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Abstract

Accurate prediction of biological age from DNA methyla-
tion data is a critical endeavor in understanding the molec-
ular mechanisms of aging and developing age-related dis-
ease interventions. Traditional epigenetic clocks rely on lin-
ear regression or basic machine learning models, which of-
ten fail to capture the complex, non-linear interactions within
methylation data. This study introduces DeepAge, a novel
deep learning framework utilizing Temporal Convolutional
Networks (TCNs) to enhance the prediction of biological
age from DNA methylation profiles using selected CpGs by
a Dual-Correlation based apparoach. DeepAge leverages a
sequence-based approach with dilated convolutions to effec-
tively capture long-range dependencies between CpG sites,
addressing the limitations of prior models by incorporating
advanced network architectures including residual connec-
tions and dropout regularization. The dual correlation fea-
ture selection enhances our model’s predictive capabilities by
identifying the most age-relevant CpG sites. Our model out-
performs existing epigenetic clocks across multiple datasets,
offering significant improvements in accuracy and providing
deeper insights into the epigenetic determinants of aging. The
proposed method not only sets a new standard in age estima-
tion but also highlights the potential of deep learning in bi-
ologically relevant feature extraction and interpretation, con-
tributing to the broader field of computational biology and
precision medicine.

Introduction
In the realm of biomedical research, the accurate estimation
of biological age from epigenetic data, specifically DNA
methylation, represents a pivotal challenge and opportunity.
Biological age, as opposed to chronological age, offers a
more nuanced view of an individual’s health status and aging
process, informed by the epigenetic modifications that accu-
mulate over time. These modifications, particularly methy-
lation of DNA at CpG sites, have been robustly associated
with various age-related changes and conditions. Traditional
methods for estimating epigenetic age leverage linear and
basic machine learning models, which, while foundational,
often struggle with the complex, non-linear relationships in-
herent in methylation data across diverse biological systems.
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Various models such as Hannum (Hannum et al. 2013), Hor-
vath1 (Horvath 2013), Horvath2 (Horvath et al. 2018), Lin
(Lin et al. 2016), PhenoAge (Levine et al. 2018), and oth-
ers employ diverse computational strategies, predominantly
linear regression-based approaches that focus on weighted
sums of methylation levels at selected CpG sites. These tra-
ditional models, while foundational, often do not account
for the complex, non-linear interactions between CpGs that
might influence aging processes more profoundly. For in-
stance, Horvath’s clocks use linear algorithms that may not
capture the entire spectrum of biological aging changes,
leading to limitations in prediction accuracy across diverse
populations and tissues. There are some non-linear paramet-
ric regression based methods for example, GP-Age (Var-
shavsky et al. 2023) which improve over flexible prediction
but still suffer from capturing complex interaction.

Recent advancements have seen the application of more
sophisticated machine learning techniques, such as random
forests (Breiman 2001) and gradient boosting machines
(Chen and Guestrin 2016), which have provided incremen-
tal improvements and more flexibility over linear models.
However, these methods still often fall short of capturing
the deeper interactions within methylation profiles. There
are some methods applying deep learning appoaches, for ex-
ample, PerSEClock (Zhao et al. 2024) applied channel at-
tention, CPFNN (Li et al. 2021) used correlation pre-filtered
neural network, MSCAP (Wang et al. 2023) used multi-scale
CNN model, but most of them lack in considering their se-
quential or collective influence on aging that can be criti-
cal for a precise age prediction. Furthermore, most existing
models have not fully explored the potential of deep learn-
ing techniques, which have revolutionized fields such as im-
age and speech recognition for detecting intricate patterns in
high-dimensional data.

Our work introduces DeepAge, a novel deep learning
framework specifically designed to address these challenges
in the context of epigenetic age estimation. DeepAge uti-
lizes Temporal Convolutional Networks (TCNs) (Lea et al.
2016), which are particularly adept at handling sequence
data, to model the sequential nature of CpG sites across
the genome. This approach allows for an effective capture
of long-range dependencies and interactions between CpG
sites, which are essential for understanding the complex bi-
ological processes underlying aging. By integrating layers
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of temporal blocks that include dilated convolutions (Yu and
Koltun 2015), DeepAge can access a broader context of the
input sequence, thus enhancing its ability to discern perti-
nent aging signals from the methylation patterns. We imple-
mented a dual correlation technique, utilizing both Spear-
man and Pearson correlations to identify CpGs most associ-
ated with age (De Winter, Gosling, and Potter 2016). By fo-
cusing on these relevant features, our model’s performance
improved significantly, reducing the risk of overfitting and
enhancing generalizability.

