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Abstract

Attribute-based Controlled Text Generation
(CTG) aims to generate texts that contains de-
sirable attributes. Previous work have demon-
strated remarkable language generation ca-
pabilities, yet they often suffer performance
degradation when the length of generations in-
creases. To tackle this challenge, we propose
Reinforced-Decoding, a novel lightweight de-
coding framework for CTG, whose main idea
is strategically enhancing the controllability of
prefixes on target attributes to construct bet-
ter attribute distributions. Specifically, We
train prefixes by prefix-tuning to obtain Class-
conditional language models’(CC-LMs) next-
token distributions. Then We leverage a re-
inforcement learning approach to explore the
optimal policy which decides whether to insert
prefixs to enhance their influence towards CC-
LMs’ next-token distribution, and reconstruct
attribute distributions at each time step to guide
LM to generate texts with desired attributes,
effectively mitigating the issue of degrading
performance when the length of generations
increases. Extensive experiments on a range
of CTG tasks demonstrate that Reinforced-
Decoding outperforms existing strong baselines
with improvements of 1%-4% in Acc and main-
tains high fluency across a wide range of length
settings.

1 Introduction

Controllable Text Generation (CTG) aims to gen-
erate text that conforms to predefined constraints.
These constraints can encompass a wide range of
factors, from broad semantic features like senti-
ment, topic relevance, and toxicity control(Gu et al.,
2023; Kangaslahti and Alvarez-Melis, 2024; Shi
et al., 2024). To more specific content require-
ments, such as the inclusion of particular concepts
or key elements like style, kyewords and length
(Ashok and Poczos, 2024; Zhou et al., 2023; Sun
et al., 2023). Recent advancements in neural text

generation, driven by pre-trained language mod-
els(PLMs), have achieved unprecedented text qual-
ity. However, attribute-based controllable text gen-
eration (Zhang et al., 2024a) — involving attributes
like sentiment, topics, and detoxification — con-
tinues to pose significant challenges. While some
CTG method (Zhong et al., 2023; Feng et al., 2024)
have demonstrated considerable success in achiev-
ing attribute control,it remains challenging to con-
trol the generated text to simultaneously satisfy cer-
tain attributes and maintain a reasonable coherence
and diversity in long text generation.This capability
plays a pivotal role in various real-world applica-
tions, including writing support and imaginative
story creation.

Current approaches for CTG can be categorized
into three paradigms based on their intervention
mechanisms (Zhang et al., 2023): The first one in-
volves retraining the entire parameters of PLMs to
achieve attribute control (Keskar et al., 2019; Wang
et al., 2021). While these methods can achieve
impressive control, they suffer from high compu-
tational costs as the scale of PLMs grows and be-
comes increasingly impractical to develop and de-
ploy a separate model for each attribute. The sec-
ond approach focuses on prefix/prompt tuning to
control PLMs generation. Techniques such as At-
tribute Alignment (Yu et al., 2021), Contrastive
Prefixes Qian et al. (2022) and Tailor (Yang et al.,
2023) optimize lightweight prefixes to steer gen-
eration. Though efficient, these methods exhibit
limited generalization due to overfitting to training
corpus patterns.

The third approach is based on adjusting the out-
put probability distribution of the model during
the inference. Most methods incorporate an addi-
tional well-trained attribute classifier to steer PLMs
through gradient backpropagations (Dathathri et al.,
2019) or by weighting the output logits(Krause
et al., 2021; Yang and Klein, 2021; Liu et al., 2021).
(Gu et al., 2023) which leverages normalizing flows
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Figure 1: The phenomenon of performance degradation
based on sentiment and topic control tasks.The accuracy
is an directly proportional metric to attribute relevance.

to transform complex, high-dimensional distribu-
tions into tractable Gaussian. (Kangaslahti and
Alvarez-Melis, 2024) uses a continuous linear inter-
polation between fine-tuned models to achieve fine-
grained control. This approach typically demon-
strates strong attribute relevance, yet suffers from
increased inference latency and reduced fluency.

Previous SOTA (Zhong et al., 2023) introduces
the phenomenon of Attribute Collapse in decoding-
time approaches and leverages a distribution re-
construction method to achieve a more balanced
attribute distribution, thereby maintaining stable
perplexity. However, these methods suffer from ac-
curacy decrease when the length of generations
increases, as shown in 1. Our analysis reveals
that this decrease is primarily due to two factors:
attention dilution, which stems from the progres-
sive weakening of control signals through standard
attention process, and error accumulation, which
arises from compounding misalignments in autore-
gressive generation. As a result, the final genera-
tion direction deviates from the desired target.

To overcome the aforementioned limitations,we
propose Reinforced-Decoding, a lightweight ap-
proach that bridges the efficiency of prefix-tuning
and the precision of decoding-time control. This
method employs dynamic interventions that adapt
to the generation context. Specifically, we con-
struct class-conditional language models (CC-
LMs) through a prefix-based approach, and model
the next-token distribution of the PLM via Bayes’
rule. During generation, we insert attribute-specific
prefixes into the CC-LMs’ keys and values at reg-
ular intervals, strengthening attribute control. Fur-
thermore, a policy network autonomously deter-
mines whether to insert an additional prefix at the
current timestep, optimizing attribute control. This
enables more precise steering of the model’s output,
ensuring that it aligns with the intended direction.
Our main contributions are as follows:

* We first identify the phenomenon of perfor-
mance degradation in CTG tasks and pro-
pose a novel lightweight framework named
Reinforced-Decoding to mitigate this issue.
The framework is trained through a policy gra-
dient approach and autonomously determines
when to insert an additional prefix vector to
CC-LMs, effectively promotes the attribute
alignment during generation across various
length settings while maintaining stable per-
plexity.

