

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM REGRESSION TO DOSE-RESPONSE: A FRAMEWORK TO PREDICT ACTIVITY AND EC₅₀ FOR GPCRs

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

ML models have revolutionised structural biology and significantly advanced drug discovery, yet they struggle with predicting the ligand-induced activity of G-protein coupled receptors (GPCRs). GPCR proteins are cellular membrane "sensors", which trigger a cascade of intracellular processes upon binding a diverse set of molecules. Human GPCRs account for nearly 30% of targets of approved drugs, and approximately half of them are olfactory receptors (ORs). Beyond their role in smell perception, ORs are increasingly linked to diseases such as obesity, diabetes, asthma, and cancer. The core interest and difficulty in modelling the molecule-induced response of ORs and GPCRs lie in predicting activity and potency (i.e. half maximal effective concentration, EC₅₀). In this paper, we propose a new way of modelling these properties. Instead of direct regression on EC₅₀ values, we mimic *in vitro* dose-response assays by sampling binary activity labels for a protein-molecule pair (s, m) at a molecular concentration c . Then we design a novel model that learns the activation probability $P(\text{active}|s, m, c)$ at any given c . Finally, querying the model across concentrations enables fitting a logistic curve, from which both activity (curve maximum) and EC₅₀ (inflection point) are derived. On a challenging M2OR dataset, our framework improves activity prediction by 10% over the state-of-the-art. For EC₅₀ estimation, it achieves an error of 0.725 log units, 40% lower compared to a regression baseline, and surpasses the affinity module of Boltz-2 by 0.385 log units. Notably, our approach effectively identifies novel active scaffolds, demonstrating its potential to replace expensive *in vitro* primary screening. The proposed framework is protein-agnostic, and we observe state-of-the-art performance in estimating activity and dissociation constant (K_d) on standard drug-target affinity benchmarks, DAVIS and BindingDB.

1 INTRODUCTION

Machine learning models in protein biology (Jumper et al., 2021; Watson et al., 2023; Passaro et al., 2025) have brought unprecedented level of exploration, significantly speeding up drug discovery pipelines (Du et al., 2024). Among protein families, G-protein coupled receptors (GPCRs) hold a prominent place as highly important drug targets due to their role in transmitting the chemical signals from the external environment to the cell. However, modelling the molecule-induced activity of these proteins is notoriously difficult as subtle differences in molecular structure can significantly alter protein-ligand interactions, even transforming an agonist into an inverse agonist (Kosar et al., 2024; Qin et al., 2022). Similarly, a single point mutation can alter the activity (de March et al., 2018). All these small variations can drastically change the cellular response, leading to differences in efficacy (the highest response) and EC₅₀ (the concentration needed to achieve 50% of the highest response) (Figure 1) (Heydenreich et al., 2023). In particular, accurate estimation of EC₅₀ is crucial in determining drug dosage and avoiding off-target responses (Zhang et al., 2024).

The largest subfamily of GPCRs are olfactory receptors (ORs), which constitute 49% of all genes encoding GPCRs (Bjarnadóttir et al., 2006; Niimura & Nei, 2003). For a given odourant, the specific pattern of activated ORs serves as a signature that encodes its odour identity (Malnic et al., 1999; Nara et al., 2011) and ORs with a lower EC₅₀ appear to have a greater importance in this signature (Junek et al., 2010; Spors & Grinvald, 2002; Wilson et al., 2017). Beyond their role in olfaction, these receptors have a widespread presence throughout the body. After the first report of their

054 expression in testes (Parmentier et al., 1992), OR transcripts have been found in various tissues,
 055 including heart, kidney, liver, lungs, prostate, brain, or leukemia cells. Thence, ORs hold a promise
 056 for potential therapeutic and diagnostic applications in diseases such as asthma, obesity, diabetes,
 057 and cancer (Lee et al., 2019).

058 Currently, the method of choice to characterise molecule-induced OR activity are *in vitro* experiments,
 059 which consist of preliminary screening rounds followed by a detailed dose-response assay
 060 that allows estimating EC₅₀ and efficacy. However, despite the progress in the throughput of *in vitro*
 061 assays driven by engineered heterologous systems (Saito et al., 2004; 2009), available data covers
 062 only a small fraction of the millions of possible combinations between molecules and receptors. The
 063 most comprehensive database of *in vitro* experiments (Lalis et al., 2024a) lists 6157 dose-response
 064 assays, of which only 1663 observe a cellular response and estimate EC₅₀. Thus, the best bet to
 065 reveal the activity of OR-molecule pairs are *in silico* approaches and a model capable of predicting
 066 EC₅₀ for any given pair is essential to fully characterise the odour coding and drugability of ORs.

067 In this work, we confront the standard paradigm of separate EC₅₀ and activity prediction tasks.
 068 We draw an analogy to how the dose-response curves are fitted *in vitro*, and instead of treating
 069 EC₅₀ prediction as a regression, we model the underlying biological experiment. In dose-response
 070 assays, the response of a protein-molecule pair is measured in several molecular concentrations. The
 071 activity is then assessed by the highest response, and the EC₅₀ is estimated by fitting a generalised
 072 logistic curve to these measurements. In analogy, we design a model that predicts the probability of
 073 activation for a protein-molecule pair at a given molecular concentration. By querying this model at
 074 several concentrations – mimicking an experimental dose-response assay – we can then fit a logistic
 075 curve to these predictions. This unified framework yields both the final activation decision (the
 076 curve’s maximum) and the estimated EC₅₀ (the curve’s inflection point).

077 Following this approach, we outperform the current state-of-the-art in activity decision task by 10%
 078 on a challenging M2OR dataset. Strikingly, by decomposing the difficult regression problem into a
 079 series of simpler binary classifications, our approach reduces the EC₅₀ estimation error by 40% com-
 080 pared to a traditional regression baseline. In addition, it outperforms *in vitro* screening campaigns in
 081 predicting the response of protein variants and novel molecules within the training chemical space,
 082 while outperforming primary screening even in the challenging search for new active scaffolds. The
 083 proposed framework, primarily designed for GPCRs, also demonstrates high performance in disso-
 084 ciation constant (K_d) estimation for other types of proteins. On two drug-target affinity datasets, our
 085 approach achieves state-of-the-art K_d estimation error while increasing the activity decision perfor-
 086 mance by 7% and 3% compared to models specifically designed for kinase inhibition.

087 2 RELATED WORK

089 Despite the potential of ORs as therapeutic targets and their key role in mammalian olfaction, there is
 090 only a limited number of models designed to predict OR-molecule activity, and no previous approach
 091 addresses the challenge of predicting EC₅₀. The first studies employ SVM (Kowalewski & Ray,
 092 2020) and random forest (Cong et al., 2022) to predict the responses of limited subsets of ORs
 093 and molecules with sufficient *in vitro* data. A subsequent work (Gupta et al., 2021) uses BiLSTM
 094 (Graves & Schmidhuber, 2005) to predict the activity of any OR-molecule pair based on SMILES
 095 and the receptor’s primary structure. The current state-of-the-art (Hladiš et al., 2023) abstracts the
 096 OR-molecule interaction as modelling a molecule in a protein-specific environment. It represents
 097 the molecular topology as a graph and copies the receptor’s [CLS] token from ProtBERT (Elnaggar
 098 et al., 2021) to all nodes in the graph. The model then employs a tailored graph neural network
 099 to predict the probability that a molecule induces the activity of a receptor. Recently, MAARDTI
 100 (Zhan et al., 2025), reported as the best-performing model on drug-target interaction benchmarks,
 101 has been applied to predict olfactory receptors’ activation. Although competitive, it falls short of the
 102 current SOTA, highlighting the challenging nature of OR-molecule activity prediction.

103 Recently, dose-response modelling has also been investigated for drug-cell inhibitory effects
 104 (Alonso Campana et al., 2024). In that setting, the authors assume access to experimental read-
 105 outs at each concentration and explicitly fit the entire dose-response curve. In contrast, our frame-
 106 work operates in a substantially more restricted regime, where the curve is unknown and only the
 107 inflection point of the 4-parameter logistic model (i.e., the EC₅₀) or the information that no re-
 108 sponse is observed is available. Building on this limited supervision, we propose a novel training

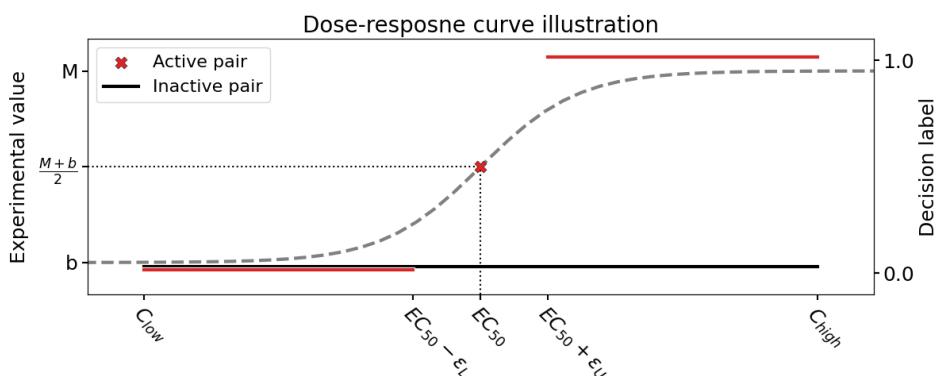


Figure 1: Example of a dose-response curve for an active (grey/red), and inactive (black) pair. The grey line corresponds to the true active curve, which is unknown except for the EC_{50} value (red cross). The red and black lines are concentration intervals corresponding to the training labels on the right y-axis for active and inactive pairs, respectively. The efficacy M , basal activity b , and half response $\frac{M+b}{2}$ are experimentally measured and not available in the data. In Algorithm 1, a soft label $L \sim \text{Unif}(0, 1)$ is sampled for concentrations $c \in (EC_{50} - \epsilon_L, EC_{50} + \epsilon_U)$.

and inference strategy that accurately predicts both inflection point and activity decision for a given protein-molecule pair.

3 DOSE-RESPONSE CURVE

The relationship between the concentration of a compound and the receptor-mediated response of a cell is typically assessed using functional assays, which are described by dose-response curves. For concentration c on a logarithmic scale, the dose-response curve can be characterised by a generalised logistic model (Neubig et al., 2003):

$$g(c) = \frac{M - b}{1 + 10^{-q(c - EC_{50})}} + b \quad (1)$$

where M is the efficacy, b is the basal activity, q is the slope, and EC_{50} is the 50% effective concentration and the inflection point of the curve. To estimate the parameters of the curve, several concentrations of the compound over several orders of magnitude are tested *in vitro* (Mainland et al., 2014; Saito et al., 2009). However, due to different readouts depending on experimental settings (e.g. luciferase, Ca^{2+} , etc.), raw dose-response curve data are rarely available, and most data sources publish only EC_{50} values or information that there is no response and the curve is flat. Formally, we set $EC_{50} = +\infty$ for inactive pairs.

4 ESTIMATING EC_{50} AS BINARY DECISION TASK

A widely used approach to train a model to predict EC_{50} is to use l_2 loss and estimate the values as a regression. In contrast, we propose an alternative strategy that formulates EC_{50} prediction as a classification task. Similarly to how dose-response curves are obtained from *in vitro* experiments, we model the protein-molecule response at a given molecular concentration, and estimate EC_{50} by fitting (1) to predictions at concentrations spanning several orders of magnitude.

We assume that the model has an access to EC_{50} and the other parameters of the curve 1 are unknown. However, EC_{50} provides a way to draw surrogate decision samples from a normalised dose-response curve $f(c) = \frac{g(c) - b}{M - b}$. The monotonicity of the curve implies that for low concentrations $c \ll EC_{50}$ the protein-molecule pair would be considered inactive *in vitro*, whereas for high concentrations $c \gg EC_{50}$ the pair would be active (Figure 1). Therefore, given a dataset $\mathcal{D} = \{(s^i, m^i), EC_{50}^i\}_i$ of EC_{50} values per each protein-molecule pair (s^i, m^i) , we can construct a binary training data $\mathcal{B} = \{(s^i, m^i, c^{i,j}), L^{i,j}\}_{i,j}$ where for each concentration $c^{i,j} \sim \text{Unif}(C_{low}, C_{high})$

162 we sample a decision $L^{i,j} \in \{0, 1\}$ whether the pair would be considered active. Then we train a
 163 model on \mathcal{B} , that predicts probability of activation at a given concentration $P(\text{active}|s, m, c)$. Fi-
 164 nally, we estimate EC_{50} of a pair (s^i, m^i) by fitting (1) to predictions $\{P(\text{active}|s^i, m^i, c^{i,j})\}_j$ at
 165 several concentrations, similarly to how the dose-response curve is fitted from *in vitro* experiments.
 166 By definition, the probability of activation at $c = \text{EC}_{50}$ corresponds to 0.5, and we uniformly sam-
 167 ple $L^{i,j} \sim \text{Unif}(0, 1)$ for concentrations around EC_{50} based on margins ϵ_L and ϵ_U . See detailed
 168 training and inference procedures in Algorithm 1 and Algorithm 2. Inherently, there is an imbalance
 169 between the number of active and inactive pairs and this imbalance is changed in each batch due
 170 to the sampling. Thus, we use dynamic sample weights calculated per each batch, with the details
 171 given in Section A.2.

