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ABSTRACT

This study evaluates the performance of classical and modern control methods for
real-world Cable-Driven Parallel Robots (CDPRs), focusing on underconstrained
systems with limited time discretization. A comparative analysis is conducted be-
tween classical PID controllers and modern reinforcement learning algorithms, in-
cluding Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimiza-
tion (PPO), and Trust Region Policy Optimization (TRPO). The results demon-
strate that TRPO outperforms other methods, achieving the lowest root mean
square (RMS) errors across various trajectories and exhibiting robustness to larger
time intervals between control updates. TRPO’s ability to balance exploration and
exploitation enables stable control in noisy, real-world environments, reducing
reliance on high-frequency sensor feedback and computational demands. These
findings highlight TRPO’s potential as a robust solution for complex robotic con-
trol tasks, with implications for dynamic environments and future applications in
sensor fusion or hybrid control strategies.

1 INTRODUCTION

Cable-Driven Parallel Robots (CDPR) have unique parameters, which means they can move heavy
loads within a fairly large space. Cable suspended robots can be divided into two types: fully
constrained configuration, which does not allow a free position and orientation movements of the
end-effector; underconstrained configuration, which does not fully restrict the robot.

This study focuses on a real-world Cable-Driven Parallel Robot (CDPR), an under-constrained phys-
ical system, operating under a control system with limited time discretization. Our goal is to conduct
a comparative analysis of classical and modern control methods and to optimize their time discretiza-
tion.
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2 RELATED WORK

2.1 CLASSICAL APPROACH

Proportional-Integral-Derivative (PID) controllers are widely used in robotic systems, including CD-
PRs, due to their simplicity and effectiveness. PID controllers are straightforward to implement and
tune, making them accessible for various CDPR applications. In addition, PID controllers do not re-
quire a precise mathematical model of the system, which makes them suitable for complex systems
such as CDPRs.

2.2 REINFORCEMENT LEARNING CONTROL APPROACH

The Actor-Critic Reinforcement Learning (RL) algorithm is a powerful approach to control CDPR.
This method combines the strengths of both value-based and policy-based RL techniques.

Deep Deterministic Policy Gradient (DDPG) is an off-policy reinforcement learning algorithm de-
signed for continuous action spaces, making it particularly suitable to control CDPR. DDPG com-
bines the strengths of the Deep Q-Networks (DQN) and deterministic policy gradients to handle the
complexities of continuous control tasks (Nomanfar & Notash, 2024).

Trust Region Policy Optimization (TRPO) is an advanced reinforcement learning algorithm de-
signed to address the challenge of stable and efficient policy updates in complex control tasks. The
core idea behind TRPO is to maximize the expected return of the policy while constraining the
change in the policy at each iteration (Schulman et al., 2015).

Proximal Policy Optimization (PPO) is a popular reinforcement learning algorithm developed by
OpenAI that has shown impressive performance in various control tasks, including those applicable
to CDPR. PPO is designed to be simple to implement, sample efficient, and capable of solving a
wide range of continuous control problems Schulman et al. (2017).

3 METHODOLOGY

3.1 CONTROL STRATEGIES

Various control strategies have been explored for CDPRs, including classic PID controllers which
tuned with intelligent algorithms (Kel, 2005) and Reinforcement Learning (RL) that has emerged as
a promising approach for CDPR control and trajectory planning (Bouaouda et al., 2024).

One of the most traditional approaches is the use of classic PID controllers, which have been tuned
with intelligent algorithms to enhance performance in dynamic environments. PID controllers are
favored for their simplicity and effectiveness in achieving desired positions by continuously adjust-
ing the control inputs based on the error between the desired and actual states. Recent studies have
demonstrated the effectiveness of PID controllers in managing cable tensions and ensuring precise
movement of the end effector in CDPR applications (Bayani et al., 2015).

In addition to traditional control methods, RL has emerged as a promising approach to CDPR control
and trajectory planning. RL algorithms, such as the Deep Deterministic Policy Gradient (DDPG) and
Proximal Policy Optimization (PPO), leverage the principles of trial-and-error learning to optimize
control policies based on feedback from the environment. These algorithms enable the robot to learn
complex behaviors through interactions, making them particularly suitable for dynamic tasks where
traditional control methods may struggle (Nomanfar & Notash, 2023).

3.2 ENVIRONMENT

The environment for the CDPR is implemented as a custom OpenAI Gym environment, providing
a standardized interface for reinforcement learning algorithms. This environment encapsulates the
dynamics and control of a 4-cable CDPR system. 1. The observation space is defined as a 12-
dimensional continuous space when using target velocity, or a 9-dimensional space without it. It

1https://github.com/damurka5/RL_CDPR
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includes the current position, velocity, target position, and optionally, the desired velocity of the
end-effector.

The action space defines control inputs for the four cables, either continuous (normalized forces
between -1 and 1) or discrete (specified levels). The step function applies actions, updates the
system state using state-space dynamics, and computes rewards based on target distance, proximity,
and optionally, velocity. The reset function initializes each episode by randomizing start and target
positions, setting velocity to zero, and resetting internal counters.

4 KINEMATICS AND DYNAMICS

Studies have shown that for a CDPR with four cables and non-elastic sagging cables, if the ideal
cable model has a single forward kinematic solution, the sagging cable model will also have a single
solution (Merlet, 2021). The kinematics equation for the vector that describes ith cable:

li = c− ai +R× bi (1)
where c is a coordinate of end effector in world coordinate frame, ai is a cable vanishing point from
the ith guide roller, R is a rotation matrix which represents an orientation of the end effector, bi is
a cable connection point. For the first approximation bi = 0⃗. Jacobian can be calculated as a unit
vector S⃗i along ith cable:

J =
[
S⃗1 S⃗2 S⃗3 S⃗4

]T
(2)

5 RESULTS AND DISCUSSION

The following section presents a comparative analysis of the performance of reinforcement learning
algorithms DDPG, PPO, and TRPO implemented using the Stable Baselines3 library 2 along with a
traditional PD controller, highlighting their effectiveness in controlling cable-driven parallel robots
under varying conditions.