We combine the strengths of prefix-based con-
trol and decoding-time control by applying
Bayes’ rule to create a more efficient and
precise generation process. Then Reinforced-
Decoding naturally unifies the efficiency of
prefix-tuning with the precision of weighted
decoding.

* We demonstrate the effectiveness of
Reinforced-Decoding across three typical
control tasks: Sentiment, Topic, and Detox-
ification. = The evaluation results shows
Reinforced-Decoding’s superior performance
compared to existing baselines both in
short and long text generations, advancing
the previous SOTA results with 1%—4%
improvement on accuracy, and effectively
mitigates performance degradation typically
observed on longer texts.

2 Related Work

Prefix/Prompt Learning. With the emergence
of billion-parameter language models, lightweight
fine-tuning methods such as prefix-tuning such
as prefix-tuning(Li and Liang, 2021) and prompt-
tuning (Lester et al., 2021) have gained increasing
attention. ConPrefixes(Qian et al., 2022) introduce
contrastive prefixes, which account for inter-prefix
relationships during training. Discup (Zhang and
Song, 2022) integrate an attribute discriminator
with unlikelihood training to refine prompt learning
but at the cost of training efficiency. Tailor (Yang
et al., 2023) deploy a set of plug-and-play attribute-
specific soft prompts to guides the generation suf-
fers from limited control strength. PPP (Ajwani
et al., 2024) leverages the gradients from an ex-
ternal discriminator model to adjust the prompt
parameters, transforming them into control com-
mands that guide the language model’s generation.
DATG(Liang et al., 2024) introduces dynamic at-
tribute graphs that modulates occurrence of key



words, either aligned with or opposed to the target
attribute.

Decoding-time The decoding-time methods do not
alter the PLMs but adjust the output probability
distribution of PLMs during generation, offering
fine-grained control without modifying model pa-
rameters. PPLM (Dathathri et al., 2019) iteratively
updates hidden states using gradients from an at-
tribute classifier, guiding them toward generating
text with the specified attributes. On the other hand,
FUDGE (Yang and Klein, 2021) directly uses an
attribute classifier to compute the relevance of the
next token’s attributes and reweights the output
probabilities of PLMs. (Zhang et al., 2024b) pro-
posed a Residual Memory Transformer that per-
forms late fusion with a frozen PLMs, enabling
non-invasive steering of the generation process.(Yu
et al., 2024) alters the output context throughout the
generation process of a base language model. The
FreeCtrl (Feng et al., 2024) employ real-time inter-
vention by analyzing the sensitivity of feedforward
layer vectors in PLMs, dynamically adjusting their
weights to steer generation trajectories. (Dekon-
inck et al., 2024) propsed a model arithmetic that
express prior CTG techniques as simple formu-
las. Energy-based approaches (Mireshghallah et al.,
2022; Son and Lee, 2024) utilizes a set of black-
box expert models and combine their energy values
to enforce desired property such as fluency and at-
tribute alignment. While this method may suffers
from weaker controllability or inefficient inference.
Similar to (Liu et al., 2021), Proxy-tuning (Liu
et al., 2024) uses two extral small tuned experts
to guide PLMs’ generation. However, this method
may not be well-suited for multi-category attribute-
controlled generation due to it requires exponen-
tial model variants. GeDi (Krause et al., 2021)
uses class-conditional language models as genera-
tive discriminators to steer text generation.Despite
achieving impressive attribute alignment, its flu-
ency degrades significantly. To solve this issue,
(Zhong et al., 2023) introduces a distribution re-
construction method to achieve a more balanced
attribute distribution.

Reinforcement Learning RL was first proposed
in the context of language generation as an aux-
iliary algorithm to mitigate exposure bias in the
teacherforcing training of sequences.(Kim et al.,
2022) utilize a Actor-Critic framework to adjust
the PLM’s output distributions. (Lu et al., 2022)
employ a coarse-grained feedback to train PLM,
while (Li et al., 2024) design a fine-grained feed-

back to provide precise guidance for PLM. In con-
trast, our method trains only a lightweight policy
network that dynamically determines when to in-
sert prefixes, making it more efficient and scalable.

