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ABSTRACT

Current generative models for drug discovery primarily use molecular docking as
an oracle to guide the generation of active compounds. However, such models are
often not useful in practice because even compounds with high docking scores do
not consistently show experimental activity. More accurate methods for activity
prediction exist, such as molecular dynamics based binding free energy calcula-
tions, but they are too computationally expensive to use in a generative model.
To address this challenge, we propose Multi-Fidelity Latent space Active Learn-
ing (MF-LAL), a generative modeling framework that integrates a set of oracles
with varying cost-accuracy tradeoffs. We train a surrogate model for each ora-
cle and use these surrogates to generate compounds with high predicted activity.
Unlike previous approaches that separately learn the surrogate model and genera-
tive model, MF-LAL combines the generative and multi-fidelity surrogate models
into a single framework, allowing for more accurate activity prediction and higher
quality samples. We train MF-LAL with a novel active learning algorithm to fur-
ther reduce computational cost. Our experiments on two disease-relevant proteins
show that MF-LAL produces compounds with significantly better binding free
energy scores than other single and multi-fidelity approaches.

1 INTRODUCTION

Generative models for de novo drug design have gained significant interest in machine learning for
their promised ability to quickly generate new compounds for specific applications. However, gener-
ating compounds with real-world biological activity remains a fundamental challenge (Handa et al.,
2023; Coley et al., 2020). One of the main difficulties is the computational evaluation of compound-
protein binding affinities. The generated compounds are often highly novel, so an activity predictor
trained with existing experimental data is insufficient due to poor out-of-distribution generalization
(Chatterjee et al., 2023; Ji et al., 2022). Instead, physics-based methods that model 3D interactions
between compound and target are commonly used.

Due to its speed, molecular docking is the prevalent physics-based method to evaluate novel com-
pounds by generative models (Eckmann et al., 2022; Jeon & Kim, 2020; Lee et al., 2023; Noh et al.,
2022; Fu et al., 2022; Peng et al., 2022; Guan et al., 2023a;b). However, docking is a relatively poor
predictor of activity (Pinzi & Rastelli, 2019; Handa et al., 2023; Coley et al., 2020; Feng et al., 2022),
so it would be desirable to apply more accurate binding free energy calculation techniques (Pinzi &
Rastelli, 2019; Feng et al., 2022). These techniques, based on molecular dynamics simulations, are
currently considered the most reliable approach to predict affinity (Moore et al., 2023; Cournia et al.,
2021). However, they have not been used by generative models due to their high computational cost
(Thomas et al., 2023), with a single compound-protein pair taking hours to days to simulate on a
powerful computer (Wan et al., 2020). Thus, neither docking nor binding free energy techniques
alone can guide the real-world application of generative models.

Multi-fidelity surrogate models aim to fuse multiple data sources as oracles spanning a range of ac-
curacy and cost (Fernández-Godino et al., 2016).They are frequently learned using an active learning
approach, where a model selects or generates queries that it is most uncertain about to send to a cho-
sen oracle (Ren et al., 2021). The results from the oracle are then added to the training data of the
model. We will focus on “query synthesis” approaches (Angluin, 1988), where the model gener-
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ates its own queries to send to the oracles, speeding up learning compared to approaches that query
oracles with samples from a fixed candidate set.

Combining docking (low fidelity) and binding free energy (high fidelity) using multi-fidelity surro-
gate models holds promise to make generative models more practical. Yet, the use of multi-fidelity
methods in drug discovery has been limited. Prior work from Hernandez-Garcia et al. (2023) uses a
generative model to generate query compounds with high acquisition function values computed by
a separate multi-fidelity surrogate model. However, since we want to generate query compounds to
send to oracles at multiple fidelity levels, the distribution of optimal query compounds may differ
across fidelities. A separate generative model is not aware of such differences across fidelity levels,
hence it cannot send queries to the multi-fidelity oracles efficiently.

We aim to address the problem of multi-fidelity generation with Multi-Fidelity Latent space Active
Learning (MF-LAL), an integrated framework for compound generation using multi-fidelity active
learning. Instead of separating the generative model and surrogate model, we perform surrogate
modeling and generation together at each fidelity level using a sequence of hierarchical latent spaces.
This improves the quality of generated queries because there is a separate latent space and decoder
specialized for each fidelity, and improves surrogate modeling and inter-fidelity information passing
because each latent space can be organized for predicting at just that level. We use both docking
and binding free energy methods as oracles in our multi-fidelity environment to achieve a favorable
trade-off between cost and accuracy. In summary,

• we introduce a novel multi-fidelity surrogate and generative modeling framework, MF-
LAL, which integrates data from multiple fidelity levels to generate high-quality samples
at the highest fidelity (binding free energy).

• we employ an active learning approach with a novel query generation technique that en-
sures compounds generated at higher fidelities also scored well at lower fidelities, improv-
ing the quality of generated samples.

• we evaluate MF-LAL and baseline methods on a real-world problem setting involving opti-
mizing the binding free energy of compounds against two disease-relevant human proteins,
and find that MF-LAL generates compounds with significantly better scores than baselines.

2 RELATED WORK

2.1 MOLECULAR GENERATIVE MODELS

Generative models in drug discovery have gained much interest for their ability to quickly gener-
ate compounds with desired properties (Paul et al., 2021). Early works (Jin et al., 2018; Gómez-
Bombarelli et al., 2018; You et al., 2018) focus on properties such as the octanol-water partition
coefficient (logP) or quantitative estimate of drug-likeness (QED), which are of very limited prac-
tical utility (Coley et al., 2020; Xie et al., 2021). More recently, there has been an understanding
that the binding affinity to a targeted protein is much more relevant for practical drug discovery (Xie
et al., 2021; Eckmann et al., 2022; Fu et al., 2022).

