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ABSTRACT

ML models have revolutionised structural biology and significantly advanced drug
discovery, yet they struggle with predicting the ligand-induced activity of G-
protein coupled receptors (GPCRs). GPCR proteins are cellular membrane ”sen-
sors”, which trigger a cascade of intracellular processes upon binding a diverse
set of molecules. Human GPCRs account for nearly 30% of targets of approved
drugs, and approximately half of them are olfactory receptors (ORs). Beyond their
role in smell perception, ORs are increasingly linked to diseases such as obesity,
diabetes, asthma, and cancer. The core interest and difficulty in modelling the
molecule-induced response of ORs and GPCRs lie in predicting activity and po-
tency (i.e. half maximal effective concentration, EC50). In this paper, we propose
a new way of modelling these properties. Instead of direct regression on EC50
values, we mimic in vitro dose-response assays by sampling binary activity labels
for a protein-molecule pair (s,m) at a molecular concentration c. Then we de-
sign a novel model that learns the activation probability P (active|s,m, c) at any
given c. Finally, querying the model across concentrations enables fitting a logistic
curve, from which both activity (curve maximum) and EC50 (inflection point) are
derived. On a challenging M2OR dataset, our framework improves activity pre-
diction by 10% over the state-of-the-art. For EC50 estimation, it achieves an error
of 0.725 log units, 40% lower compared to a regression baseline, and surpasses the
affinity module of Boltz-2 by 0.385 log units. Notably, our approach effectively
identifies novel active scaffolds, demonstrating its potential to replace expensive
in vitro primary screening. The proposed framework is protein-agnostic, and we
observe state-of-the-art performance in estimating activity and dissociation con-
stant (Kd) on standard drug-target affinity benchmarks, DAVIS and BinidngDB.

1 INTRODUCTION

Machine learning models in protein biology (Jumper et al., 2021; Watson et al., 2023; Passaro et al.,
2025) have brought unprecedented level of exploration, significantly speeding up drug discovery
pipelines (Du et al., 2024). Among protein families, G-protein coupled receptors (GPCRs) hold
a prominent place as highly important drug targets due to their role in transmitting the chemical
signals from the external environment to the cell. However, modelling the molecule-induced activity
of these proteins is notoriously difficult as subtle differences in molecular structure can significantly
alter protein-ligand interactions, even transforming an agonist into an inverse agonist (Kosar et al.,
2024; Qin et al., 2022). Similarly, a single point mutation can alter the activity (de March et al.,
2018). All these small variations can drastically change the cellular response, leading to differences
in efficacy (the highest response) and EC50 (the concentration needed to achieve 50% of the highest
response) (Figure 1) (Heydenreich et al., 2023). In particular, accurate estimation of EC50 is crucial
in determining drug dosage and avoiding off-target responses (Zhang et al., 2024).

The largest subfamily of GPCRs are olfactory receptors (ORs), which constitute 49% of all genes
encoding GPCRs (Bjarnadóttir et al., 2006; Niimura & Nei, 2003). For a given odourant, the specific
pattern of activated ORs serves as a signature that encodes its odour identity (Malnic et al., 1999;
Nara et al., 2011) and ORs with a lower EC50 appear to have a greater importance in this signature
(Junek et al., 2010; Spors & Grinvald, 2002; Wilson et al., 2017). Beyond their role in olfaction,
these receptors have a widespread presence throughout the body. After the first report of their
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expression in testes (Parmentier et al., 1992), OR transcripts have been found in various tissues,
including heart, kidney, liver, lungs, prostate, brain, or leukemia cells. Thence, ORs hold a promise
for potential therapeutic and diagnostic applications in diseases such as asthma, obesity, diabetes,
and cancer (Lee et al., 2019).

Currently, the method of choice to characterise molecule-induced OR activity are in vitro experi-
ments, which consist of preliminary screening rounds followed by a detailed dose-response assay
that allows estimating EC50 and efficacy. However, despite the progress in the throughput of in vitro
assays driven by engineered heterologous systems (Saito et al., 2004; 2009), available data covers
only a small fraction of the millions of possible combinations between molecules and receptors. The
most comprehensive database of in vitro experiments (Lalis et al., 2024a) lists 6157 dose-response
assays, of which only 1663 observe a cellular response and estimate EC50. Thus, the best bet to
reveal the activity of OR-molecule pairs are in silico approaches and a model capable of predicting
EC50 for any given pair is essential to fully characterise the odour coding and drugability of ORs.

