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Abstract001

Attribute-based Controlled Text Generation002
(CTG) aims to generate texts that contains de-003
sirable attributes. Previous work have demon-004
strated remarkable language generation ca-005
pabilities, yet they often suffer performance006
degradation when the length of generations in-007
creases. To tackle this challenge, we propose008
Reinforced-Decoding, a novel lightweight de-009
coding framework for CTG, whose main idea010
is strategically enhancing the controllability of011
prefixes on target attributes to construct bet-012
ter attribute distributions. Specifically, We013
train prefixes by prefix-tuning to obtain Class-014
conditional language models’(CC-LMs) next-015
token distributions. Then We leverage a re-016
inforcement learning approach to explore the017
optimal policy which decides whether to insert018
prefixs to enhance their influence towards CC-019
LMs’ next-token distribution, and reconstruct020
attribute distributions at each time step to guide021
LM to generate texts with desired attributes,022
effectively mitigating the issue of degrading023
performance when the length of generations024
increases. Extensive experiments on a range025
of CTG tasks demonstrate that Reinforced-026
Decoding outperforms existing strong baselines027
with improvements of 1%-4% in Acc and main-028
tains high fluency across a wide range of length029
settings.030

1 Introduction031

Controllable Text Generation (CTG) aims to gen-032

erate text that conforms to predefined constraints.033

These constraints can encompass a wide range of034

factors, from broad semantic features like senti-035

ment, topic relevance, and toxicity control(Gu et al.,036

2023; Kangaslahti and Alvarez-Melis, 2024; Shi037

et al., 2024). To more specific content require-038

ments, such as the inclusion of particular concepts039

or key elements like style, kyewords and length040

(Ashok and Poczos, 2024; Zhou et al., 2023; Sun041

et al., 2023). Recent advancements in neural text042

generation, driven by pre-trained language mod- 043

els(PLMs), have achieved unprecedented text qual- 044

ity. However, attribute-based controllable text gen- 045

eration (Zhang et al., 2024a) — involving attributes 046

like sentiment, topics, and detoxification — con- 047

tinues to pose significant challenges. While some 048

CTG method (Zhong et al., 2023; Feng et al., 2024) 049

have demonstrated considerable success in achiev- 050

ing attribute control,it remains challenging to con- 051

trol the generated text to simultaneously satisfy cer- 052

tain attributes and maintain a reasonable coherence 053

and diversity in long text generation.This capability 054

plays a pivotal role in various real-world applica- 055

tions, including writing support and imaginative 056

story creation. 057

Current approaches for CTG can be categorized 058

into three paradigms based on their intervention 059

mechanisms (Zhang et al., 2023): The first one in- 060

volves retraining the entire parameters of PLMs to 061

achieve attribute control (Keskar et al., 2019; Wang 062

et al., 2021). While these methods can achieve 063

impressive control, they suffer from high compu- 064

tational costs as the scale of PLMs grows and be- 065

comes increasingly impractical to develop and de- 066

ploy a separate model for each attribute. The sec- 067

ond approach focuses on prefix/prompt tuning to 068

control PLMs generation. Techniques such as At- 069

tribute Alignment (Yu et al., 2021), Contrastive 070

Prefixes Qian et al. (2022) and Tailor (Yang et al., 071

2023) optimize lightweight prefixes to steer gen- 072

eration. Though efficient, these methods exhibit 073

limited generalization due to overfitting to training 074

corpus patterns. 075

The third approach is based on adjusting the out- 076

put probability distribution of the model during 077

the inference. Most methods incorporate an addi- 078

tional well-trained attribute classifier to steer PLMs 079

through gradient backpropagations (Dathathri et al., 080

2019) or by weighting the output logits(Krause 081

et al., 2021; Yang and Klein, 2021; Liu et al., 2021). 082

(Gu et al., 2023) which leverages normalizing flows 083
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Figure 1: The phenomenon of performance degradation
based on sentiment and topic control tasks.The accuracy
is an directly proportional metric to attribute relevance.

