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Abstract

Satellite imagery is increasingly available, high resolution, and temporally detailed.
Changes in spatio-temporal datasets such as satellite images are particularly inter-
esting as they reveal the many events and forces that shape our world. However,
finding such interesting and meaningful change events from the vast data is chal-
lenging. In this paper, we present new datasets for such change events that include
semantically meaningful events like road construction created using Sentinel-2
satellite imagery (with 10m spatial and 1 month temporal resolution). Instead of
manually annotating the very large corpus of satellite images, we introduce a novel
unsupervised approach that takes a large spatio-temporal dataset from satellite
images and finds interesting change events. To evaluate the meaningfulness on
these datasets we create 2 benchmarks namely CaiRoad and CalFire which capture
the events of road construction and forest fires. The CaiRoad dataset has a total of
28015 change events with 2259 road construction events from the city of Cairo and
the CalFire dataset has 2172 change events with 204 labeled fire events in Califor-
nia. These new benchmarks can be used to evaluate semantic retrieval/classification
performance. We explore these benchmarks qualitatively and quantitatively by
using several methods and show that these new datasets are indeed challenging for
many existing methods. For example the best performing model has a retrieval
precision@25 of 0.46 on CaiRoad benchmark.

1 Introduction

At the turn of the century, there were about 30 earth observation satellites orbiting the planet. Today,
that number is close to 1500 and rising [6]. The massive trove of visual imagery from these satellites
cannot be more timely. Be it because of rapid human development or climate change, our world is
changing, and we need to understand what is changing across the planet and why.

Prior work on analyzing change in satellite imagery identifies changed pixels between two snapshots
of the same location (change detection). While this is a good first step, we need to understand not
just what has changed, but also why. For example, a climate scientist may be specifically interested
in changes that correspond to forest fires.

Thus, instead of simply detecting changed pixels, we want to identify change events. We define
a change event as a group of pixels over space and time that are all changed by a single event.
We are interested in developing systems that can automatically detect change events and assign to
each a semantic label that indicates the nature of the event, e.g., forest fires, road construction etc.
Identifying change events is a much more challenging problem than change detection. Multiple
events might be happening in the vicinity of each other, such as a road construction near a farm being
harvested. Furthermore, an event may span arbitrary time periods, so pairwise image analysis may
be insufficient. Detecting, characterizing and recognizing change events is thus a novel and difficult
research problem.
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To foster research on this problem, we need a dataset of satellite images, corresponding change
events and labels for the change events. However, manually annotating change events is extremely
challenging. First, change events are rare, so annotators will have to sift through hundreds of images
before coming across a change event. Second, change events can span multiple months, so annotators
will have to look at multiple images together. Third, annotating change events requires the annotator
to segment out the pixels involved; a task that is well known to be challenging. For example, to
accurately annotate changes in a 1024 x 1024 dimension image pair, it takes about 4.5 person-
hours [12] and we have hundred of thousands of such image pairs. As such, instead of manually
annotating all change events, we propose a semi-automatic approach for annotation: we detect change
events automatically, and then ask human annotators to label them with semantic categories.

We detect change events in unlabeled satellite imagery automatically using an unsupervised change
detection approach. Unfortunately, existing change detection algorithms are too slow and typically
designed to detect only certain kinds of changes. Our first contribution is a new fast, unsupervised
change detection algorithm. We adapt recent advances in self-supervised learning to produce a
semantically meaningful feature representation of the pixels in satellite images. Using these features,
we can dramatically speed up unsupervised change detection (48 x) while increasing accuracy (by
8%). Furthermore, we find that these features are useful not just for detecting changed pixels but also
for grouping changed pixels into events.

We run our automatic change event detection on two regions of the world: California and Cairo. We
then use these automatically discovered change events to create two event categorization benchmarks.
The goal in the first benchmark, CalFire, is to identify the set of events in California that correspond
to forest fires. The goal in the second benchmark, Cairoad, is to pull out road construction events
in Cairo. Both these benchmarks are created by using publicly available information about forest
fires and road construction to label automatically generated change events. These labels are then
verified by humans annotators. The resulting dataset and benchmarks are not just substantially
larger than prior satellite image change detection datasets ([10l [11]]), but also reflect a finer-grained
categorization of events, going beyond mere land-use change. For example, our benchmark contains
2259 road construction events and 204 forest fire events that are hard to find in coarser land-use
datasets ([27, 48]).