In this work, we confront the standard paradigm of separate EC50 and activity prediction tasks.
We draw an analogy to how the dose-response curves are fitted in vitro, and instead of treating
EC50 prediction as a regression, we model the underlying biological experiment. In dose-response
assays, the response of a protein-molecule pair is measured in several molecular concentrations. The
activity is then assessed by the highest response, and the EC50 is estimated by fitting a generalised
logistic curve to these measurements. In analogy, we design a model that predicts the probability of
activation for a protein-molecule pair at a given molecular concentration. By querying this model at
several concentrations – mimicking an experimental dose-response assay – we can then fit a logistic
curve to these predictions. This unified framework yields both the final activation decision (the
curve’s maximum) and the estimated EC50 (the curve’s inflection point).

Following this approach, we outperform the current state-of-the-art in activity decision task by 10%
on a challenging M2OR dataset. Strikingly, by decomposing the difficult regression problem into a
series of simpler binary classifications, our approach reduces the EC50 estimation error by 40% com-
pared to a traditional regression baseline. In addition, it outperforms in vitro screening campaigns in
predicting the response of protein variants and novel molecules within the training chemical space,
while outperforming primary screening even in the challenging search for new active scaffolds. The
proposed framework, primarily designed for GPCRs, also demonstrates high performance in disso-
ciation constant (Kd) estimation for other types of proteins. On two drug-target affinity datasets, our
approach achieves state-of-the-art Kd estimation error while increasing the activity decision perfor-
mance by 7% and 3% compared to models specifically designed for kinase inhibition.

2 RELATED WORK

Despite the potential of ORs as therapeutic targets and their key role in mammalian olfaction, there is
only a limited number of models designed to predict OR-molecule activity, and no previous approach
addresses the challenge of predicting EC50. The first studies employ SVM (Kowalewski & Ray,
2020) and random forest (Cong et al., 2022) to predict the responses of limited subsets of ORs
and molecules with sufficient in vitro data. A subsequent work (Gupta et al., 2021) uses BiLSTM
(Graves & Schmidhuber, 2005) to predict the activity of any OR-molecule pair based on SMILES
and the receptor’s primary structure. The current state-of-the-art (Hladiš et al., 2023) abstracts the
OR-molecule interaction as modelling a molecule in a protein-specific environment. It represents
the molecular topology as a graph and copies the receptor’s [CLS] token from ProtBERT (Elnaggar
et al., 2021) to all nodes in the graph. The model then employs a tailored graph neural network
to predict the probability that a molecule induces the activity of a receptor. Recently, MAARDTI
(Zhan et al., 2025), reported as the best-performing model on drug-target interaction benchmarks,
has been applied to predict olfactory receptors’ activation. Although competitive, it falls short of the
current SOTA, highlighting the challenging nature of OR-molecule activity prediction.

Recently, dose–response modelling has also been investigated for drug–cell inhibitory effects
(Alonso Campana et al., 2024). In that setting, the authors assume access to experimental read-
outs at each concentration and explicitly fit the entire dose–response curve. In contrast, our frame-
work operates in a substantially more restricted regime, where the curve is unknown and only the
inflection point of the 4-parameter logistic model (i.e., the EC50) or the information that no re-
sponse is observed is available. Building on this limited supervision, we propose a novel training
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Figure 1: Example of a dose-response curve for an active (grey/red), and inactive (black) pair. The
grey line corresponds to the true active curve, which is unknown except for the EC50 value (red
cross). The red and black lines are concentration intervals corresponding to the training labels on
the right y-axis for active and inactive pairs, respectively. The efficacy M , basal activity b, and half
response M+b

2 are experimentally measured and not available in the data. In Algorithm 1, a soft
label L ∼ Unif(0, 1) is sampled for concentrations c ∈ (EC50 − ϵL, EC50 + ϵU ).

and inference strategy that accurately predicts both inflection point and activity decision for a given
protein-molecule pair.