3 Methodology

3.1 Preliminary

Policy gradient is one of the most prominent ap-
proaches to solving RL problems, which directly
optimize the parameters 6 of the policy network,
the objective of maximizing the expected return
J(0) = E, [ZtT:O 'ytrt] . This optimization is
achieved by computing the gradient V.J(6), which
is shown to be proportional to the expected value
of the gradient of the log-probability of the policy
and the return GG; (Sutton and Barto, 2018):
VoJ(0) = Er, [Vologma(at|st) - (Gt — b(st))]

ey
where G; = ZiT:t v*~tr;. High-return trajectories
trigger policy updates that systematically increase
the probability of selecting actions proportional to
their contribution to the cumulative reward, with
gradient ascent directly amplifying the likelihood
of high-yielding decisions in subsequent iterations.
However, prior research has shown that using G
alone often leads to high variance. To address this,
a state-dependent baseline b(s;) is subtracted, sta-
bilizing the training process. This baseline does not
affect the overall expected value due to its action-
independence : Er, [bV log mp(at|s:)] = 0.
Class-conditional language models (CC-LMs) ex-
tends the auto-regressive LMs by incorporating an
explicit conditioning signal ¢, which represents var-
ious control attributes, such as a topic label or sen-
timent score. The probability distribution over the
next token is modified as follows:

N
Py(zr.N|x17-1,0) = H P(xi|z1:i-1,¢) (2)
i=T

where c acts as a conditioning variable guiding
text generation. Models such as CTRL (Keskar
etal., 2019) use predefined control codes as explicit
inputs to enforce generation constraints. However,
these approaches typically require large-scale pre-
training or fine-tuning, which can be computation-
ally expensive and less flexible.

To enable controlled text generation without re-
training the entire model, we employ prefix-based



method (Li and Liang, 2021) to obtain CC-LMs.
Specifically, for a given control attribute a, we learn
an attribute-specific prefix. These prefixes steer the
model towards generating text with the desired sen-
timent while keeping the base model parameters
frozen.

3.2 Decoding-Based Distribution Adjustment

Previous studies have shown that stronger control
can be achieved through weighted decoding strate-
gies. Inspired by this, we introduce a decoding-
based distribution adjustment method to enhance
control strength while maintaining prefix-tuning’s
efficiency.

Given a base GPT-2 model with next token dis-
tribution and prefix-based conditional distributions,
we perform the decoding-time adjustment as fol-
lows (Yang and Klein, 2021):

Py(z¢|r1:6-1,0) < Po(xi|wre—1) - Plalz1e)”  (3)

where P(a|z1.;) is the probability that x1.; belongs
to the desired attribute a, which is provided by an
attribute classifier, and w is a scaling factor that
controls the influence of the attribute adjustment.

Our goal is to model P(a|z1.) in order to ob-
tain the desired distribution Py(x¢|x1.4—1,a). By
applying Bayes’ rule, we can further decompose
P(a|x1.t) into the following expression with CC-
LMs (Krause et al., 2021):

P(alz1.e) = P(a) [T;_y Poo (wi|21:i-1,0) @

Sweallios P(@)Ps, (zilz1:1,0')

where a represents the desired attribute, and A
denotes the set of possible attributes. For in-
stance, in the case of binary sentiment control,
A = {positive, negative}. The parameter ¢,/ cor-
responds to the CC-LM Py , (w;|71:i-1, a') asso-
ciated with attribute a/. P(a) and P(a’) can be
omitted for uniform training data.

During text generation, we only need to com-
pute the output distributions of the CC-LMs. No-
tably, the probability terms from previous steps,
Py ,(zi|21:-1,a") fori = 2,...,t — 1, have al-
ready been computed, this allows for efficient com-
putation. To further refine control, we followed
(Zhong et al., 2023) and reconstruct the attribute
distributions:

1

Py, (zi|z1:-1,0") = _ln(P¢a, (wilz1:i-1,0")) ©
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Figure 2: An illustration of Reinforced-Decoding on
sentiment task.Feed the generated texts to positive CC-
LMs, negative CC-LMs, and GTP-2, the policy make
the decision wether to insert prefix to two CC-LMs at
timestep t to enhance attribute alignment.

3.3 Reinforced-Decoding

Although the approach has achieved promising re-
sults in controlled text generation, However, We
observe that the influence of the prefix on the gen-
erated sequence gradually diminishes as the se-
quence length increases.To mitigate this issue, we
intuitively re-inserting the prefix at appropriate in-
tervals during the generation process,prepending
learnable parameter vectors to both Key and Value
matrices in self-attention layers. Formally, for
each transformer layer at generation step t, we con-
catenate the prefix parameters K (?) € R!?*d and
V() ¢ RP*4 with the contextual Key/Value repre-
sentations:

Kiy = [Ki; KP), Vi = [Vi; VP (6)

where K () represents the prefix-generated key,
and K., denotes the sequence of keys from ear-
lier tokens, [, denotes the prefix length and d rep-
resent dimensions. The CC-LMs then compute the
self-attention output as follows:

K/T
Attention(Q, K', V') = softmax <Q ) %4
e -

where @, K’, and V' represent the query, key, and
value matrices, respectively, and dy, is the scaling
factor.

For example, consider sentiment control, the
probability of a positive token under the positive-
conditioned distribution Py, (2;|z1:,—1,a) at time
step t increase from 0.1 to 0.15, while its proba-
bility under the negative-conditioned distribution
Py, (xi|x1:i—1,a) decrease from 0.05 to 0.03. Con-
sequently, the overall probability of the desired at-
tribute P(a|xy.;) is reinforced by Eq. 5,rising from



0.1/(0.14+0.05)=0.667 to 0.15/(0.15+0.03)=0.83,
thereby ensuring stronger control over the gener-
ated sentiment.