We use these benchmarks to evaluate several different approaches to recognize events. In particular,
inspired by successes of representation learning in standard recognition problems, we evaluate
different kinds of representations for spatio-temporal events. We look at both “few-shot" retrieval as
well as classification tasks. Our results show that our benchmarks are challenging and require novel
innovations in representation learning.

To summarize, our contributions are:

* We define the notion of change events and introduce the problem of detecting and categoriz-
ing change events.

* We present a novel method to automatically create a dataset of change events from spatio-
temporal satellite images.

* We present two novel benchmarks on these datasets created using a semi-automatic approach
with publicly available metadata and human labels for the task of semantic categorization of
change events.

To the best of our knowledge, these are first-of-its-kind datasets and benchmarks for interesting
change events in satellite imagery. Our datasets allow new insights in using computer vision to
surface and analyze important change events on a planet scale.

2 Related Work

We first place our work in relation to existing work in remote sensing image analysis and datasets.
We also look at some ideas in self-supervised learning that we use to create our datasets.

Satellite Image Change detection. Computer vision has always played a big role in satellite image
analysis. There is a large body of work on change detection, i.e., the problem of detecting the changes
between two temporally separated images; change detection is the first step of our pipeline as well.
Classic change detection techniques are based on differences [30, 137]] and ratios [28]] of pixel-level



features such as raw spectral data [49], and principal components[35]]. With supervision, machine
learning can be brought to bear [23]]. However, these classical approaches are limited by their features,
which can be sensitive to irrelevant changes such as illumination.

Recent works use patch-level features rather than pixel-level features as they are more informative
and more robust to pixel noise. These features can be produced efficiently using deep neural networks
(DNN) trained specifically for change detection using fully convolutional networks [16]], recurrent
neural networks [36] or siamese convolutional networks [22], but these typically require labeled
data for training. Unsupervised approaches that detect change accurately do exist, but are extremely
computationally expensive.These approaches typically use techniques such as PCA [18], kernel
PCA [50]], clustering [52] or saliency [20], graph networks [47] along with DNNs. In this paper,
we show that self-supervised features yield even more accurate results, but at a fraction of the
computational cost. While self-supervision has been previously used as pretraining for supervised
change detection [34], [38l], ours is the first work to use it for unsupervised change detection. Our
representation also outperforms other prior work on learning representations for satellite images,
such as Tile2Vec [29]]. The change detection masks can be used for downstream tasks such as object
detection [54]. In contrast to object detection our goal is to detect/discover events that happen over a
longer period of time while being unsupervised.

Temporal Understanding of Satellite Images. Feature representations of satellite images suffice for
change detection, but not for characterizing spatio-temporal events, which require characterizing the
temporal progression as well. Some existing techniques use autoencoders with 3D convolutions [32].
Others use adversarial losses to disentangle spatial context and temporal context [44]. While these
methods work well for tasks such as land-cover classification, we show empirically that these
representations cannot learn informative representations for change events. Additionally these
methods cannot encode change events of arbitrary size (spatial) and length (time).

Change Detection and Spatio-Temporal Datasets. Our work is also related to change detection
datasets. Many existing change detection datasets collect manual annotations for changes between
paired images [12} [11} 46, [10]. Our change events instead span over longer time periods and are
automatically created. Changes identified in existing datasets are often not labeled with semantic
information; even when they are, the semantic information is coarse-grained [50]), whereas our
change events contain finer-grained semantic information, such as road constructions or forest fires.

Our dataset is also a spatio-temporal dataset. In remote sensing and computer vision, several spatio-
temporal datasets have been proposed previously. DynamicEarthNet [48]] is a landcover classification
dataset but also has temporal information of landcover changes. Other datasets look at specific
variables over time and space such as soil moisture [15] or forest logging [19]. Our pipeline is more
automatic and can be used to rapidly create such datasets at scale and at less cost.