3 DOSE-RESPONSE CURVE

The relationship between the concentration of a compound and the receptor-mediated response of a
cell is typically assessed using functional assays, which are described by dose-response curves. For
concentration c on a logarithmic scale, the dose-response curve can be characterised by a generalised
logistic model (Neubig et al., 2003):

g(c) =
M − b

1 + 10−q(c−EC50)
+ b (1)

where M is the efficacy, b is the basal activity, q is the slope, and EC50 is the 50% effective concen-
tration and the inflection point of the curve. To estimate the parameters of the curve, several con-
centrations of the compound over several orders of magnitude are tested in vitro (Mainland et al.,
2014; Saito et al., 2009). However, due to different readouts depending on experimental settings
(e.g. luciferase, Ca2+, etc.), raw dose-response curve data are rarely available, and most data sources
publish only EC50 values or information that there is no response and the curve is flat. Formally, we
set EC50 = +∞ for inactive pairs.

4 ESTIMATING EC50 AS BINARY DECISION TASK

A widely used approach to train a model to predict EC50 is to use l2 loss and estimate the values
as a regression. In contrast, we propose an alternative strategy that formulates EC50 prediction as a
classification task. Similarly to how dose-response curves are obtained from in vitro experiments,
we model the protein-molecule response at a given molecular concentration, and estimate EC50 by
fitting (1) to predictions at concentrations spanning several orders of magnitude.

We assume that the model has an access to EC50 and the other parameters of the curve 1 are un-
known. However, EC50 provides a way to draw surrogate decision samples from a normalised
dose-response curve f(c) = g(c)−b

M−b . The monotonicity of the curve implies that for low concen-
trations c ≪ EC50 the protein-molecule pair would be considered inactive in vitro, whereas for
high concentrations c≫ EC50 the pair would be active (Figure 1). Therefore, given a dataset D =
{(si,mi), ECi

50}i of EC50 values per each protein-molecule pair (si,mi), we can construct a binary
training data B = {(si,mi, ci,j), Li,j}i,j where for each concentration ci,j ∼ Unif(Clow, Chigh)
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we sample a decision Li,j ∈ {0, 1} whether the pair would be considered active. Then we train a
model on B, that predicts probability of activation at a given concentration P (active|s,m, c). Fi-
nally, we estimate EC50 of a pair (si,mi) by fitting (1) to predictions {P (active|si,mi, ci,j)}j at
several concentrations, similarly to how the dose-response curve is fitted from in vitro experiments.
By definition, the probability of activation at c = EC50 corresponds to 0.5, and we uniformly sam-
ple Li,j ∼ Unif(0, 1) for concentrations around EC50 based on margins ϵL and ϵU . See detailed
training and inference procedures in Algorithm 1 and Algorithm 2. Inherently, there is an imbalance
between the number of active and inactive pairs and this imbalance is changed in each batch due
to the sampling. Thus, we use dynamic sample weights calculated per each batch, with the details
given in Section A.2.

The above strategy provides a way to reformulate the traditional regression problem as a classifica-
tion task that draws samples from a binary surrogate of a normalised dose-response curve. Although
M and b used for curve normalisation are generally different for each protein-molecule pair, nor-
malisation f(c) = g(c)−b

M−b only rescales the y-axis, and the inflection point (i.e., EC50) remains the
same when the curve is fitted during inference in Algorithm 2.

Beyond active pairs with a reported EC50, a dose–response assay may show an increased response,
but the EC50 lies outside the tested concentration range. Therefore, the curve cannot be fitted and
only the lower bound ct on the EC50 is available in the data. In such cases, negative samples can still
be drawn for c < ct and we provide further details on this case in Section A.7.

5 MODEL

To estimate the concentration-dependent activity of a protein-molecule pair, we consider a model
that has 3 inputs: molecular topology m, its concentration c, and sequence of amino acids s, and the
output is the probability P (active|s,m, c) that the interaction between the receptor and the molecule
at a given concentration c will trigger a response in the cell. We refer to this model as ASMI-DR for
Attention-based Sequence Molecule Interaction for Dose-Response prediction.

We represent the molecular input as a graph m = {V, E}, where V is the set of nodes (atoms)
and E the set of edges (bonds). Each node and edge is initialised by feature vectors xv and eu,v ,
respectively, containing information such as atomic number, bond type, etc. (Table A1). To enhance
the expressive power of the network, the graph is oriented and there are two edges eu,v and ev,u
between each pair of nodes u and v (Yang et al., 2019). For protein sequence representation, we
use ESM-2 (Lin et al., 2023) with frozen weights and the input for a sequence of size ns is the
embedding of the last ESM-2 layer with dimensions sin ∈ Rns×d, where d is the embedding size.