to transform complex, high-dimensional distribu-084

tions into tractable Gaussian. (Kangaslahti and085

Alvarez-Melis, 2024) uses a continuous linear inter-086

polation between fine-tuned models to achieve fine-087

grained control. This approach typically demon-088

strates strong attribute relevance, yet suffers from089

increased inference latency and reduced fluency.090

Previous SOTA (Zhong et al., 2023) introduces091

the phenomenon of Attribute Collapse in decoding-092

time approaches and leverages a distribution re-093

construction method to achieve a more balanced094

attribute distribution, thereby maintaining stable095

perplexity. However, these methods suffer from ac-096

curacy decrease when the length of generations097

increases, as shown in 1. Our analysis reveals098

that this decrease is primarily due to two factors:099

attention dilution, which stems from the progres-100

sive weakening of control signals through standard101

attention process, and error accumulation, which102

arises from compounding misalignments in autore-103

gressive generation. As a result, the final genera-104

tion direction deviates from the desired target.105

To overcome the aforementioned limitations,we106

propose Reinforced-Decoding, a lightweight ap-107

proach that bridges the efficiency of prefix-tuning108

and the precision of decoding-time control. This109

method employs dynamic interventions that adapt110

to the generation context. Specifically, we con-111

struct class-conditional language models (CC-112

LMs) through a prefix-based approach, and model113

the next-token distribution of the PLM via Bayes’114

rule. During generation, we insert attribute-specific115

prefixes into the CC-LMs’ keys and values at reg-116

ular intervals, strengthening attribute control. Fur-117

thermore, a policy network autonomously deter-118

mines whether to insert an additional prefix at the119

current timestep, optimizing attribute control. This120

enables more precise steering of the model’s output,121

ensuring that it aligns with the intended direction.122

Our main contributions are as follows:123

• We first identify the phenomenon of perfor- 124

mance degradation in CTG tasks and pro- 125

pose a novel lightweight framework named 126

Reinforced-Decoding to mitigate this issue. 127

The framework is trained through a policy gra- 128

dient approach and autonomously determines 129

when to insert an additional prefix vector to 130

CC-LMs, effectively promotes the attribute 131

alignment during generation across various 132

length settings while maintaining stable per- 133

plexity. 134

• We combine the strengths of prefix-based con- 135

trol and decoding-time control by applying 136

Bayes’ rule to create a more efficient and 137

precise generation process. Then Reinforced- 138

Decoding naturally unifies the efficiency of 139

prefix-tuning with the precision of weighted 140

decoding. 141

• We demonstrate the effectiveness of 142

Reinforced-Decoding across three typical 143

control tasks: Sentiment, Topic, and Detox- 144

ification. The evaluation results shows 145

Reinforced-Decoding’s superior performance 146

compared to existing baselines both in 147

short and long text generations, advancing 148

the previous SOTA results with 1%–4% 149

improvement on accuracy, and effectively 150

mitigates performance degradation typically 151

observed on longer texts. 152

2 Related Work 153

Prefix/Prompt Learning. With the emergence 154

of billion-parameter language models, lightweight 155

fine-tuning methods such as prefix-tuning such 156

as prefix-tuning(Li and Liang, 2021) and prompt- 157

tuning (Lester et al., 2021) have gained increasing 158

attention. ConPrefixes(Qian et al., 2022) introduce 159

contrastive prefixes, which account for inter-prefix 160

relationships during training. Discup (Zhang and 161

Song, 2022) integrate an attribute discriminator 162

with unlikelihood training to refine prompt learning 163

but at the cost of training efficiency. Tailor (Yang 164

et al., 2023) deploy a set of plug-and-play attribute- 165

specific soft prompts to guides the generation suf- 166

fers from limited control strength. PPP (Ajwani 167

et al., 2024) leverages the gradients from an ex- 168

ternal discriminator model to adjust the prompt 169

parameters, transforming them into control com- 170

mands that guide the language model’s generation. 171

DATG(Liang et al., 2024) introduces dynamic at- 172

tribute graphs that modulates occurrence of key 173
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words, either aligned with or opposed to the target174

attribute.175

Decoding-time The decoding-time methods do not176

alter the PLMs but adjust the output probability177

distribution of PLMs during generation, offering178

fine-grained control without modifying model pa-179

rameters. PPLM (Dathathri et al., 2019) iteratively180

updates hidden states using gradients from an at-181

tribute classifier, guiding them toward generating182

text with the specified attributes. On the other hand,183

FUDGE (Yang and Klein, 2021) directly uses an184

attribute classifier to compute the relevance of the185

next token’s attributes and reweights the output186

probabilities of PLMs. (Zhang et al., 2024b) pro-187

posed a Residual Memory Transformer that per-188

forms late fusion with a frozen PLMs, enabling189

non-invasive steering of the generation process.(Yu190

et al., 2024) alters the output context throughout the191

generation process of a base language model. The192

FreeCtrl (Feng et al., 2024) employ real-time inter-193

vention by analyzing the sensitivity of feedforward194

layer vectors in PLMs, dynamically adjusting their195

weights to steer generation trajectories. (Dekon-196

inck et al., 2024) propsed a model arithmetic that197

express prior CTG techniques as simple formu-198

las. Energy-based approaches (Mireshghallah et al.,199

2022; Son and Lee, 2024) utilizes a set of black-200

box expert models and combine their energy values201

to enforce desired property such as fluency and at-202

tribute alignment. While this method may suffers203

from weaker controllability or inefficient inference.204

Similar to (Liu et al., 2021), Proxy-tuning (Liu205

et al., 2024) uses two extral small tuned experts206

to guide PLMs’ generation. However, this method207

may not be well-suited for multi-category attribute-208

controlled generation due to it requires exponen-209

tial model variants. GeDi (Krause et al., 2021)210

uses class-conditional language models as genera-211

tive discriminators to steer text generation.Despite212

achieving impressive attribute alignment, its flu-213

ency degrades significantly. To solve this issue,214

(Zhong et al., 2023) introduces a distribution re-215

construction method to achieve a more balanced216

attribute distribution.217

Reinforcement Learning RL was first proposed218

in the context of language generation as an aux-219

iliary algorithm to mitigate exposure bias in the220

teacherforcing training of sequences.(Kim et al.,221

2022) utilize a Actor-Critic framework to adjust222

the PLM’s output distributions. (Lu et al., 2022)223

employ a coarse-grained feedback to train PLM,224

while (Li et al., 2024) design a fine-grained feed-225

back to provide precise guidance for PLM. In con- 226

trast, our method trains only a lightweight policy 227

network that dynamically determines when to in- 228

sert prefixes, making it more efficient and scalable. 229

3 Methodology 230

3.1 Preliminary 231

Policy gradient is one of the most prominent ap- 232

proaches to solving RL problems, which directly 233

optimize the parameters θ of the policy network, 234

the objective of maximizing the expected return 235

J(θ) = Eπθ

[∑T
t=0 γ

trt

]
. This optimization is 236

achieved by computing the gradient ∇θJ(θ), which 237

is shown to be proportional to the expected value 238

of the gradient of the log-probability of the policy 239

and the return Gt (Sutton and Barto, 2018): 240

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st) · (Gt − b(st))]