172 The above strategy provides a way to reformulate the traditional regression problem as a classifica-
 173 tion task that draws samples from a binary surrogate of a normalised dose-response curve. Although
 174 M and b used for curve normalisation are generally different for each protein-molecule pair, nor-
 175 malisation $f(c) = \frac{g(c)-b}{M-b}$ only rescales the y-axis, and the inflection point (i.e., EC_{50}) remains the
 176 same when the curve is fitted during inference in Algorithm 2.

177 Beyond active pairs with a reported EC_{50} , a dose-response assay may show an increased response,
 178 but the EC_{50} lies outside the tested concentration range. Therefore, the curve cannot be fitted and
 179 only the lower bound c_t on the EC_{50} is available in the data. In such cases, negative samples can still
 180 be drawn for $c < c_t$ and we provide further details on this case in Section A.7.

182 5 MODEL

183 To estimate the concentration-dependent activity of a protein-molecule pair, we consider a model
 184 that has 3 inputs: molecular topology m , its concentration c , and sequence of amino acids s , and the
 185 output is the probability $P(\text{active}|s, m, c)$ that the interaction between the receptor and the molecule
 186 at a given concentration c will trigger a response in the cell. We refer to this model as ASMI-DR for
 187 *Attention-based Sequence Molecule Interaction for Dose-Response prediction*.

188 We represent the molecular input as a graph $m = \{\mathcal{V}, \mathcal{E}\}$, where \mathcal{V} is the set of nodes (atoms)
 189 and \mathcal{E} the set of edges (bonds). Each node and edge is initialised by feature vectors x_v and $e_{u,v}$,
 190 respectively, containing information such as atomic number, bond type, etc. (Table A1). To enhance
 191 the expressive power of the network, the graph is oriented and there are two edges $e_{u,v}$ and $e_{v,u}$
 192 between each pair of nodes u and v (Yang et al., 2019). For protein sequence representation, we
 193 use ESM-2 (Lin et al., 2023) with frozen weights and the input for a sequence of size n_s is the
 194 embedding of the last ESM-2 layer with dimensions $s_{in} \in \mathbb{R}^{n_s \times d}$, where d is the embedding size.
 195

196 Combining molecule and protein inputs in an early stage of processing turns out to be beneficial
 197 for performance (Hladiš et al., 2023). We build upon this observation in the architecture outlined in
 198 Figure 2. The molecular graph is first transformed by the GNN embedding block (Figure A1) and,
 199 together with the sequence embedding, they are processed via a series of cross blocks. Each cross
 200 block is composed of a node update block (Figure A2a) and a sequence update block (Figure A2b).
 201 The core of these blocks is multi-head cross-attention, which learns changes in the molecular node
 202 and amino acid embeddings induced by the interactions with the sequence and molecule, respec-
 203 tively. In the node update block, node embeddings are used as queries in cross-attention, and amino
 204 acid embeddings are keys and values. The signal is then passed through the residual connection and
 205 feed forward network (FFN) and finally the updated node representation is processed by a graph
 206 isomorphism network (GIN) (Xu et al., 2019), which allows exploiting the graph structure and edge
 207 information that are not considered in cross-attention. The sequence update block is designed anal-
 208 ogously. The sequence embedding is transformed in the cross-attention layer, where amino acids
 209 are queries, and molecular nodes are keys and values. The updated sequence representation is then
 210 processed by a self-attention layer (Vaswani et al., 2017) which can be interpreted as a graph neural
 211 network applied to a fully-connected graph where all amino acids are linked to each other.

212 An additional input to the cross blocks is concentration c , which is used in the form of auxiliary
 213 query features in cross-attention. It is first mapped to a vector $cw \in \mathbb{R}^{d_c}$ where w is learned, but its
 214 norm depends on the input concentration. Then cw is concatenated to each query just before multi-
 215 head cross-attention (green rectangle in Figure A2), allowing the model to learn the concentration-
 216 dependent protein-molecule interaction.

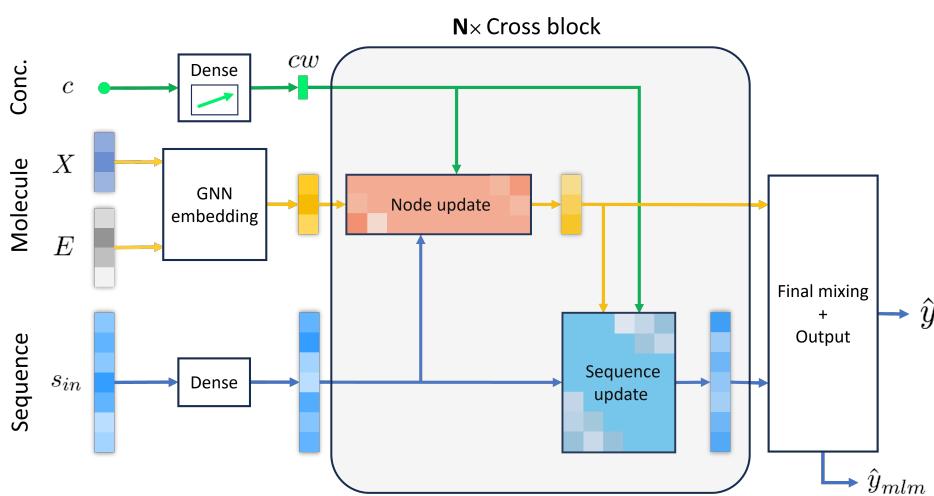


Figure 2: Outline of ASMI-DR architecture. The inputs to the model are molecular graph m with node features X and edge features E , molecular concentration c , and sequence embedding s_{in} . The molecular graph is passed through the GNN embedding layer and then processed together with the sequence representation and concentration in a series of cross blocks. In each cross block, the concentration-dependent interaction between the molecule and the protein is modelled by iteratively updating node and sequence embeddings in update blocks, described in Figure A2. The updated node and sequence representations are then concatenated and passed through multi-head attention and finally two output heads for response prediction and masked language modelling (MLM).

Finally, after N cross blocks, the node and sequence representations are combined in the mixing block followed by the output heads (Figure A3). Here, node and amino acid embeddings are concatenated together and passed to multi-head self-attention, followed by residual connection and FFN. In cross-attention, the softmax is either performed per nodes or per amino acids and the model is restricted to learning the interaction between the molecule and the sequence. In contrast, softmax in the mixing block is performed through nodes and amino acids simultaneously and could give weight to self-interactions within the molecule and sequence (yellow and purple rectangles in Figure A3).

The final concatenated embedding from the mixing block is passed to a pooling layer¹ and MLP to obtain the final prediction. In addition, the sequence representation is extracted from the output of the mixing block and used for the masked language modelling (MLM) task (Figure A3) (Devlin et al., 2019). MLM has been shown to extract protein structure information from the sequence of amino acids (Vig et al., 2021; Lin et al., 2023) and to avoid forgetting this information during training, we add the MLM task as an auxiliary training goal. We employ a common strategy to replace an amino acid by a [MASK] token with 15% chance and then predict the probability \hat{y}_{mlm}^i that the given amino acid was at the position i in the original sequence. Apart from retaining the structural information, masking amino acids also serves as a training perturbation to avoid overfitting.

6 DATASET

We train and evaluate the proposed algorithm on M2OR version v1.2.0 (Lalis et al., 2024a), which is a curated dataset gathering functional assay data on 77611 experiments for 1402 protein sequences and 771 molecules. After preprocessing described in Section A.4, M2OR contains 5773 EC₅₀ samples out of which 1427 are active and 4346 correspond to inactive pairs. In addition, preprocessed M2OR lists 60256 primary and secondary screening experiments, which are further discussed in Section A.7. To further validate our framework, we evaluate ASMI-DR on drug-target affinity (DTA) datasets: DAVIS Davis et al. (2011) and BindingDB (K_d) Gilson et al. (2015); Huang et al. (2021), which after preprocessing gather 25772 and 42234 experimentally measured dissociation constants

¹We use attention pooling from Eqn. (2) in (Hladiš et al., 2023).

(K_d), respectively. Furthermore, we evaluate a concentration-free version of the proposed model on a drug-target interaction (DTI) benchmark, KIBA (Tang et al., 2014).

7 EXPERIMENTS

We perform a series of experiments to validate our training and inference algorithms and the proposed model architecture. We consider two evaluation tasks: activity decision prediction and EC_{50} (or K_d) estimation. The latter, presented in Section 7.2 and Section 7.3, is assessed by calculating the root mean squared log error (RMSLE) between the predictions and the experimentally measured values for the active pairs in the test set. The former, discussed in Section 7.1, evaluates whether the decision about the activity based on Algorithm 2 aligns with the experimental activity decision. Finally, in Section A.7 we consider extending our pipeline with screening data and, in Section A.6, we test a version of the ASMI-DR architecture without concentration input on DTI benchmarks.

The test sets in all experiments contain approximately 20% of the data and they comprise only dose-response assays, excluding any screening campaigns. We perform 5 cross-validation runs for each experiment. We use 2 cross blocks, sequences are padded to $n_s = 512$ and the sequence embedding is initialised by ESM-2 with 33 layers and $d = 1280$.

Dose-response curve fit. To run the inference in Algorithm 2, we predict the responses of the protein-molecule pairs at molecular concentrations spanning range $10^{-8}M$ to $10^{-2}M$ for M2OR and $10^{-12}M$ to $10^{-4}M$ for DAVIS and BindingDB. This covers 98.5% of all available EC_{50} values in M2OR, and 100% and 99.9% of K_d values in DAVIS and BindingDB, respectively. We exclude values outside of these ranges from test sets.

Baselines. For the activity decision evaluation, we compare our approach with several DTI models and previous works that predict OR-molecule activation without taking into account concentration: HyperAttentionDTI (Zhao et al., 2021), MolTrans (Huang et al., 2020), MAARDTI (Zhan et al., 2025), BiLSTM (Gupta et al., 2021), GNN-CLS (Hladiš et al., 2023). We also report the performance of a version of our architecture, where we omit the concentration input to the model (ASMI-Prob). For M2OR, we train this model on the pair table which is available as a part of the dataset (Lalis et al., 2024a). To consider receptors’ tertiary structure, we evaluate the performance of the probability of binding from the state-of-the-art cofolding model Boltz-2 (Passaro et al., 2025) and the decision based on docking using SMINA with Vinardo scoring function (Masters et al., 2020; Quiroga & Villarreal, 2016) on AlphaFold2 (Jumper et al., 2021) structures (see details of the protocol in Section A.5.2). We perform docking on 868 (300 active and 568 inactive) pairs corresponding to the OR sequences available at AlphaFold DB (Varadi et al., 2023; 2021). We generated up to 9 poses and use the Youden index estimated on 10% of the data to transform docking scores into activity decisions. Finally, we compare the results to the widely used experimental protocol, where we consider *in vitro* screening runs as a predictor for the dose-response activity decision.

As a baseline for the EC_{50} and K_d estimation, we compare our approach to state-of-the-art DTA models: DeepDTAGen (Shah et al., 2025), DTIAM (Lu et al., 2025), and ProSmith (Kroll et al., 2024). Furthermore, to rule out the influence of the architecture on the evaluation of our framework, we also report the performance of the concentration-free version of ASMI architecture trained in a regression task (ASMI-Reg). During training of regression baselines on M2OR, we set the EC_{50} of inactive pairs to $1M$, and we also report the performance of this model in the activity decision task by considering pairs with the estimated $EC_{50} > 10^{-1}M$ as inactive. Similarly for DAVIS and BindingDB, we follow standard practices (Huang et al., 2021) and we set K_d of inactive pairs, i.e., the pairs where no interaction was observed in the tested concentration range, to $10 \mu M$. We consider pairs with the estimated $K_d > 7.94 \mu M$ as inactive².

7.1 ACTIVITY DECISION

A major goal of a dose-response experiment is to assess whether a molecule ”activates” a given protein of interest, i.e., whether the interaction between the protein and the molecule at any high-enough concentration elicits a response in the cell. We assess the capability of our approach in

² $10 \mu M$ corresponds to 1 $\log(\mu M)$ unit and $7.94 \mu M$ to 0.9 $\log(\mu M)$ units.

324
 325 Table 1: Evaluation of the activity decision task. *Primary sc.* and *Secondary sc.* stand for primary
 326 and secondary *in vitro* screening, respectively. *Naive* is the performance using the frequency statis-
 327 tics, i.e., $P(\text{active}|s, m) = \hat{p}_s \hat{p}_m$, where \hat{p}_s and \hat{p}_m are marginal probabilities for a given protein
 328 and molecule, respectively (Lalis et al., 2024b). The results for MAARDTI are taken from the orig-
 329 inal publication (Zhan et al., 2025) and the results for BiLSTM, MolTrans, HyperAttentionDTI, and
 CLS-GNN are taken from (Hladiš et al., 2023). Standard deviation is given in parentheses.