Nevertheless, simply inserting the prefixes at
fixed intervals may not always be the optimal
choice. For instance, some texts that already ex-
hibit strong alignment with the desired attribute
do not require additional prefixes insertion. More-
over, arbitrary insertion of the prefix may sacrifice
fluency in order to better align with the target at-
tribute. To overcome the aforementioned problems,
we propose a lightweight policy network, a small
feedforward neural network trained by policy gra-
dient in an offline manner, to determine whether
to insert an additional prefixes after a certain num-
ber of tokens are generated by the language model.
The overall framework is illustrated in Figure 2.
Specifically, after each b generation steps are com-
pleted at time step t during generation, the policy
network considers the generated content so far as
the state and computes the action distribution:

a; = Policy(hi%") ®)

Based on the action distributiona;, we sample a
discrete action m; to determine whether to insert
prefixes into the generation sequence. The action
space consists of two possible decisions:

{0 : Continue generation
my € {0,1}, where
1 : Insert prefix py
©))

A full generation process may involve multiple
decision points. Since the influence of each deci-
sion is uncertain, after the sample s; is completed,
we compare it with a naturally generated sample
sg (i.e., one without any prefix insertion) to derive
the reward signal. The reward signal derives from
their differential performance, combining both per-
plexity computed by GPT-2pfedium, and an attribute
score computed by a classifier to evaluate the gen-
erated text’s attribute alignment. The final reward
is defined as follows:

r(8) = - Tastrivute (51, 52) + B Tppi(s1, s2) (10)

where 74ribute €valuates the difference in attribute
scores between the sentences s1 and so, and 7y,
measures the difference in perplexity between sy
and so. o and 3 is hyperparameters that control the
relative importance of the two terms in the reward.
The policy is trained by maximizing the expected

cumulative reward over all generated trajectories:

T
Z'ytr(S)]
t=0

By optimizing this reward, the RL model learns
to insert the prefix at the most effective points,
ensuring both high-quality generation and strong
attribute control. Our approach is designed to main-
tain control over longer sequences, enabling better
performance on more complex generation tasks.

J(0) = Er, (11)

4 Experiments

4.1 Evaluation Metric

We test our method on three types of controllable
text generation tasks: (1) Sentiment Control, (2)
Topic Control, and (3) Detoxification.

Automatic Evaluation. We automatically eval-
uate the completed sentences from three aspects.
(1) Accuracy assesses how well the generated ex-
amples align with the target attributes. We use
RoBERTa,g0-based (Liu, 2019) attribute classi-
fiers trained on widely used benchmark datasets:
IMDB movie reviews (Maas et al., 2011) for senti-
ment control, and AGNews (Zhang et al., 2015) for
topic control to compute the accuracy of generated
sentences that contain corresponding attribute.The
two classifiers achieve accuracies of 95.52% and
95.18%. For the detoxification task, we utilize the
Perspective API' to measure the average toxicity
for the generated texts.(2) Fluency is measured us-
ing the perplexity (PPL) scores of the generated
sentences, evaluated by GPT-2p,5e, GPT-2Medium
and GPT-2p ygc versions of GPT-2 (Radford et al.,
2019), and we report the average perplexity as the
final result. (3) Diversity is measured by the dis-
tinctness (Li et al., 2015) of the generated sen-
tences. Concretely, we compute the fraction of
unique 1-grams, 2-grams, and 3-grams of total
texts. These metrics are denoted as Dist-1, Dist-2,
and Dist-3.

Human Evaluation. Following (Zhong et al.,
2023), we conduct human evaluation for sentiment
and topic control on three aspects:(1) the text rel-
evance of generation text with the desired control
attribute; (2) The fluency from human perspective;
(3) Topicality evaluate the consistency between the
generated text and the input prompt. Each sentence
is rated on a scale from 1 to 5, with higher scores
indicating better performance. For each task, we

"https://www.perspectiveapi.com/
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randomly select 50 sentences for each length and
ask three annotators to rate them based on the two
metrics. The final human evaluation score is ob-
tained by averaging the collected ratings across all
annotators.

4.2 Baselines

We compare the proposed method with a wide
range of baselines as follows, all of which are
implemented using their official codebases. We
retrain these methods on IMDB dataset for sen-
timent control, on AGnews dataset for topic con-
trol, and on Jigsaw Toxic Comment Classification
Challenge Dataset for detoxification. For all exper-
iments, We adopt GPT-2peqium as the frozen back-
bone LM. Other hyperparameters details are de-
scribed in Appendix A. Learning-free: (1) FreeC-
trl (Feng et al., 2024), a learning-free approach
manipulate the feedforward layers’ weight to guide
the generation towards the desired directionat at
generation process. In our implementation, we re-
move its filtering process, which was originally
designed to discard outputs that did not sufficiently
align with the target attribute. (2) DATG (Liang
et al., 2024) employs attribute classifiers to as-
sess PLM-generated texts, constructing dynamic
attribute graphs that identify key words aligned
with or opposed to target attribute dimensions,
we employ their DATG-P method in our experi-
ment. Prefix/Prompt-based: (3) Tailor (Yang et al.,
2023) represents each attribute as a pre-trained soft
prompt and concatenated it with the input, which
guides the generation of a frozen PLM to satisfy
a pre-specified attribute. Decoding-time: (4)Air-
Decoding (Zhong et al., 2023) uses a attribute
distribution reconstruction method to reconstruct
the original attribute distribution to keep fluency
of generated texts. (5)GeDi (Krause et al., 2021)
finetunes external class-conditional LMs to hint a
base model’s generation. (6) DExpert (Liu et al.,
2021) finetuns GPT-2 as an expert/anti-expert to
manipulate a base model’s logits at inference time.