Self-supervised Learning for Satellite Images Using unlabeled data to learn a representation
has seen a resurgence with advances in self-supervised learning. Early work on self-supervised
approaches used “pretext tasks” like solving jigsaw puzzles [40], colorization [53] or predicting
rotation [21]]. More recent and better performing methods such as NPID [51]], PIRL [39], MOCO [25]],
or SimCLR [13]], use contrastive learning, which learns representations by treating images and their
augmentations as a single class.

Self-supervised learning is progressing rapidly in the area of remote sensing. Researchers have used
a variety of information from unlabeled datasets such as location [29, 9], season [38]] or texture [8]],
as a signal for self-supervision. With the advent of newer architectures such as transformers [17],
some methods have also used them for satellite image representation learning [45]. Self-supervised
learning has also been applied to remote sensing of planets other than earth [42]. In all of these cases
the objects being represented are also typically full images. Here, we present self-supervised learning
techniques designed for pixels in satellite imagery to perform change detection.

3 An automatic approach to detecting change events

We propose to discover semantically meaningful events from a large amount of spatio-temporal
data without any supervision. Since change events are a new type of data, we first formalize their
definition in Sec.[3.1] We then present an overview of our proposed pipeline to obtain change events
before elaborating on the key steps (Sec. [3.2).
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Figure 1: Overview of our method for creating the change event datasets. (a) We first use a self-
supervised method to learn pixel-level features aiding in change detection and grouping. (b) We then
perform unsupervised change detection for different regions and times using these features. (c) The
features are also used to group these change pixels, based on similarity and proximity in space-time.

3.1 Formalizing Change Events

We define a change event as a group of pixels over space and time that were changed by a single event,
such as road construction or drying up of a reservoir of water, among others. These changes can be of
arbitrary shape and size in both time and space. Except for disregarding changes due to pixel noise or
illumination changes (due to the changing angle of the sun), we do not place any restriction on the
kind of change; this is to account for the differing needs of myriad applications. We are interested in
detecting these change events, and also categorizing them into classes (e.g., road construction).

More concretely, we describe a change event using an ordered pair (V;..;,Cy..;—1). Here V €
RIX@xyx¢ are 3-D volumes of sequences of satellite images, where, [, x, y are the span of changes in
time and space and c is the number of channels in satellite images. C' € {0, 1}(=1)*2X¥ i5 a binary
mask indicating which pixels changed between consecutive frames for the change event. C has a
value of 1 whenever a change has happened otherwise it is 0.

3.2 Proposed Pipeline

The input to our pipeline is a set of large spatio-temporal volumes, and the output is a set of interesting
change events. Finding these events involves finding changed pixels between all pairs of consecutive
images in time (Sec. [3.2.T)). These changed pixels must then be grouped based on proximity in space
and time and change similarity to get change events (Sec.[3.2.2). We present our pipeline (Fig.[I)) to
solve these challenges following these steps.

All the experiments and datasets in this dataset are created using the RGB band of Sentinel-2 satellite
imagery. The spatial and temporal resolution of the collected dataset is 10m and 1 month respectively.
However, our pipeline is more general than this and can be applied at any resolution or satellite
images with different bands. We use these 3 bands so that we can leverage the advances in the
computer vision tools that are developed on natural RGB images.

3.2.1 Feature Learning for Change Detection

We first learn a feature representation for pixels in an unsupervised manner. This representation can
be used for both pixelwise change detection and change grouping.

Note that unsupervised change detection is not a novel problem setup. Several methods have been
proposed [37, [18} 150] to perform change detection with no supervision. However, getting features
that are invariant to noise and illumination is hard. Methods that work well are really slow, and thus
hard to use in practice at scale. To speed up this process and maintain the feature quality on par with
these methods we present a method that learns a self-supervised representation at a per-pixel-level.

This per-pixel representation should be invariant to photometric transforms or we may detect irrelevant
changes such as illumination changes due to the direction of the sun. If we further want to use this
representation for grouping nearby changed pixels into events, then additional invariances are required.
For example, we may want to identify the construction of a road as a single event, even as it curves
around (calling for robustness to rotation) or becomes wider or thinner (calling for invariance to scale
changes). The construction of a sidewalk should also be considered as part of road construction
(calling for invariance to translation). This range of invariances makes the problem very challenging.
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Figure 2: Training overview for our self-supervised change detection method. First, two different
photometric transforms (p? and p} ) are applied to the image I;. Then the same equivariant transform
gi is applied to the top image p?(I;) before feeding it into the network and also to the feature map of
the bottom image f(p}(I;)). The agreement between the transformed feature map and the feature
map of transformed images is maximized through SimCLR (% is a projection head).