Model	Precision	Recall	F-score	AveP	MCC
Primary sc.	0.56	0.40	0.47	-	0.24
Secondary sc.	0.70	0.45	0.55	-	0.48
Docking ^a	0.45 (0.02)	0.65 (0.11)	0.53 (0.03)	0.42 (0.01)	0.22 (0.02)
Boltz-2	0.54 (0.12)	0.05 (0.01)	0.09 (0.01)	0.38 (0.03)	0.11 (0.03)
Naive	0.27 (0.03)	0.60 (0.05)	0.37 (0.02)	0.22 (0.02)	0.25 (0.03)
BiLSTM	0.34	0.71	0.46	-	-
MolTrans	0.40 (0.05)	0.82 (0.03)	0.56 (0.05)	0.64 (0.07)	0.48 (0.04)
MAARDTI	0.70	0.60	0.64	0.70	0.56
HyperAttentionDTI	0.61 (0.03)	0.77 (0.02)	0.68 (0.02)	0.74 (0.02)	0.58 (0.02)
GNN-CLS	0.69 (0.02)	0.70 (0.04)	0.69 (0.02)	0.78 (0.01)	0.61 (0.02)
ASMI-Prob	0.72 (0.07)	0.73 (0.04)	0.72 (0.02)	0.80 (0.04)	0.63 (0.04)
ASMI-Reg	0.69 (0.05)	0.72 (0.04)	0.71 (0.04)	0.70 (0.01)	0.62 (0.05)
ASMI-DR	0.77 (0.03)	0.72 (0.05)	0.75 (0.02)	0.75 (0.02)	0.67 (0.02)

347 ^aPerformance on 781 pairs on average corresponding to the OR sequences available at AlphaFold DB.

348
 349 this decision task by using the fitted curve’s maximum \hat{M} from Algorithm 2. We consider a given
 350 protein-molecule pair to be ”active” if $\hat{M} > 0.5$ and ”inactive” otherwise. If the curve cannot be
 351 fitted, we consider the pair to be inactive. Due to the imbalanced activity label distribution, we use
 352 Matthews Correlation Coefficient (MCC) as the main metric in the activity decision experiments.

353
 354 **Comparison with the state-of-the-art.** We benchmark ASMI-DR trained using our pipeline
 355 against existing models for predicting OR-molecule activity, with results summarised in Table 1.
 356 Our approach demonstrates superior performance, achieving a 10% improvement in MCC over
 357 the state-of-the-art GNN-CLS. While GNN-CLS and ASMI-Prob show higher Average Precision
 358 (AveP), they lag behind ASMI-DR in other key metrics, including F-score and MCC. Furthermore,
 359 our approach outperforms its regression variant, ASMI-Reg, by 8% in MCC.

360
 361 **Novel protein sequence generalisation.** To assess the ability of our pipeline to generalise to new
 362 protein sequences, we adopt the out-of-distribution (OOD) evaluation procedure from Hladiš et al.
 363 (2023), and report the results in two scenarios. The first scenario, Sequence–Single in Table 2,
 364 evaluates intra-family generalisation. In this setup, randomly chosen protein sequences are held out
 365 exclusively for testing, ensuring the model is evaluated on unseen but related proteins. This mimics
 366 a realistic scenario where the model must predict responses for new members of a protein family
 367 based on sequence similarity. The second and more challenging scenario, Sequence–Cluster in Table
 368 2, tests inter-family generalisation. Here, we cluster proteins by sequence similarity and hold out 5
 369 entire clusters for testing. This forces the model to extrapolate to protein families that are dissimilar
 370 to any sequence seen during training.

371 As can be seen in Table 2, ASMI-DR outperforms previous approaches in the Single scenario,
 372 surpassing the second-best GNN-CLS model by 15%. In the demanding Cluster scenario, ASMI-DR
 373 ranks second after its regression variant, and it surpasses the current state-of-the-art.

374
 375 **Novel compound generalisation.** Analogously to the generalisation to new protein sequences,
 376 we evaluate the ability of our approach to accurately predict the responses of previously unseen
 377 compounds. The first scenario, Molecule–Single in Table 2, simulates the generalisation to small
 changes in the molecular structure, a situation of particular interest in olfaction where small struc-

Table 2: EC₅₀ estimation and out-of-distribution evaluation. *Mean model* stands for a naive baseline that assigns the mean EC₅₀ to all protein-molecule pairs. *EC₅₀ error* is the experimental error and the performance lower bound. The results for MAARDTI and GNN-CLS are taken from the respective publications. Values in parentheses represent standard deviation.

Dataset	Name	MCC \uparrow	Precision \uparrow	RMSLE \downarrow	Spearman's ρ \uparrow
<i>in vitro</i>	Primary sc.	0.238	0.563		
	Secondary sc.	0.476	0.704		
	EC ₅₀ error			0.334	
i.i.d.	Mean model			0.899 (0.025)	
	Boltz-2	0.108 (0.033)	0.541 (0.117)	1.110 ^a (0.037)	0.148 ^a (0.052)
	MAARDTI	0.555	0.700		
	GNN-CLS	0.605 (0.02)	0.689 (0.02)		
	DTIAM	0.658 (0.029)	0.646 (0.053)	1.516 (0.093)	0.363 (0.022)
	DeepDTAGen	0.592 (0.043)	0.631 (0.079)	1.417 (0.243)	0.224 (0.065)
	ProSmith	0.654 (0.030)	0.649 (0.041)	1.402 (0.111)	0.355 (0.045)
	ASMI-Reg	0.621 (0.048)	0.692 (0.047)	1.213 (0.135)	0.399 (0.122)
	ASMI-DR	0.671 (0.016)	0.773 (0.028)	0.725 (0.070)	0.648 (0.065)
Sequence	Single	MAARDTI	0.323	0.757	
		GNN-CLS	0.417 (0.01)	0.636 (0.07)	
		ASMI-Reg	0.398 (0.112)	0.506 (0.142)	1.543 (0.512)
		ASMI-DR	0.481 (0.031)	0.642 (0.038)	0.761 (0.150)
	Cluster	MAARDTI	0.147	0.545	
		GNN-CLS	0.088 (0.06)	0.535 (0.12)	
		ASMI-Reg	0.238 (0.123)	0.362 (0.113)	1.889 (0.481)
		ASMI-DR	0.218 (0.043)	0.461 (0.162)	1.170 (0.269)
Molecule	Single	MAARDTI	0.409	0.633	
		GNN-CLS	0.533 (0.07)	0.657 (0.11)	
		ASMI-Reg	0.531 (0.054)	0.572 (0.086)	1.729 (0.347)
		ASMI-DR	0.593 (0.074)	0.663 (0.098)	0.920 (0.096)
	Cluster	MAARDTI	0.399	0.795	
		GNN-CLS	0.334 (0.07)	0.544 (0.07)	
		ASMI-Reg	0.395 (0.082)	0.548 (0.151)	1.561 (0.371)
		ASMI-DR	0.398 (0.077)	0.572 (0.115)	0.818 (0.154)

^aDue to the low MCC, the evaluation is also done on incorrectly classified pairs.

tural changes can lead to a significant difference in odour perception (Sell, 2006). It is constructed by randomly selecting molecules and placing all their occurrences in the test set. The second, and more challenging scenario, Molecule–Cluster in Table 2, tests generalisation to new chemical scaffolds. For this, we cluster compounds by structural similarity using the Tanimoto coefficient and hold out 5 clusters for testing, forcing the model to extrapolate to unseen scaffolds.

According to the results presented in Table 2, ASMI-DR is on par with the previous approaches in the Cluster scenario, and it outperforms the best baseline by 11% in the Single scenario. Notably, it scores only 2% lower in MCC in the Single scenario compared to the current state-of-the-art evaluated on the less challenging i.i.d. case.

Comparison to structure models. Table 1 reveals that docking and Boltz-2 show poor performance in predicting activity, and ASMI-DR outperforms them by a large margin. Although, the advantage of these approaches is that they are zero-shot, we observe that even for OOD evaluation, ASMI-DR achieves better performance in terms of MCC in all OOD scenarios except Sequence - Cluster, where it is on par with docking and still outperforms Boltz-2. A possible reason for the low performance of structure-based models is, that both approaches are designed to predict binding

432 events, and in GPCRs, binding of a molecule to the protein is a necessary but not sufficient condition
 433 for the activation (Zhang et al., 2024).
 434

435 **Comparison to *in vitro* screening.** A standard procedure in the wet lab is to perform primary and
 436 secondary screening rounds to select candidates for dose-response experiments (additional details
 437 in Section A.7). In the context of activity decision, one can view screening as a predictor and ask
 438 the question: what is the performance of our approach compared to the screening rounds? Notably,
 439 ASMI-DR outperforms costly *in vitro* primary and secondary screening rounds in an i.i.d. evaluation
 440 (Table 1). Even in OOD settings (Table 2), ASMI-DR outperforms the screening rounds in cases
 441 where novel but structurally similar molecules/proteins to the training ones are tested (Molecule–
 442 Single and Sequence–Single). In case new molecular scaffolds are tested on previously explored
 443 proteins (Molecule–Cluster), ASMI-DR falls behind secondary screening, but outperforms primary
 444 screening by a large margin of 67% in MCC.
 445

446 7.2 EC₅₀ ESTIMATION

447 The second evaluation criterion is the pipeline’s ability to accurately predict EC₅₀. We compare the
 448 performance of the ASMI-DR trained using Algorithm 1 to state-of-the-art DTA models DTIAM,
 449 DeepDTAGen and ProSmith, to ASMI-Reg trained in a regression task, and to a naive baseline,
 450 which assigns a mean of EC₅₀ values in the training set to all test set pairs. We also report the *in*
 451 *vitro* EC₅₀ measurement error as a lower bound. The reported performance is evaluated on protein–
 452 molecule pairs that the models correctly identified as active, since EC₅₀ for inactive pairs cannot be
 453 experimentally measured and it is replaced by an arbitrary value of 1M in the regression training.
 454

455 The results of the EC₅₀ evaluation in Table 2 reveal that ASMI-DR outperforms its regression coun-
 456 terpart ASMI-Reg by 40% in RMSLE, and it surpasses all the evaluated DTA baselines by half an
 457 error. Affinity module of Boltz-2 also outperforms the regression model, but the error of ASMI-DR
 458 remains 0.385 log units below Boltz-2. A similar observation holds even for the OOD evaluation,
 459 where our pipeline consistently outperforms its regression variant by a margin and achieves a lower
 460 error than Boltz-2 in all OOD scenarios, except for the most challenging Sequence–Cluster scenario.
 461 The same conclusion can be drawn for Spearman’s rank correlation, which is of a particular inter-
 462 est in olfaction, where receptors with the lowest EC₅₀ encode odour identity (Wilson et al., 2017;
 463 Zwicker, 2019). To further analyse the rank correlation, we evaluate the mean Spearman’s ρ per
 464 sequence/molecule in Table A5 in Section A.8.
 465

466 Hladiš et al. (2023) explore the possibility to use screening data in the activity decision task. Algo-
 467 rithm 1 treats each triplet (s, m, c) independently, and as such, it allows for a principled integration
 468 of screening data in the model training. In Section A.7, we extend Algorithm 1 to include screen-
 469 ing data and we evaluate it in Section A.7.1. Although screening constitutes the majority of the
 470 M2OR dataset, its integration does not improve the performance in the activity decision task and it
 471 marginally lowers the error in the EC₅₀ estimation task (Table A4). A possible explanation is that for
 472 screening at concentration c_s , the labels are sampled “one-sided” in a subset of the sampling region
 473 $[C_{low}, c_s]$ or $[c_s, C_{high}]$. This leads to a severe label imbalance, especially when c_s is close to the
 474 sampling region boundaries.
 475

476 7.3 K_d ESTIMATION

477 To further challenge the proposed framework, we compare the performance of ASMI-DR with state-
 478 of-the-art DTA models on DAVIS and BindingDB datasets. In analogy with EC₅₀ from GPCR
 479 functional assays, K_d in log-units obtained via competitive binding assays can be modelled by the
 480 generalized logistic curve 1 with decreasing slope $q < 0$ (Fabian et al., 2005). Thus, we can train
 481 ASMI-DR by sampling label 1 for concentrations greater than K_d in Algorithm 1 and modelling
 482 $P(binding|s, m, c)$ instead of $P(active|s, m, c)$.
 483

484 As shown in Table 3, ASMI-DR achieves K_d estimation RMSLE that is on par with the best-
 485 performing regression baseline ProSmith on both DAVIS and BindingDB (paired *t*-test *p*-values
 486 of 0.106 and 0.315, respectively), while consistently outperforming all competing methods on the
 487 activity decision metrics (MCC and precision). On BindingDB in particular, ProSmith exhibits a
 488 tendency to assign overly low K_d values even to inactive pairs, which improves its RMSLE but leads
 489 to reduced MCC. In contrast, ASMI-DR produces accurate activity predictions, achieving the high-
 490

486
487 Table 3: K_d estimation evaluation. Standard deviation is given in parentheses.
488

489	Dataset	Model	MCC \uparrow	Precision \uparrow	RMSLE \downarrow	Spearman's ρ \uparrow
490	DAVIS	DTIAM	0.566 (0.014)	0.543 (0.013)	0.736 (0.010)	0.672 (0.017)
491		DeepDTAGen	0.642 (0.014)	0.691 (0.015)	0.788 (0.017)	0.617 (0.027)
492		ProSmith	0.631 (0.010)	0.619 (0.013)	0.688 (0.004)	0.700 (0.012)
493		ASMI-Reg	0.601 (0.048)	0.646 (0.063)	0.772 (0.057)	0.639 (0.023)
494		ASMI-DR	0.685 (0.005)	0.772 (0.016)	0.713 (0.028)	0.696 (0.014)
495	BindingDB	DTIAM	0.606 (0.026)	0.678 (0.021)	<u>0.820</u> (0.020)	<u>0.779</u> (0.009)
496		DeepDTAGen	<u>0.722</u> (0.014)	0.827 (0.018)	0.865 (0.029)	0.748 (0.009)
497		ProSmith	0.607 (0.041)	0.678 (0.033)	0.808 (0.026)	0.785 (0.013)
498		ASMI-Reg	0.446 (0.231)	0.620 (0.140)	0.926 (0.116)	0.699 (0.081)
499		ASMI-DR	0.745 (0.016)	0.839 (0.018)	0.834 (0.032)	0.774 (0.013)

500
501
502
503 est MCC on both datasets with only a marginal difference in RMSLE and Spearman's ρ relative to
504 ProSmith.

