bipi

(
∥∇f(x)∥2 + σ2

)
+Bi (Bi − 1) p2i ∥∇f(x)∥2

≤ Bipi

(
∥∇f(x)∥2 + σ2

)
+B2

i p
2
i ∥∇f(x)∥2 ,

using this and recalling the definition of B, we get

E

[
n∑

i=1

∥ai∥2
]
≤ B ∥∇f(x)∥2 +Bσ2 + ∥∇f(x)∥2

n∑
i=1

B2
i p

2
i .

Next

⟨ai, aj⟩
(6,8)
= BipiBjpj ∥∇f(x)∥2 ,

finally,

E
[
∥g(x)∥2

]
=

1

B2
E

 n∑
i=1

∥ai∥2 +
∑
i ̸=j

⟨ai, aj⟩


≤ 1

B2

B ∥∇f(x)∥2 +Bσ2 +

 n∑
i=1

B2
i p

2
i +

∑
i ̸=j

BipiBjpj

 ∥∇f(x)∥2


=
1

B2

(
B +B2

)
∥∇f(x)∥2 + σ2

B

≤ 2 ∥∇f(x)∥2 + σ2

B
.

G.2. Proof of Theorem 5

The following lemma gives time complexity for any choice of B1, . . . , Bn and t = (t1, . . . , tn) in
MindFlayer SGD.

Lemma 14 (Proof in ?? H.2.1) Assume that Assumptions 1, 2 and 3 hold. Let B =
∑n

i=1 piBi

and γ = 1
2L min

{
1, εB

σ2

}
in Method 1. Then after

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}max

{
1,

σ2

εB

}
8∆L

ε

seconds, the method guarantees to find an ϵ-stationary point.
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Now we are ready to prove the theorem.

Theorem 5 Assume that Assumptions 1, 2 and 3 hold. Let B =
∑n

i=1 piBi and γ = 1
2L min

{
1, εB

σ2

}
in Method 1. Let t = (t1, . . . , tn), t1, . . . , tn ≥ 0. Without loss of generality assume that 0 <
τ1 + t1 ≤ · · · ≤ τn + tn. Let

t(m) =

 m∑
j=1

pj
τj + tj

−1S +
m∑
j=1

pj

 ,

where S = max
{
1, σ

2

ε

}
. Let m∗ = arg min

m∈[n]
t(m), if there are several minimizers we take the

smallest one. Put

Bi = ⌈bi⌉, bi =

{
t(m∗)
τi+ti

− 1, if i ≤ m∗,

0, if i > m∗.

Then, MindFlayer SGD guarantees to find an ϵ-stationary point after

TMindFlayerSGD(t) ≥ 8× min
m∈[n]


 1

m

m∑
j=1

pj
τj + tj

−1 S

m
+

1

m

m∑
j=1

pj

 ∆L

ε


seconds.

Proof First we show that Bi-s are valid choice, i.e. bi > 0 for i ≤ m∗. If m∗ = 1, then t(1) =
τ1+t1
p1

(S + p1), thus b1 = S
p1

> 0. If m∗ > 1, then, by its definition, t(m∗) < t(m∗ − 1). This
implies m∗∑

j=1

pj
τj + tj

−1S +

m∗∑
j=1

pj

 <

m∗−1∑
j=1

pj
τj + tj

−1S +

m∗−1∑
j=1

pj

 ,

leading to m∗−1∑
j=1

pj
τj + tj

S +
m∗∑
j=1

pj

 <

m∗∑
j=1

pj
τj + tj

S +
m∗−1∑
j=1

pj


and

pm∗

m∗∑
j=1

pj
τj + tj

 <
pm∗

τm∗ + tm∗

S +
m∗∑
j=1

pj

 .

From the last inequality, we get that τm∗ + tm∗ < t(m∗), thus bi ≥ bm∗ > 0 for all i ≤ m∗.
It remains to find the time complexity with these choices of Bi. From Theorem 17, we have that

the time complexity is

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}max

{
1,

σ2

εB

}
8∆L

ε
.
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Then,
max
i∈[n]

{Bi (τi + ti)} ≤ max
i∈[n]

{(bi + 1) (τi + ti)} = t(m∗).