One approach to guide generative models in optimizing compound binding affinity is to use an
oracle for compound evaluation. This oracle can be applied to reinforcement learning (Jeon &
Kim, 2020; Fu et al., 2022; Mazuz et al., 2023), VAEs (Eckmann et al., 2022; Noh et al., 2022),
genetic algorithms (Spiegel & Durrant, 2020; Fu et al., 2022), diffusion models (Lee et al., 2023;
Hoogeboom et al., 2022; Wu et al., 2024), or other generative frameworks Zhu et al. (2024). All of
them use docking software, such as AutoDock (Morris et al., 2009), as the oracle, because it is the
only reasonably fast option. However, docking is known to be inaccurate (Pinzi & Rastelli, 2019),
and compounds with high docking scores do not consistently show experimental activity (Handa
et al., 2023; Coley et al., 2020; Feng et al., 2022).

Molecular dynamics-based binding free energy calculations are much more accurate than docking
(Moore et al., 2023; Cournia et al., 2021), but have not yet been applied to de novo generative drug
design due to their high computational cost (Thomas et al., 2023). While Ghanakota et al. (2020)
use binding free energy calculations in combination with a molecular generative model, they focus
on the optimization of an existing known lead compound. This allows them to rely on much cheaper
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Figure 1: Overview of Multi-Fidelity Latent space Active Learning (MF-LAL).

relative binding free energy calculations, as opposed to the absolute binding free energy (ABFE)
calculations needed for de novo design (Cournia et al., 2017).

Structure-based generative models are trained on 3D structures of protein-ligand pairs, and aim to
predict a 3D ligand that fits in a given protein pocket with high binding affinity. Techniques include
autoregressive generation (Peng et al., 2022) and diffusion modeling (Guan et al., 2023a;b). Despite
not needing an oracle like docking during the generation process, the generated compounds are still
evaluated with docking as a post-processing step. This means structure-based generative models do
not avoid the issue of inaccurate binding affinity prediction.

2.2 MULTI-FIDELITY SURROGATE MODELING

Multi-fidelity modeling methods aim to fuse multiple data sources of variable accuracy and cost
(Fernández-Godino et al., 2016), and are widely used in scientific fields for surrogate modeling and
uncertainty quantification (Brevault et al., 2020). A popular choice of surrogate model is a Gaussian
process (GP), which performs well in low data settings and produces well-calibrated uncertainty
estimates (Brevault et al., 2020). One such technique to apply GPs to multi-fidelity modeling is
described by Wu et al. (2020), where a downsampling kernel is used to output predictions at each
fidelity level. Other multi-fidelity surrogate modeling approaches utilize neural processes (Wang &
Lin, 2020; Wu et al., 2022; 2023; Niu et al., 2024) and ordinary differential equations (Li et al.,
2022) as an alternative to GPs.

Multi-fidelity models are frequently trained in an active learning fashion, where one uses an estimate
of a model’s uncertainty to most efficiently acquire more datapoints from an oracle (Ren et al., 2021).
In the multi-fidelity setting, this means iteratively querying across both the sampling space and each
different fidelity oracle (Li et al., 2020; Hernandez-Garcia et al., 2023). Traditional active learning
involves selecting from a fixed candidate set with the highest acquisition function value to query
oracles with, which limits the training set to only existing samples. It also limits how much the
model can learn with each query, since the maximally informative sample may not be present in
the candidate set. Query synthesis approaches (Angluin, 1988) have been proposed to avoid this
problem by using a generative model to generate new queries. Hernandez-Garcia et al. (2023)
have applied these ideas to drug discovery problems by training a generative model to optimize the
acquisition function computed by a separate multi-fidelity surrogate model, which does not take into
account the different distributions of optimal query compounds at each fidelity.

3 MF-LAL

We introduce Multi-Fidelity Latent space Active Learning (MF-LAL), an integrated framework for
compound generation using multi-fidelity Bayesian active learning. An overview of our framework
is shown in Figure 1. We encode molecules into a hierarchy of latent spaces (left panel), one for
each fidelity, and learn surrogates that predict the oracle output based on the latent vectors (middle
panel). These oracles are used to reverse optimize in the latent spaces to generate new compounds
with high predicted scores. The generated molecules are fed to an oracle at a chosen fidelity in an
active learning loop, the output of which is used to re-train the latent representation and surrogate
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models (right panel). After training, we use the surrogates to reverse optimize in the highest fidelity
latent space and generate compounds with high property scores at the highest fidelity. See Appendix
A for details of our model and a diagram of the network architecture.

3.1 LEARNING MULTI-FIDELITY LATENT REPRESENTATIONS

Problem setup. A multi-fidelity environment consists of a set of oracles {f1, . . . , fk, . . . , fK}
that predict a property of interest, where the accuracy and cost of the predictions increase with the
fidelity level k. We have a multi-fidelity dataset D consisting of K distinct sets of molecules, one
for each fidelity, D = {{x(i)

1 , y
(i)
1 }

N1
i=1, . . . , {x

(i)
K , y

(i)
K }

NK
i=1}. Each y

(i)
k = fk(x

(i)
k ) is the result

from querying oracle k with molecule x
(i)
k . The molecules are drawn from unknown distributions

p∗1, . . . , p
∗
K . We aim to approximate these distributions using generative models pθ1 , . . . , pθK with

parameters θ1, . . . , θK . Note that p∗1 ̸= . . . ̸= p∗K , meaning we must learn separate generative
models for each fidelity level, as opposed to previous approaches that learn a single generative
model for all fidelities.