(1) 241

where Gt =
∑T

i=t γ
i−tri. High-return trajectories 242

trigger policy updates that systematically increase 243

the probability of selecting actions proportional to 244

their contribution to the cumulative reward, with 245

gradient ascent directly amplifying the likelihood 246

of high-yielding decisions in subsequent iterations. 247

However, prior research has shown that using Gt 248

alone often leads to high variance. To address this, 249

a state-dependent baseline b(st) is subtracted, sta- 250

bilizing the training process. This baseline does not 251

affect the overall expected value due to its action- 252

independence : Eπθ
[b∇θ log πθ(at|st)] = 0. 253

Class-conditional language models (CC-LMs) ex- 254

tends the auto-regressive LMs by incorporating an 255

explicit conditioning signal c, which represents var- 256

ious control attributes, such as a topic label or sen- 257

timent score. The probability distribution over the 258

next token is modified as follows: 259

Pθ(xT :N |x1:T−1, c) =
N∏

i=T

P (xi|x1:i−1, c) (2) 260

where c acts as a conditioning variable guiding 261

text generation. Models such as CTRL (Keskar 262

et al., 2019) use predefined control codes as explicit 263

inputs to enforce generation constraints. However, 264

these approaches typically require large-scale pre- 265

training or fine-tuning, which can be computation- 266

ally expensive and less flexible. 267

To enable controlled text generation without re- 268

training the entire model, we employ prefix-based 269
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method (Li and Liang, 2021) to obtain CC-LMs.270

Specifically, for a given control attribute a, we learn271

an attribute-specific prefix. These prefixes steer the272

model towards generating text with the desired sen-273

timent while keeping the base model parameters274

frozen.275

3.2 Decoding-Based Distribution Adjustment276

Previous studies have shown that stronger control277

can be achieved through weighted decoding strate-278

gies. Inspired by this, we introduce a decoding-279

based distribution adjustment method to enhance280

control strength while maintaining prefix-tuning’s281

efficiency.282

Given a base GPT-2 model with next token dis-283

tribution and prefix-based conditional distributions,284

we perform the decoding-time adjustment as fol-285

lows (Yang and Klein, 2021):286

Pθ(xt|x1:t−1, a) ∝ Pθ(xt|x1:t−1) · P (a|x1:t)
ω (3)287

where P (a|x1:t) is the probability that x1:t belongs288

to the desired attribute a, which is provided by an289

attribute classifier, and ω is a scaling factor that290

controls the influence of the attribute adjustment.291

Our goal is to model P (a|x1:t) in order to ob-292

tain the desired distribution Pθ(xt|x1:t−1, a). By293

applying Bayes’ rule, we can further decompose294

P (a|x1:t) into the following expression with CC-295

LMs (Krause et al., 2021):296

P (a|x1:t) =
P (a)

∏t
i=1 Pϕa(xi|x1:i−1, a)∑

a′∈A

∏t
i=1 P (a′)Pϕa′ (xi|x1:i−1, a′)

(4)297

where a represents the desired attribute, and A298

denotes the set of possible attributes. For in-299

stance, in the case of binary sentiment control,300

A = {positive, negative}. The parameter ϕa′ cor-301

responds to the CC-LM Pϕa′ (xi|x1:i−1, a
′) asso-302

ciated with attribute a′. P (a) and P (a′) can be303

omitted for uniform training data.304

During text generation, we only need to com-305

pute the output distributions of the CC-LMs. No-306

tably, the probability terms from previous steps,307

Pϕa′ (xi|x1:i−1, a
′) for i = 2, . . . , t − 1, have al-308

ready been computed, this allows for efficient com-309

putation. To further refine control, we followed310

(Zhong et al., 2023) and reconstruct the attribute311

distributions:312

Pϕa′ (xi|x1:i−1, a
′) = − 1

ln(Pϕa′ (xi|x1:i−1, a′))
(5)313

"The movie tells a "
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 Insert
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"awful ..."

reconstruction

reconstruction
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Policy
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Figure 2: An illustration of Reinforced-Decoding on
sentiment task.Feed the generated texts to positive CC-
LMs, negative CC-LMs, and GTP-2, the policy make
the decision wether to insert prefix to two CC-LMs at
timestep t to enhance attribute alignment.

3.3 Reinforced-Decoding 314

Although the approach has achieved promising re- 315

sults in controlled text generation, However, We 316

observe that the influence of the prefix on the gen- 317

erated sequence gradually diminishes as the se- 318

quence length increases.To mitigate this issue, we 319

intuitively re-inserting the prefix at appropriate in- 320

tervals during the generation process,prepending 321

learnable parameter vectors to both Key and Value 322

matrices in self-attention layers. Formally, for 323

each transformer layer at generation step t, we con- 324

catenate the prefix parameters K(p) ∈ Rlp×d and 325

V (p) ∈ Rlp×d with the contextual Key/Value repre- 326

sentations: 327

K′
1:t = [K1:t;K

(p)], V ′
1:t = [V1:t;V

(p)] (6) 328

where K(p) represents the prefix-generated key, 329

and K1:t−1 denotes the sequence of keys from ear- 330

lier tokens, lp denotes the prefix length and d rep- 331

resent dimensions. The CC-LMs then compute the 332

self-attention output as follows: 333

Attention(Q,K ′, V ′) = softmax
(
QK ′⊤
√
dk

)
V ′

(7) 334

where Q, K ′, and V ′ represent the query, key, and 335

value matrices, respectively, and dk is the scaling 336

factor. 337

For example, consider sentiment control, the 338

probability of a positive token under the positive- 339

conditioned distribution Pϕa(xi|x1:i−1, a) at time 340

step t increase from 0.1 to 0.15, while its proba- 341

bility under the negative-conditioned distribution 342

Pϕā(xi|x1:i−1, ā) decrease from 0.05 to 0.03. Con- 343

sequently, the overall probability of the desired at- 344

tribute P (a|x1:t) is reinforced by Eq. 5,rising from 345
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0.1/(0.1+0.05)=0.667 to 0.15/(0.15+0.03)=0.83,346