505 Relative to its regression counterpart ASMI-Reg, ASMI-DR yields sizeable gains across all metrics,
506 highlighting the benefit of the proposed framework. Moreover, the MCC of ASMI-DR on DAVIS
507 also surpasses that of dedicated classification DTI models (Table A2), indicating that incorporating
508 the dose-response training objective not only preserves affinity estimation accuracy but also leads to
509 superior binary activity prediction.

510 511 512 8 CONCLUSION 513

514
515
516 In this study, we reformulate an EC_{50} regression task as a series of binary classifications that mimic
517 *in vitro* dose-response assays. Leveraging the monotonicity of the dose-response curve, we first
518 sample binary activity labels at a given molecular concentration, and then train a novel model ar-
519 chitecture that estimates the probability $P(active|s, m, c)$ that a molecule activates a protein at a
520 concentration c . Querying this model at concentrations spanning several orders of magnitude en-
521 ables fitting a generalised logistic model 1, which yields both the final predicted activity (curve's
522 maximum) and EC_{50} (curve's inflection point) in a unified framework.

523 We demonstrate that training a model according to our proposed Algorithm 1 simultaneously out-
524 performs both state-of-the-art activity prediction models and EC_{50} regression baselines on the chal-
525 lenging M2OR dataset. The proposed pipeline even surpasses a common *in vitro* primary screening
526 in out-of-distribution settings, achieving errors below one log unit.

527 Algorithm 1 provides a principled way how to include screening outcomes in the model training.
528 However, a naive extension of the Algorithm 1 to screening data introduces a substantial label imbal-
529 ance at concentrations near the boundaries of the sampling interval, and a future work can refine the
530 sampling procedure for abundant screening data. While our predictions align well with experimen-
531 tal measurements, the current pipeline does not yet account for receptor inhibition or multi-ligand
532 interactions (e.g., allosteric modulation, competitive antagonism). It also introduces computational
533 overhead at inference time, as it requires multiple queries across different concentrations to esti-
534 mate a single EC_{50} value. However, the computational costs are substantially lower compared to
535 structure-based approaches such as Boltz-2, which ASMI-DR surpasses by 0.385 in RMSLE.

536 Olfactory receptors (ORs) form the largest subfamily of GPCRs – targets for nearly 30% of approved
537 drugs – yet 48% of tested OR sequences remain orphaned without a known ligand (Lalis et al.,
538 2024b). In olfaction, revealing the response of these proteins is crucial in deciphering the odour
539 coding and solving the ever-present challenge of smell prediction. Our approach opens a new avenue
for characterising both odour coding and the drugability of ORs.

540 REPRODUCIBILITY STATEMENT
541

542 The anonymised code is attached with the submission or available here: https://drive.google.com/file/d/11d7RKYYG-v1Y2OYnMPYhiLgaHKGpAdx4/view?usp=drive_link. Preprocessed data and all splits used in the work can be downloaded from
543 the links in the readme. Data preprocessing steps are described in Section A.4. All baseline models
544 were either run with the default hyperparameters or the results were taken from the corresponding
545 publication, as indicated in table captions.

548
549 REFERENCES
550

551 P. Alonso Campana, P. Prasse, and T. Scheffer. Predicting dose-response curves with deep neural
552 networks. In *Proceedings of the 41st International Conference on Machine Learning*, volume
553 235 of *Proceedings of Machine Learning Research*, pp. 1144–1154. PMLR, 21–27 Jul 2024.
554 URL <https://proceedings.mlr.press/v235/alonso-campana24a.html>.

555 J. Ba, J.R. Kiros, and G.E. Hinton. Layer normalization. *arXiv*, abs/1607.06450, 2016. URL
556 <https://arxiv.org/abs/1607.06450>.

557 T. K. Bjarnadóttir, D. E. Gloriam, S. H. Hellstrand, H. Kristiansson, R. Fredriksson, and H. B.
558 Schiöth. Comprehensive repertoire and phylogenetic analysis of the g protein-coupled re-
559 ceptors in human and mouse. *Genomics*, 88(3):263–273, 2006. ISSN 0888-7543. doi:
560 <https://doi.org/10.1016/j.ygeno.2006.04.001>. URL <https://www.sciencedirect.com/science/article/pii/S0888754306001054>.

561 J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
562 J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
563 Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

564 C. Brideau, B. Gunter, B. Pikounis, and A. Liaw. Improved statistical methods for hit selection
565 in high-throughput screening. *SLAS Discovery*, 8(6):634–647, 2003. ISSN 2472-5552. doi:
566 <https://doi.org/10.1177/1087057103258285>. URL <https://www.sciencedirect.com/science/article/pii/S2472630322002345>.

567 K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
568 Learning phrase representations using RNN encoder-decoder for statistical machine translation,
569 2014.

570 X. Cong, W. Ren, J. Pacalon, R. Xu, L. Xu, X. Li, C.A. de March, H. Matsunami, H. Yu, Y. Yu, and
571 J. Golebiowski. Large-scale G protein-coupled olfactory receptor–ligand pairing. *ACS Central
572 Science*, 8(3):379–387, 2022. doi: 10.1021/acscentsci.1c01495. URL <https://doi.org/10.1021/acscentsci.1c01495>.

573 G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković. Principal neighbourhood aggregation
574 for graph nets, 2020. URL <https://arxiv.org/abs/2004.05718>.

575 M.I. Davis, J.P. Hunt, S. Herrgard, P. Ciceri, L.M. Wodicka, G. Pallares, M. Hocker, D.K. Treiber,
576 and P.P. Zarrinkar. Comprehensive analysis of kinase inhibitor selectivity. *Nature Biotechnology*,
577 29(11):1046–1051, 2011.

578 C.A. de March, J. Topin, E. Bruguera, G. Novikov, K. Ikegami, H. Matsunami, and J. Golebiowski.
579 Odorant receptor 7D4 activation dynamics. *Angewandte Chemie International Edition*, 57
580 (17):4554–4558, 2018. doi: <https://doi.org/10.1002/anie.201713065>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201713065>.

581 J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional trans-
582 formers for language understanding. In *Proceedings of the 2019 Conference of the North Amer-
583 ican Chapter of the Association for Computational Linguistics: Human Language Technolo-
584 gies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, 2019. doi:
585 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423>.

594 Yuanqi Du, Arian R. Jamasb, Jeff Guo, Tianfan Fu, Charles Harris, Yingheng Wang, Chenru Duan,
 595 Pietro Liò, Philippe Schwaller, and Tom L. Blundell. Machine learning-aided generative molecu-
 596 lar design. *Nature Machine Intelligence*, 6(6):589–604, Jun 2024. ISSN 2522-5839. doi: 10.1038/
 597 s42256-024-00843-5. URL <https://doi.org/10.1038/s42256-024-00843-5>.

598 A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones, T. Gibbs, T. Feher,
 599 C. Angerer, M. Steinegger, D. Bhowmik, and B. Rost. Prottrans: Towards cracking the
 600 language of life’s code through self-supervised deep learning and high performance comput-
 601 ing. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 1–1, 2021. doi:
 602 10.1109/TPAMI.2021.3095381.

603 Miles A. Fabian, William H. Biggs, Daniel K. Treiber, Corey E. Atteridge, Mihai D. Azimioara,
 604 Michael G. Benedetti, Todd A. Carter, Pietro Ciceri, Philip T. Edeen, Mark Floyd, Julia M.
 605 Ford, Margaret Galvin, Jay L. Gerlach, Robert M. Grotzfeld, Sanna Herrgard, Darren E. In-
 606 sko, Michael A. Insko, Andiliy G. Lai, Jean-Michel Lélias, Shamal A. Mehta, Zdravko V.
 607 Milanov, Anne Marie Velasco, Lisa M. Wodicka, Hitesh K. Patel, Patrick P. Zarrinkar, and
 608 David J. Lockhart. A small molecule–kinase interaction map for clinical kinase inhibitors. *Na-
 609 ture Biotechnology*, 23(3):329–336, Mar 2005. ISSN 1546-1696. doi: 10.1038/nbt1068. URL
 610 <https://doi.org/10.1038/nbt1068>.

611 A. Fernández, S. García, M. Galar, R.C. Prati, B. Krawczyk, and F. Herrera. *Learning from Im-
 612 balanced Data Sets*. Springer International Publishing, 2018. ISBN 9783319980744. URL
 613 <https://books.google.fr/books?id=8Fp0DwAAQBAJ>.

614 C. Geithe, G. Andersen, A. Malki, and D. Krautwurst. A butter aroma recombinant activates hu-
 615 man class-I odorant receptors. *Journal of Agricultural and Food Chemistry*, 63(43):9410–9420,
 616 2015. doi: 10.1021/acs.jafc.5b01884. URL <https://doi.org/10.1021%2Facs.jafc.5b01884>.

617 J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, and G.E. Dahl. Neural message passing for
 618 quantum chemistry. In *Proceedings of the 34th International Conference on Machine Learning -
 619 Volume 70*, ICML’17, pp. 1263–1272, 2017.

620 Michael K. Gilson, Tiqing Liu, Michael Baitaluk, George Nicola, Linda Hwang, and Jenny Chong.
 621 Bindingdb in 2015: A public database for medicinal chemistry, computational chemistry and
 622 systems pharmacology. *Nucleic Acids Research*, 44(D1):D1045–D1053, 10 2015. ISSN 0305-
 623 1048. doi: 10.1093/nar/gkv1072. URL <https://doi.org/10.1093/nar/gkv1072>.

624 A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and
 625 other neural network architectures. *Neural Networks*, 18(5-6):602–610, 2005.

626 R. Gupta, A. Mittal, V. Agrawal, S. Gupta, K. Gupta, R.R.Jain, P. Garg, S.K. Mohanty, R. So-
 627 gani, H.S. Chhabra, V. Gautam, T. Mishra, D. Sengupta, and G. Ahuja. Odorify: A conglom-
 628 erate of artificial intelligence–driven prediction engines for olfactory decoding. *Journal of Bio-
 629 logical Chemistry*, 297(2):100956, 2021. ISSN 0021-9258. doi: <https://doi.org/10.1016/j.jbc.2021.100956>. URL <https://www.sciencedirect.com/science/article/pii/S0021925821007560>.

630 K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.

631 Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
 632 Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL
 633 <http://github.com/google/flax>.

634 Franziska M. Heydenreich, Maria Marti-Solano, Manbir Sandhu, Brian K. Kobilka, Michel Bouvier,
 635 and M. Madan Babu. Molecular determinants of ligand efficacy and potency in gpcr signaling.
 636 *Science*, 382(6677):eadh1859, 2023. doi: 10.1126/science.adh1859. URL <https://www.science.org/doi/abs/10.1126/science.adh1859>.

637 Matej Hladiš, Maxence Lalis, Sébastien Fiorucci, and Jérémie Topin. Matching receptor to odor-
 638 ant with protein language and graph neural networks. In *The Eleventh International Confer-
 639 ence on Learning Representations*, 2023. URL https://openreview.net/forum?id=q9VherQJd8_.

648 K. Huang, C. Xiao, L.M. Glass, and J. Sun. MolTrans: Molecular interaction transformer for drug-
 649 target interaction prediction. *Bioinformatics*, 37(6):830–836, 2020. ISSN 1367-4803. doi: 10.
 650 1093/bioinformatics/btaa880. URL <https://doi.org/10.1093/bioinformatics/btaa880>.

651

652 Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Co-
 653 ley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning
 654 datasets and tasks for drug discovery and development, 2021. URL <https://arxiv.org/abs/2102.09548>.

655

656 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 657 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
 658 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
 659 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
 660 Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
 661 bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
 662 meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
 663 *Nature*, 596(7873):583–589, Aug 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.
 664 URL <https://doi.org/10.1038/s41586-021-03819-2>.

665

666 S. Junek, E. Kludt, F. Wolf, and D. Schild. Olfactory coding with patterns of response latencies.
 667 *Neuron*, 67(5):872–884, 2010. ISSN 0896-6273. doi: 10.1016/j.neuron.2010.08.005. URL
 668 <https://doi.org/10.1016/j.neuron.2010.08.005>.

669

670 Miroslav Kosar, Roman C. Sarott, David A. Sykes, Alexander E. G. Viray, Rosa Maria Vitale, Nataša
 671 Tomašević, Xiaoting Li, Rudolf L. Z. Ganzoni, Bilal Kicin, Lisa Reichert, Kacper J. Patej, Uxía
 672 Gómez-Bouzó, Wolfgang Guba, Peter J. McCormick, Tian Hua, Christian W. Gruber, Dmitry B.
 673 Veprintsev, James A. Frank, Uwe Grether, and Erick M. Carreira. Flipping the gpcr switch:
 674 Structure-based development of selective cannabinoid receptor 2 inverse agonists. *ACS Central
 675 Science*, 10(5):956–968, May 2024. ISSN 2374-7943. doi: 10.1021/acscentsci.3c01461. URL
 676 <https://doi.org/10.1021/acscentsci.3c01461>.