Latent representation. To learn the generative models, we first learn an encoding of the input
molecule to the lowest fidelity latent space. Specifically, we use a single probabilistic encoder qϕ
parameterized by ϕ that encodes a molecule x into mean and variance vectors µ1 and σ1. The latent
vector z1 ∼ N (µ1, σ1), corresponding to the first (lowest) fidelity, is sampled from the resulting
distribution. Since we want a separate latent space at each fidelity level, we define a set of prob-
abilistic networks hξ1(z1), . . . , hξK−1

(zK−1) with parameters ξ1, . . . , ξK−1 that pass information
between latent spaces. Specifically, hξk takes the vector zk as input and outputs a mean and variance
vector in the subsequent latent space, µk+1, σk+1. We sample from this distribution to obtain latent
vector zk+1, i.e. zk+1 ∼ N (µk+1, σk+1). We also define a set of probabilistic decoder networks
pθ1(·|z1), . . . , pθK (·|zK) to reconstruct the original molecule x from the latent vectors. The use of
a specialized decoder for each fidelity level improves reconstruction quality compared to previous
methods that only use one, thus making the generated samples more tailored for their fidelity level.

We represent molecules using SELFIES strings (Krenn et al., 2020). The encoder and decoder of
MF-LAL are fully-connected neural networks that use a flattened, one-hot encoded SELFIES string.
See Table 2 for comparison with other encoder and decoder designs.

Surrogate modeling. In order to generate molecules with high property scores, we aim to learn
differentiable surrogates f̂1, . . . , f̂K that approximate the oracles and use them for reverse optimiza-
tion in the latent spaces. Each surrogate f̂k maps from its corresponding latent vector zk to an
estimate of fk. We use gradient-based optimization to find a point in a given latent space that has
a high property score predicted by the surrogate (“reverse optimization”), which can then be de-
coded to a molecule (Gómez-Bombarelli et al., 2018). The hξk networks, which pass information
between latent spaces, allow us to re-use information learned about the molecule’s binding proper-
ties at lower fidelities to aid in prediction at the higher fidelities without having to re-learn it using
large amounts of high-fidelity data. This is because training the surrogate models organize each
latent space (Tevosyan et al., 2022) for property prediction at that level, and so the latent vectors
contain information about the binding properties useful for predicting the oracle output that can then
be passed to higher fidelities. Additionally, the use of separate latent spaces for each fidelity level, as
opposed to previous approaches that use only a single latent space shared across all levels, improves
surrogate modeling performance because each latent space can be organized for prediction at just
that level.

We use stochastic variational Gaussian process models (SVGPs, (Hensman et al., 2015)) with hyper-
parameters λ1, . . . , λK (which define the mean and covariance kernels of the GP) for the surrogates.
We chose SVGPs for their speed of training and ability to train with minibatches. Specifically, f̂k
is given by f̂k ∼ GP(mλk

(x),Σλk
(x, x′)) where m(x) and Σ(x, x′) are the mean and covariance

kernels of the SVGP. To train the model, we jointly minimize the evidence lower bound (ELBO)
(Kingma & Welling, 2013) of the latent encodings and marginal log likelihood (MLL) of the GP
models. Given a training molecule x and associated oracle output y at fidelity k, we minimize
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L(ϕ, ξk−1, θk, λk; k, x, y) = Ezk∼g(·|x) log
pθk(x|zk)
g(zk|x)

+

∫
p(y|f̂k(x))p(f̂k(x)|x)df̂k,

where g(zk|x) =
{
qϕ(zk|x) if k = 1

hξk−1
(zk−1) else

(1)

where the first term is equivalent to maximizing the ELBO and the second is the MLL of the GP.
While the loss is only evaluated at fidelity k, it is backpropagated through to all lower fidelities.
Additionally, in our implementation, we approximate the MLL GP loss using the ELBO (Hensman
et al., 2015) for improved scalability.

3.2 BAYESIAN ACTIVE LEARNING FOR SAMPLE-EFFICIENT TRAINING

Algorithm 1 Active learning for MF-LAL
Require: a multi-fidelity dataset D consisting of a set of initial training examples, number of com-

pounds to generate to generate at lower fidelities M
1: k ← 1
2: while computational budget is not exceeded do
3: train model on data D (Eq. 1)
4: x← generateHighScoringCompounds(k, M , 1) (Algorithm 2)
5: query fk(x) and save result in y
6: Dk ← Dk ∪ {(x, y)}
7: if k < K and Σλk

(qϕ(x)) < γk then
8: k ← k + 1
9: end if

10: end while

Training a multi-fidelity surrogate model requires significant computational resources, especially to
gather data at the highest fidelity level. Instead of passively collecting training data, we develop a
Bayesian active learning approach to efficiently query the oracles, allowing us to make fewer queries
to the most expensive oracles. As show in Algorithm 1, our active learning cycle consists of first
generating a molecule to query at a chosen fidelity, querying the oracle to obtain the property score,
appending the result to the dataset, and then retraining the model. We repeat the process until some
computational budget is reached.

Similar to Kandasamy et al. (2016), we start with only querying the oracle at the lowest fidelity level
k = 1 and increase to higher fidelities when the model’s uncertainty falls below certain thresholds.
We use the posterior variance of the GP surrogate Σλk

to measure the model’s uncertainty. Specif-
ically, during active learning, we repeatedly generate a latent vector zk at fidelity k that decodes to
a query compound. If Σλk

(zk) < γk, where γk is the uncertainty threshold (which we treat as a
hyperparameter), then we permanently increment k by one for all subsequent queries. Otherwise,
k remains the same. Once at the highest fidelity, we keep running active learning until some com-
putational budget is reached. We use this stepwise approach to ensure all surrogates have enough
training data to make accurate predictions in high property areas of the latent spaces, thus leading to
high property compounds being generated.