To learn such a feature representation, we draw on recent advances in self-supervised learning based on
contrastive learning [51} 39, 25/ [13]]. These approaches attempt to spread images out in feature space
while ensuring that augmentations (e.g., color jitter, random crops) of the same image embed close.
A representative approach here is SimCLR. In each iteration SimCLR samples a batch of images
and applies two augmentations to each, resulting in a combined batch {Iy, Iy, -+, I;,- - ,Tan_1},
where o) and I, 1 are two augmentations of the same image. It then optimizes the loss:

Z Z o 2N€;‘>ip(51m(22i+j722i+|1—j\)/7> (1)
i j={0,1} Z ]l[z;ék] exp(sim(22i+j,zk)/7)

Here sim is the cosine product, 7 is a temperature, and z; = h (f (I;)) where f(I) is a feature vector
for image I and h is a projection head.

Change detection is a per-pixel classification problem. Unfortunately, SimCLR is unsuitable for
our case as we need a feature representation for each pixel rather than a vector for the entire image.
Therefore, instead of maximizing agreement between feature vectors of augmented images, we
maximize agreement between feature maps. The nuance here is that photometric and geometric data
augmentations are handled differently. As argued above, the feature map for an image should be
invariant to photometric transforms like color jitter. When it comes to the geometric transformations
mentioned above, namely, rotation, translation, and scale, we want equivariance, i.e., geometrically
transformed feature maps should agree with feature maps of geometrically transformed images.

To obtain such invariance and equivariance, we combine contrastive learning with the augmentation
framework proposed in [14]. Concretely, to learn invariance to photometric transforms, for each
image I; we sample two photometric transformations p?, p}. We then produce two feature maps for
I; using the two photometric transformations, p{(I;) and p; (I;).

To learn equivariance to geometric transform, we also sample a geometric transformation g; ~ G.
We first apply it on the first input image p{(I;) and then obtain the feature map f(g;(p?(I; ))) The
same transform g; is applied on the feature map of the other image f (pH(I;)) to obtain g; (f(p; (I;)))
(see Fig.[2). We then maximize the agreement between the geometrically transformed feature map
and the feature map of the geometrically transformed image, resulting in geometric equivariance.

Both these feature maps are also passed through the SimCLR projection head h. This results in
two feature maps z2; = h(f(g:(p9(1;)))) and 29,41 = h(g;(f(p}(1;)))). Our loss then encourages
agreement between these two in a contrastive manner:

Z _log exp(sim(22i4; (2], 22i+(1—[])/7)

Dkt o EXP(SIM (2214 (2], 25 [w]) /7)

JE{0,1}i

Here z, w index pixel locations while 7, k index images. The denominator includes all pixels from
other images and other locations of the same image.

Unsupervised Change Detection. We use the learned representation f to detect change over a
large spatio-temporal dataset. We take pairs of temporally consecutive m x n geo-registered images,



Ii,,I;,, and obtain a binary change map C' € {0,1}™*" by simply thresholding the difference
between the corresponding feature maps: C' = |f(Iy,) — f(I+,)| > A. Changed pixels have a value 1
in C'; other pixels are 0.

This thresholding operation matches prior work on change detection[18, [50]; the key difference is in
the feature space. In contrast to prior work, our pretrained feature representation explicitly captures
the right invariances without any human supervision and is fast at runtime (as we show later).

3.2.2 Change Grouping

Next, we group pixel-level changes into semantically similar segments or change events. Note that
since change events can span multiple time steps (e.g., a road being constructed over months), the
input to the problem is 3-dimensional. So we need to group voxels (3d-pixel) instead of pixels.

Our pre-trained feature representation allows us to use a simple off-the-shelf segmentation approach:
region growing [7]]. This approach starts from some seeded pixels (voxels in this case) and propagates
their label to the neighboring pixels. Instead of seeding, we implement this method as finding
connected components on a graph. The key here is the definition of neighborhood on the 2d pixel
map of the graph. We consider two voxels v; and vy as neighbors if,

(dz(v1,v2) + cedi(v1,v2) < 0st) A (df(v1,v2) < f) )

where d, d; and dy measure distance in space, time and feature-space respectively, c; is a weighting
factor, and d,; and ¢ are thresholds. Thus two voxels would be grouped together only if they are
both close in space and time (low d, and d;) and are semantically similar according to our learned
features (low d ). Each resulting group of changed pixels is a change event.