4.3 Experimental Setup

The Reinforced-Decoding approach involves divid-
ing the continuation into blocks of b tokens. Each
time b generation steps are completed at time step
t, the policy network takes the language model’s
hidden state as input and decide whether to insert
prefiexs.

Sentiment Control. Following previous work
(Krause et al., 2021), we first train two CC-LMs

with a prefix length of 20 on IMDb movie reviews
(Maas et al., 2011),which contains 12.5K positive
and 12.5K negative samples. During the evaluation
phase, the 15 attribute-unrelated prompts used for
the model’s generation are identical to those in with
PPLM (Dathathri et al., 2019). For each prompt,
we generate 50 sentences with varying maximum
generation lengths of 64, 128, 192, 256, 384, and
512 tokens.

Topic Control. We experiment with four CC-
LMs with a prefix length of 20 on AGnews dataset
(Zhang et al., 2015),which consists of four top-
ics: World, Sports, Business and Science, each
containing 30K samples. During the evaluation
phase, we use 20 prompts identical to those in
PPLM (Dathathri et al., 2019). For each prompt, 50
sentences are generated, with the same maximum
generation lengths as in sentiment control.
Detoxification. We use the Jigsaw Toxic Comment
Classification Challenge Dataset to train CC-LMs.
The length of prefix is set to 20. Following previ-
ous work,we use 203 prompts collected by (Zhong
et al., 2023) from RealToxicityPrompts (Gehman
et al., 2020). For each prompt, 20 sentences are gen-
erated. Dynamic Prefix Insertion is not used cause
dynamic its need a feedback of Perpective APIL.
While accessing the API is feasible, the training
duration may extend or interrupted due to delays
associated with the API.

4.4 Results and Analysis

Sentiment Control. As shown in Table 1,
Reinforced-Decoding significantly outperforms all
other baselines in at least one metric, with the ex-
ception of generation length 384 and 512. Our accu-
racy on length of 384 and 512 just fall a little behind
FreeCtrl. In contrast, Reinforced-Decoding outper-
forms FreeCtrl thoroughly across four length(64,
128, 192, 256). while achieving a high accuracy,
FreeCitrl tends to generate repetitive content, lead-
ing to lower diversity, especially in long (384, 512)
texts. Notably, our method maintains a high Dist
score even at the maximum length of 512 tokens
and keep a low perplexity(33.19), demonstrating its
robustness in generating diverse and fluent content
over long texts. Tailor and Air-Decoding demon-
strates a balanced performance across various met-
rics; however, Tailor’s attribute control remains
relatively weak. On the other hand, GeDi attains
SOTA diversity but at the cost of severe fluency
degradation, making it challenging to produce flu-
ent and coherent text. This issue becomes even



Sentiment Topic
Length Method
Acct PPL Dist-1/2/3 Acct PPL| Dist-1/2/3 1
FreeCtr2%%* 95.80 40.77 0.10/0.45/0.79 7443 2942  0.08/0.42/0.78
DATG?>*** 70.76  42.64  0.12/0.49/0.82 - - -/-/-

o Tailor 80.57 2440 0.12/051/084 7660 3582  0.14/0.58/0.87
Air-Decoding®®  96.07 25.66 0.13/0.56/0.80 96.51  30.67  0.08/0.47/0.78
GeDi??! 9593 15140 0.32/0.82/0.94 92.18 15039 0.27/0.81/0.96
DExperts>%*! 81.60 20.06 0.20/0.65/0.87 - - -/-1-

Ours 96.47 28.09 0.23/0.68/0.88 9683 2671  0.18/0.65/0.88
FreeCtrl 9521 29.86 0.09/0.40/0.75 68.10 2824  0.07/0.38/0.74
DATG 68.53 4927 0.11/0.50/0.82 - - /-1

Tailor 7637 3097 0.10/0.50/0.85 68.60 3842  0.13/0.59/0.89

128 Air-Decoding 9476  27.65 0.13/052/0.81 91.93 3171  0.11/0.50/0.79
GeDi 9473 195.07 0.30/0.83/0.96 83.40 189.235 0.24/0.82/0.97
DExperts 83.53 1645 0.16/0.58/0.82 - - /-]

Ours 9547 2830 0.19/0.67/0.92 9235 2737  0.16/0.64/0.90
FreeCtrl 95.16 2572 0.07/036/0.72 6653 2836  0.06/0.34/0.71
DATG 6437 5512 0.11/0.52/0.81 - - /-