Combining molecule and protein inputs in an early stage of processing turns out to be beneficial
for performance (Hladiš et al., 2023). We build upon this observation in the architecture outlined in
Figure 2. The molecular graph is first transformed by the GNN embedding block (Figure A1) and,
together with the sequence embedding, they are processed via a series of cross blocks. Each cross
block is composed of a node update block (Figure A2a) and a sequence update block (Figure A2b).
The core of these blocks is multi-head cross-attention, which learns changes in the molecular node
and amino acid embeddings induced by the interactions with the sequence and molecule, respec-
tively. In the node update block, node embeddings are used as queries in cross-attention, and amino
acid embeddings are keys and values. The signal is then passed through the residual connection and
feed forward network (FFN) and finally the updated node representation is processed by a graph
isomorphism network (GIN) (Xu et al., 2019), which allows exploiting the graph structure and edge
information that are not considered in cross-attention. The sequence update block is designed anal-
ogously. The sequence embedding is transformed in the cross-attention layer, where amino acids
are queries, and molecular nodes are keys and values. The updated sequence representation is then
processed by a self-attention layer (Vaswani et al., 2017) which can be interpreted as a graph neural
network applied to a fully-connected graph where all amino acids are linked to each other.

An additional input to the cross blocks is concentration c, which is used in the form of auxiliary
query features in cross-attention. It is first mapped to a vector cw ∈ Rdc where w is learned, but its
norm depends on the input concentration. Then cw is concatenated to each query just before multi-
head cross-attention (green rectangle in Figure A2), allowing the model to learn the concentration-
dependent protein-molecule interaction.
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Figure 2: Outline of ASMI-DR architecture. The inputs to the model are molecular graph m with
node features X and edge features E, molecular concentration c, and sequence embedding sin.
The molecular graph is passed through the GNN embedding layer and then processed together with
the sequence representation and concentration in a series of cross blocks. In each cross block, the
concentration-dependent interaction between the molecule and the protein is modelled by iteratively
updating node and sequence embeddings in update blocks, described in Figure A2. The updated
node and sequence representations are then concatenated and passed through multi-head attention
and finally two output heads for response prediction and masked language modelling (MLM).

Finally, after N cross blocks, the node and sequence representations are combined in the mixing
block followed by the output heads (Figure A3). Here, node and amino acid embeddings are con-
catenated together and passed to multi-head self-attention, followed by residual connection and FFN.
In cross-attention, the softmax is either performed per nodes or per amino acids and the model is
restricted to learning the interaction between the molecule and the sequence. In contrast, softmax in
the mixing block is performed through nodes and amino acids simultaneously and could give weight
to self-interactions within the molecule and sequence (yellow and purple rectangles in Figure A3).

The final concatenated embedding from the mixing block is passed to a pooling layer1 and MLP
to obtain the final prediction. In addition, the sequence representation is extracted from the output
of the mixing block and used for the masked language modelling (MLM) task (Figure A3) (Devlin
et al., 2019). MLM has been shown to extract protein structure information from the sequence of
amino acids (Vig et al., 2021; Lin et al., 2023) and to avoid forgetting this information during train-
ing, we add the MLM task as an auxiliary training goal. We employ a common strategy to replace
an amino acid by a [MASK] token with 15% chance and then predict the probability ŷimlm that the
given amino acid was at the position i in the original sequence. Apart from retaining the structural
information, masking amino acids also serves as a training perturbation to avoid overfitting.

6 DATASET

We train and evaluate the proposed algorithm on M2OR version v1.2.0 (Lalis et al., 2024a), which is
a curated dataset gathering functional assay data on 77611 experiments for 1402 protein sequences
and 771 molecules. After preprocessing described in Section A.4, M2OR contains 5773 EC50 sam-
ples out of which 1427 are active and 4346 correspond to inactive pairs. In addition, preprocessed
M2OR lists 60256 primary and secondary screening experiments, which are further discussed in
Section A.7. To further validate our framework, we evaluate ASMI-DR on drug-target affinity (DTA)
datasets: DAVIS Davis et al. (2011) and BindingDB (Kd) Gilson et al. (2015); Huang et al. (2021),
which after preprocessing gather 25772 and 42234 experimentally measured dissociation constants

1We use attention pooling from Eqn. (2) in (Hladiš et al., 2023).
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(Kd), respectively. Furthermore, we evaluate a concentration-free version of the proposed model on
a drug-target interaction (DTI) benchmark, KIBA (Tang et al., 2014).