thereby ensuring stronger control over the gener-347

ated sentiment.348

Nevertheless, simply inserting the prefixes at349

fixed intervals may not always be the optimal350

choice. For instance, some texts that already ex-351

hibit strong alignment with the desired attribute352

do not require additional prefixes insertion. More-353

over, arbitrary insertion of the prefix may sacrifice354

fluency in order to better align with the target at-355

tribute. To overcome the aforementioned problems,356

we propose a lightweight policy network, a small357

feedforward neural network trained by policy gra-358

dient in an offline manner, to determine whether359

to insert an additional prefixes after a certain num-360

ber of tokens are generated by the language model.361

The overall framework is illustrated in Figure 2.362

Specifically, after each b generation steps are com-363

pleted at time step t during generation, the policy364

network considers the generated content so far as365

the state and computes the action distribution:366

at = Policy(hlast1:t ) (8)367

Based on the action distributionat, we sample a368

discrete action mt to determine whether to insert369

prefixes into the generation sequence. The action370

space consists of two possible decisions:371

mt ∈ {0, 1}, where

{
0 : Continue generation
1 : Insert prefix pk

(9)372

A full generation process may involve multiple373

decision points. Since the influence of each deci-374

sion is uncertain, after the sample s1 is completed,375

we compare it with a naturally generated sample376

s2 (i.e., one without any prefix insertion) to derive377

the reward signal. The reward signal derives from378

their differential performance, combining both per-379

plexity computed by GPT-2Medium, and an attribute380

score computed by a classifier to evaluate the gen-381

erated text’s attribute alignment. The final reward382

is defined as follows:383

r(s) = α ·rattribute(s1, s2)+β ·rppl(s1, s2) (10)384

where rattribute evaluates the difference in attribute385

scores between the sentences s1 and s2, and rppl386

measures the difference in perplexity between s1387

and s2. α and β is hyperparameters that control the388

relative importance of the two terms in the reward.389

The policy is trained by maximizing the expected390

cumulative reward over all generated trajectories: 391

J(θ) = Eπθ

[
T∑
t=0

γtr(s)

]
(11) 392

By optimizing this reward, the RL model learns 393

to insert the prefix at the most effective points, 394

ensuring both high-quality generation and strong 395

attribute control. Our approach is designed to main- 396

tain control over longer sequences, enabling better 397

performance on more complex generation tasks. 398

4 Experiments 399

4.1 Evaluation Metric 400

We test our method on three types of controllable 401

text generation tasks: (1) Sentiment Control, (2) 402

Topic Control, and (3) Detoxification. 403

Automatic Evaluation. We automatically eval- 404

uate the completed sentences from three aspects. 405

(1) Accuracy assesses how well the generated ex- 406

amples align with the target attributes. We use 407

RoBERTalarge-based (Liu, 2019) attribute classi- 408

fiers trained on widely used benchmark datasets: 409

IMDB movie reviews (Maas et al., 2011) for senti- 410

ment control, and AGNews (Zhang et al., 2015) for 411

topic control to compute the accuracy of generated 412

sentences that contain corresponding attribute.The 413

two classifiers achieve accuracies of 95.52% and 414

95.18%. For the detoxification task, we utilize the 415

Perspective API1 to measure the average toxicity 416

for the generated texts.(2) Fluency is measured us- 417

ing the perplexity (PPL) scores of the generated 418

sentences, evaluated by GPT-2Base, GPT-2Medium 419

and GPT-2Large versions of GPT-2 (Radford et al., 420

2019), and we report the average perplexity as the 421

final result. (3) Diversity is measured by the dis- 422

tinctness (Li et al., 2015) of the generated sen- 423

tences. Concretely, we compute the fraction of 424

unique 1-grams, 2-grams, and 3-grams of total 425

texts. These metrics are denoted as Dist-1, Dist-2, 426

and Dist-3. 427

Human Evaluation. Following (Zhong et al., 428

2023), we conduct human evaluation for sentiment 429

and topic control on three aspects:(1) the text rel- 430

evance of generation text with the desired control 431

attribute; (2) The fluency from human perspective; 432

(3) Topicality evaluate the consistency between the 433

generated text and the input prompt. Each sentence 434

is rated on a scale from 1 to 5, with higher scores 435

indicating better performance. For each task, we 436

1https://www.perspectiveapi.com/
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randomly select 50 sentences for each length and437