677

678 J. Kowalewski and A. Ray. Predicting human olfactory perception from activities of odorant re-
 679 ceptors. *iScience*, 23(8):101361, 2020. ISSN 2589-0042. doi: <https://doi.org/10.1016/j.isci.2020.101361>. URL <https://www.sciencedirect.com/science/article/pii/S2589004220305484>.

680

681 Alexander Kroll, Sahasra Ranjan, and Martin J. Lercher. A multimodal transformer network
 682 for protein-small molecule interactions enhances predictions of kinase inhibition and enzyme-
 683 substrate relationships. *PLOS Computational Biology*, 20(5):1–23, 05 2024. doi: 10.1371/journal.
 684 pcbi.1012100. URL <https://doi.org/10.1371/journal.pcbi.1012100>.

685

686 M. Lalis, M. Hladiš, S. Abi Khalil, L. Briand, S. Fiorucci, and J. Topin. M2OR: a database of ol-
 687 factory receptor–odorant pairs for understanding the molecular mechanisms of olfaction. *Nucleic
 688 Acids Research*, 52(D1):D1370–D1379, 10 2024a. ISSN 0305-1048. doi: 10.1093/nar/gkad886.
 689 URL <https://doi.org/10.1093/nar/gkad886>.

690

691 M. Lalis, M. Hladiš, S. Abi Khalil, C. Deroo, C. Marin, M. Bensafi, N. Baldovini, L. Briand,
 692 S. Fiorucci, and J. Topin. A status report on human odorant receptors and their allocated agonists.
 693 *Chemical Senses*, 49:bjae037, 10 2024b. ISSN 1464-3553. doi: 10.1093/chemse/bjae037. URL
 694 <https://doi.org/10.1093/chemse/bjae037>.

695

696 S. Lee, I. Depoortere, and H. Hatt. Therapeutic potential of ectopic olfactory and taste recep-
 697 tors. *Nature Reviews Drug Discovery*, 18(2):116–138, 2019. ISSN 1474-1784. doi: 10.1038/
 698 s41573-018-0002-3. URL <https://doi.org/10.1038/s41573-018-0002-3>.

699

700 Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli,
 701 A. dos Santos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, and A. Rives. Evolutionary-scale
 prediction of atomic-level protein structure with a language model. *Science*, 379(6637):1123–
 1130, 2023. doi: 10.1126/science.ade2574. URL <https://www.science.org/doi/abs/10.1126/science.ade2574>.

702 Zhangli Lu, Guoqiang Song, Huimin Zhu, Chuqi Lei, Xinliang Sun, Kaili Wang, Libo Qin, Yafei
 703 Chen, Jing Tang, and Min Li. Dtiam: a unified framework for predicting drug-target interac-
 704 tions, binding affinities and drug mechanisms. *Nature Communications*, 16(1):2548, Mar 2025.
 705 ISSN 2041-1723. doi: 10.1038/s41467-025-57828-0. URL <https://doi.org/10.1038/s41467-025-57828-0>.

707 J.D. Mainland, A. Keller, Y.R. Li, T. Zhou, C. Trimmer, L.L. Snyder, A.H. Moberly, K.A. Adipietro,
 708 W.L.L. Liu, H. Zhuang, S. Zhan, S.S. Lee, A. Lin, and H. Matsunami. The missense of smell:
 709 functional variability in the human odorant receptor repertoire. *Nature Neuroscience*, 17(1):114–
 710 120, 2014. ISSN 1546-1726. doi: 10.1038/nn.3598. URL <https://doi.org/10.1038/nn.3598>.

712 B. Malnic, J. Hirono, T. Sato, and L.B. Buck. Combinatorial receptor codes for odors. *Cell*, 96(5):
 713 713–723, 1999.

715 N. Malo, J.A. Hanley, S. Cerquozzi, J. Pelletier, and R. Nadon. Statistical practice in high-
 716 throughput screening data analysis. *Nature Biotechnology*, 24(2):167–175, 2006. ISSN 1546-
 717 1696. doi: 10.1038/nbt1186. URL <https://doi.org/10.1038/nbt1186>.

718 Lily Masters, Scott Eagon, and Michael Heying. Evaluation of consensus scoring methods for
 719 autodock vina, smina and idock. *Journal of Molecular Graphics and Modelling*, 96:107532,
 720 2020. ISSN 1093-3263. doi: <https://doi.org/10.1016/j.jmgm.2020.107532>. URL <https://www.sciencedirect.com/science/article/pii/S1093326319307272>.

723 K. Nara, L.R. Saraiva, X. Ye, and L.B. Buck. A large-scale analysis of odor coding in the olfactory
 724 epithelium. *Journal of Neuroscience*, 31(25):9179–9191, 2011. ISSN 0270-6474. doi: 10.
 725 1523/JNEUROSCI.1282-11.2011. URL <https://www.jneurosci.org/content/31/25/9179>.

727 R.R. Neubig, M. Spedding, T. Kenakin, and A. Christopoulos. International union of pharmacol-
 728 ogy committee on receptor nomenclature and drug classification. xxxviii. update on terms and
 729 symbols in quantitative pharmacology. *Pharmacological Reviews*, 55(4):597–606, 2003. ISSN
 730 0031-6997. doi: 10.1124/pr.55.4.4. URL <https://pharmrev.aspetjournals.org/content/55/4/597>.

732 Y. Niimura and M. Nei. Evolution of olfactory receptor genes in the human genome. *Proceedings of
 733 the National Academy of Sciences*, 100(21):12235–12240, 2003. doi: 10.1073/pnas.1635157100.
 734 URL <https://www.pnas.org/doi/abs/10.1073/pnas.1635157100>.

736 M. Parmentier, F. Libert, S. Schurmans, S. Schiffmann, A. Lefort, D. Eggerickx, C. Ledent,
 737 C. Mollereau, C. Gérard, J. Perret, A. Grootegoed, and G. Vassart. Expression of members of
 738 the putative olfactory receptor gene family in mammalian germ cells. *Nature*, 355(6359):453–
 739 455, 1992. ISSN 1476-4687. doi: 10.1038/355453a0. URL <https://doi.org/10.1038/355453a0>.

741 Saro Passaro, Gabriele Corso, Jeremy Wohlwend, Mateo Reveiz, Stephan Thaler, Vignesh Ram
 742 Somnath, Noah Getz, Tally Portnoi, Julien Roy, Hannes Stark, David Kwabi-Addo, Dominique
 743 Beaini, Tommi Jaakkola, and Regina Barzilay. Boltz-2: Towards accurate and efficient binding
 744 affinity prediction. *bioRxiv*, 2025. doi: 10.1101/2025.06.14.659707. URL <https://www.biorxiv.org/content/early/2025/06/18/2025.06.14.659707>.

746 Jiao Qin, Ye Cai, Zheng Xu, Qianqian Ming, Su-Yu Ji, Chao Wu, Huibing Zhang, Chunyou Mao,
 747 Dan-Dan Shen, Kunio Hirata, Yanbin Ma, Wei Yan, Yan Zhang, and Zhenhua Shao. Molecular
 748 mechanism of agonism and inverse agonism in ghrelin receptor. *Nature Communications*, 13(1):
 749 300, Jan 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-27975-9. URL <https://doi.org/10.1038/s41467-022-27975-9>.

751 Rodrigo Quiroga and Marcos A. Villarreal. Vinardo: A scoring function based on autodock vina
 752 improves scoring, docking, and virtual screening. *PLOS ONE*, 11(5):1–18, 05 2016. doi: 10.1371/
 753 journal.pone.0155183. URL <https://doi.org/10.1371/journal.pone.0155183>.

755 H. Saito, M. Kubota, R.W. Roberts, Q. Chi, and H. Matsunami. RTP family members induce func-
 756 tional expression of mammalian odorant receptors. *Cell*, 119(5):679–691, 2004.

756 H. Saito, Q. Chi, H. Zhuang, H. Matsunami, and J.D. Mainland. Odor coding by a mammalian
 757 receptor repertoire. *Science Signaling*, 2(60):ra9, 2009.
 758

759 C.S. Sell. On the unpredictability of odor. *Angewandte Chemie International Edition*, 45(38):6254–
 760 6261, 2006. doi: <https://doi.org/10.1002/anie.200600782>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200600782>.
 761

762 Pir Masoom Shah, Huimin Zhu, Zhangli Lu, Kaili Wang, Jing Tang, and Min Li. Deepdtagen:
 763 a multitask deep learning framework for drug-target affinity prediction and target-aware drugs
 764 generation. *Nature Communications*, 16(1):5021, May 2025. ISSN 2041-1723. doi: 10.1038/s41467-025-59917-6. URL <https://doi.org/10.1038/s41467-025-59917-6>.
 765

766 H. Spors and A. Grinvald. Spatio-temporal dynamics of odor representations in the mammalian
 767 olfactory bulb. *Neuron*, 34(2):301–315, 2002. ISSN 0896-6273. doi: 10.1016/S0896-6273(02)
 768 00644-X. URL [https://doi.org/10.1016/S0896-6273\(02\)00644-X](https://doi.org/10.1016/S0896-6273(02)00644-X).
 769

770 J. Tang, A. Szwajda, S. Shakyawar, T. Xu, P. Hintsanen, K. Wennerberg, and T. Aittokallio. Making
 771 sense of large-scale kinase inhibitor bioactivity data sets: A comparative and integrative analysis.
 772 *Journal of Chemical Information and Modeling*, 54(3):735–743, 2014.
 773

774 Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
 775 Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin Žídek, Tim Green,
 776 Kathryn Tunyasuvunakool, Stig Petersen, John Jumper, Ellen Clancy, Richard Green, Ankur
 777 Vora, Mira Lutfi, Michael Figurnov, Andrew Cowie, Nicole Hobbs, Pushmeet Kohli, Gerard
 778 Kleywegt, Ewan Birney, Demis Hassabis, and Sameer Velankar. AlphaFold protein structure
 779 database: massively expanding the structural coverage of protein-sequence space with high-
 780 accuracy models. *Nucleic Acids Research*, 50(D1):D439–D444, 11 2021. ISSN 0305-1048. doi:
 781 10.1093/nar/gkab1061. URL <https://doi.org/10.1093/nar/gkab1061>.
 782

783 Mihaly Varadi, Damian Bertoni, Paulyna Magana, Urmila Paramval, Ivanna Pidruchna, Malarvizhi
 784 Radhakrishnan, Maxim Tsenkov, Sreenath Nair, Milot Mirdita, Jingi Yeo, Oleg Kovalevskiy,
 785 Kathryn Tunyasuvunakool, Agata Laydon, Augustin Žídek, Hamish Tomlinson, Dhavanthi Har-
 786 iharan, Josh Abrahamson, Tim Green, John Jumper, Ewan Birney, Martin Steinegger, Demis
 787 Hassabis, and Sameer Velankar. AlphaFold protein structure database in 2024: providing struc-
 788 ture coverage for over 214 million protein sequences. *Nucleic Acids Research*, 52(D1):D368–
 789 D375, 11 2023. ISSN 0305-1048. doi: 10.1093/nar/gkad1011. URL <https://doi.org/10.1093/nar/gkad1011>.
 790

791 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, and I. Polo-
 792 sukhan. Attention is all you need. In *Advances in Neural Information Processing Systems*,
 793 volume 30, 2017. URL <https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fdb053c1c4a845aa-Paper.pdf>.
 794

795 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 796 Bengio. Graph attention networks, 2018. URL <https://arxiv.org/abs/1710.10903>.
 797

798 J. Vig, A. Madani, L.R. Varshney, C. Xiong, R. Socher, and N.F. Rajani. BERTology meets biol-
 799 ogy: Interpreting attention in protein language models. In *International Conference on Learning
 800 Representations*, 2021. URL <https://openreview.net/forum?id=YWtLZvLmud7>.
 801

802 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
 803 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
 804 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
 805 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
 806 Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
 807 Baek, and David Baker. De novo design of protein structure and function with rfdiffusion. *Na-
 808 ture*, 620(7976):1089–1100, Aug 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06415-8.
 809 URL <https://doi.org/10.1038/s41586-023-06415-8>.
 810

811 C.D. Wilson, G.O. Serrano, A.A. Koulakov, and D. Rinberg. A primacy code for odor identity.
 812 *Nature Communications*, 8:1477, 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-01432-4.
 813 URL <https://doi.org/10.1038/s41467-017-01432-4>.
 814

810 K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

811

812

813 K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-Perez, T. Hopper, B. Kelle-
814 ley, M. Mathea, A. Palmer, V. Settels, T. Jaakkola, K. Jensen, and R. Barzilay. Analyzing
815 learned molecular representations for property prediction. *Journal of Chemical Information and
816 Modeling*, 59(8):3370–3388, 2019. doi: 10.1021/acs.jcim.9b00237. URL <https://doi.org/10.1021/acs.jcim.9b00237>.

817

818

819 E.A. Yasi, S.L. Eisen, H. Wang, W. Sugianto, A.R. Minniefeld, K.A. Hoover, P.J. Branham, and
820 P. Peralta-Yahya. Rapid deorphanization of human olfactory receptors in yeast. *Biochemistry*, 58
821 (16):2160–2166, 2019. doi: 10.1021/acs.biochem.8b01208. URL <https://doi.org/10.1021%2Facs.biochem.8b01208>.