We generate query molecules from the latent space using the upper confidence bound (Auer, 2002)
as the acquisition function. The method we use to generate molecules is described later in Section
3.3. To ensure that generated compounds remain similar to the training set of drug-like molecules,
we also add an L2 regularization term on the latent vector. The acquisition function is thus given by

a(z
(i)
k , k) = mλk

(z
(i)
k ) + βΣλk

(z
(i)
k )− ||z(i)k ||

2
2 (2)

where z(i)k is a point in latent space k and β is an exploration hyperparameter. m and Σ are the mean
and covariance kernels of the GP surrogate. We set β = 1 during active learning, and β = 0 after
during inference to only focus on the most promising compounds.
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Algorithm 2 MF-LAL molecule generation procedure
Require: fidelity k to optimize compounds for, exploration/exploitation hyperparameter β, number

of compounds to generate at lower fidelities M
1: procedure GENERATEHIGHSCORINGCOMPOUNDS(k, M , β)
2: procedure GETTOPLATENTPOINTS(k, M , β)
3: for i in 1..M do
4: initialize z

(i)
k ∼ N (0, I) as a starting point for gradient-based optimization

5: if k == 1 then
6: find z

(i)
k that maximizes Eq. 2 via gradient descent

7: else
8: z

(1)
k−1, . . . , z

(M)
k−1 ← getTopLatentPoints(k − 1,M, β)

9: for j in 1..M do
10: µ

(j)
k , σ

(j)
k ← hξk−1

(z
(j)
k−1)

11: end for
12: find z

(i)
k that maximizes Eq. 2 + Eq. 3 via gradient descent

13: end if
14: end for
15: return z

(1)
k , . . . , z

(M)
k

16: end procedure
17: z

(1)
k , . . . , z

(M)
k ← getTopLatentPoints(k,M, β)

18: for i in 1..M do
19: x(i) ∼ pθk(·|z

(i)
k )

20: end for
21: return x(1), . . . , x(M) if k < K else x(1) ▷ only need one compound at highest fidelity
22: end procedure

3.3 GENERATING MOLECULES WITH HIGH PROPERTY SCORES

Our goal is to generate compounds at fidelity k that maximize some generation objective. To accom-
plish this, we perform gradient-based optimization to find a point zk in the kth latent space that max-
imizes the generation objective, and then decode zk into a molecule using pθk . For our generation
objective, we do not want to simply maximize f̂k, but instead the upper confidence bound (Eq. 2)
to ensure exploration during active learning. In addition, we also introduce a novel likelihood-based
term to the generation objective that encourages the model to only sample compounds at higher
fidelities that also scored well at the lower fidelities. Specifically, when generating a molecule at fi-
delity k, we maximize the likelihood that the molecule would also be generated at fidelity k−1 with
a high property score. This additional term greatly restricts the area of the chemical space explored
by the high fidelity oracles, reducing the computational cost wasted on non-promising areas and
making the use of high-cost oracles feasible. It also means the higher fidelity latent spaces encode
a more limited distribution of compounds, improving the quality of samples generated from those
latent spaces. Indeed, we show that the likelihood term is critical for strong performance (Table 2).

To compute the likelihood of a point zk at fidelity k, we first generate a set of M high-scoring
compounds at fidelity k−1. Next, we map those points to a sum of Gaussians in the kth latent space
using hξk−1

, giving us a set of M parameters {(µ(j)
k , σ

(j)
k )}Mj=1. We then measure the likelihood

of point zk in the generated sum of Gaussians distribution. This guarantees that the compounds
generated in latent space k are also likely to have been generated in k − 1 with high scores. Thus,
we effectively reduce the size of the chemical space that must be explored at fidelity k to only
compounds that have already shown promise at the lower fidelities. Mathematically, maximizing
the likelihood of a point z(i)k in latent space k is equivalent to maximizing the probability density
function evaluated at that point:

P
(
z
(i)
k |{(µ

(j)
k , σ

(j)
k )}Mj=1

)
=

M∑
j=1

1√
2π(σ

(j)
k )2

exp

(
−
(z

(i)
k − µ

(j)
k )2

2(σ
(j)
k )2

)
(3)

The full generation algorithm is detailed in Algorithm 2. In our implementation, we vectorize opti-
mization across all M latent space points simultaneously. In order to encourage diversity in gener-
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ated compounds, we also add a term to the generation objective that measures the average pairwise
cosine similarity between the M points, and aim to minimize it:

1

M2

M∑
i=1

M∑
j=1

s(z
(i)
k , z

(j)
k ) (4)

where s(A,B) is the cosine similarity between vectors A and B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We define a multi-fidelity environment for binding affinity which uses four oracles, each of which
takes a molecule as input and outputs an estimate of its binding affinity with increasing accuracy:

1. Linear regression (f1). Simple linear regression model trained on experimental data from
the BRD4(2)/c-MET target from BindingDB (Liu et al., 2007) to predict the Ki, a measure
of binding affinity. Morgan fingerprints are used to represent the molecule.

2. AutoDock4 (f2) (Morris et al., 2009). Uses 3D geometric and charge information from the
protein and compound to estimate the binding energy.

3. Ensembled AutoDock4 (f3) (Morris et al., 2009). Same as above, except we dock the
compound into the binding pockets of eight BRD4/five c-MET cocrystal structures that
were solved with different known ligands, and then take the minimum predicted energy.
This ensemble approach is generally more accurate than using a single protein structure
(Amaro et al., 2018).

4. Absolute binding free energy (ABFE) (f4) (Heinzelmann & Gilson, 2021). A binding
free energy method applicable to de novo drug discovery that uses molecular dynamics
simulations to accurately predict the binding energy.