ask three annotators to rate them based on the two438

metrics. The final human evaluation score is ob-439

tained by averaging the collected ratings across all440

annotators.441

4.2 Baselines442

We compare the proposed method with a wide443

range of baselines as follows, all of which are444

implemented using their official codebases. We445

retrain these methods on IMDB dataset for sen-446

timent control, on AGnews dataset for topic con-447

trol, and on Jigsaw Toxic Comment Classification448

Challenge Dataset for detoxification. For all exper-449

iments, We adopt GPT-2Medium as the frozen back-450

bone LM. Other hyperparameters details are de-451

scribed in Appendix A. Learning-free: (1) FreeC-452

trl (Feng et al., 2024), a learning-free approach453

manipulate the feedforward layers’ weight to guide454

the generation towards the desired directionat at455

generation process. In our implementation, we re-456

move its filtering process, which was originally457

designed to discard outputs that did not sufficiently458

align with the target attribute. (2) DATG (Liang459

et al., 2024) employs attribute classifiers to as-460

sess PLM-generated texts, constructing dynamic461

attribute graphs that identify key words aligned462

with or opposed to target attribute dimensions,463

we employ their DATG-P method in our experi-464

ment. Prefix/Prompt-based: (3) Tailor (Yang et al.,465

2023) represents each attribute as a pre-trained soft466

prompt and concatenated it with the input, which467

guides the generation of a frozen PLM to satisfy468

a pre-specified attribute. Decoding-time: (4)Air-469

Decoding (Zhong et al., 2023) uses a attribute470

distribution reconstruction method to reconstruct471

the original attribute distribution to keep fluency472

of generated texts. (5)GeDi (Krause et al., 2021)473

finetunes external class-conditional LMs to hint a474

base model’s generation. (6) DExpert (Liu et al.,475

2021) finetuns GPT-2 as an expert/anti-expert to476

manipulate a base model’s logits at inference time.477

4.3 Experimental Setup478

The Reinforced-Decoding approach involves divid-479

ing the continuation into blocks of b tokens. Each480

time b generation steps are completed at time step481

t, the policy network takes the language model’s482

hidden state as input and decide whether to insert483

prefiexs.484

Sentiment Control. Following previous work485

(Krause et al., 2021), we first train two CC-LMs486

with a prefix length of 20 on IMDb movie reviews 487

(Maas et al., 2011),which contains 12.5K positive 488

and 12.5K negative samples. During the evaluation 489

phase, the 15 attribute-unrelated prompts used for 490

the model’s generation are identical to those in with 491

PPLM (Dathathri et al., 2019). For each prompt, 492

we generate 50 sentences with varying maximum 493

generation lengths of 64, 128, 192, 256, 384, and 494

512 tokens. 495

Topic Control. We experiment with four CC- 496

LMs with a prefix length of 20 on AGnews dataset 497

(Zhang et al., 2015),which consists of four top- 498

ics: World, Sports, Business and Science, each 499

containing 30K samples. During the evaluation 500

phase, we use 20 prompts identical to those in 501

PPLM (Dathathri et al., 2019). For each prompt, 50 502

sentences are generated, with the same maximum 503

generation lengths as in sentiment control. 504

Detoxification. We use the Jigsaw Toxic Comment 505

Classification Challenge Dataset to train CC-LMs. 506

The length of prefix is set to 20. Following previ- 507

ous work,we use 203 prompts collected by (Zhong 508

et al., 2023) from RealToxicityPrompts (Gehman 509

et al., 2020). For each prompt, 20 sentences are gen- 510

erated. Dynamic Prefix Insertion is not used cause 511

dynamic its need a feedback of Perpective API. 512

While accessing the API is feasible, the training 513

duration may extend or interrupted due to delays 514

associated with the API. 515

4.4 Results and Analysis 516

Sentiment Control. As shown in Table 1, 517

Reinforced-Decoding significantly outperforms all 518

other baselines in at least one metric, with the ex- 519

ception of generation length 384 and 512. Our accu- 520

racy on length of 384 and 512 just fall a little behind 521

FreeCtrl. In contrast, Reinforced-Decoding outper- 522

forms FreeCtrl thoroughly across four length(64, 523

128, 192, 256). while achieving a high accuracy, 524

FreeCtrl tends to generate repetitive content, lead- 525

ing to lower diversity, especially in long (384, 512) 526

texts. Notably, our method maintains a high Dist 527

score even at the maximum length of 512 tokens 528

and keep a low perplexity(33.19), demonstrating its 529

robustness in generating diverse and fluent content 530

over long texts. Tailor and Air-Decoding demon- 531

strates a balanced performance across various met- 532

rics; however, Tailor’s attribute control remains 533

relatively weak. On the other hand, GeDi attains 534

SOTA diversity but at the cost of severe fluency 535

degradation, making it challenging to produce flu- 536

ent and coherent text. This issue becomes even 537
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Length Method
Sentiment Topic

Acc ↑ PPL ↓ Dist-1/2/3 ↑ Acc ↑ PPL ↓ Dist-1/2/3 ↑

64

FreeCtrl2024 95.80 40.77 0.10 / 0.45 / 0.79 74.43 29.42 0.08 / 0.42 / 0.78
DATG2024 70.76 42.64 0.12 / 0.49 / 0.82 - - - / - / -
Tailor

2023
80.57 24.40 0.12 / 0.51 / 0.84 76.60 35.82 0.14 / 0.58 / 0.87

Air-Decoding2023 96.07 25.66 0.13 / 0.56 / 0.80 96.51 30.67 0.08 / 0.47 / 0.78
GeDi2021 95.93 151.40 0.32 / 0.82 / 0.94 92.18 150.39 0.27 / 0.81 / 0.96
DExperts2021 81.60 20.06 0.20 / 0.65 / 0.87 - - - / - / -
Ours 96.47 28.09 0.23 / 0.68 / 0.88 96.83 26.71 0.18 / 0.65 / 0.88

128

FreeCtrl 95.21 29.86 0.09 / 0.40 / 0.75 68.10 28.24 0.07 / 0.38 / 0.74
DATG 68.53 49.27 0.11 / 0.50 / 0.82 - - - / - / -
Tailor 76.37 30.97 0.10 / 0.50 / 0.85 68.60 38.42 0.13 / 0.59 / 0.89
Air-Decoding 94.76 27.65 0.13 / 0.52 / 0.81 91.93 31.71 0.11 / 0.50 / 0.79
GeDi 94.73 195.07 0.30 / 0.83 / 0.96 83.40 189.235 0.24 / 0.82 / 0.97
DExperts 83.53 16.45 0.16 / 0.58 / 0.82 - - - / - / -
Ours 95.47 28.30 0.19 / 0.67 / 0.92 92.35 27.37 0.16 / 0.64 / 0.90

192

FreeCtrl 95.16 25.72 0.07 / 0.36 / 0.72 66.53 28.36 0.06 / 0.34 / 0.71
DATG 64.37 55.12 0.11 / 0.52 / 0.81 - - - / - / -
Tailor 82.17 38.61 0.10 / 0.49 / 0.86 65.70 41.90 0.13 / 0.58 / 0.90
Air-Decoding 93.62 28.83 0.12 / 0.53 / 0.80 88.19 34.63 0.10 / 0.49 / 0.82
GeDi 93.07 263.52 0.29 / 0.85 / 0.97 77.85 266.97 0.24 / 0.83 / 0.98
DExperts 83.27 16.40 0.13 / 0.52 / 0.75 - - - / - / -
Ours 95.40 29.40 0.18 / 0.66 / 0.92 90.58 28.21 0.15 / 0.62 / 0.89