Tailor 82.17 3861 0.10/049/0.86 6570 4190  0.13/0.58/0.90

192 Air-Decoding 93.62 2883 0.12/053/0.80 88.19 3463  0.10/0.49/0.82
GeDi 93.07 26352 0.29/0.85/097 7785 26697 0.24/0.83/0.98
DExperts 8327 1640 0.13/0.52/0.75 - - /-]

Ours 9540 2940 0.18/0.66/0.92 90.58 2821 0.15/0.62/0.89
FreeCtrl 94.68 27.36 0.07/033/0.69 6398 2596 0.06/0.32/0.68
DATG 6229 63.65 0.12/0.51/0.83 - - -/-1-

Tailor 86.83 4504 0.10/0.50/0.86 63.60 3842  0.12/0.57/0.89

256 Air-Decoding 9228 31.16 0.11/052/0.78 86.46 3727  0.09/0.48/0.82
GeDi 92.13 36091 0.29/0.86/0.98 7625 370.71  0.24/0.85/0.98
DExperts 82.13 18.83 0.12/0.48/0.71 - - /-]

Ours 9473 2991 0.17/0.64/091 88.65 31.72  0.14/0.61/0.90
FreeCtrl 9523 2543  0.06/029/0.63 6245 2449  0.05/0.28/0.63
DATG 61.78 6893 0.10/0.54/0.85 - - -/-1-

Tailor 88.23 5513 0.11/052/0.87 6370 5383  0.12/0.56/0.89

384 Air-Decoding 90.11 3503 0.10/049/0.78 8331 4176  0.08/0.49/0.79
GeDi 89.13 60245 0.39/0.89/0.98 7418 599.12  0.24/0.87/0.98
DExperts 81.89 1526 0.09/0.40/0.62 - - /-

Ours 93.53 3136 0.15/0.61/091 8520 3329 0.11/0.56/0.89
FreeCtrl 9593 2429 0.05/026/0.60 6295 2355  0.04/0.25/0.59
DATG 60.14 7467 0.09/0.55/0.84 - - -/-1-

Tailor 86.50 62.14 0.12/0.54/0.87 7750 6294  0.11/0.54/0.88

512 Air-Decoding 87.89 3891 0.10/049/0.80 80.32 4421  0.08/0.43/0.81
GeDi 86.73 86292 0.28/0.9/0.99 7125 84449  0.24/0.88/0.98
DExperts 80.53 14.61 0.08/0.34/0.54 - - /-]

Ours 92.13  33.89 0.14/059/0.90 8217 3644  0.11/0.55/0.89

Table 1: The main experimental results for sentiment and topic controllable text generation. 1 indicates that a
higher score is better, whereas | signifies the opposite. We bold the best results, underline the runner-up.

more pronounced as text length increases: GeDi’s
PPL rises drastically with longer texts (e.g., from
151.40 to 862.92). Human evaluations from Table
3 confirm our method’s superiority in relevance
(4.02/5) and Ttopicality (3.76/5), outperforming
baselines across both subjective and objective met-
rics.

Topic Control. In the topic task, Reinforced-
Decoding continues to maintain a high diversity

across different sequence lengths. Furthermore, it
achieves the SOTA accuracy in topic control, out-
performing all baselines on all generation length.
These results indicate that our approach effectively
balances attribute alignment, fluency, and diversity,
making it a robust solution for topic-controllable
text generation. FreeCtrl, continues to show the
weakest diversity in the topic task. Additionally, its
accuracy drops significantly, reaching only around



60-70%, far below its performance in sentiment
control. Tailor, Air-Decoding, and GeDi exhibit
a performance pattern similar to that observed in
sentiment task. However, given that topic control
is inherently more complex than sentiment control,
their accuracy scores decline across the board. We
exclude DExperts and DATG from topic evalua-
tions due to their inherent architectural limitations
in handling multi-category attributes. The human
evaluation results in Table 3 also demonstrate the
superiority of our method, mainly in fluency and
topicality.

Length  Method Detoxification
eng etho
Tox.| PPL| Dist-1/2/3 1
DATG?% 3891 4517 0.09/0.41/0.72
Tailor?*? 40.50 4777  0.08/0.36/0.65
64  Air-Decoding® 2213 4854 0.12/048/0.73
GeDi?*! 2091 173.60 0.18/0.59/0.74
DExperlszoz} 25.13 18.47 0.11/0.44/0.67
Ours 19.35  47.12  0.12/047/0.71
DATG 37.64 5249  0.08/0.42/0.74
Tailor 40.50 4777  0.08/0.38/0.73
128 Air-Decoding 24.60 4924  0.11/0.48/0.79
GeDi 21.94  199.50 0.18/0.66/0.85
DExperts 2554 1859  0.09/0.42/0.68
Ours 21.66 4846 0.11/0.49/0.78
DATG 37.13 5798  0.09/0.44/0.77
Tailor 40.83  53.89 0.09/0.39/0.75
19y Air-Decoding 2456  51.86 0.10/0.48/0.80
GeDi 22.87 249.80 0.18/0.70/0.89
DExperts 2569 19.61 0.07/0.38/0.64
Ours 21.83 3858 0.11/0.48/0.80
DATG 3831 6122 0.10/0.43/0.79
Tailor 40.89  60.10 0.09/0.41/0.77
556 AirDecoding 24.60 5337 0.09/0.46/0.81
GeDi 2241 30570 0.18/0.72/0.90
DExperts 2573 2315 0.07/0.35/0.61
Ours 21.55 498  0.17/0.64/0.92
DATG 39.02  66.81  0.09/0.45/0.80
Tailor® 40.85 7037 0.11/0.43/0.80
384  Air-Decoding 2429 5144  0.08/0.44/0.80
- GeDi 22.88  445.10 0.19/0.77/0.93
DExperts 2593 2454  0.05/0.29/0.53
Ours 21.88 36.80 0.10/0.47/0.80
DATG 3846 7426 0.11/0.48/0.81
Tailor 4124  81.18 0.12/0.46/0.81
s;p  Air-Decoding 24.10 5092  0.08/0.43/0.80
GeDi 2248  606.90 0.19/0.80/0.94
DExperts 26.01  29.66 0.04/0.25/0.46
Ours 21.74 5390 0.09/0.44/0.80