On the other hand

B =

n∑
i=1

piBi ≥
n∑

i=1

pibi =

m∗∑
i=1

t(m∗)
pi

τi + ti
−

m∗∑
i=1

pi

=

m∗∑
j=1

pj
τj + tj

−1S +
m∗∑
j=1

pj

 m∗∑
i=1

pi
τi + ti

−
m∗∑
i=1

pi = S ≥ σ2

ε
.

Therefore, the time complexity is

TMindFlayerSGD(t) ≥ t(m∗)
8∆L

ε
=

8∆L

ε
min
m∈[n]


 m∑

j=1

pj
τj + tj

−1S +

m∑
j=1

pj

 .

G.2.1. PROOF OF THEOREM 17

Lemma 17 Assume that Assumptions 1, 2 and 3 hold. Let B =
∑n

i=1 piBi and γ = 1
2L min

{
1, εB

σ2

}
in Method 1. Then after

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}max

{
1,

σ2

εB

}
8∆L

ε

seconds, the method guarantees to find an ϵ-stationary point.

Proof Let T j
i (ti) be the random time taken by client i in the j-th attempt of calculating gradient

estimator. We have

T j
i (ti) =

{
τi + ηji , if ηji ≤ ti,

τi + ti, if ηji > ti.
(9)

Thus, the random time taken for client i to finish it’s all bi trials is

Ti(ti) :=
bi∑
j=1

T j
i (ti) ≤ bi (τi + ti) . (10)

Finally, let T be the random time required for one iteration of MindFlayer SGD. We get

T = max
i∈[n]

Ti(ti) ≤ max
i∈[n]

{bi (τi + ti)}. (11)

It remains to multiply T with the number of iterations K given by Theorem 4.
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Appendix H. Proofs for Heterogeneous Regime

H.1. Proof of Theorem 8

Here, we rewrite Vecna SGD (Algorithm 3) in a classical SGD way.

Algorithm 8 Vecna SGD

1: Input: starting point x0, stepsize γ, time budgets t1, . . . , tn ≥ 0, batch sizes b1, . . . , bn ≥ 0,
2: for k = 0, 1, . . . ,K − 1 do

3: gk = 1
n

n∑
i=1

1
piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
xk; ξji

)
4: xk+1 = xk − γgk

5: end for

where pi = F (ti) = P (ηi ≤ ti).
To prove the theorem we need to establish some properties of the gradient estimator. First, we

need an unbiased estimator.

Lemma 15 (Proof in ?? H.1.1) The gradient estimator in Algorithm 8 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd.

Next, we obtain an upper bound for the variance of this estimator.

Lemma 16 (Proof in ?? H.1.2) The gradient estimator in Algorithm 8 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2L∆

n2

n∑
i=1

1− pi
piBi

+ ∥∇f(x)∥2 + σ2

n2

n∑
i=1

1

piBi
.

We are ready to prove Theorem 8. First, let us restate the theorem.

Theorem 8 Assume that Assumptions 1, 2 hold for the function f and Assumption 3 holds for the
function fi for all i ∈ [n]. Let γ = min

{
1√

LAK
, 1
LB , ε

2LC

}
in Method 3. Then after

K ≥ 12∆L

ε
max

{
B,

12∆A

ε
,
2C

ε

}
,

iterations, the method guarantees that min0≤k≤K E
[∥∥∇f(xk)

∥∥2] ≤ ε, where

A =
L

n2

n∑
i=1

1− pi
piBi

, B = 1, C =
σ2

n2

n∑
i=1

1

piBi
.
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Proof Note that Algorithm 3 can be viewed as a special case of classical stochastic gradient de-
scent (SGD), as reformulated in Algorithm 8. We need to verify that the gradient estimator ful-
fills the conditions required by classical SGD (Theorem 11). The two preceding lemmas address
this requirement precisely. Specifically, Theorem 15 confirms that the gradient estimator used in
Algorithm 8 is unbiased, while Theorem 16 verifies that the variance of this estimator meets the
conditions specified in Assumption 10. Consequently, it remains to apply Theorem 11.

H.1.1. PROOF OF THEOREM 15

Lemma H.1.1 The gradient estimator in Algorithm 8 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd.

Proof This follows from direct computation:

E [g(x)] = E

 1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
=

1

n

n∑
i=1

1

piBi

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)]
(ηji⊥⊥ξji )

=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)]
E
[
∇fi

(
x; ξji

)]

=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

pi∇fi(x)

=
1

n

n∑
i=1

∇fi(x)

= ∇f(x).