Moreover, DeepAge incorporates advanced techniques
such as residual connections (He et al. 2016) and dropout
regularization (Srivastava et al. 2014) to refine its learning
process and avoid overfitting, a common challenge in deep
learning models dealing with high-dimensional biological
data. The architecture is designed to progressively increase
its receptive field without inflating the model size exces-
sively, making it both powerful and computationally effi-
cient. This allows DeepAge not only to outperform existing
epigenetic clocks (Hannum et al. 2013; Horvath 2013; Hor-
vath et al. 2018; Lin et al. 2016; Belsky et al. 2022) in terms
of prediction accuracy but also to provide deeper insights
into the epigenetic factors that drive biological aging.

In summary, DeepAge represents a significant step for-
ward in the field of epigenetics, offering a robust, scalable,
and interpretable tool for age estimation that leverages the
full potential of deep learning. Our extensive evaluations
across diverse datasets demonstrate its superior performance
and underscore its potential to enhance our understanding of
aging and its biological underpinnings, paving the way for
improved diagnostic and therapeutic strategies in age-related
diseases.

Materials and Methods
Dataset
For this study, we utilized 12 publicly available GEO
datasets (Edgar, Domrachev, and Lash 2002) from the Bi-
olearn library (Ying et al. 2023), encompassing a com-
prehensive age range from newborns to centenarians. The
datasets provide rich metadata, including age and sex, al-
lowing for a nuanced analysis of methylation patterns across
different demographics. We partitioned these datasets into
three groups: 90% of those were kept for training and vali-
dation while the remaining samples served as held-out test
datasets to evaluate generalizability.

The age distribution across these datasets is depicted in
the accompanying Fig. 1a, highlighting the mean and stan-
dard deviation of ages, which span from 0 to over 100 years.
Notably, of the 12 datasets, 8 contain gender information,
with a demographic composition of 69% male and 31% fe-
male samples, as illustrated in Fig. 1b. This gender repre-
sentation ensures that our findings are robust across both
male and female cohorts. Most samples originate from hu-
man whole blood tissue, which is commonly used in epige-
netic studies due to its accessibility and the abundance of
methylation data it offers. This tissue type enhances the rel-
evance and applicability of our study to general and clinical
research.

Data Preprocessing
The preprocessing of our dataset was uniformly applied
across the training, validation, and testing sets to ensure con-
sistency. For the independent test set, models were evaluated
directly without additional preprocessing to assess their per-
formance on unaltered data. We initially removed samples
with over 50% missing methylation values and excluded any
lacking precise age information or containing NaN values.
To mitigate the impact of age outliers, samples older than
100 years were removed due to their insufficient numbers
and potential to skew the model’s learning.

The resulting dataset comprised 4,351 samples, each char-
acterized by 20,937 CpG sites. We then normalized the
methylation beta values to a 0 - 1 range using the MinMaxS-
caler from the scikit-learn library (Pedregosa et al. 2011),
ensuring that all values were appropriately scaled for effec-
tive model input. Lastly, missing values within the methy-
lation data were imputed using the mean methylation level
of each CpG site across all samples, facilitating a consistent
dataset for subsequent analyses. This rigorous preprocessing
pipeline was essential for preparing the data for accurate and
unbiased epigenetic age prediction.

Age Associated Feature Selection and Data
Partitioning
In our study, we employed a novel Dual-Correlation feature
selection technique that improved our model’s predictive ac-
curacy by integrating both Spearman’s rank and Pearson’s
correlations to detect monotonic and linear relationships, re-
spectively. By identifying significant CpG sites from both
methods, we captured a comprehensive set of biomarkers
indicative of epigenetic aging. This approach not only en-
hanced the robustness of our feature selection but also deep-
ened our understanding of epigenetic changes with age. For
correlation thresholds set at T=0.4,0.45,0.5,0.55, and 0.60,
we identified 407, 184, 57, 16, and 5 CpG sites, respectively
(Selection process is shown in the Fig. 3a for T=0.45). These
varying thresholds allowed us to assess the impact of feature
granularity on model performance, ultimately aiding in the
optimal selection of predictive biomarkers.