822

823 Xinke Zhan, Tiantao Liu, Changqing Yu, Yu-An Huang, Zhuhong You, and Shirley W. I. Siu.
824 Maardti: a multi-perspective attention aggregation model for the prediction of drug–target in-
825 teractions. *Digital Discovery*, pp. –, 2025. doi: 10.1039/D5DD00311C. URL <http://dx.doi.org/10.1039/D5DD00311C>.

826

827 Mingyang Zhang, Ting Chen, Xun Lu, Xiaobing Lan, Ziqiang Chen, and Shaoyong Lu. G
828 protein-coupled receptors (gpcrs): advances in structures, mechanisms and drug discovery. *Sig-
829 nal Transduction and Targeted Therapy*, 9(1):88, Apr 2024. ISSN 2059-3635. doi: 10.1038/
830 s41392-024-01803-6. URL <https://doi.org/10.1038/s41392-024-01803-6>.

831

832 Q. Zhao, H. Zhao, K. Zheng, and J. Wang. HyperAttentionDTI: improving drug–protein interaction
833 prediction by sequence-based deep learning with attention mechanism. *Bioinformatics*, 38(3):
834 655–662, 2021.

835

836 D. Zwicker. Primacy coding facilitates effective odor discrimination when receptor sensitivities
837 are tuned. *PLOS Computational Biology*, 15(7):e1007188, 2019. ISSN 1553-7358. doi:
838 10.1371/journal.pcbi.1007188. URL <http://dx.doi.org/10.1371/journal.pcbi.1007188>.

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

A APPENDIX

865

866

867

A.1 SAMPLING PSEUDO-CODE

868

869

870

871

Algorithm 1: Training

872

Input: Dataset $\mathcal{D} = \{(s^i, m^i), A^i, l^i\}_i$ with molecules m^i , sequences s^i , EC₅₀ value A^i , and activity label l^i

Input: Concentration range (L, U)

Input: Margins $\varepsilon_L, \varepsilon_U$

$X = []$, $Y = []$

for $batch \sim \mathcal{D}$ **do**

for $i, (m, s), A, label, in$ **enumerate**($batch$) **do**

 /* Set negative examples and truncate to (L, U)

if $label = 0$ **then** $A \leftarrow U + \varepsilon_L$

if $A > U + \varepsilon_L$ **then** $A \leftarrow U + \varepsilon_L$

if $A < L - \varepsilon_U$ **then** $A \leftarrow L - \varepsilon_U$

 /* Sample a concentration c and a training label l_{tr}

$c \sim \text{Unif}(L, U)$

if $c \leq A - \varepsilon_L$ **then** $l_{tr} \leftarrow 0$

else if $c \geq A + \varepsilon_U$ **then** $l_{tr} \leftarrow 1$

else $l_{tr} \sim \text{Unif}(0, 1)$

$X[i] \leftarrow (m, s, c)$, $Y[i] \leftarrow l_{tr}$

end

 /* Get batch sample weights based on probability of drawing a label for a given concentration.

$W \leftarrow \text{Get_sample_weights}(batch)$

 /* Train as a standard classification task

$\hat{Y} \leftarrow \text{model}(X)$

$loss \leftarrow \text{loss_func}(\hat{Y}, Y, W)$

 /* Take gradient of the loss and update model weights.

end

905

906

907

908

A.2 SAMPLE WEIGHTS

909

910

911

Prediction of the protein-molecule response is inherently an imbalanced problem, and most of the experimental data are inactive. To account for the label distribution, we use standard imbalance ratio weights (Fernández et al., 2018). However, the sampling presented in Algorithm 1 dynamically generates labels in each iteration and changes the raw data label distribution, since active EC₅₀ pairs can contribute to the inactive labels. Therefore, we calculate class weights on the fly for each batch by estimating the probability $P(l|c)$ that a label l is sampled for a given concentration c .

912

913

914

915

916

917

Formally, denote the truncated experimental EC₅₀ values as $A_{trunc}^i = \text{trunc}(EC_{50}^i, (C_{low} - \varepsilon_U, C_{high} + \varepsilon_L))$. Then the probability that a label l is sampled for a concentration c in a batch

Algorithm 2: Inference

Input: Molecule-sequence pair (m, s)

Input: Set C of concentrations uniformly covering range (L, U)

Function DS_curve (c, A, q, M, b) :

return $(M - b)/(1 + \text{pow}(10, -q(c - A))) + b$

$Y = []$

for i, c **in** $\text{enumerate}(C)$ **do**

$Y[i] \leftarrow \text{model}((m, s, c))$

end

/* Use any standard algorithm to fit a curve

$\hat{A}, \hat{q}, \hat{M}, \hat{b} \leftarrow \text{fit}(\text{DS_curve}, x = C, y = Y)$

/* Return the estimated EC₅₀ and the probability of activity

return \hat{A}, \hat{M}

918 of size n is given by a number of times c is below or above the truncated EC_{50} :
 919
 920
 921

$$P(l = 0|c) \approx \frac{\#\{i|c \leq A_{trunc}^i - \epsilon_L\}}{n} \quad (2)$$

$$P(l = 1|c) \approx \frac{\#\{i|c \geq A_{trunc}^i + \epsilon_U\}}{n} \quad (3)$$

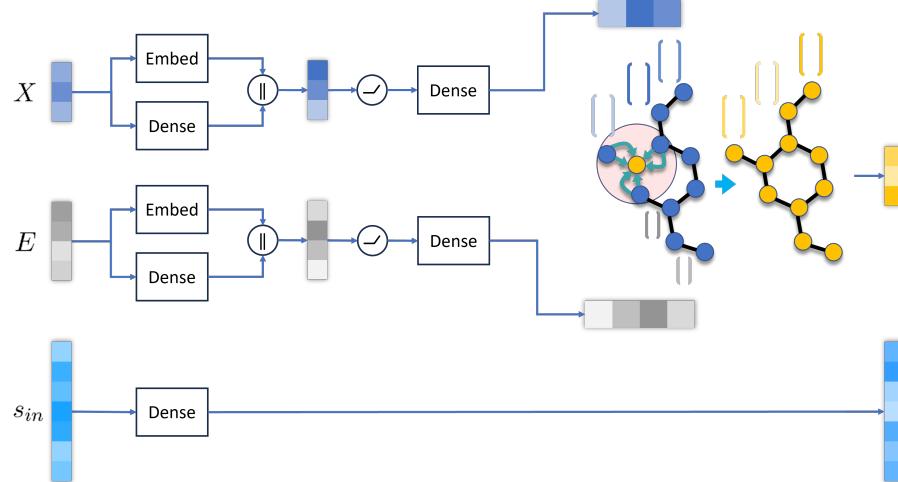
$$P(l \in (0, 1)|c) = 1 - P(l = 0|c) - P(l = 1|c) \quad (4)$$

928
 929
 930 Note that EC_{50} of inactive pairs is set to $+\infty$, thus $A_{trunc}^i = U + \epsilon_L$ for these pairs. Given the
 931 above estimate of the label probability, we set the class weights for each triplet (s, m, c) as
 932
 933

$$w_{class}(l, c) = \frac{1}{2P(l|c)} \quad (5)$$

940 A.3 MODEL DETAILS

942 A.3.1 MODEL ARCHITECTURE



944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964 Figure A1: GNN embedding block. Node and edge feature matrices X and E , respectively, are
 965 embedded and processed by a message passing neural network (MPNN) (Gilmer et al., 2017). Cate-
 966 gorical features are passed through a standard embedding layer and continuous features are passed
 967 through a dense layer before being concatenated together. The sequence representation, comprising
 968 a d -dimensional vector per each amino acid, is passed through a single dense layer to form the input
 969 to the subsequent cross block. MPNN is composed of an edge update function that concatenates
 970 edge features, incoming node features, and outgoing node features and passes them through a dense
 971 layer followed by ReLU. It uses GRU (Cho et al., 2014) as a node update function. Symbols \oplus , \ominus
 972 stand for row-wise concatenation and ReLU activation function, respectively.

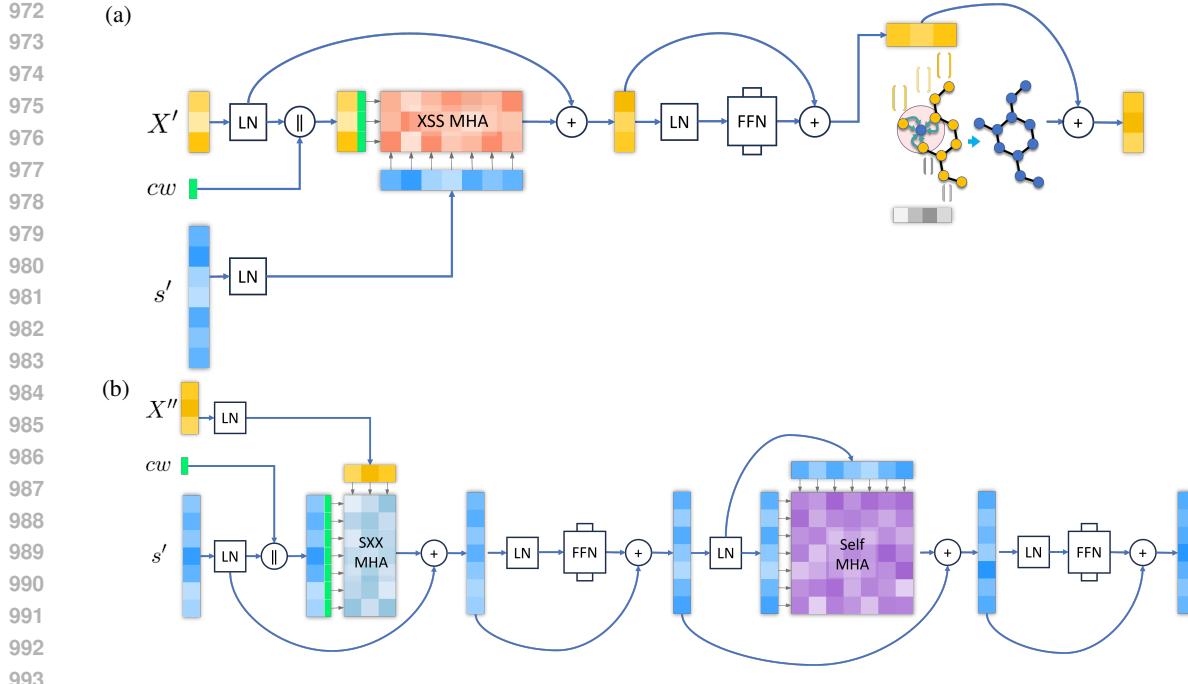


Figure A2: Update blocks. (a) Node update block. The inputs are the node embedding matrix X' , the sequence representation matrix s' , and the concentration vector cw . X' is passed through Layer norm (LN) (Ba et al., 2016) and concatenated with cw to become queries in multi-head cross-attention (XSS MHA) (Vaswani et al., 2017). Sequence representation s' serves as keys/values, and the output of cross-attention is added to the normalised node embeddings via a residual connection (He et al., 2015). The purpose of XSS MHA is to learn the difference in the node representation that is induced by the interaction with the protein. The resulting updated node embeddings are then processed by feed-forward network (FFN) (Vaswani et al., 2017) and together with edge embeddings E form input to Graph isomorphism network (GIN) (Xu et al., 2019). (b) Sequence update block. Analogously, the inputs to the block are the node embedding matrix X'' , the sequence representation matrix s' , and the concentration vector cw . s' is passed through Layer norm (LN) and concatenated with cw to become queries in multi-head cross-attention (SXX MHA). Node embeddings X'' are keys/values in cross-attention, and the output of SXX MHA is added to the normalised sequence representation. The goal of SXX MHA is to learn the difference in the sequence representation induced by the interaction with the molecule at the given concentration. The updated sequence embedding is then passed through FFN and then to a Transformer block consisting of self-attention (Vaswani et al., 2017) and a second FFN.

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

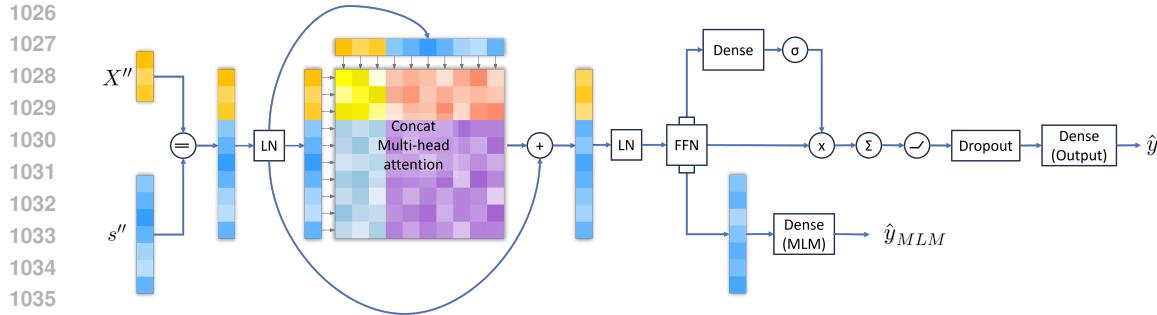


Figure A3: Final mixing block. The updated node embedding matrix X'' and the updated sequence representation s'' are concatenated together and form an input to self-attention (Vaswani et al., 2017). Note that unlike the case of update blocks, softmax in this self-attention is performed simultaneously through both molecular node and amino acid embeddings. The output of the attention layer is passed through FFN, aggregated via attention pooling (Eqn. (2) in (Hladiš et al., 2023)), and finally processed by a dense layer for a final activity prediction. The part of the FFN output corresponding to the sequence representation is also used for masked language modelling task (MLM). The symbols \odot , \odot , \odot , \odot , \odot stand for column-wise concatenation, ReLU activation function, sigmoid activation function, elementwise multiplication and summation, respectively.