Table 2: The main experimental results for detoxifica-
tion. "Tox." measures toxicity (lower is better), PPL
represents perplexity (lower is better), and Dist-1/Dist-
2/Dist-3 quantify diversity. We bold the best results.

Detoxification. The results presented in the Ta-
ble 3 demonstrate that our approach achieves the
lowest toxicity score among all baselines, while
maintaining competitive fluency compared to DEx-
perts and Air-Decoding. This suggests effective
toxicity reduction without severe fluency degrada-
tion. Interestingly, Reinforced-Decoding does not

achieve the same level of diversity as it does in sen-
timent and topic tasks. A possible reason for this
discrepancy could be that detoxification involves
a more constrained generation process. Despite
this, Reinforced-Decoding outperforms baselines
in toxicity reduction while maintaining competitive
fluency and diversity. This balance highlights the
effectiveness of our approach in controlling toxi-
city without severely compromising fluency and
diversity.

Method Sentiment Topic

Rel. Flu. Top. Rel. Flu. Top.
DATG>* 231 337 3.04 - - -
FreeCtr]%* 387 392 369 226 328 285
Tailor*** 232 363 3.02 255 316 320
Air-Decoding® 391 3.84 372 393 373 3.7l
GeDi?"! 341 228 327 379 211 297
DExperts?®?! 346 3.16 3.38 - - -
Ours 402 381 376 397 372 3.79

Table 3: The human evaluation for sentiment and topic
controllable text generation on 128 length. We bold the
best results.

5 Conclusions

In this paper, we first identify the phenomenon
of performance degradation as the length setting
increases, and propose a novel lightweight frame-
work that leverages reinforcement learning to de-
termine whether to insert prefixes during the text
generation phase, enabling timely adjustments to
the generation trajectory. Specifically, we train pre-
fixes to obtain CC-LMs and utilize a reinforcement
learning approach to explore an optimal policy that
determine whether to insert prefixes to enhance
the influence of prefixes towards CC-LMs’ distri-
bution. Then we reconstruct the base LM’s distri-
butional to guide the generation towards desired
attributes. We conduct experiments on three typ-
ical CTG tasks, and the results demonstrate that
our approach performs well in long-text genera-
tion. Overall, Reinforced-Decoding holds promise
for enhancing a variety of prompt-based or prefix-
based methods, offering a flexible and adaptive
solution for controlling text generation.

Limitations

Reinforced-Decoding combines the efficiency of
prefix-tuning with the precision of decoding-time
control, utilizing a policy network to guide gen-
eration and mitigate the degradation of attribute



control in long-text generation. However, as gener-
ation continues, the growing length of past keys and
values may impact the model’s ability to maintain
effective control. Future work should investigate
methods to manage the length increase of prefixes
in attention layers. Moreover, extending this inser-
tion method for fine-grained multi-attribute control
remains an areas for future research. These aspects
provide avenues for future research.
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A Implement Details

We detail the hyperparameters and baselines as fol-
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as base language model, and trained on IMDB
datasets.

Sentiment Conrtol. In our method, we train a
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is 4, the weight decay is 0.01,the learning rate is
Se-5, the number of training epochs is 10, and the
insertion interval is set to 32. During the generation
stage, we use w=140.0 top-k=200, top-p=1.0.

For FreeCtrl, we set k-values=30, A=0.20, top-
k=25, temperature=100 as released in in their
codes.

For Tailor, the length of soft prompt is set to 128,
and we set top-k=10, top-p=1.0 as provided in the
released codes.

For Air-Decoding, we set w=140.0, top-k=200,
top-p=1.0.

For GeDi, we train the generative discriminator
based on GPT-2ptedium, we set w=30.0 , top-p=0.8,
7=0.8 as reported in their implementation.

For Dexperts, we finetune two GPT-2pedium as
expert and anti-expert to guide a GPT-2pjedium »Set
a=3.2, top-k=200, top-p=0.9.

Topic Conrtol. In our method, we train a trans-
former encoder to coding four prefixes, each with
a prefix length of 20. The training batch size is 4,
the weight decay is 0.01,the learning rate is Se-5,
and the number of training epochs is 10. During
the generation stage, we use w=60.0 top-k=200,
top-p=1.0.