4 Benchmarks for Change Events

We now use the above change event detection pipeline to create benchmarks for semantically
categorizing the discovered events.

CalFire Benchmark: Our first benchmark looks at forest fires in California, a growing threat due to
climate change that has caused substantial loss of life and property and poses innumerable health
risks [31]]. We create a dataset of fires using 6 years of RGB Sentinel-2 imagery (as the latest Sentinel
instrument has been active since late 2015). The Sentinel-2 imagery are publicly available and free to
use for any application [5]. We use the EarthEngine APIs[2], to preprocess and access the dataset.

We then obtain the location and start/end date of all forest fire incidents (1076 such locations) from
the California Public Records [1]]. We run our change event discovery pipeline to find 2172 change
events over the 6 year span; these include fires, but also other kinds of events, such as snowfall, new
construction, changes in water level, etc. The change masks for these events are further cleaned up
using a CRF [33]]. Next, we label each of these change events as being a fire event or not. A change
event is considered a fire event if the location/time of the fire, as determined by the dataset from the
public record, overlaps with the change mask of the change event, or else it is negative. We find 204
such fire events, so around 1 in every 10 change events is a fire event.

CaiRoad Benchmark: Our second benchmark looks at road construction events. We choose Cairo
as the city in focus because it has seen a lot of new construction in the past decade. Again, we collect
6 years of Sentinel-2 images (2015-2021) from Cairo. Then, we use our pipeline to detect a wide
variety of change events. Since the number of locations is much larger than CalFire locations and the
amount of cloud-covered regions in Cairo are much fewer, we detect 28015 change events.

To get the ground-truth road constructions we use metadata from OpenStreetMap [3] that contains
information about the history of road construction. However, this information is noisy, as the
construction of some smaller roads is missing. For some roads, the construction tag is never
annotated.

Therefore, we only use OpenStreetMap to check if a change event might potentially contain road
construction. If the change mask event of a change event has any overlap with any road coordinates
from OpenStreetMap we use these events for further filtering. This step is useful as it removes
two-thirds of the change events from requiring the human annotation step. Change events such as
crop growth/harvesting, building construction, changes to water level, are thus not annotated.



Figure 3: Example of change events corresponding to a fire (left) and road (right) in our bench-
marks. The events are represented in (V;...;, Cy...,—1) format. V[0] - - - V'[3] are RGB satellite images
providing visual information and C|0] - - - C[2] are binary change masks showing changes between
consecutive satellite images (white is change, black is no change). For example, C[1] shows the
change between V'[1] and V[2].

The remaining 9172 events are further annotated by human annotators. We use Prolific [4], to
crowd-source road construction labels. Human annotators are shown change events and asked if
the change event corresponds to the construction of a road or not (see supplementary for interface
details). The annotators are additionally explained that construction changes can extend over multiple
timesteps and are shown various examples in instructions and tutorials (see supplementary), resulting
in high-quality of desirable data. On average it took about 3.45 seconds for users to understand if a
change event was a road construction or not. Compensation for 100 change events was 1.85 USD.
The average wage was approximately 15 USD / hour. Every change event was labeled by 3 separate
annotators. An event was considered a road construction event if 2 out of 3 annotators agreed. In
total these annotations cost approximately 800 USD. The annotators find 2259 such road construction
events.

Fig. B]shows examples from these benchmarks. More information about these benchmarks is in the
supplementary. Note that our datasets can be used to create benchmarks for other types of change
events as well. For example, we can use information from agriculture surveys (or human annotations)
to label change events such as growing/harvesting of crops.

While the benchmarks are primarily aimed at representation learning for change events, it can be
used for other applications too. For example, our benchmarks can be used to supervise a forest fire
detection model or can be used as a dataset for supervised pairwise road change detection.