A.3.2 MOLECULAR FEATURES

Table A1: Initial node and edge features. *Cat.* stands for categorical features.

	Atom features	Bond features
Cat.	Atomic number	Bond type
	Chiral tag	Stereo type
	Hybridisation	Is aromatic
	Is aromatic	
Continuous	Formal charge	
	Num. of implicit Hs	
	Explicit valence	
	Mass	

A.3.3 HYPERPARAMETERS AND ASMI ARCHITECTURAL CHOICES

During the ASMI architecture development we experimented with several choices, such as MPNN (Gilmer et al., 2017), GIN (Xu et al., 2019) or GAT (Veličković et al., 2018) as the choice of the GNN layer in Node update block, and PNA (Corso et al., 2020) and attention pooling (Hladiš et al., 2023) as the final pooling function. A systematic sweep over sampling hyperparameters ϵ_L and ϵ_U was not performed.

A.3.4 ASMI-DR TRAINING

ASMI-DR is trained according to Algorithm 1 with 1500 epochs, batch size of 1024, and margins $\epsilon_L = \epsilon_U = 0.25$. During training, we apply dropout of 0.1 in the attention layers, 0.2 in the FFN layers, and 0.5 just before the output layer. Padding is set to 32 nodes and 64 edges, which covers all molecules in the M2OR dataset. The initial learning rate is set to $\frac{1}{\sqrt{256}}$ and we use 6000 warm-up steps for the scheduler. The best epoch was chosen based on the validation set comprising 10% of randomly selected pairs. All models are implemented in JAX (Bradbury et al., 2018) and FLAX (Heek et al., 2024) and they were trained on Nvidia A100 SXM4 80GB GPUs or Nvidia H100 NVL 94GB GPUs.

1080
1081

A.3.5 ASMI-PROB TRAINING

1082
1083
1084
1085
1086
1087
1088
1089

To train the concentration-free version of the proposed architecture, we mostly follow Hladiš et al. (2023). However, we drop Pair imbalance weights (Eqn. (5) in (Hladiš et al., 2023)) as these weights are related to the *in vitro* exploration of protein-molecule pairs and we observe that these weights lower the performance. We also experimented with weights based on the receptor broadness (Lalis et al., 2024b) (data not shown), but their gain was not significantly different compared to standard class imbalance weights. We train ASMI-Prob for 2500 epochs with the batch size 1024 and the initial learning rate $\frac{1}{\sqrt{256}}$. The best epoch was chosen based on the validation set comprising 10% of randomly selected pairs.

1090
1091

A.3.6 ASMI-REG TRAINING

1092
1093
1094
1095
1096
1097

We train the regression variant of the proposed architecture similarly to ASMI-DR. We train for 1500 epochs with the batch size of 1024, the initial learning rate $\frac{1}{\sqrt{256}}$, 6000 warm-up steps, and graph padding of 32 and 64 for nodes and edges, respectively. We use l_2 loss to train the model. For inactive pairs, we set training EC₅₀ values to 1M. As before, the best epoch was chosen based on the validation set comprising 10% of randomly selected pairs.

1098
1099

A.4 DATA PREPROCESSING

1100

A.4.1 M2OR

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

M2OR gathers 77611 experiments, some of which correspond to the same protein-molecule pairs, and 71454 are screening data. During preprocessing, we first discard mixtures of molecules and experiments measuring the basal activity (i.e., experiments performed at molecular concentration of 0M). We also discard data reporting "fold" and "micro-ampere" units. We further remove the data with inconsistent activity decisions between experiments. For screening data, we remove experiments where, for a given protein-molecule pair, the activity decision in the higher concentration is "inactive" and in a lower concentration it is "active". We exclude galaxolide due to its unspecific response (Lalis et al., 2024b) and we also exclude molecules with molecular graphs composed of more than 32 nodes or 64 directed edges. In addition, we exclude putative pseudo genes with sequence length lower than 296 amino acids. Finally, we change the units to $\log_{10}(mM)$ and if there are multiple dose-response experiments for a given pair, we take the mean of the EC₅₀ values. After preprocessing, the dataset consists of 1427 EC₅₀ values for active pairs, 4346 inactive dose-response pairs, and 60256 screening samples.

1114
1115

A.4.2 DAVIS

1116
1117
1118
1119
1120
1121
1122

We downloaded the curated data from PyTDC library (Huang et al., 2021). Since PyTDC does not provide activity label, and for consistency with the previous work, we obtain the labels from the preprocessed data from HyperAttentionDTI publication (Zhao et al., 2021). We exclude 6 protein sequences longer than 1736 amino acids, and we exclude molecular graphs with more than 128 nodes or 256 directed edges. Finally, we changed the units to $\log_{10}(\mu M)$. After preprocessing, the data contains 6881 active and 17667 inactive pairs.

1123

A.4.3 BINDINGDB

1124
1125
1126
1127
1128
1129
1130

We downloaded the curated data from PyTDC library (Huang et al., 2021). If there are duplicated experiments for the same pair, we take the lowest K_d. After analysing the data distribution, and in line with standard practices (Huang et al., 2021), we consider pairs with $K_d \geq 10\mu M$ as inactive. We exclude 12 protein sequences longer than 2048 amino acids, and we exclude molecular graphs with more than 128 nodes or 256 directed edges. Finally, we changed the units to $\log_{10}(\mu M)$. After preprocessing, the data contains 19233 active and 23001 inactive pairs.

1131

A.4.4 KIBA

1132
1133

We downloaded the preprocessed dataset from HyperAttentionDTI publication (Zhao et al., 2021). We exclude 2 protein sequences longer than 1408 amino acids, and we exclude molecular graphs

1134 with more than 128 nodes or 256 directed edges. After preprocessing, the data contains 22154 active
 1135 and 94195 inactive pairs.
 1136

1137 **A.5 EVALUATION DETAILS**

1138 **A.5.1 *In vitro* EC₅₀ ERROR**

1141 Measuring EC₅₀ *in vitro* is prone to errors arising from several different sources (Malo et al., 2006;
 1142 Brideau et al., 2003). In this work, this error is estimated by root mean squared logarithmic error
 1143 (RMSLE) based on the protein-molecule pairs for which more than one dose-response experiment
 1144 has been conducted. Formally, the error is given by the differences between individual EC₅₀ values
 1145 and the mean EC₅₀ corresponding to the same protein-molecule pair:
 1146

$$\text{Experimental RMSLE} = \sqrt{\frac{1}{L} \sum_{k=1}^K \sum_{i=1}^{I_k} (x_{i,k} - \mu_k)^2} \quad (6)$$

1149 where K is the number of protein-molecule pairs with multiple EC₅₀ experiments, I_k is the number
 1150 of experiments per pair k , $x_{i,k}$ is the individual EC₅₀ value i for pair k in logarithmic scale, $\mu_k =$
 1151 $\sum_{i=1}^{I_k} x_{i,k}$ is the mean of the experiments for pair k and $L = \sum_{k=1}^K I_k$ is the total number of
 1152 experiments for protein-molecule pairs with multiple EC₅₀ values in the dataset.
 1153

1154 **A.5.2 DOCKING AND BOLTZ-2 DETAILS**

1155 **Docking protocol.** Gypsum-DL (v1.2.0) was used to generate 3D molecular structures from
 1156 SMILES to SDF, accounting for ionisation, tautomeric, chiral, cis/trans, and ring-conformational
 1157 states at pH 7.0 ± 0.5. Structures were converted from SDF to MOL2 with Open Babel 3.1.0 and
 1158 then to PDBQT using MGLTools (v1.5.7). Docking was performed with SMINA (Oct 15, 2019,
 1159 based on AutoDock Vina 1.1.2) (Masters et al., 2020) using the Vinardo scoring function (Quiroga
 1160 & Villarreal, 2016) and an exhaustiveness of 8. Olfactory receptor models were obtained from the
 1161 AlphaFold DB (Varadi et al., 2023; 2021). Polar hydrogens were added with PDB2PQR (v3.6.1),
 1162 with protonation states assigned by PROPKA (v1.0) at pH 7.0, followed by minimisation with the
 1163 AMBER99 force field. Protein structures were converted from PQR to PDBQT using MGLTools,
 1164 and all receptors were superimposed with PyMOL (v2.5.4).
 1165

1166 **Boltz-2 inference.** Olfactory receptor sequences and molecular SMILES were obtained from the
 1167 M2OR database. We performed the experiments with Boltz-2 default parameters except: the number
 1168 of diffusion samples was set to 25 for both the structure and affinity modules, and the number of
 1169 recycling steps was set to 10.
 1170

1171 **A.6 EVALUATION ON DRUG-TARGET INTERACTION DATASETS**

1172 To validate our architectural choices in Section 5, we evaluate a concentration-free version of the
 1173 model, ASMI-Prob, on two standard drug-target interaction (DTI) benchmarks: KIBA (Tang et al.,
 1174 2014) and DAVIS (Davis et al., 2011). We compare our architecture against state-of-the-art methods,
 1175 including MolTrans (Huang et al., 2020), HyperAttentionDTI (Zhao et al., 2021).
 1176

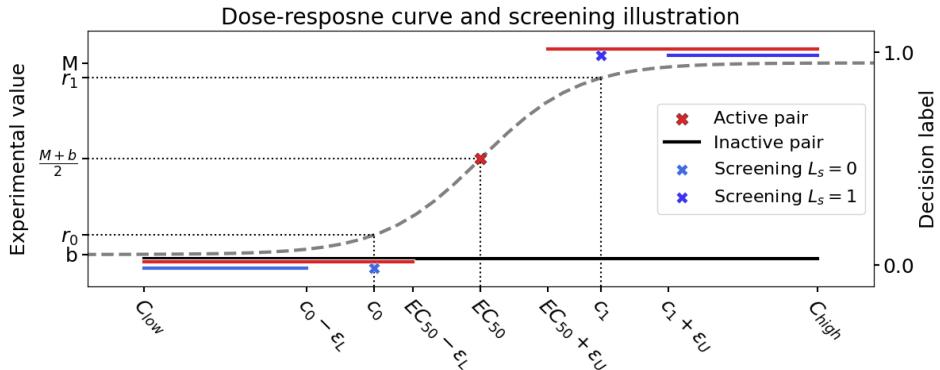
1177 As shown in Table A2, our architecture outperforms MolTrans in AveP on both benchmarks. It lags
 1178 behind HyperAttentionDTI by 2.1% and 1.9% on KIBA and DAVIS, respectively, with a superior
 1179 precision, whereas HyperAttentionDTI exhibit a higher recall. However, our proposed architecture
 1180 excels in a challenging M2OR dataset, outperforming the DTI baselines by a margin. Notably, MCC
 1181 of ASMI-DR trained by Algorithm 1 also surpasses all the DTI baselines on DAVIS dataset. This
 1182 result demonstrates that our architecture is not only effective for its primary OR-molecule activation
 1183 task but also robust enough to compete with the state-of-the-art on standard DTI benchmarks.
 1184

1185 **A.7 SAMPLING WITH EC₅₀ LOWER BOUND AND SCREENING DATA**

1186 **Screening.** Before running demanding dose-response experiments, a screening is performed on
 1187 a large number of protein-molecule pairs to assess the plausibility of the tested compounds to be
 1188 ligands (Saito et al., 2009; Geithe et al., 2015; Yasi et al., 2019). The candidate molecules are first

1188 Table A2: Performance on the KIBA and DAVIS drug-target interaction benchmarks and on M2OR.
1189 For M2OR, the results for MAARDTI are taken from Zhan et al. (2025) and the results for MolTrans,
1190 HyperAttentionDTI, and GNN-CLS are taken from Hladiš et al. (2023). Standard deviation is given
1191 in parentheses.

	Model	AveP	Precision	Recall	MCC
DAVIS	MolTrans	0.798 (0.017)	0.593 (0.041)	0.857 (0.023)	0.584 (0.022)
	HyperAttentionDTI	0.844 (0.008)	0.767 (0.014)	0.774 (0.016)	<u>0.680</u> (0.006)
	GNN-CLS	0.744 (0.015)	0.699 (0.013)	0.666 (0.016)	0.564 (0.011)
	ASMI-Prob	<u>0.828</u> (0.028)	0.790 (0.012)	0.680 (0.028)	0.639 (0.023)
DAVIS	ASMI-Reg	0.817 (0.026)	0.646 (0.063)	0.818 (0.030)	0.601 (0.048)
	ASMI-DR	0.808 (0.015)	0.772 (0.016)	0.775 (0.017)	0.685 (0.005)
KIBA	MolTrans	0.767 (0.026)	0.501 (0.032)	0.875 (0.009)	0.583 (0.030)
	HyperAttentionDTI	0.819 (0.004)	0.718 (0.008)	0.770 (0.005)	0.680 (0.005)
	GNN-CLS	0.704 (0.010)	0.610 (0.014)	0.683 (0.005)	0.555 (0.012)
	ASMI-Prob	<u>0.802</u> (0.012)	0.738 (0.024)	0.655 (0.059)	<u>0.628</u> (0.034)
M2OR	MolTrans	0.638 (0.066)	0.402 (0.053)	0.822 (0.027)	0.476 (0.042)
	MAARDTI	0.700	0.700	0.595	0.555
	HyperAttentionDTI	0.737 (0.015)	0.609 (0.028)	0.773 (0.020)	0.584 (0.022)
	GNN-CLS	<u>0.780</u> (0.012)	0.689 (0.016)	0.698 (0.042)	0.605 (0.017)
	ASMI-Prob	0.801 (0.044)	0.716 (0.065)	0.728 (0.037)	<u>0.625</u> (0.036)
M2OR	ASMI-Reg	0.698 (0.010)	0.692 (0.047)	0.720 (0.035)	0.621 (0.048)
	ASMI-DR	0.754 (0.018)	0.773 (0.028)	0.722 (0.051)	0.671 (0.016)



1226 Figure A4: Example of a dose-response curve for an active (grey/red) and inactive pair (black). The
1227 crosses represent the data available in the dataset, the coloured lines are sampling regions, and the
1228 grey line is an unknown actual active curve. The blue lines correspond to screening data, the red
1229 lines are sampling regions for active EC_{50} data, and the black line is the sampling region for inactive
1230 EC_{50} data. r_0 , r_1 , b , M , and $\frac{M+b}{2}$ are experimentally measured responses which are not available
1231 in the data.