7 EXPERIMENTS

We perform a series of experiments to validate our training and inference algorithms and the pro-
posed model architecture. We consider two evaluation tasks: activity decision prediction and EC50
(or Kd) estimation. The latter, presented in Section 7.2 and Section 7.3, is assessed by calculating
the root mean squared log error (RMSLE) between the predictions and the experimentally measured
values for the active pairs in the test set. The former, discussed in Section 7.1, evaluates whether
the decision about the activity based on Algorithm 2 aligns with the experimental activity decision.
Finally, in Section A.7 we consider extending our pipeline with screening data and, in Section A.6,
we test a version of the ASMI-DR architecture without concentration input on DTI benchmarks.

The test sets in all experiments contain approximately 20% of the data and they comprise only dose-
response assays, excluding any screening campaigns. We perform 5 cross-validation runs for each
experiment. We use 2 cross blocks, sequences are padded to ns = 512 and the sequence embedding
is initialised by ESM-2 with 33 layers and d = 1280.

Dose-response curve fit. To run the inference in Algorithm 2, we predict the responses of the
protein-molecule pairs at molecular concentrations spanning range 10−8M to 10−2M for M2OR
and 10−12M to 10−4M for DAVIS and BindingDB. This covers 98.5% of all available EC50 values
in M2OR, and 100% and 99.9% of Kd values in DAVIS and BindingDB, respectively. We exclude
values outside of these ranges from test sets.

Baselines. For the activity decision evaluation, we compare our approach with several DTI models
and previous works that predict OR-molecule activation without taking into account concentration:
HyperAttentionDTI (Zhao et al., 2021), MolTrans (Huang et al., 2020), MAARDTI (Zhan et al.,
2025), BiLSTM (Gupta et al., 2021), GNN-CLS (Hladiš et al., 2023). We also report the perfor-
mance of a version of our architecture, where we omit the concentration input to the model (ASMI-
Prob). For M2OR, we train this model on the pair table which is available as a part of the dataset
(Lalis et al., 2024a). To consider receptors’ tertiary structure, we evaluate the performance of the
probability of binding from the state-of-the-art cofolding model Boltz-2 (Passaro et al., 2025) and
the decision based on docking using SMINA with Vinardo scoring function (Masters et al., 2020;
Quiroga & Villarreal, 2016) on AlphaFold2 (Jumper et al., 2021) structures (see details of the proto-
col in Section A.5.2). We perform docking on 868 (300 active and 568 inactive) pairs corresponding
to the OR sequences available at AlphaFold DB (Varadi et al., 2023; 2021). We generated up to
9 poses and use the Youden index estimated on 10% of the data to transform docking scores into
activity decisions. Finally, we compare the results to the widely used experimental protocol, where
we consider in vitro screening runs as a predictor for the dose-response activity decision.

As a baseline for the EC50 and Kd estimation, we compare our approach to state-of-the-art DTA
models: DeepDTAGen (Shah et al., 2025), DTIAM (Lu et al., 2025), and ProSmith (Kroll et al.,
2024). Furthermore, to rule out the influence of the architecture on the evaluation of our framework,
we also report the performance of the concentration-free version of ASMI architecture trained in a
regression task (ASMI-Reg). During training of regression baselines on M2OR, we set the EC50
of inactive pairs to 1M, and we also report the performance of this model in the activity decision
task by considering pairs with the estimated EC50 > 10−1M as inactive. Similarly for DAVIS
and BindingDB, we follow standard practices (Huang et al., 2021) and we set Kd of inactive pairs,
i.e., the pairs where no interaction was observed in the tested concentration range, to 10 µM. We
consider pairs with the estimated Kd > 7.94µM as inactive2.

7.1 ACTIVITY DECISION

A major goal of a dose-response experiment is to assess whether a molecule ”activates” a given
protein of interest, i.e., whether the interaction between the protein and the molecule at any high-
enough concentration elicits a response in the cell. We assess the capability of our approach in

210µM corresponds to 1 log(µM) unit and 7.94µM to 0.9 log(µM) units.
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Table 1: Evaluation of the activity decision task. Primary sc. and Secondary sc. stand for primary
and secondary in vitro screening, respectively. Naive is the performance using the frequency statis-
tics, i.e., P (active|s,m) = p̂sp̂m, where p̂s and p̂m are marginal probabilities for a given protein
and molecule, respectively (Lalis et al., 2024b). The results for MAARDTI are taken from the orig-
inal publication (Zhan et al., 2025) and the results for BiLSTM, MolTrans, HyperAttentionDTI, and
CLS-GNN are taken from (Hladiš et al., 2023). Standard deviation is given in parentheses.