For FreeCtrl, we set k-values=30, A=0.30, top-
k=25, temperature=100 as released in in their
codes.

For Tailor, the length of soft prompt is set to 128,
and we set top-k=10, top-p=1.0 as provided in the
released codes.

For Air-Decoding, we set w=60.0, top-k=200,
top-p=1.0.

For GeDi, we train the generative discriminator
based on GPT-2)tedium, we set w=30.0 , top-p=0.8,
7=0.8 .

Detoxification. In our method, we train a trans-
former encoder to coding four prefixes, each with
a prefix length of 20. The training batch size is 4,
the weight decay is 0.01,the learning rate is Se-5,
and the number of training epochs is 10. During
the generation stage, we use w=120.0 top-k=200,
top-p=1.0.

For Tailor, the length of soft prompt is set to 128,
and we set top-k=10, top-p=1.0 as provided in the
released codes.

For Air-Decoding, we set w=120.0, top-k=200,
top-p=1.0.

For GeDi, we train the generative discriminator
based on GPT-2\edium, we set w=30.0 , top-p=0.8,
7=0.8.
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For Dexperts, we finetune two GPT-2pjedium as
expert and anti-expert to guide a GPT-2pfedium ,Set
a=2.0, top-k=200, top-p=0.9.

B Ablation Study

To evaluate the impact of different components in
our approach, we conduct an ablation study that
investigates three variations on sentiment and topic
tasks, and we define the settings without prefix
insertion, with fixed interval prefix insertion and
with policy prefix insertion as w/o, w/ and dynamic
insertion. The results are presented in Table 4.

Without Prefix Insertion: This scenario serves
as the baseline where no prefix is inserted into
the generation process and achieves low accuracy
but optimal fluency. Fixed Interval Insertion: In
this setting, the prefixes is inserted at fixed inter-
vals of 32 tokens during generation. While this
approach provides periodic reinforcement of the
desired attribute, it does so without considering the
actual need for additional guidance. As a result,
it slightly reduces fluency, leading to a moderate
increase in perplexity. However, the impact is not
substantial, as the accuracy and diversity metrics
remain comparable to those of the dynamic inser-
tion strategy. This suggests that the prefixes has a
limited influence on the model’s output. Dynamic
Prefix Insertion: This approach achieves a similar
level of accuracy and diversity as the fixed inter-
val method but with slightly better fluency. The
relatively small difference in perplexity between
the two methods further supports the hypothesis
that the prefix’s influence is subtle. This adaptive
mechanism ensures that the prefixes is utilized ef-
ficiently, providing attribute control with minimal
interference in fluency.



\ Sentiment \ Topic

Length Method
| Acct PPL| Dist-1/2/31 | Acct PPL| Dist-1/2/3 1

w/o insertion 95.60 2470 0.23/0.68/0.88 | 96.15 25.50 0.19/0.66/0.88
64 w/ insertion 96.73 32.02 0.22/0.68/0.89 | 96.78 33.71 0.18/0.63/0.90
dynamic insertion | 96.47  28.09 0.23/0.68/0.88 | 96.83 26.71 0.18/0.65/0.88
w/o insertion 9330 25.85 0.18/0.65/0.89 | 91.40 2797 0.16/0.64/0.90
128 w/ insertion 9592 2948 0.19/0.67/0.92 | 92.75 2825 0.15/0.62/0.90
dynamic insertion | 9547 2830 0.19/0.67/0.92 | 92.53 27.37 0.16/0.64/0.90
w/o insertion 9220 2542 0.17/0.65/0.91 | 88.70 27.21 0.15/0.62/0.90
192 w/ insertion 95.81 30.27 0.18/0.65/0.91 | 91.23 2854 0.12/0.59/0.88
dynamic insertion | 9540 2940 0.18/0.66/0.92 | 90.58 28.21 0.15/0.62/0.89
w/o insertion 91.60 2496 0.16/0.63/091 | 86.30 27.72 0.14/0.61/0.90
256 w/ insertion 95.00 30.67 0.16/0.63/0.92 | 89.53 28.70 0.11/0.58/0.89
dynamic insertion | 94.73 2991 0.17/0.64/0.91 | 88.65 3127 0.14/0.61/0.90
w/o insertion 88.80 2451 0.15/0.60/0.89 | 8330 2939 0.13/0.58/0.90
384 w/ insertion 94.01 31.03 0.14/0.60/0.91 | 86.03 3275 0.10/0.55/0.87
dynamic insertion | 93.53 31.36 0.15/0.61/091 | 85.20 3329 0.11/0.56/0.89
w/o insertion 87.00 24.64 0.13/0.58/0.88 | 80.70 29.86 0.12/0.57/0.89
512 w/ insertion 92,73 30.88 0.13/0.58/0.90 | 83.65 33.58 0.19/0.66/0.88
dynamic insertion | 92.13  33.89 0.14/0.59/0.90 | 82.17 36.44 0.11/0.55/0.89

Table 4: Ablation study results on sentiment and topic controllable text generation. 1 indicates that a higher score is
better, whereas | signifies the opposite. We bold the best results.
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