256

FreeCtrl 94.68 27.36 0.07 / 0.33 / 0.69 63.98 25.96 0.06 / 0.32 / 0.68
DATG 62.29 63.65 0.12 / 0.51 / 0.83 - - - / - / -
Tailor 86.83 45.04 0.10 / 0.50 / 0.86 63.60 38.42 0.12 / 0.57 / 0.89
Air-Decoding 92.28 31.16 0.11 / 0.52 / 0.78 86.46 37.27 0.09 / 0.48 / 0.82
GeDi 92.13 360.91 0.29 / 0.86 / 0.98 76.25 370.71 0.24 / 0.85 / 0.98
DExperts 82.13 18.83 0.12 / 0.48 / 0.71 - - - / - / -
Ours 94.73 29.91 0.17 / 0.64 / 0.91 88.65 31.72 0.14 / 0.61 / 0.90

384

FreeCtrl 95.23 25.43 0.06 / 0.29 / 0.63 62.45 24.49 0.05 / 0.28 / 0.63
DATG 61.78 68.93 0.10 / 0.54 / 0.85 - - - / - / -
Tailor 88.23 55.13 0.11 / 0.52 / 0.87 63.70 53.83 0.12 / 0.56 / 0.89
Air-Decoding 90.11 35.03 0.10 / 0.49 / 0.78 83.31 41.76 0.08 / 0.49 / 0.79
GeDi 89.13 602.45 0.39 / 0.89 / 0.98 74.18 599.12 0.24 / 0.87 / 0.98
DExperts 81.89 15.26 0.09 / 0.40 / 0.62 - - - / - / -
Ours 93.53 31.36 0.15 / 0.61 / 0.91 85.20 33.29 0.11 / 0.56 / 0.89

512

FreeCtrl 95.93 24.29 0.05 / 0.26 / 0.60 62.95 23.55 0.04 / 0.25 / 0.59
DATG 60.14 74.67 0.09 / 0.55 / 0.84 - - - / - / -
Tailor 86.50 62.14 0.12 / 0.54 / 0.87 77.50 62.94 0.11 / 0.54 / 0.88
Air-Decoding 87.89 38.91 0.10 / 0.49 / 0.80 80.32 44.21 0.08 / 0.43 / 0.81
GeDi 86.73 862.92 0.28 / 0.9 / 0.99 71.25 844.49 0.24 / 0.88 / 0.98
DExperts 80.53 14.61 0.08 / 0.34 / 0.54 - - - / - / -
Ours 92.13 33.89 0.14 / 0.59 / 0.90 82.17 36.44 0.11 / 0.55 / 0.89

Table 1: The main experimental results for sentiment and topic controllable text generation. ↑ indicates that a
higher score is better, whereas ↓ signifies the opposite. We bold the best results, underline the runner-up.

more pronounced as text length increases: GeDi’s538

PPL rises drastically with longer texts (e.g., from539

151.40 to 862.92). Human evaluations from Table540

3 confirm our method’s superiority in relevance541

(4.02/5) and Ttopicality (3.76/5), outperforming542

baselines across both subjective and objective met-543

rics.544

Topic Control. In the topic task, Reinforced-545

Decoding continues to maintain a high diversity546

across different sequence lengths. Furthermore, it 547

achieves the SOTA accuracy in topic control, out- 548

performing all baselines on all generation length. 549

These results indicate that our approach effectively 550

balances attribute alignment, fluency, and diversity, 551

making it a robust solution for topic-controllable 552

text generation. FreeCtrl, continues to show the 553

weakest diversity in the topic task. Additionally, its 554

accuracy drops significantly, reaching only around 555
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60–70%, far below its performance in sentiment556

control. Tailor, Air-Decoding, and GeDi exhibit557

a performance pattern similar to that observed in558

sentiment task. However, given that topic control559

is inherently more complex than sentiment control,560

their accuracy scores decline across the board. We561

exclude DExperts and DATG from topic evalua-562

tions due to their inherent architectural limitations563

in handling multi-category attributes. The human564

evaluation results in Table 3 also demonstrate the565

superiority of our method, mainly in fluency and566

topicality.567

Length Method
Detoxification

Tox. ↓ PPL ↓ Dist-1/2/3 ↑

64

DATG2024 38.91 45.17 0.09 / 0.41 / 0.72
Tailor2023 40.50 47.77 0.08 / 0.36 / 0.65
Air-Decoding2023 22.13 48.54 0.12 / 0.48 / 0.73
GeDi2021 20.91 173.60 0.18 / 0.59 / 0.74
DExperts2021 25.13 18.47 0.11 / 0.44 / 0.67
Ours 19.35 47.12 0.12/ 0.47 / 0.71

128

DATG 37.64 52.49 0.08 / 0.42 / 0.74
Tailor 40.50 47.77 0.08 / 0.38 / 0.73
Air-Decoding 24.60 49.24 0.11 / 0.48 / 0.79
GeDi 21.94 199.50 0.18 / 0.66 / 0.85
DExperts 25.54 18.59 0.09 / 0.42 / 0.68
Ours 21.66 48.46 0.11 / 0.49 / 0.78

192

DATG 37.13 57.98 0.09 / 0.44 / 0.77
Tailor 40.83 53.89 0.09 / 0.39 / 0.75
Air-Decoding 24.56 51.86 0.10 / 0.48 / 0.80
GeDi 22.87 249.80 0.18 / 0.70 / 0.89
DExperts 25.69 19.61 0.07 / 0.38 / 0.64
Ours 21.83 38.58 0.11 / 0.48 / 0.80