Model Precision Recall F-score AveP MCC
Primary sc. 0.56 0.40 0.47 - 0.24
Secondary sc. 0.70 0.45 0.55 - 0.48

Dockinga 0.45 (0.02) 0.65 (0.11) 0.53 (0.03) 0.42 (0.01) 0.22 (0.02)

Boltz-2 0.54 (0.12) 0.05 (0.01) 0.09 (0.01) 0.38 (0.03) 0.11 (0.03)

Naive 0.27 (0.03) 0.60 (0.05) 0.37 (0.02) 0.22 (0.02) 0.25 (0.03)

BiLSTM 0.34 0.71 0.46 - -
MolTrans 0.40 (0.05) 0.82 (0.03) 0.56 (0.05) 0.64 (0.07) 0.48 (0.04)

MAARDTI 0.70 0.60 0.64 0.70 0.56
HyperAttentionDTI 0.61 (0.03) 0.77 (0.02) 0.68 (0.02) 0.74 (0.02) 0.58 (0.02)

GNN-CLS 0.69 (0.02) 0.70 (0.04) 0.69 (0.02) 0.78 (0.01) 0.61 (0.02)

ASMI-Prob 0.72 (0.07) 0.73 (0.04) 0.72 (0.02) 0.80 (0.04) 0.63 (0.04)

ASMI-Reg 0.69 (0.05) 0.72 (0.04) 0.71 (0.04) 0.70 (0.01) 0.62 (0.05)

ASMI-DR 0.77 (0.03) 0.72 (0.05) 0.75 (0.02) 0.75 (0.02) 0.67 (0.02)

aPerformance on 781 pairs on average corresponding to the OR sequences available at AlphaFold DB.

this decision task by using the fitted curve’s maximum M̂ from Algorithm 2. We consider a given
protein-molecule pair to be ”active” if M̂ > 0.5 and ”inactive” otherwise. If the curve cannot be
fitted, we consider the pair to be inactive. Due to the imbalanced activity label distribution, we use
Matthews Correlation Coefficient (MCC) as the main metric in the activity decision experiments.

Comparison with the state-of-the-art. We benchmark ASMI-DR trained using our pipeline
against existing models for predicting OR-molecule activity, with results summarised in Table 1.
Our approach demonstrates superior performance, achieving a 10% improvement in MCC over
the state-of-the-art GNN-CLS. While GNN-CLS and ASMI-Prob show higher Average Precision
(AveP), they lag behind ASMI-DR in other key metrics, including F-score and MCC. Furthermore,
our approach outperforms its regression variant, ASMI-Reg, by 8% in MCC.

Novel protein sequence generalisation. To assess the ability of our pipeline to generalise to new
protein sequences, we adopt the out-of-distribution (OOD) evaluation procedure from Hladiš et al.
(2023), and report the results in two scenarios. The first scenario, Sequence–Single in Table 2,
evaluates intra-family generalisation. In this setup, randomly chosen protein sequences are held out
exclusively for testing, ensuring the model is evaluated on unseen but related proteins. This mimics
a realistic scenario where the model must predict responses for new members of a protein family
based on sequence similarity. The second and more challenging scenario, Sequence–Cluster in Table
2, tests inter-family generalisation. Here, we cluster proteins by sequence similarity and hold out 5
entire clusters for testing. This forces the model to extrapolate to protein families that are dissimilar
to any sequence seen during training.

As can be seen in Table 2, ASMI-DR outperforms previous approaches in the Single scenario,
surpassing the second-best GNN-CLS model by 15%. In the demanding Cluster scenario, ASMI-DR
ranks second after its regression variant, and it surpasses the current state-of-the-art.