Regarding data partitioning, we initially separated 10% of
the dataset to form an independent test set for final evalua-
tion. The remainder was then divided, reserving 10% for val-
idation purposes. This partitioning strategy resulted in 3,523
training samples, 392 validation samples, and 436 test sam-
ples, ensuring that our model was both trained and validated
on diverse subsets of the data, promoting generalizability
and robust performance across unseen datasets. The age dis-
tribution for train, validation and test sets were shown in Fig.
1c, 1d, 1e respectively.

Model Architecture
Temporal Convolutional Networks (TCNs) excel in se-
quence modeling tasks due to their hierarchical architecture,
which adeptly manages long-range dependencies. Our im-
plementation incorporates key architectural features that im-
prove the efficiency and accuracy of the network in age pre-
diction from the DNA methylation data shown in Fig. 2.
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Figure 1: Analysis of GEO Datasets for Age Prediction. a) Age Distribution: A bar plot illustrating the age range from 0
to over 100 years across 12 GEO datasets, with annotations for mean and standard deviation to highlight the diversity in

age representation. b) Gender Proportion: Pie chart showing the gender ratio of the sampled populations, restricted to
datasets with available sex information. c-e) Data Partitioning: Histograms depicting the age distribution within the
training, validation, and test sets, demonstrating consistent distribution patterns across different dataset partitions.

Temporal Block
The fundamental unit of our TCN, the TemporalBlock, con-
sists of a series of convolutional layers coupled with ReLU
activation (Agarap 2018) and dropout for regularization.
Each block features a residual connection, streamlining the
training of deep networks by preserving gradient flow and
mitigating the vanishing gradient problem. This design en-
sures robust feature extraction across different layers, facil-
itating the capture of complex patterns in methylation pro-
files. Each TemporalBlock in our TCN processes the input
through two main convolutional layers, each followed by a
ReLU activation and dropout, and includes a residual con-
nection:

xout = Dropout(ReLU(Conv(xin))) + xres (1)

where xres is the residual connection that may involve a
transformation if the dimensions do not match:

xres =

{
Conv1×1(xin) if shape mismatch,
xin otherwise.

(2)

Dilated Convolutions
To expand the model’s receptive field without a proportional
increase in parameters, we employ dilated convolutions.
This approach allows the network to integrate information
over larger expanses of the input sequence, capturing the
distant relationships between CpG sites that are crucial for

accurate age estimation. The dilation factor increases expo-
nentially with each subsequent layer, enhancing the model’s
ability to assimilate broader contextual information from the
methylation data:

y(t) =
N−1∑
i=0

f(i) · x(t− s · i) (3)

where s is the dilation factor, N is the filter size, f is the
filter, and x is the input.

Final TCN Prediction
The overarching model structure, TCNModel, stacks mul-
tiple TemporalBlock layers, each refining the feature rep-
resentations extracted from the data. The architecture con-
cludes with a linear layer that transforms the high-level fea-
tures into a final age prediction. This layer acts as a regres-
sion output, providing a quantitative estimate of biological
age:

Age = Linear(GlobalAvgPool(xfinal)) (4)

We integrate batch normalization to stabilize the learning
process, leading to faster convergence and enhanced training
dynamics. Dropout is strategically placed within the Tem-
poralBlocks to prevent overfitting, ensuring that our model
generalizes well to new, unseen data. The configuration of
these components within the TCN framework allows for a
powerful, yet efficient, approach to modeling the intricate
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Figure 2: DeepAge Model Architecture. (A)Input and TCN Overview: Showcases an input sample with CpG features
processed through a five-layer TCN. Each layer doubles the channel count from 64, with exponentially increasing

dilations and adaptive padding, culminating in a global max pooling layer that reduces all features to a 1024-dimensional
embedding for the output prediction. (B) Temporal Block Structure: Details the configuration of a temporal block,
including dual convolutional layers followed by batch normalization, ReLU, and dropout, complemented by a skip

connection for enhanced gradient flow. (C) Dilation mechanics: Highlights the role of increasing dilation in the capture of
distant CpG interactions.

relationships inherent in epigenetic data, ultimately leading
to more precise age predictions based on DNA methylation
patterns.