We worked with an underconstrained robot configuration that has four cables attached to the servo-
motors on a fixed 2.31m×2.81m frame, the anchor points are 3.22m high. Each cable is connected
to the box-shaped end effector and a servomotor drum through the pulley.

We created a force control mechanism to run CDPR on different trajectories. We considered the end
effector as a point mass of 1 kg, drums and pulleys with zero inertia. After that we have made an
environment based on Gymnasium Python classes 3, the reward is calculated from two components:
the distance improvement term multiplied by 50 (empirical investigation) and the normalized prox-
imity term multiplied by 5. The training process for all RL algorithms was implemented on a model
with ∆t = 0.1 sec.

5.1 DDPG

The DDPG agent is initialized with a multilayer perceptron (MLP) policy and configured with cus-
tomizable hyperparameters such as learning rate, buffer size, batch size, and discount factor. A
cosine learning rate schedule with warmup is employed to adaptively adjust the learning rate during
training.

The training process for the DDPG algorithm in the CDPR environment demonstrated significant
improvements in agent performance over 1.8 million episodes. Initially, the average episode length
increased to approximately 28 steps per episode. This growth indicates that the agent was learning
to sustain its control actions effectively to achieve better outcomes. However, as training progressed,
the episode length converged to an average of 22 steps per episode.

In terms of rewards, the agent’s performance improved steadily throughout the training process. By
the end of training, the average episode reward reached up to 2000. The increasing reward trend
indicates that the agent successfully learned to navigate the complex dynamics of the environment
and optimize its control strategy.

2https://stable-baselines3.readthedocs.io/en/master/
3https://gymnasium.farama.org/
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5.2 PPO

The PPO agent, as it was in DDPG, is initialized with a multilayer perceptron (MLP) policy and
configured with customizable hyperparameters. A cosine learning rate schedule with warm-up was
also employed.

The training process for the Proximal Policy Optimization (PPO) algorithm demonstrated signifi-
cant differences between continuous and discrete action spaces over 7000 episodes. For continuous
PPO, the average episode length converged to approximately 22 steps per episode. In contrast, the
discrete PPO initially increased to about 21 steps per episode before converging to a lower average
of 12 steps. The reward outcomes further underscore the advantage of the discrete action space.
While the continuous PPO achieved an impressive episode reward of up to 3000 by the end of train-
ing, the discrete PPO significantly outperformed it with rewards reaching approximately 7500. This
substantial difference in reward accumulation highlights the discrete PPO’s superior ability to op-
timize the control policy for the CDPR system, resulting in more precise and efficient movements
that better satisfy the task objectives.

5.3 TRPO

We used the same training process technique for the Trust Region Policy Optimization (TRPO)
algorithm, as well as we used the cosine learning rate schedule with warmup.

The training process for the TRPO algorithm demonstrated impressive performance over 6000
episodes. The average episode length converged to approximately 10 steps per episode. This low
number of steps indicates that TRPO quickly learned an efficient control strategy for the CDPR
system. The episode reward reached up to 10000 by the end of the training process, which is a
significant improvement compared to the results observed for other algorithms like PPO and DDPG.
This high reward value indicates that TRPO not only learned to complete the task quickly but also
with high precision and efficiency. The combination of low average episode length and high re-
ward suggests that TRPO developed a policy that could accurately control CDPR while minimizing
unnecessary movements and optimizing the path to the target position.

After the main training process, we implemented two key changes on pre-trained model for TRPO
algorithm: the addition of initial velocity to the state representation and prioritizing initial points
closer to the target position. As a result of these training adjustments, the TRPO model was able to
overcome the initial learning hurdles and develop a more robust control policy for the CDPR system.

The results of the best-performed reinforcement learning algorithms are shown in Fig. 1. This figure
illustrates performance metrics, such as the mean episode length (a) and reward accumulation (b).
Evaluation of the reinforcement learning algorithms and PID controller on three different trajectories

(a) (b)

Figure 1: training metrics
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Table 1: RL models and PID controller RMS Errors [m]

Trajectory DDPG PPO TRPO PID

Circle 0.0098 0.0113 0.0075 0.0489
Spiral 1 0.0235 0.0125 0.0079 0.0149
Spiral 2 0.0114 0.0133 0.0084 0.0167

is shown in Table 1. TRPO consistently achieves the lowest errors, outperforming the other models
and the PID controller on all trajectories.

5.4 MODEL SIMULATIONS ON DIFFERENT ∆t

We have conducted several experiments to check the sustainability and robustness of control strate-
gies on different simulation time intervals, and used optimal gains for PID controller for each exper-
iment. The results shown in Fig. 2 show that RL algorithm has learned the robot’s behavior and can

(a) (b)

Figure 2: different ∆t simulations

operate at larger ∆t values than a usual PID controller.

6 CONCLUSION

The TRPO algorithm demonstrated superior performance compared to DDPG and PPO in both
continuous and discrete settings, showcasing its potential for complex robotic control tasks. Its
stability with larger time intervals (∆t) makes it particularly suitable for real-world cable-driven
parallel robots, where sensor noise and latency limit high-frequency precision. Unlike PID con-
trollers, TRPO reduces computational demands and adapts to real-world imperfections, making it a
strong candidate for dynamic environments. Future work will include physical experiments on real
robots to further validate these findings and enhance their practical applicability.
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