1232
1233
1234 tested at a single concentration in a primary screening, followed by a secondary screening with 2 to
1235 4 different concentrations. Screening can lead to a significant label noise (Lalis et al., 2024b), but
1236 can cover a large number of protein-molecule pairs, and considering its lower price, it constitutes
1237 the majority of the available data.

1238 In Section 4, we consider sampling training data $\mathcal{B} = \{(s^i, m^i, c^{i,j}), L^{i,j}\}_{i,j}$ using dose-response
1239 experiments only. However, our framework allows for a straightforward extension of the same
1240 sampling procedure to the abundant screening data. Since several normalisation procedures are
1241 followed in the screening data treatment, we assume that a screening experiment results in a binary
1242 decision about whether an interaction between a protein and a molecule at a given concentration

1242 Table A3: Sampling regions for all available data types and all possible training labels. ϵ_L, ϵ_U are
 1243 lower and upper margins, respectively. The case $EC_{50} > c_t$ stands for EC_{50} experiments where
 1244 activity was observed, but the EC_{50} is out of range of the tested concentrations, and the authors
 1245 reported the lower bound c_t for the EC_{50} value.

Data type	Decision	$L^{i,j} = 0$	$L^{i,j} \sim Unif(0, 1)$	$L^{i,j} = 1$
EC ₅₀	active	$[C_{low}, EC_{50} - \epsilon_L]$	$(EC_{50} - \epsilon_L, EC_{50} + \epsilon_U)$	$[EC_{50} + \epsilon_U, C_{high}]$
EC ₅₀	inactive	$[C_{low}, C_{high}]$	\emptyset	\emptyset
$EC_{50} > c_t$	active	$[C_{low}, c_t - \epsilon_L]$	$(c_t - \epsilon_L, C_{high}]$	\emptyset
Screening	active	\emptyset	$[C_{low}, c_t + \epsilon_U]$	$[c_t + \epsilon_U, C_{high}]$
Screening	inactive	$[C_{low}, c_s - \epsilon_L]$	$(c_s - \epsilon_L, C_{high}]$	\emptyset

1254
 1255 elucidates the response in the cell. For secondary screening, decisions at multiple concentrations are
 1256 available, and we treat them as multiple primary screenings.

1257 Consider that a concentration c_s has been tested with the corresponding response decision $L_s \in$
 1258 $\{0, 1\}$. If the experimental response decision is "inactive" ($L_s = 0$), the monotonicity of the dose-
 1259 response curve implies that for all lower concentrations $c \leq c_s$ the response decision would also
 1260 be inactive (Figure A4). Analogously, if the response decision is $L_s = 1$, all higher concentrations
 1261 $c \geq c_s$ would lead to the "active" decision. Therefore, "one-sided" training samples and their
 1262 corresponding response decisions can be obtained for each protein-molecule pair i , by uniformly
 1263 sampling a concentration $c^{i,j} \in [C_{low}, C_{high}]$ and then sampling a decision $L^{i,j}$ according to the
 1264 experimental decision. If $L_s = 0$, then for $c^{i,j} \leq c_s$ we set $L^{i,j} = 0$ and for $c^{i,j} > c_s$ we uniformly
 1265 sample a soft label $L^{i,j} \sim Unif(0, 1)$. Similarly, if $L_s = 1$, then for $c^{i,j} \geq c_s$ we set $L^{i,j} = 1$
 1266 and we sample a soft label $L^{i,j} \sim Unif(0, 1)$ for $c^{i,j} < c_s$. Screening can lead to label noise, and
 1267 the true activity might be different from the decision available in the data. To further control the
 1268 sampling, we take into account the uncertainty about the label by margins ϵ_L and ϵ_U . A summary
 1269 of all possible sampling regions is given in Table A3.

1270 **EC₅₀ lower bound.** It is possible that an increase in the response has been observed in a dose-
 1271 response assay, but the EC₅₀ is outside the range of the tested concentrations. Thus, the curve cannot
 1272 be fitted and only a lower bound c_t of the EC₅₀ is available. In such cases, negative samples can
 1273 still be drawn from the dose-response curve, and the sampling is analogous to the negative screening
 1274 case.

1276 A.7.1 PERFORMANCE WITH SCREENING DATA

1277 We report the performance of incorporating the screening data in the activity decision and EC₅₀
 1278 estimation tasks in Table A4. For out-of-distribution (OOD) evaluation, we contrast a standard generalisation task on unseen proteins and molecules without any prior information (*all w/o screening*)
 1279 against a scenario where the screening data of the test set pairs are available to the model during
 1280 training (*all w/ screening*). Furthermore, we also report the performance of a model trained only on
 1281 the screening data in an i.i.d. case (*screening only*).

1282 To reflect the difference in label uncertainty of the screening and dose-response experiments, we
 1283 oversample the dose-response data. For evaluation in Table A4, we sample 15 concentrations from
 1284 each dose-response experiment in each epoch. Note that the test sets in Table A4 are identical to
 1285 those in Section 7 and contain only dose-response assay data, excluding screening.

1286 Although the screening data constitutes 91% of the preprocessed M2OR, its integration in Algorithm
 1287 1 lowers the activity decision performance. In the OOD case, the EC₅₀ estimation error decreases
 1288 slightly compared to the training without screening, but these results are evaluated on less pairs due
 1289 to the lower MCC. Using only the screening data substantially lags behind the training with dose-
 1290 response experiments. However, it still achieves an EC₅₀ estimation error of 0.95 log units on the
 1291 correctly predicted active pairs, outperforming Boltz-2 in both MCC and RMSLE.

1292 Overall, while screening can cover a substantial number of protein-molecule pairs, it provides less
 1293 information compared to dose-response experiments. Screening data only allows for "one-sided"
 1294 sampling in Algorithm 1, which leads to a severe label imbalance, especially for concentrations close

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304

1305 Table A4: Comparison of the performance when trained with the dose-response data only (*ASMI-DR*),
 1306 all data including screening (*all*), and the screening data only (*screening only*). In the out-
 1307 of-distribution evaluation, we either report a case when the screening data of the test set pairs are
 1308 available to the model during training (*all w/ screening*) or a standard case when no information
 1309 about the test set pairs is available (*all w/o screening*). Standard deviation is given in parentheses.

Datacase		Name	MCC \uparrow	Precision \uparrow	RMSLE \downarrow	Spearman's $\rho \uparrow$
Primary sc.			0.238	0.563		
Secondary sc.			0.476	0.704		
EC ₅₀ error					0.334	
i.i.d.	Sequence	Mean model			0.899 (0.025)	
		Boltz-2	0.108 (0.033)	0.541 (0.117)	1.110 ^a (0.037)	0.148 (0.052)
		ASMI-Reg	0.621 (0.048)	0.692 (0.047)	1.213 (0.135)	0.399 (0.122)
		ASMI-DR	0.671 (0.016)	0.773 (0.028)	0.725 (0.070)	0.648 (0.065)
		all	0.652 (0.028)		0.772 (0.120)	0.553 (0.148)
	Molecule	screening only	0.134 (0.103)		0.950 (0.187)	0.077 (0.138)
		ASMI-Reg	0.398 (0.112)	0.506 (0.142)	1.543 (0.512)	0.150 (0.281)
		ASMI-DR	0.481 (0.031)	0.642 (0.038)	0.761 (0.150)	0.470 (0.119)
		all w/o screening	0.358 (0.088)		0.755 (0.085)	0.531 (0.142)
		all w/ screening	0.284 (0.090)		0.749 (0.042)	0.469 (0.068)
	Cluster	ASMI-Reg	0.238 (0.123)	0.362 (0.113)	1.889 (0.481)	-0.145 (0.158)
		ASMI-DR	0.218 (0.043)	0.461 (0.162)	1.170 (0.269)	0.040 (0.150)
		all w/o screening	0.012 (0.060)		1.014 (0.312)	0.127 (0.159)
		all w/ screening	0.083 (0.098)		0.922 (0.152)	0.277 (0.148)
		ASMI-Reg	0.531 (0.054)	0.572 (0.086)	1.729 (0.347)	0.286 (0.152)
	Sequence	ASMI-DR	0.593 (0.074)	0.663 (0.098)	0.920 (0.096)	0.474 (0.116)
		all w/o screening	0.469 (0.085)		0.916 (0.070)	0.406 (0.035)
		all w/ screening	0.547 (0.060)		0.895 (0.152)	0.428 (0.137)
		ASMI-Reg	0.395 (0.082)	0.548 (0.151)	1.561 (0.371)	0.154 (0.107)
		ASMI-DR	0.398 (0.077)	0.572 (0.115)	0.818 (0.154)	0.298 (0.116)
	Molecule	all w/o screening	0.309 (0.091)		0.798 (0.112)	0.154 (0.135)
		all w/ screening	0.227 (0.065)		0.748 (0.044)	0.274 (0.114)

1340 ^aDue to the low MCC, the evaluation is also done on incorrectly classified pairs.
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350 to the boundaries of the sampling region. Indeed, if screening is performed at a high concentration
 1351 $c_s \approx C_{high}$, then without access to the inactive dose-response data, which provides inactive samples
 1352 $\{(s^i, m^i, c^{i,j}), L^{i,j} = 0\}$ for all $c^{i,j} \in [C_{low}, C_{high}]$, the model only has access to active examples
 1353 at $c_s \approx C_{high}$. In future work, we aim to address this limitation by adjusting the sampling strategy
 1354 for the screening data.
 1355

1356 A.8 EC₅₀ ORDER EVALUATION

1357 According to the primacy coding theory in olfaction (Wilson et al., 2017; Zwicker, 2019), the order
 1358 of activation of olfactory receptors plays a pivotal role in the odour perception of a molecule. To
 1359 assess the ability of the model to assign the rank, we evaluate the mean Spearman’s rank correlation
 1360 for individual molecules and proteins in Table A5. While the rank correlation per protein reaches a
 1361 level comparable to the correlation among all the pairs (ASMI-DR in Table A5), the correlation per
 1362 molecule is 40% lower in the i.i.d. case. Notably, the model achieves a higher ρ per molecule for
 1363 novel molecules, but it fails to predict the order of activation per molecule when considering a new
 1364 protein sequence.
 1365

1366 Table A5: EC₅₀ order evaluation. Spearman’s ρ is the rank correlation between the EC₅₀ estimated
 1367 from the ASMI-DR model predictions and the experimentally measured values. Rows *per molecule*
 1368 and *per protein* correspond to the mean of correlation per molecule and per protein, respectively.
 1369 The standard deviation of 5 runs is given in parentheses.
 1370

Datacase		Name	MCC \uparrow	Precision \uparrow	RMSLE \downarrow	Spearman’s $\rho \uparrow$
i.i.d.	Sequence	ASMI-Reg	0.621 (0.048)	0.692 (0.047)	1.213 (0.135)	0.399 (0.122)
		ASMI-DR per molecule	0.671 (0.016)	0.773 (0.028)	0.725 (0.070)	0.648 (0.065)
		per sequence				0.319 (0.225)
	Molecule	ASMI-Reg	0.398 (0.112)	0.506 (0.142)	1.543 (0.512)	0.150 (0.281)
		ASMI-DR per molecule	0.481 (0.031)	0.642 (0.038)	0.761 (0.150)	0.470 (0.119)
		per sequence				-0.134 (0.063)
Single	Cluster	ASMI-Reg	0.238 (0.123)	0.362 (0.113)	1.889 (0.481)	-0.145 (0.158)
		ASMI-DR per molecule	0.218 (0.043)	0.461 (0.162)	1.170 (0.269)	0.040 (0.150)
		per sequence				0.167 (0.357)
		ASMI-Reg	0.531 (0.054)	0.572 (0.086)	1.729 (0.347)	0.286 (0.152)
		ASMI-DR per molecule	0.593 (0.074)	0.663 (0.098)	0.920 (0.096)	0.474 (0.116)
		per sequence				0.244 (0.144)
	Cluster	ASMI-Reg	0.395 (0.082)	0.548 (0.151)	1.561 (0.371)	0.154 (0.107)
		ASMI-DR per molecule	0.398 (0.077)	0.572 (0.115)	0.818 (0.154)	0.298 (0.116)
		per sequence				0.246 (0.244)
		ASMI-Reg				0.150 (0.170)
		ASMI-DR				
		per sequence				