Experimental Setup and Model Training
In this study, we developed a temporal convolutional net-
work (TCN) to predict epigenetic age. Our model architec-
ture included five residual blocks, each comprising two con-
volutional layers followed by batch normalization and ReLU
activation functions. To mitigate overfitting, we introduced
a dropout rate of 30% after each convolutional layer. The
network architecture is designed such that each layer main-
tains the sequence length of the input (e.g., 57 CpGs), using
padding calculated to accommodate the dilation effects. This
design allows the number of channels to increase with each
layer, enhancing the network’s ability to learn increasingly
complex features at deeper levels.

The final layer of the model processes the output with an
embedding size that expands to 1024 channels, while pre-
serving the original sequence length. This setup enables the
model to represent more complex features without altering
the temporal resolution of the input. Following the last tem-
poral block, we applied global average pooling across the
sequence dimension, condensing the temporal information
into a single vector per feature channel. Consequently, each
of the 1024 channels represents the average feature value
across all time steps. A linear layer subsequently reduces
this 1024-dimensional vector to a single predictive output,

focusing on the most critical features for age prediction.
This method ensures that the model prioritizes the most sig-
nificant features extracted throughout the sequence, thereby
enhancing its robustness and adaptability to various input
lengths.

For training, we used a batch size of 32, used the Adam
optimizer with a learning rate of 0.001 and adopted the mean
square error as the loss function. The training process was
designed to run for up to 200 epochs, with a patience pa-
rameter of 5 set for early stopping based on validation loss.
The training loss curve is shown in the Fig. 3b together with
the validation loss, and the training performance is shown in
Table 1 along with the validation and test results. This strat-
egy was implemented to prevent overfitting and stop training
when the model ceased to show improvements in the valida-
tion data set.

Metric Train Val Test
Mean Abs Error (MAE) 4.18 4.92 4.88
Coeff. of Determination (R2) 0.89 0.85 0.84
Mean Abs Deviation (MAD) 13.19 12.98 12.23
Root Mean Sq Error (RMSE) 5.34 6.4 6.21
Median Abs Error (MedAE) 3.52 3.86 3.98

Table 1: Performance of DeepAge on training, validation,
and test datasets (using 184 CpGs)
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Figure 3: Feature Selection and Model Training. a) Dual Correlation Method: Depicts feature selection using a 0.45
correlation threshold. b) Loss curves: Shows training and validation loss curves. c-d) Age predictions: Displays predicted

vs. actual age plots for both training and test sets.

Evaluation
To effectively measure different model’s age prediction ca-
pabilities from DNA methylation data, we employed a ro-
bust and comprehensive set of regression metrics. These in-
clude:
• Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi| (5)

• Median Absolute Error (MedAE)
MedAE = median(|y1 − ŷ1|, . . . , |yn − ŷn|) (6)

• R-Squared (R2)

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(7)

• Mean Absolute Deviation (MAD)

MAD =
1

n

n∑
i=1

|yi − median(Y )| (8)

These metrics facilitate a nuanced assessment of pre-
diction accuracy. MAE and RMSE directly reflect aver-
age errors in age estimates, with RMSE adding weight to
larger discrepancies. R-squared offers insight into how much
age-related variance our model captures compared to the
baseline model. Collectively, these metrics underscore our
model’s ability to generalize well across diverse methylation
profiles, substantiating its efficacy in biological age estima-
tion.

Model #CpGs MAE R2 RMSE MedAE
Hannum 6 34.16 -4.63 37.31 32.07
Horvath1 297 40.56 -6.61 43.34 38.55
Horvath2 100 39.58 -6.34 42.58 37.35
PhenoAge 468 40.04 -5.77 40.87 39.57
Lin 89 45.69 -7.77 46.55 46.63
DunedinPACE 4 40.38 -5.76 43.33 38.13
YingAdaptAge 53 58.83 -13.93 60.74 56.71
YingDamAge 50 28.31 -3.19 32.18 25.58
XGBoost 57 23.77 -2.22 28.21 20.42
Random Forest 57 11.57 0.12 14.77 9.03
CNN-Attention 57 11.07 0.18 14.24 8.48
CNN (3 layers) 57 9.26 0.49 11.25 8.43
LSTM (2 layers) 57 7.14 0.68 8.95 6.05
DeepAge 57 5.55 0.79 7.16 4.27

Table 2: Performance comparison of different
state-of-the-art models on the test dataset