H.1.2. PROOF OF THEOREM 16

Lemma 16 The gradient estimator in Algorithm 8 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2L∆

n2

n∑
i=1

1− pi
piBi

+ ∥∇f(x)∥2 + σ2

n2

n∑
i=1

1

piBi
.
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Proof Since ηji and ξji are independent from each other for all i ∈ [n] and j, we have

Var (g(x)) =
1

n2

n∑
i=1

1

p2iB
2
i

Bi∑
j=1

Var
(
I
(
ηji ≤ ti

)
∇fi

(
x; ξji

))
,

then we use the fact that

Var (XY ) = Var (X)Var (Y ) + Var (X)E [Y ]2 +Var (Y )E [X]2 ,

where X and Y are independent random variables. Hence, we obtain the following bound on the
variance

Var
(
I
(
ηji ≤ ti

)
∇fi

(
x; ξji

))
≤ pi(1− pi)σ

2 + pi (1− pi) ∥∇fi(x)∥2 + σ2p2i

= piσ
2 + pi (1− pi) ∥∇fi(x)∥2 .

As a result, the variance of g(x) is bounded by

Var (g(x)) ≤ 1

n2

n∑
i=1

1

p2iB
2
i

Bi∑
j=1

(
piσ

2 + pi (1− pi) ∥∇fi(x)∥2
)

=
1

n2

n∑
i=1

1

piBi

(
σ2 + (1− pi) ∥∇fi(x)∥2

)
.

Finally

E
[∥∥g(x)2∥∥] = Var (g(x)) + ∥E [g(x)] ∥2

≤ ∥∇f(x)∥2 + 1

n2

n∑
i=1

1− pi
piBi

∥∇fi(x)∥2 +
σ2

n2

n∑
i=1

1

piBi
.

Next we use ∥∇fi(x)∥2 ≤ 2L∆, thus

E
[∥∥g(x)2∥∥] ≤ 2L∆

n2

n∑
i=1

1− pi
piBi

+ ∥∇f(x)∥2 + σ2

n2

n∑
i=1

1

piBi
.

H.2. Proof of Theorem 9

The following lemma gives time complexity for any choice of B1, . . . , Bn and t = (t1, . . . , tn) in
Vecna SGD.

Lemma 17 (Proof in ?? H.2.1) Assume that Assumptions 1, 2 hold for the function f and Assump-
tion 3 holds for the function fi for all i ∈ [n]. Let γ = min

{
1√

LAK
, 1
LB , ε

2LC

}
in Method 3. Then

after

TVecnaSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}
12∆L

ε
max

{
1,

12∆A

ε
,
2C

ε

}
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seconds, the method guarantees to find an ϵ-stationary point, where

A =
L

n2

n∑
i=1

1− pi
piBi

, C =
σ2

n2

n∑
i=1

1

piBi
.

Now we are ready to prove the theorem.

Theorem 9 Assume that Assumptions 1, 2 hold for the function f and Assumption 3 holds for the
function fi for all i ∈ [n]. Let γ = min

{
1√

LAK
, 1
LB , ε

2LC

}
in Method 3. Let t = (t1, . . . , tn),

t1, . . . , tn ≥ 0. Without loss of generality assume that 0 < τ1 + t1 ≤ · · · ≤ τn + tn. Let

T = τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε
.

Put
Bi = ⌈bi⌉, bi =

T

τi + ti
.

Then, Vecna SGD guarantees to find an ϵ-stationary point after

TVecnaSGD(t) ≥ 288× ∆L

ε

(
τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε

)
seconds.

Proof Since we have bi ≥ 1 for all i ∈ [n], we get

max
i∈[n]

{Bi (τi + ti)} ≤ max
i∈[n]

{(bi + 1) (τi + ti)} ≤ 2max
i∈[n]

{bi (τi + ti)} = 2T.

It remains to apply Theorem 17. We get

12∆A

ε
=

12∆L

εn2

n∑
i=1

1− pi
piBi

≤ 12∆L

εn2

n∑
i=1

1− pi
pibi

=
12∆L

nε

1

T

1

n

n∑
i=1

1− pi
pi

(τi + ηi) ≤ 12,

and

2C

ε
=

2σ2

εn2

n∑
i=1

1

piBi
≤ 2σ2

εn2

n∑
i=1

1

pibi
≤ 2σ2

nε

1

T

1

n

n∑
i=1

τi + ti
pi

≤ 2.