We target the BRD4(2) and c-MET proteins (PDB 5UF0 and 5EOB), both of which are implicated
in human cancer development, although through different biological mechanisms. We chose these
targets because ABFE is already well-validated on them and known to have good agreement with
experimental data (Heinzelmann & Gilson, 2021). See Appendix B for further experimental details
and analysis of the oracles, including experiments confirming that our higher fidelity oracles are
more costly yet more accurate at distinguishing experimental actives from inactives.

Each model is provided with an initial dataset of random ZINC250k (Irwin et al., 2012) compounds
queried at each fidelity (see Appendix B for further details). To compare models, we run each in
an active learning loop using a fixed computational budget of 7 days, and then generate 15 unique
compounds at the highest fidelity predicted to have the best scores. We then run these compounds
through ABFE and compare their scores. Based on the real-world use case of our method, and
following other works (Lee et al., 2023; Luo et al., 2021; Fu et al., 2022), we focus particularly on
the properties of the top 3 generated compounds. This is because drug campaigns would take only
the top compounds generated and use them as starting points for further optimization, so the binding
affinities of the top compounds are the most relevant for measuring performance. See Appendix C
for additional results showing the oracle-predicted binding energy of the generated query compounds
over the active learning process, and the reconstruction accuracy for each fidelity decoder during
training.

4.2 BASELINES

We compare MF-LAL with the following baselines:

• SF-VAE (only ABFE / only docking) (Gómez-Bombarelli et al., 2018). Uses a simple
single-fidelity GP as a surrogate model that is used to guide optimization in the latent
space of a vanilla VAE, representing a simple single-fidelity approach. This consists of two
separate baselines, one where the GP is trained only on ABFE data and one where it is
trained on only docking data.
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Table 1: Evaluation of generated compounds at highest fidelity. The mean and top 3 ABFE
values are shown for 15 compounds sampled from each method after active learning for 7 days.
For MF-LAL and the most competitive baseline for each target (Pocket2Mol for BRD4(2) and MF-
AL-PPO for c-MET), we evaluated the mean of 30 total compounds for additional robustness. For
fairness, the top 3 compounds are shown among the first 15 generated compounds for all methods.

METHOD BRD4(2) ABFE (KCAL/MOL) C-MET ABFE (KCAL/MOL)
MEAN ± S.D. 1ST 2ND 3RD MEAN ± S.D. 1ST 2ND 3RD

SF-VAE (ONLY ABFE) -0.9 ± 2.7 -5.7 -2.9 -2.9 -1.2 ± 3.0 -4.4 -3.9 -3.1
SF-VAE (ONLY DOCKING) -3.1 ± 2.8 -6.1 -5.3 -4.8 -2.8 ± 3.4 -5.9 -5.8 -5.1
REINVENT (ONLY ABFE) -3.9 ± 3.4 -8.7 -8.3 -8.2 -2.9 ± 3.7 -6.5 -5.8 -5.1
REINVENT (ONLY DOCKING) -3.1 ± 4.9 -11.0 -6.2 -5.7 -2.6 ± 5.0 -8.0 -6.8 -5.9
VAE + 4X SF-GP -2.3 ± 3.1 -8.0 -5.5 -5.3 -1.8 ± 2.5 -6.3 -5.9 -5.1
VAE + MF-GP -1.3 ± 3.3 -4.9 -3.1 -2.0 -3.3 ± 2.9 -9.7 -7.7 -4.2
MF-AL-GFN -2.5 ± 2.2 -6.5 -5.8 -5.1 -3.1 ± 1.8 -5.5 -4.5 -4.1
MF-AL-PPO -2.8 ± 2.5 -9.2 -6.5 -5.2 -4.3 ± 2.6 -7.0 -6.6 -5.8
POCKET2MOL -4.6 ± 4.8 -9.8 -9.8 -9.0 -2.2 ± 4.2 -4.5 -3.9 -3.2
DECOMPDIFF -2.7 ± 4.0 -8.9 -8.1 -7.5 -1.9 ± 6.4 -8.0 -5.1 -2.7

MF-LAL (OURS) -6.2 ± 3.9 -12.0 -11.3 -10.2 -6.7 ± 2.9 -12.9 -7.7 -6.5

• REINVENT (only ABFE / only docking) (Olivecrona et al., 2017). An RL-based molec-
ular generation technique which we use to optimize ABFE, and separately, docking score.
Represents a simple single-fidelity approach using a modern generative model.

• VAE + 4x SF-GP. Uses a vanilla VAE model except with four independent GP surrogates,
one for each fidelity, all using the single latent space as input. To be contrasted with MF-
LAL, which uses multiple connected latent spaces instead of a single one.

• VAE + MF-GP. Similar to above, except using a single multi-fidelity GP model (Wu et al.,
2020) instead of four independent single-fidelity GP models.

• MF-AL-GFN (Hernandez-Garcia et al., 2023) GFlowNet generative model used to opti-
mize the predicted score from a multi-fidelity GP model. This baseline represents the state
of the art in multi-fidelity generation, where generative and surrogate models are separated.

• MF-AL-PPO (Hernandez-Garcia et al., 2023). Same as above except using the PPO RL
algorithm instead of a GFlowNet as the generative model.

• Pocket2Mol (Peng et al., 2022). 3D structure-based drug design model that takes a protein
pocket as input and outputs a 3D molecule via diffusion. Unlike the other methods, does
not use any binding affinity oracle during generation.

• DecompDiff Guan et al. (2023b). Same type of model as above, but makes additional
improvements to the generation process by decomposing generation into scaffold and motif
stages.

The first two baselines are single-fidelity methods, where we use both only ABFE and only docking
as the single fidelity. The next four baselines, as well as MF-LAL, are multi-fidelity. Pocket2Mol
and DecompDiff do not utilize any oracle during generation. Evaluation of generated compounds
from all baselines is done with ABFE.