Results
Comparison of Different Machine Learning and
Deep Learning Based Methods on Age Prediction
In our study, we evaluated the performance of various age
prediction methodologies, comparing traditional machine
learning techniques, ensemble methods, and advanced deep
learning architectures against our DeepAge model shown
in Table 2. These included regression approaches, gradi-
ent boosting, stacking, deep neural networks such as CNN
(O’shea and Nash 2015), LSTM (Graves and Graves 2012),
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Figure 4: Visualization of the methylation data. a-b) Heatmaps of CpG sites display methylation levels across samples for
test and training sets, respectively. c-d) Dimensionality Reduction: Illustrates t-SNE and UMAP visualizations of

methylation data, categorized into four age groups (0-25, 25-50, 50-75, 75-100) showing distinct patterns for age groups.

and CNN combined with attention mechanisms (Vaswani
et al. 2017). For regression based methods and some other
models, we utilized the CpG coefficients from the Biolearn
library for this comparative analysis, selecting common
CpGs between the provided lists and our dataset to facili-
tate age prediction. We developed various machine learning
and deep learning models from scratch, including DeepAge,
which outperformed others in using 57 CpGs, as shown in
the comparison of predicted results versus actual ages us-
ing 184 CpGs in the Fig. 3c, 3d for the train and test sets,
respectively. This success highlights the benefit of treating
methylation data as sequential patterns, enhancing predic-
tive accuracy. Specifically, DeepAge’s use of Temporal Con-
volutional Networks (TCN) with residual blocks and dilated
convolutions significantly improves age prediction. Resid-
ual blocks preserve gradient strength during backpropaga-
tion for deeper networks without performance loss, while
dilated convolutions broaden the receptive field, capturing
distant CpG interactions critical for detecting complex, age-
predictive methylation patterns.

Conversely, convolutional approaches were moderately
effective, indicating that capturing long-range CpG interac-
tions could improve accuracy. Traditional methods like ran-
dom forest and XGBoost underperformed, likely unable to
capture complex CpG interactions. Other epigenetic clocks,
based on Biolearn coefficients, also performed poorly, possi-
bly due to less relevant CpG selections compared to those in
our more precisely curated model. This analysis underscores
DeepAge’s robustness and effectiveness in using epigenetic
sequencing for age prediction, establishing a new accuracy
benchmark in the field.

Metric Threshold & #CpGs
T=0.40 T=0.45 T=0.50 T=0.55 T=0.60
(407) (184) (57) (16) (5)

MAE 5.2 4.88 5.55 6.72 7.69
R2 0.82 0.84 0.79 0.69 0.60

RMSE 6.62 6.21 7.16 8.62 9.88
MedAE 4.32 3.98 4.27 5.24 5.99

Table 3: Effect of Number of CpGs on Age Prediction

Effect of Number of CpG Sites and Their
Correlation on Age Prediction

The performance of age prediction models is significantly
affected by the number of CpG sites used. More CpGs in-
crease genomic coverage and capture a broader range of
aging-related methylation patterns, but also add complexity
and risk of overfitting, making the model perform well on
training data but poorly on new data. Additionally, a larger
set of features makes it harder to identify the most influ-
ential CpGs, complicating the interpretation of results and
biological validations. Effective feature selection is essen-
tial to identify the most informative CpGs, improving model
performance and computational efficiency.

To determine the optimal number of CpG sites among
our samples, we evaluated five different CpG sets selected
using Dual-Correlation feature selection at varying thresh-
olds (0.45, 0.50, 0.55, 0.60) shown in Table 3. We found
that models with a moderate number of highly associated
CpGs perform well, but performance declines beyond a
certain point due to overfitting. For example, using 184
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Model Parameters MAE R2 RMSE MedAE

TCN k=3, 3 layers, drop=0.2, n channels = [64, 128, 256] 9.24 0.47 11.41 7.93

TCN k=7, 3 layers, BN, drop=0.3, n channels = [64, 128, 256] 6.47 0.73 8.1 5.45

TCN k=7, 5 layers, BN, drop=0.3, n channels = [64, 128, 256, 512, 1024] 5.55 0.79 7.16 4.27

TCN k=7, 5 layers, BN, drop=0.3, n channels = [64, 128, 256, 512, 512, 1024, 1024, 2048] 12.8 -0.03 15.93 10.17

Table 4: Ablation study on model parameters of DeepAge (57 CpGs)

CpGs yielded better results than using 407 CpGs, indicat-
ing the onset of overfitting. In our analysis, a set of 57 CpGs
emerged as a balanced choice, providing robust performance
while minimizing complexity.