Finally, we get that Algorithm 3 returns a solution after

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}
12∆L

ε
max

{
1,

12∆A

ε
,
2C

ε

}
≥ 288

∆L

ε
T

≥ 288
∆L

ε

(
τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε

)
seconds.

26



MINDFALYER SGD

H.2.1. PROOF OF THEOREM 17

Lemma 17 Assume that Assumptions 1, 2 hold for the function f and Assumption 3 holds for the
function fi for all i ∈ [n]. Let γ = min

{
1√

LAK
, 1
LB , ε

2LC

}
in Method 3. Then after

TVecnaSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}
12∆L

ε
max

{
1,

12∆A

ε
,
2C

ε

}
seconds, the method guarantees to find an ϵ-stationary point, where

A =
L

n2

n∑
i=1

1− pi
piBi

, C =
σ2

n2

n∑
i=1

1

piBi
.

Proof Let T j
i (ti) be the random time taken by client i in the j-th attempt of calculating gradient

estimator. We have

T j
i (ti) =

{
τi + ηji , if ηji ≤ ti,

τi + ti, if ηji > ti.
(12)

Thus, the random time taken for client i to finish it’s all Bi trials is

Ti(ti) :=
Bi∑
j=1

T j
i (ti) ≤ Bi (τi + ti) . (13)

Finally, let T be the random time required for one iteration of MindFlayer SGD. We get

T = max
i∈[n]

Ti(ti) ≤ max
i∈[n]

{Bi (τi + ti)}. (14)

It remains to multiply T with the number of iterations K given by Theorem 8.

Appendix I. Experiments

In this section we explain the setup for comparing MindFlayer SGD, Rennala SGD, and ASGD, which
we used throughout this paper. We compare the algorithms’ performance on a quadratic optimiza-
tion (15) task with access to a stochastic gradient. The parallelism was simulated on a machine with
2 Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz, with a total of 64 logical CPUs. For each setting
of the algorithm, we run 10 different seeds for the random time and plot the average, minimum and
maximum, see Figure 1, Figure 2, etc.

We use a similar setup to the one employed by Tyurin and Richtárik [24], but modify it so that we
have a known expected variance. We make this choice, so we can compare theoretical parameters,
as we did in Figure 2.

Furthermore, we consider the homogeneous optimization problem 1, with the convex quadratic
function:

f(x) =
1

2
x⊤Ax− b⊤x ∀x ∈ Rd.

We take d = 1000,
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Figure 3: We ran an empirical experiment as descibed in the experiments section where we employ
the same Ji = InfBernoulli(q) distribution for all clients i ∈ [n], with different q values. From
left to right we have q = 0.6, 0.7, 0.8. Additionally, we set τi =

√
i+ 1. As we observe, with an

increase of the probability of failure q unlike Rennala SGD and ASGD, MindFlayer SGD demonstrates
the ability to continue optimizing and not be stuck

A =
1

4


2 −1 0

−1
. . . . . . . . .
. . . . . . −1

0 −1 2

 ∈ Rd×d and b =
1

4


−1
0
...
0

 ∈ Rd. (15)

Assume that all n workers has access to the following unbiased stochastic gradients:

[∇f(x, ξ)]j := ∇jf(x) + ξ,

where ξ ∼ N (0, 0.00032), thus, we get that in Assumption 3 we have,

σ2 = 0.00032 · d = 0.00032 · 1000.

Now setting the convergence threshold ϵ = 10−4, we can infer all theoretical parameters. To
find the optimal time corresponding to Rennala SGD we need to fix the times, we do that by either
removing the randomness, or adding the expected randomness.

On the other hand, for MindFlayer SGD we use the results from Theorem 5 to set the theoretical
number of trials for each client.

In addition to the experimental results shown throughout the paper, we ran two more experi-
ments. One with the Infinite-Bernoulli distribution on the same quadratic problem, and a second
with the Log-Cauchy distribution with a small two-layer neural network on the MNSIT dataset [18].
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Figure 4: We train a two layer Neural Network on the MNIST dataset where we set the distribution
Ji = Log-Cauchy(s) for all clients i ∈ [n], with different scale values s. From left to right we
have s = 1, 10, 100. Additionally, we set τi =

√
i+ 1. We observe that Mindflayer SGD convergence

doesn’t suffer from the increase in the scale parameter s. On the other hand, Rennala and ASGD are
delayed significantly with bigger scale parameters s
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