Novel compound generalisation. Analogously to the generalisation to new protein sequences,
we evaluate the ability of our approach to accurately predict the responses of previously unseen
compounds. The first scenario, Molecule–Single in Table 2, simulates the generalisation to small
changes in the molecular structure, a situation of particular interest in olfaction where small struc-
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Table 2: EC50 estimation and out-of-distribution evaluation. Mean model stands for a naive baseline
that assigns the mean EC50 to all protein-molecule pairs. EC50 error is the experimental error and the
performance lower bound. The results for MAARDTI and GNN-CLS are taken from the respective
publications. Values in parentheses represent standard deviation.

Datacase Name MCC ↑ Precision ↑ RMSLE ↓ Spearman’s ρ ↑
in

vi
tr

o Primary sc. 0.238 0.563
Secondary sc. 0.476 0.704

EC50 error 0.334

i.i
.d

.

Mean model 0.899 (0.025)

Boltz-2 0.108 (0.033) 0.541 (0.117) 1.110a (0.037) 0.148a (0.052)

MAARDTI 0.555 0.700
GNN-CLS 0.605 (0.02) 0.689 (0.02)

DTIAM 0.658 (0.029) 0.646 (0.053) 1.516 (0.093) 0.363 (0.022)

DeepDTAGen 0.592 (0.043) 0.631 (0.079) 1.417 (0.243) 0.224 (0.065)

ProSmith 0.654 (0.030) 0.649 (0.041) 1.402 (0.111) 0.355 (0.045)

ASMI-Reg 0.621 (0.048) 0.692 (0.047) 1.213 (0.135) 0.399 (0.122)

ASMI-DR 0.671 (0.016) 0.773 (0.028) 0.725 (0.070) 0.648 (0.065)

Se
qu

en
ce Si

ng
le

MAARDTI 0.323 0.757
GNN-CLS 0.417 (0.01) 0.636 (0.07)

ASMI-Reg 0.398 (0.112) 0.506 (0.142) 1.543 (0.512) 0.150 (0.281)

ASMI-DR 0.481 (0.031) 0.642 (0.038) 0.761 (0.150) 0.470 (0.119)

C
lu

st
er MAARDTI 0.147 0.545

GNN-CLS 0.088 (0.06) 0.535 (0.12)

ASMI-Reg 0.238 (0.123) 0.362 (0.113) 1.889 (0.481) -0.145 (0.158)

ASMI-DR 0.218 (0.043) 0.461 (0.162) 1.170 (0.269) 0.040 (0.150)

M
ol

ec
ul

e Si
ng

le

MAARDTI 0.409 0.633
GNN-CLS 0.533 (0.07) 0.657 (0.11)

ASMI-Reg 0.531 (0.054) 0.572 (0.086) 1.729 (0.347) 0.286 (0.152)

ASMI-DR 0.593 (0.074) 0.663 (0.098) 0.920 (0.096) 0.474 (0.116)

C
lu

st
er MAARDTI 0.399 0.795

GNN-CLS 0.334 (0.07) 0.544 (0.07)

ASMI-Reg 0.395 (0.082) 0.548 (0.151) 1.561 (0.371) 0.154 (0.107)

ASMI-DR 0.398 (0.077) 0.572 (0.115) 0.818 (0.154) 0.298 (0.116)

aDue to the low MCC, the evaluation is also done on incorrectly classified pairs.

tural changes can lead to a significant difference in odour perception (Sell, 2006). It is constructed
by randomly selecting molecules and placing all their occurrences in the test set. The second, and
more challenging scenario, Molecule–Cluster in Table 2, tests generalisation to new chemical scaf-
folds. For this, we cluster compounds by structural similarity using the Tanimoto coefficient and
hold out 5 clusters for testing, forcing the model to extrapolate to unseen scaffolds.

According to the results presented in Table 2, ASMI-DR is on par with the previous approaches in
the Cluster scenario, and it outperforms the best baseline by 11% in the Single scenario. Notably,
it scores only 2% lower in MCC in the Single scenario compared to the current state-of-the-art
evaluated on the less challenging i.i.d. case.

Comparison to structure models. Table 1 reveals that docking and Boltz-2 show poor perfor-
mance in predicting activity, and ASMI-DR outperforms them by a large margin. Although, the
advantage of these approaches is that they are zero-shot, we observe that even for OOD evaluation,
ASMI-DR achieves better performance in terms of MCC in all OOD scenarios except Sequence -
Cluster, where it is on par with docking and still outperforms Boltz-2. A possible reason for the
low performance of structure-based models is, that both approaches are designed to predict binding
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events, and in GPCRs, binding of a molecule to the protein is a necessary but not sufficient condition
for the activation (Zhang et al., 2024).