Visualization of CpG Site Methylation Levels
Patterns Across Samples
In our study, we meticulously analyzed the methylation pat-
terns across various CpG sites to gain insight into their im-
plications for biological age estimation. The heatmap pro-
vided visually demonstrates the variation in methylation lev-
els across different samples. Each row represents a sample,
and each column corresponds to a specific CpG site. The
color gradient, which varies from light yellow (low methy-
lation) to deep red (high methylation), facilitates the identi-
fication of CpG sites with pronounced methylation changes.
From this visualization, we can discern clear patterns of
methylation across specific sites, highlighting regions with
potential biological significance in aging processes. Sites
with consistently higher or lower methylation across sam-
ples could indicate key regulatory regions impacting gene
expression tied to aging. This methodical mapping enables
us to target these significant CpG sites for deeper analysis,
potentially guiding further experimental investigations. In
addition, the heat map helps to identify outliers and trends
that may not be evident through numerical data alone. In
the Fig. 4a, 4b we showed the methylation levels for each
sample in the test and training set, respectively, across all
samples. For example, cg14166009, cg00059225 is highly
methylated for both the train and test samples. By corre-
lating these patterns with age groups and other phenotypic
data, we can better understand the role of epigenetic modi-
fication in aging and develop more accurate predictive mod-
els for biological age. This approach not only enhances the
precision of age estimation models but also enriches our un-
derstanding of the epigenetic mechanisms that underlie age-
related changes.

Ablation Study on Model Parameters of DeepAge
(57 CpGs)
To refine our age prediction model, DeepAge, we performed
ablation experiments to determine the optimal architectural
features, including layer count, kernel size, and regulariza-
tion methods like batch normalization and dropout. The find-
ings, summarized in Table 4, illustrate the effectiveness of
our design, particularly with the 57 CpG model configura-
tion which demonstrates DeepAge’s ability to deliver accu-
rate age predictions from DNA methylation profiles. Our re-

sults indicated that a five-layer model with a kernel size of 7
best captures relevant CpG site information, enhancing pat-
tern detection for aging. Incorporating batch normalization
and a dropout rate of 0.3 improved the model’s generaliz-
ability and robustness, effectively reducing overfitting and
ensuring consistent performance across datasets.

Analysis of Variation in DNA Methylation and Age
Patterns Across Different Age Groups Through
Dimensionality Reduction Techniques
In our study, we used advanced dimensionality reduction
techniques, specifically t-SNE (Van der Maaten and Hinton
2008) and UMAP (McInnes, Healy, and Melville 2018), to
analyze DNA methylation data in relation to epigenetic age.
Our results, displayed in Fig. 4c, 4d categorize the samples
into four age groups (0-100 years) and reveal notable differ-
ences in the methylation patterns. The visualization of t-SNE
(Fig. 4c) shows some age-based clustering, though with sig-
nificant overlap, indicating a less defined age-related struc-
ture. In contrast, UMAP (Fig. 4d) demonstrates clearer de-
lineation of age groups, suggesting its effectiveness in cap-
turing the global structure and biological significance of age-
related changes in methylation. These findings underscore
the potential of methylation patterns as biomarkers of bio-
logical aging and highlight the utility of UMAP in epigenetic
research to understand the effects of age on methylation.

Discussions
In this study, we developed DeepAge, a deep learn-
ing framework that estimates epigenetic age using DNA
methylation data. Utilizing Temporal Convolutional Net-
works (TCNs), DeepAge captures long-range dependen-
cies between CpG sites, outperforming traditional epige-
netic clocks. The model’s architecture features dilated con-
volutions to expand the receptive field efficiently, supported
by residual connections and dropout, ensuring robust learn-
ing with limited data. However, our study has limitations that
suggest areas for future research. It is limited to 12 human
blood sample datasets from the BioLearn library, which re-
stricts the diversity and scope of our epigenetic aging anal-
ysis. Future research could broaden this by including more
varied datasets and expanding the model to multiple tissue
types, enhancing prediction accuracy and applicability. De-
spite these limitations, DeepAge represents a significant ad-
vancement in epigenetic age estimation, highlighting deep
learning’s potential in biomedical research and setting the
stage for further improvements.
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Code and Data Availability
Code is available at https://github.com/Sajib-006/DeepAge
We have used publicly available data from the NCBI GEO
database (https://www.ncbi.nlm.nih.gov/gds) from biolearn
library (https://bio-learn.github.io/data.html)
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