256

DATG 38.31 61.22 0.10 / 0.43 / 0.79
Tailor 40.89 60.10 0.09 / 0.41 / 0.77
Air-Decoding 24.60 53.37 0.09 / 0.46 / 0.81
GeDi 22.41 305.70 0.18 / 0.72 / 0.90
DExperts 25.73 23.15 0.07 / 0.35 / 0.61
Ours 21.55 49.8 0.17 / 0.64 / 0.92

384

DATG 39.02 66.81 0.09 / 0.45 / 0.80
Tailor2023 40.85 70.37 0.11 / 0.43 / 0.80
Air-Decoding 24.29 51.44 0.08 / 0.44 / 0.80
GeDi 22.88 445.10 0.19 / 0.77 / 0.93
DExperts 25.93 24.54 0.05 / 0.29 / 0.53
Ours 21.88 36.80 0.10 / 0.47 / 0.80

512

DATG 38.46 74.26 0.11 / 0.48 / 0.81
Tailor 41.24 81.18 0.12 / 0.46 / 0.81
Air-Decoding 24.10 50.92 0.08 / 0.43 / 0.80
GeDi 22.48 606.90 0.19 / 0.80 / 0.94
DExperts 26.01 29.66 0.04 / 0.25 / 0.46
Ours 21.74 53.90 0.09 / 0.44 / 0.80

Table 2: The main experimental results for detoxifica-
tion. "Tox." measures toxicity (lower is better), PPL
represents perplexity (lower is better), and Dist-1/Dist-
2/Dist-3 quantify diversity. We bold the best results.

Detoxification. The results presented in the Ta-568

ble 3 demonstrate that our approach achieves the569

lowest toxicity score among all baselines, while570

maintaining competitive fluency compared to DEx-571

perts and Air-Decoding. This suggests effective572

toxicity reduction without severe fluency degrada-573

tion. Interestingly, Reinforced-Decoding does not574

achieve the same level of diversity as it does in sen- 575

timent and topic tasks. A possible reason for this 576

discrepancy could be that detoxification involves 577

a more constrained generation process. Despite 578

this, Reinforced-Decoding outperforms baselines 579

in toxicity reduction while maintaining competitive 580

fluency and diversity. This balance highlights the 581

effectiveness of our approach in controlling toxi- 582

city without severely compromising fluency and 583

diversity. 584

Method Sentiment Topic

Rel. Flu. Top. Rel. Flu. Top.

DATG2024 2.31 3.37 3.04 - - -
FreeCtrl2024 3.87 3.92 3.69 2.26 3.28 2.85
Tailor2023 2.32 3.63 3.02 2.55 3.16 3.20
Air-Decoding2023 3.91 3.84 3.72 3.93 3.73 3.71
GeDi2021 3.41 2.28 3.27 3.79 2.11 2.97
DExperts2021 3.46 3.16 3.38 - - -
Ours 4.02 3.81 3.76 3.97 3.72 3.79

Table 3: The human evaluation for sentiment and topic
controllable text generation on 128 length. We bold the
best results.

5 Conclusions 585

In this paper, we first identify the phenomenon 586

of performance degradation as the length setting 587

increases, and propose a novel lightweight frame- 588

work that leverages reinforcement learning to de- 589

termine whether to insert prefixes during the text 590

generation phase, enabling timely adjustments to 591

the generation trajectory. Specifically, we train pre- 592

fixes to obtain CC-LMs and utilize a reinforcement 593

learning approach to explore an optimal policy that 594

determine whether to insert prefixes to enhance 595

the influence of prefixes towards CC-LMs’ distri- 596

bution. Then we reconstruct the base LM’s distri- 597

butional to guide the generation towards desired 598

attributes. We conduct experiments on three typ- 599

ical CTG tasks, and the results demonstrate that 600

our approach performs well in long-text genera- 601

tion. Overall, Reinforced-Decoding holds promise 602

for enhancing a variety of prompt-based or prefix- 603

based methods, offering a flexible and adaptive 604

solution for controlling text generation. 605

Limitations 606

Reinforced-Decoding combines the efficiency of 607

prefix-tuning with the precision of decoding-time 608

control, utilizing a policy network to guide gen- 609

eration and mitigate the degradation of attribute 610
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control in long-text generation. However, as gener-611

ation continues, the growing length of past keys and612

values may impact the model’s ability to maintain613

effective control. Future work should investigate614

methods to manage the length increase of prefixes615

in attention layers. Moreover, extending this inser-616

tion method for fine-grained multi-attribute control617

remains an areas for future research. These aspects618

provide avenues for future research.619
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is 4, the weight decay is 0.01,the learning rate is827