4.3 RESULTS

Table 1 reports the average and top 3 ABFE scores of 15 compounds generated by MF-LAL, as well
as those generated by the baseline methods, following active learning for 7 days. For MF-LAL and
the most competitive baseline for each target, we evaluated an additional 15 compounds (total 30)
to compute the mean for improved robustness. For fairness, we show the top 3 compounds among
the first 15 generated for all methods. We ran each method separately for two targets, BRD4(2)
and c-MET. We filtered generated compounds such that all had QED (Bickerton et al., 2012) > 0.4,
SAscore (Ertl & Schuffenhauer, 2009) < 4, and no rings with ≥ 7 atoms. We also only allowed
compounds that fit these criteria to be queried during active learning. We filtered compounds that did
not meet the criteria after generation, instead of performing multi-objective optimization, because
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Figure 2: Visualization of MF-LAL generated molecules. The top 3 molecules and associated
ABFE scores are shown for both the BRD4(2) (top row) and c-MET (bottom row) targets.

most generated compounds from single-objective optimization already had a QED/SAscore in the
range of typical drug compounds (Bickerton et al., 2012; Ertl & Schuffenhauer, 2009).

We find that the average ABFE scores of the compounds generated by MF-LAL, as well as those
of the top three compounds, are significantly better (lower kcal/mol) than the corresponding scores
of compounds generated by the baseline methods for both targets. The difference in average ABFE
score (predicted binding free energy) between MF-LAL and the top baseline is -1.6 kcal/mol for
BRD4(2) (p = 0.16) and -2.4 kcal/mol for c-MET (p = 0.001), which are significant margins.
Thus, our method outperforms both single and multi-fidelity techniques, as well as 3D structure-
based methods (Pocket2Mol Peng et al. (2022) and DecompDiff Guan et al. (2023b)) that does not
use any binding affinity oracle. This suggests MF-LAL is most capable at generating compounds
with real-world activity, since binding free energies computed with ABFE are the gold standard
prediction method. Note, too, that the multi-fidelity techniques other than MF-LAL performed
mostly similarly to the single-fidelity methods. This suggests that successfully taking advantage of
multiple fidelities requires an architecture which, like that used in MF-LAL, is tailored to generating
compounds for multiple fidelity oracles.

The molecular structures of the top 3 compounds generated by MF-LAL for both targets are shown
in Figure 2. The compounds are structurally diverse, and none of them have close similars in the
training set or in large datasets like PubChem (Kim et al., 2023). This shows the ability of MF-
LAL to generate promising and novel structures. It should be noted that many of the generated
compounds have motifs that are considered reactive, such as sulfonyl, aldehyde, and nitro groups,
which would be concerning for medicinal chemists. However, these compounds should act only as
starting points for further optimization by medicinal chemists, so the presence of these groups alone
is not necessarily concerning. Additionally, these groups are known to produce artifacts in docking
scoring functions (Bender et al., 2021), which exemplifies the importance of a multi-fidelity ap-
proach where innacuracies in the lower fidelities can be correctly by more accurate higher-fidelity
oracles. There is a small shared scaffold across 2 of the generated c-MET compounds consisting of
a pyridazine, but this is not necessarily undesirable as it shows the model has found a high-property
region of chemical space. The scaffold may be a promising starting point for development of empir-
ical structure-activity relationships and lead optimization by medicinal chemists. Additionally, the
pairwise Tanimoto similarity among the 15 compounds generated by MF-LAL is less than 0.2 for
both targets, further indicating that our method generates a structurally diverse set.

Table 2 reports results from various ablations of the MF-LAL architecture. We experimented with re-
moving each fidelity level individually, removing the likelihood term from the generation objective,
and replacing the fully-connected encoder/decoder networks with a Transformer (Vaswani et al.,
2017) and graph convolutional network (GCN, Kipf & Welling (2016)). The results show that all
fidelities contribute to some degree to performance, although f1 (the linear regression model) seems
to add very little. Removing the likelihood term greatly reduced the performance of our method,
showing that the approach of only querying compounds at higher fidelities that also scored well at
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Table 2: Ablations. The mean and top 3 ABFE-computed energies are shown for 15 compounds
sampled from each method after active learning for 7 days.

METHOD BRD4(2) ABFE (KCAL/MOL) C-MET ABFE (KCAL/MOL)
MEAN ± S.D. 1ST 2ND 3RD MEAN ± S.D. 1ST 2ND 3RD

MF-LAL -6.2 ± 3.9 -12.0 -11.3 -10.2 -6.7 ± 2.9 -12.9 -7.7 -6.5
-FID. 1 -6.1 ± 0.7 -7.7 -7.6 -7.4 -6.0 ± 1.1 -8.8 -7.0 -6.0
-FID. 2 -5.1 ± 2.0 -8.5 -6.5 -6.0 -5.2 ± 2.5 -8.0 -7.3 -6.1
-FID. 3 -4.2 ± 3.1 -9.2 -5.9 -5.7 -4.2 ± 3.5 -9.8 -7.1 -6.1
-FID. 4 -2.4 ± 3.2 -8.6 -4.3 -3.4 -3.1 ± 3.0 -7.6 -6.7 -5.1
W/O LIKELIHOOD TERM -3.6 ± 4.4 -11.9 -10.7 -10.0 -3.8 ± 3.7 -10.9 -7.7 -6.3
TRANSFORMER ENC/DEC -6.2 ± 4.0 -11.5 -11.3 -9.8 -6.5 ± 2.9 -11.6 -7.6 -6.5
GCN ENC/DEC -5.9 ± 3.0 -10.9 -10.1 -9.3 -6.1 ± 4.6 -11.1 -7.5 -6.5

lower fidelities is critical for strong performance. Replacing the fully-connected encoder/decoder
with a Transformer had little effect on performance, so we used the simpler fully-connected ver-
sion. Finally, changing the molecular representation to a graph and replacing the fully-connected
encoder/decoder with GCNs (Kipf & Welling, 2016) resulted in slightly worse performance.