5 Results

In this section, we first evaluate the reasoning for using specific components in our pipeline. Then we
present the methods for evaluation for using our datasets/benchmarks. Finally we evaluate change
event representation learning with these metrics using existing and new methods.

5.1 Change detection

We first evaluate our unsupervised change detection method. We use the OSCD benchmark [11],
containing satellite images around urban areas. The whole dataset (train+test split) is used as
unlabeled images to train our model and baselines.

We compare our method against unsupervised change detection baselines. CVA [37] and DCVA [43]
use change vector analysis on pixel and feature space respectively. PCANet [18] and KPCA-
MNet [50] use a series of principal components of patches. Tile2Vec [29]] learns self-supervised
representations for patches. Since the range of difference can vary across methods, each method needs
a different optimal threshold. Thus for fairness, we use Otsu’s thresholding [41]] for all the methods.
The threshold maximizes interclass variance for the two classes above and below the threshold.

Note that the F-score and k-scores are low because OSCD is annotated for urban changes, whereas
our method is designed for all types of changes. The high recall score shows that our method is best
at recovering the majority of changes annotated in the dataset.



Method F1 Rec. k  Time(s) \ Method F1 Rec. x  Time(s)

CVA [37] 0.268 0.944 0.231 1.16 | DCVA [43] 0.255 0901 0.222 0.94
PCANet [18] 0.298 0925 0.262 13.70 | KPCAMNet [50] 0.302 0921 0.264 54.46
Tile2Vec [29] 0.149 0941 0.116  316.18 | Ours 0.321 0.959 0.287 0.94

Table 1: Performance of our unsupervised change detection method on the OSCD benchmark [[11]].
Our method is more accurate at detecting changes (higher F-score and x-score) and is also significantly
faster than many of the better performing baselines.

Table [T] shows the results in terms of F-score and Cohen’s x-score. Our method outperforms all
baselines in both accuracy and speed, and is 48 x faster than the closest competitor (KPCA-MNet).
The speed advantage is crucial when running at scale: our approach uncovers all events from 6 years
of Sentinel-2 data from Cairo in 7 hours compared to 14 days (est.) for KPCA-MNet (KPCA-MNet
takes about 51 seconds to detect changes for a temporal pair and there are around 24k such pairs).

The poor performance of Tile2Vec shows that not all self-supervised learning techniques are useful:
careful thought must be given to the needed invariances.

5.2 Change Event Representation Learning

We now look at how one can use our datasets and evaluate whether we can learn a representation
from the proposed change events. A good representation for the change events has the potential of
helping analysts and other users discover interesting events in spatio-temporal imagery. Since change
events are novel objects, we evaluate a set of related existing methods and newly proposed baselines.
As our goal is to learn a representation with semantic understanding of change events without labels,
we focus on self-supervised methods. We look at the following baselines:

e SimCLR: Change Event: We learn a self-supervised representation on temporal slices of change
events using SimCLR. Since we are using an architecture with global average pooling (ResNet),
we replace the global average pooling layer with a weighted average pooling. The weights for a
temporal slice Vj, of a change event (V;...;, Cy...;—1) is its change mask from previous and next slice
i.e. Ci—1 A C. This allows the feature to only encode regions where change is happening.

e 3DConv-AE: Change Event [32]: It learns an unsupervised representation for satellite imagery
using a reconstruction loss using an autoencoder with 3D convolutions encoding temporal information.

o Tile2Vec: It is an unsupervised representation learning method for satellite images with triplet loss.
o Pretrained ImageNet: It is a network pretrained on ImageNet. No training is involved.

o SimCLR: EuroSat: Instead of using temporal slices from change events we instead use images
from EuroSat [27] land-cover classification. The resolutions of the images is same and the images
contain various types of classes such as “forest”, “highways” etc.

o SimCLR: All Data: It uses images from regions from which we obtain change events instead of
the change events themselves. Note that this dataset is significantly larger than the change event
dataset, and contains all the information that the change event dataset has.

For all the SimCLR methods and Pretrained ImageNet, we use Resnet-18 [26]. We also finetune a
pre-trained ImageNet model rather that training from scratch as that helps the training. For Tile2Vec
and 3DConv-AE we use the same architecture as in the those works.