5e-5, the number of training epochs is 10, and the828

insertion interval is set to 32. During the generation829

stage, we use ω=140.0 top-k=200, top-p=1.0.830

For FreeCtrl, we set k-values=30, λ=0.20, top-831

k=25, temperature=100 as released in in their832

codes.833

For Tailor, the length of soft prompt is set to 128,834

and we set top-k=10, top-p=1.0 as provided in the835

released codes.836

For Air-Decoding, we set ω=140.0, top-k=200,837

top-p=1.0.838

For GeDi, we train the generative discriminator839

based on GPT-2Medium, we set ω=30.0 , top-p=0.8,840

τ=0.8 as reported in their implementation.841

For Dexperts, we finetune two GPT-2Medium as842

expert and anti-expert to guide a GPT-2Medium ,set843

α=3.2, top-k=200, top-p=0.9.844

Topic Conrtol. In our method, we train a trans-845

former encoder to coding four prefixes, each with846

a prefix length of 20. The training batch size is 4,847

the weight decay is 0.01,the learning rate is 5e-5,848

and the number of training epochs is 10. During849

the generation stage, we use ω=60.0 top-k=200,850

top-p=1.0.851

For FreeCtrl, we set k-values=30, λ=0.30, top-852

k=25, temperature=100 as released in in their853

codes.854

For Tailor, the length of soft prompt is set to 128,855

and we set top-k=10, top-p=1.0 as provided in the856

released codes.857

For Air-Decoding, we set ω=60.0, top-k=200,858

top-p=1.0.859

For GeDi, we train the generative discriminator860

based on GPT-2Medium, we set ω=30.0 , top-p=0.8,861

τ=0.8 .862

Detoxification. In our method, we train a trans-863

former encoder to coding four prefixes, each with864

a prefix length of 20. The training batch size is 4,865

the weight decay is 0.01,the learning rate is 5e-5,866

and the number of training epochs is 10. During867

the generation stage, we use ω=120.0 top-k=200,868

top-p=1.0.869

For Tailor, the length of soft prompt is set to 128,870

and we set top-k=10, top-p=1.0 as provided in the871

released codes.872

For Air-Decoding, we set ω=120.0, top-k=200,873

top-p=1.0.874

For GeDi, we train the generative discriminator875

based on GPT-2Medium, we set ω=30.0 , top-p=0.8,876

τ=0.8.877

For Dexperts, we finetune two GPT-2Medium as 878

expert and anti-expert to guide a GPT-2Medium ,set 879

α=2.0, top-k=200, top-p=0.9. 880

B Ablation Study 881

To evaluate the impact of different components in 882

our approach, we conduct an ablation study that 883

investigates three variations on sentiment and topic 884

tasks, and we define the settings without prefix 885

insertion, with fixed interval prefix insertion and 886

with policy prefix insertion as w/o, w/ and dynamic 887

insertion. The results are presented in Table 4. 888

Without Prefix Insertion: This scenario serves 889

as the baseline where no prefix is inserted into 890

the generation process and achieves low accuracy 891

but optimal fluency. Fixed Interval Insertion: In 892

this setting, the prefixes is inserted at fixed inter- 893

vals of 32 tokens during generation. While this 894

approach provides periodic reinforcement of the 895

desired attribute, it does so without considering the 896

actual need for additional guidance. As a result, 897

it slightly reduces fluency, leading to a moderate 898

increase in perplexity. However, the impact is not 899

substantial, as the accuracy and diversity metrics 900

remain comparable to those of the dynamic inser- 901

tion strategy. This suggests that the prefixes has a 902

limited influence on the model’s output. Dynamic 903

Prefix Insertion: This approach achieves a similar 904

level of accuracy and diversity as the fixed inter- 905

val method but with slightly better fluency. The 906

relatively small difference in perplexity between 907

the two methods further supports the hypothesis 908

that the prefix’s influence is subtle. This adaptive 909

mechanism ensures that the prefixes is utilized ef- 910

ficiently, providing attribute control with minimal 911

interference in fluency. 912
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Length Method
Sentiment Topic

Acc ↑ PPL ↓ Dist-1/2/3 ↑ Acc ↑ PPL ↓ Dist-1/2/3 ↑

64
w/o insertion 95.60 24.70 0.23 / 0.68 / 0.88 96.15 25.50 0.19 / 0.66 / 0.88
w/ insertion 96.73 32.02 0.22 / 0.68 / 0.89 96.78 33.71 0.18 / 0.63 / 0.90
dynamic insertion 96.47 28.09 0.23 / 0.68 / 0.88 96.83 26.71 0.18 / 0.65 / 0.88

128
w/o insertion 93.30 25.85 0.18 / 0.65 / 0.89 91.40 27.97 0.16 / 0.64 / 0.90
w/ insertion 95.92 29.48 0.19 / 0.67 / 0.92 92.75 28.25 0.15 / 0.62 / 0.90
dynamic insertion 95.47 28.30 0.19 / 0.67 / 0.92 92.53 27.37 0.16 / 0.64 / 0.90

192
w/o insertion 92.20 25.42 0.17 / 0.65 / 0.91 88.70 27.21 0.15 / 0.62 / 0.90
w/ insertion 95.81 30.27 0.18 / 0.65 / 0.91 91.23 28.54 0.12 / 0.59 / 0.88
dynamic insertion 95.40 29.40 0.18 / 0.66 / 0.92 90.58 28.21 0.15 / 0.62 / 0.89

256
w/o insertion 91.60 24.96 0.16 / 0.63 / 0.91 86.30 27.72 0.14 / 0.61 / 0.90
w/ insertion 95.00 30.67 0.16 / 0.63 / 0.92 89.53 28.70 0.11 / 0.58 / 0.89
dynamic insertion 94.73 29.91 0.17 / 0.64 / 0.91 88.65 31.27 0.14 / 0.61 / 0.90

384
w/o insertion 88.80 24.51 0.15 / 0.60 / 0.89 83.30 29.39 0.13 / 0.58 / 0.90
w/ insertion 94.01 31.03 0.14 / 0.60 / 0.91 86.03 32.75 0.10 / 0.55 / 0.87
dynamic insertion 93.53 31.36 0.15 / 0.61 / 0.91 85.20 33.29 0.11 / 0.56 / 0.89

512
w/o insertion 87.00 24.64 0.13 / 0.58 / 0.88 80.70 29.86 0.12 / 0.57 / 0.89
w/ insertion 92.73 30.88 0.13 / 0.58 / 0.90 83.65 33.58 0.19 / 0.66 / 0.88
dynamic insertion 92.13 33.89 0.14 / 0.59 / 0.90 82.17 36.44 0.11 / 0.55 / 0.89

Table 4: Ablation study results on sentiment and topic controllable text generation. ↑ indicates that a higher score is
better, whereas ↓ signifies the opposite. We bold the best results.
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