5 DISCUSSION AND CONCLUSION

We present Multi-Fidelity Latent space Active Learning (MF-LAL), an integrated framework for
generative and multi-fidelity surrogate modeling. Our experiments show that MF-LAL generates
compounds with significantly higher activity, as predicted by a gold-standard binding free energy
oracle, than other single and multi-fidelity approaches. Thus, MF-LAL shows promise as a way to
generate compounds with real-world binding while incurring a reasonable computational cost.

Limitations of our approach include a limited set of oracles and a potential lack of synthesizability of
the generated compounds, since SAscore is known to be imperfect (Skoraczyński et al., 2023). The
SVGP technique we use for our surrogate models is known to overestimate the posterior variance far
away from the inducing points (Bauer et al., 2016), potentially biasing our method towards out-of-
distribution molecules and increasing the unpredictability of the surrogate outputs. We also note that
by design, MF-LAL may miss scaffolds at the highest fidelity that have strong binding if the lower
fidelity oracles did not score that scaffold well. We consider this a necessary tradeoff to make the
search for good compounds at the highest fidelity computationally tractable. Finally, it should also
be noted that our experimental setup of evaluating each method after a fixed run time of 1 week may
lead to high variance in the results, because each method has not been trained to convergence. While
this most accurately reflects real-world usage, it may mean the ABFE values of the top generated
compounds are somewhat variable between runs. Future work could include using a reaction-aware
generative model that generates more synthesizable molecules (Horwood & Noutahi, 2020).
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A MODEL DETAILS

The encoder, decoder, and h networks are all 3-layer feed-forward networks with ReLU activations
and a 512-dimensional hidden layer. Each latent space has 64 dimensions. Molecules are repre-
sented using SELFIES strings (Krenn et al., 2020), and fed to the network using a flattened one-hot
encoding representation. The loss on the latent encodings is the ELBO, which is the sum of the KL
divergence and the cross-entropy loss of the reconstruction.

The surrogate models consist of a 4-layer deep kernel (Wilson et al., 2016) to encode the input and a
Matern kernel for the covariance function. To accelerate training, we use an approximate GP trained
with the ELBO loss (Hensman et al., 2015).

At each active learning step, we train the whole model from scratch until convergence with the Adam
optimizer using a learning rate of 0.0001. For the molecule generation procedure using gradient-
based optimization, we use the Adam optimizer with a learning rate of 0.1 for 100 epochs.

A.1 MF-LAL MODEL DIAGRAM

Encoder

 ̂f1

Input molecule

Predict linear 
regression score

Decoder 1

Reconstruction

hξ1 zK

 ̂f2Decoder 2

Predict docking 
score

…

…

…

z2

 ̂fKDecoder K

Predict binding free 
energy

Increasing fidelity

Reconstruction Reconstruction

z1

Figure 3: Diagram of MF-LAL architecture. An input molecule is encoded into the first latent
space z1 using a neural network. The networks hξ1 , . . . , hξK−1

transform points in z1 to the higher
fidelity latent spaces. Each latent space has an associated decoder, which reconstructs the original
molecule, and a GP surrogate model for that fidelity level.

B EXPERIMENTAL DETAILS

All experiments were conducted on a server with 8 RTX 2080 Ti GPUs. For our model and each
baseline, we performed a random hyperparameter search with 20 trials using only the first 3 fi-
delities, and took the set of hyperparameters with the best generated samples at f3 following 3
hours of active learning. We excluded ABFE from the hyperparameter search due to computational
cost, and just used the same set of hyperparameters for all subsequent experiments using all 4 fi-
delities. We note that MF-LAL was somewhat sensitive to choice of hyperparameters, especially
the KLD/reconstruction ratio for the decoders and the diversity coefficient used during generation.
Thus, we advise users of MF-LAL to conduct a hyperparameter search similar to the method we
used before applying MF-LAL to a new set of oracles.

Each model was provided with an initial dataset of random ZINC250k (Irwin et al., 2012) com-
pounds evaluated at each fidelity. Each fidelity had 5 random compounds selected, except for the
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first fidelity, where we supplied 200,000 compounds and associated oracle outputs. This was because
we wanted a large dataset of compounds to train the encoder and decoder at the first fidelity level,
ensuring that generated compounds were reasonable, and running f1 was almost instantaneous. For
the more expensive oracles, however, we let active learning generate compounds to query to most
efficiently use computational resources.

B.1 ORACLES

For all oracles, we estimated the cost (for the baselines that require it) using the average run time
over 10 samples with random input compounds. We also computed the ROC-AUC (shown below)
of each oracle for the BRD4(2) and c-MET targets to confirm that the higher cost oracles are more
accurate. To do this, we generated a dataset of 32 known active and presumed inactive compounds
for BRD4(2) and c-MET, and then ran each oracle on all of the compounds. The actives were
retrieved from the BRD4(2)/c-MET target from BindingDB with Ki < 10µM , and the inactives
were generated using DUD-E (Mysinger et al., 2012). As expected, for both targets, the ROC-AUC
increases with higher fidelity, as well as the computational cost. This shows that the higher cost
oracles are indeed more accurate, and so the hierarchy of fidelities we use is sensible and applicable
to multi-fidelity learning.