Note that all the methods except for 3DConv-AE cannot encode temporal information. So to encode
temporal information we first average the features across time for all these methods. While averaging
the features across time will flatten the time dimension, temporal information is not completely lost
since the change pairwise masks are explicitly provided to the network. We also look at alternative
approaches for temporal feature aggregation in the supplementary material. More details about the
model architecture are presented in the supplementary.

Evaluation Protocol: We evaluate our method in two ways. (a) We use a few change events of a
type as a query to retrieve other events of that type using a nearest neighbor classifier on the learned
representation to measure the retrieval performance. (b) We train a linear classifier on the aggregated
features using a training split and measure the classification accuracy on the unseen split.
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Figure 4: Top: Retrieval Performance on CalFire and CaiRoad benchmarks. Precision@XK for the
kNN classifier (k=10 for kNN). Bottom: Linear classifier accuracies on various self-supervised
representations (except for ImageNet) on the CalFire and CaiRoad Benchmarks.

5.3 Retrieval and Classification Results

Fig.[] (Left) shows the performance of retrieval of similar events using our representations on CaiRoad
and CalFire. For both these datasets we randomly select k=10 query samples (10 road construction
events or 10 fire events) and perform retrieval on the remainder of the dataset. Precision@K measures
precision of fires or roads retrieved when top-K events are retrieved. The error-bars in the plot shows
the variance with 5 different randomly initialized model (not for ImageNet). Additionally, we also
randomly select query samples multiple times to measure variance. Note that even though query
samples are randomly selected, they are the same for all methods.

SimCLR:Change Events on the change events performs the best for the retrieval task when compared
to other self-supervised methods such as Tile2Vec or 3DConv-AE. Also using the informative change
event dataset is more useful than using other similar informative data such as EuroSat. Finally, using
SimCLR:Change Events performs similar to SimCLR:All Data. This shows the informative nature
of the change events, as even with a very small subset of the full dataset, the performances are
similar. The gap between SimCLR: Change Event, SimCLR: All Data and other baselines is larger for
CaiRoad. We believe this is because road retrieval is a relatively easier task than forest fire retrieval if
the representations are good. Forest fires in different areas and phases look very different and are
thus harder to represent without supervision.

Fig. [ (Right) shows the performance of learning a linear classifier for fire and road event classification
on the CalFire and CaiRoad benchmarks. We split the full datasets in a 50-50 train-test split (available
with the benchmark). We train a linear classifier on the training set and measure per-class accuracy.

Again, SimCLR:Change Events perform the best. On CalFire, SimCLR: EuroSat performs better than
SimCLR: All Data and this is not the case for CaiRoad. This may be because the domain difference
between EuroSat and CalFire is smaller than that between EuroSat and CaiRoad. CaiRoad has a lot



of satellite images of urban scenes and a drier climate as opposed to EuroSat or CalFire. This results
in a similar performance when provided supervision. Tile2Vec and 3DConv-AE cannot produce very
good representations.

6 Discussion

Societal Impact: A potential concern with analyzing satellite images is privacy. We intentionally use
satellite images of low spatial and temporal resolution so as to not violate individual privacy. However,
the road construction dataset might discover roads in private properties. Our change detection, as
other change detection approaches, can potentially be used on high-resolution imagery to surveil
individuals and private property. Such uses should be regulated and/or discouraged.

Limitations. One limitation of focusing on change events is that they are small in number, which is a
problem for large models (e.g., Masked Auto-Encoders [24] ). Future work could scale up the event
detection to the country or planet scale, resulting in a larger dataset and more effective training. The
change detection/grouping currently requires careful hyperparameter selection and in the future more
analysis is required for automated selection. Our datasets are not labelled exhaustively for all types
of possible change events as exhaustive labelling is a significantly expensive process. In the future
we would like to look at an efficient and exhaustive labelling of change events.

7 Conclusions

We define change events as a group of pixels in space-time that are changed by a single real-world
event. We present two datasets of change events in satellite images, namely CaiRoad (with 28015
change events) and CalFire (with 2172 change events). We present a framework to automatically
discover such spatio-temporal events from large-scale satellite images without any supervision. While
self-supervised representation learning methods for change events learn a good representation for
change event understanding (CaiRoad: precision@25 is 0.46 and CalFire: precision@10 is 0.50),
more work in the future is required to better encode these change events.
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