Linear regression (cost: 0.1s, ROC-AUC BRD4(2): 0.59, c-MET: 0.68) We used BRD4(2) and,
separately, c-MET data from BindingDB (Liu et al., 2007) to train a simple linear regression model.
The input to the model was 2048-bit Morgan fingerprints, and the output was the experimental
binding energy in Ki, converted to kcal/mol.

AutoDock4 (cost: 4s, ROC-AUC BRD4(2): 0.73, c-MET: 0.72) We prepared the AutoDock4
grid files using AutoDockTools (Morris et al., 2009). Arbitrary ligands were prepared using obabel
(O’Boyle et al., 2011) with pH 7.4 and gasteiger partial charges. We used AutoDock-GPU (Santos-
Martins et al., 2021), a GPU-accelerated version of AutoDock4, for all computation. For each
ligand, we performed 20 random restarts and selected the minimum predicted energy.

Ensembled AutoDock4 (cost: 44s, ROC-AUC BRD4(2): 0.80, c-MET: 0.80) Same as above,
except we used the minimum energy from 8 separate AutoDock4 runs using the same ligand and
each of the following protein crystal structures (listed as PDB IDs): 5ues, 5uet, 5uev,
5uez, 5uf0, 5uvs, 5uvy, 5uvz for BRD4(2), and 2wd1, 4deg, 4dei, 4r1v,
5eob for c-MET

Absolute binding free energy (ABFE) (cost: 9:20hrs, ROC-AUC BRD4(2): 0.92, c-MET: 0.89)
We use the Binding Affinity Tool (BAT.py) implementation (Heinzelmann & Gilson, 2021) for ab-
solute binding free energy calculation, available at https://github.com/GHeinzelmann/
BAT.py. For BRD4(2), we use the short tevb calculations, which were introduced recently to re-
duce computational cost (Heinzelmann et al., 2024). For c-MET, we use the standard SDR method,
but we found we could reduce simulation times for all components to 30% of their original amounts
and still retain strong performance. All molecular dynamics simulators are run with AMBER with
GPU support. As BAT.py requires a starting pose for the ligand, we used the pose generated from
AutoDock4. We additionally wrote custom scripts to parallelize molecular dynamics runs across all
available GPUs.

B.2 BASELINES

The details of each baseline are as follows:

• SF-VAE (only ABFE / only docking) (Gómez-Bombarelli et al., 2018). The VAE en-
coder and decoder, and GP surrogate, are set up similarly to those in MF-LAL. The upper
confidence bound is used as an acquisition function.

• REINVENT (only ABFE / only docking) (Olivecrona et al., 2017). Used the code avail-
able at https://github.com/MarcusOlivecrona/REINVENT.
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• VAE + 4x SF-GP. The VAE encoder and decoder, and GP surrogates, are set up similarly
to those in MF-LAL. We also use the same acquisition function and generative procedure
as MF-LAL for this baseline, except without the need to map points between latent spaces.

• VAE + MF-GP. We use the Multi-Fidelity Max Value Entropy acquisition function for
selecting compounds during active learning (Takeno et al., 2020), and a linear truncated
fidelity kernel (Gardner et al., 2018) for the GP surrogate.

• MF-AL-GFN (Hernandez-Garcia et al., 2023) Used the code available at https://
github.com/nikita-0209/mf-al-gfn.

• MF-AL-PPO (Hernandez-Garcia et al., 2023). Provided in the same codebase as the one
referenced above.

• Pocket2Mol (Peng et al., 2022). Used the code available at https://github.com/
pengxingang/Pocket2Mol.

• DecompDiff (Guan et al., 2023b). Used the code available at https://github.com/
bytedance/DecompDiff.

C ADDITIONAL RESULTS

C.1 ORACLE OUTPUTS DURING ACTIVE LEARNING
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Figure 4: Oracle outputs during active learning. The y-axis shows the oracle-predicted binding
energy of the generated query compounds, and the x-axis shows active learning progress.

Figure C.1 shows the oracle-predicted binding energy of the compounds generated during the MF-
LAL active learning process. We only show fidelities 2 and 3, because fidelity 1 is already supplied
with a large initial dataset so there is little improvement in the query quality during active learning,
and fidelity 4 does not show any noticeable improvement due to a relatively small number of queries
made. For fidelities 2 and 3, we observe a marked improvement of the predicted binding energy
over active learning, showing that MF-LAL successfully learns what makes a compound favorable
at each fidelity level.

C.2 RECONSTRUCTION ACCURACY

Figure C.1 shows the reconstruction accuracy of the decoders during active learning. Reconstruction
accuracy is the proportion of compounds that were exactly reconstructed, meaning every SELFIES
character is identical to the input. The decoder corresponding to the highest fidelity latent space
achieves the overall highest reconstruction accuracy, which is likely because it only has to decode
from a very limited compound space. The lowest fidelity decoder has the worst reconstruction
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Figure 5: Reconstruction accuracy during active learning. The y-axis shows the proportion of
training set compounds that were successfully reconstructed using the decoder, and the x-axis shows
the active learning iteration.

accuracy, because it decodes the most varied set of compounds. Nonetheless, the reconstruction
accuracies are relatively high across all decoders, meaning MF-LAL successfully learns the mapping
from latent space back to molecule at all fidelities.

18


	Introduction
	Related Work
	Molecular generative models
	Multi-fidelity surrogate modeling

	MF-LAL
	Learning multi-fidelity latent representations
	Bayesian active learning for sample-efficient training
	Generating molecules with high property scores

	Experiments
	Experimental setup
	Baselines
	Results

	Discussion and Conclusion
	Model details
	MF-LAL model diagram

	Experimental details
	Oracles
	Baselines

	Additional results
	Oracle outputs during active learning
	Reconstruction accuracy