Comparison to in vitro screening. A standard procedure in the wet lab is to perform primary and
secondary screening rounds to select candidates for dose-response experiments (additional details
in Section A.7). In the context of activity decision, one can view screening as a predictor and ask
the question: what is the performance of our approach compared to the screening rounds? Notably,
ASMI-DR outperforms costly in vitro primary and secondary screening rounds in an i.i.d. evaluation
(Table 1). Even in OOD settings (Table 2), ASMI-DR outperforms the screening rounds in cases
where novel but structurally similar molecules/proteins to the training ones are tested (Molecule–
Single and Sequence–Single). In case new molecular scaffolds are tested on previously explored
proteins (Molecule–Cluster), ASMI-DR falls behind secondary screening, but outperforms primary
screening by a large margin of 67% in MCC.

7.2 EC50 ESTIMATION

The second evaluation criterion is the pipeline’s ability to accurately predict EC50. We compare the
performance of the ASMI-DR trained using Algorithm 1 to state-of-the-art DTA models DTIAM,
DeepDTAGen and ProSmith, to ASMI-Reg trained in a regression task, and to a naive baseline,
which assigns a mean of EC50 values in the training set to all test set pairs. We also report the in
vitro EC50 measurement error as a lower bound. The reported performance is evaluated on protein-
molecule pairs that the models correctly identified as active, since EC50 for inactive pairs cannot be
experimentally measured and it is replaced by an arbitrary value of 1M in the regression training.

The results of the EC50 evaluation in Table 2 reveal that ASMI-DR outperforms its regression coun-
terpart ASMI-Reg by 40% in RMSLE, and it surpasses all the evaluated DTA baselines by half an
error. Affinity module of Boltz-2 also outperforms the regression model, but the error of ASMI-DR
remains 0.385 log units below Boltz-2. A similar observation holds even for the OOD evaluation,
where our pipeline consistently outperforms its regression variant by a margin and achieves a lower
error than Boltz-2 in all OOD scenarios, except for the most challenging Sequence–Cluster scenario.
The same conclusion can be drawn for Spearman’s rank correlation, which is of a particular inter-
est in olfaction, where receptors with the lowest EC50 encode odour identity (Wilson et al., 2017;
Zwicker, 2019). To further analyse the rank correlation, we evaluate the mean Spearman’s ρ per
sequence/molecule in Table A5 in Section A.8.

Hladiš et al. (2023) explore the possibility to use screening data in the activity decision task. Algo-
rithm 1 treats each triplet (s,m, c) independently, and as such, it allows for a principled integration
of screening data in the model training. In Section A.7, we extend Algorithm 1 to include screen-
ing data and we evaluate it in Section A.7.1. Although screening constitutes the majority of the
M2OR dataset, its integration does not improve the performance in the activity decision task and it
marginally lowers the error in the EC50 estimation task (Table A4). A possible explanation is that for
screening at concentration cs, the labels are sampled ”one-sided” in a subset of the sampling region
[Clow, cs] or [cs, Chigh]. This leads to a severe label imbalance, especially when cs is close to the
sampling region boundaries.

7.3 KD ESTIMATION

To further challenge the proposed framework, we compare the performance of ASMI-DR with state-
of-the-art DTA models on DAVIS and BindingDB datasets. In analogy with EC50 from GPCR
functional assays, Kd in log-units obtained via competitive binding assays can be modelled by the
generalized logistic curve 1 with decreasing slope q < 0 (Fabian et al., 2005). Thus, we can train
ASMI-DR by sampling label 1 for concentrations greater than Kd in Algorithm 1 and modelling
P (binding|s,m, c) instead of P (active|s,m, c).

As shown in Table 3, ASMI-DR achieves Kd estimation RMSLE that is on par with the best-
performing regression baseline ProSmith on both DAVIS and BindingDB (paired t-test p-values
of 0.106 and 0.315, respectively), while consistently outperforming all competing methods on the
activity decision metrics (MCC and precision). On BindingDB in particular, ProSmith exhibits a
tendency to assign overly low Kd values even to inactive pairs, which improves its RMSLE but leads
to reduced MCC. In contrast, ASMI-DR produces accurate activity predictions, achieving the high-
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Table 3: Kd estimation evaluation. Standard deviation is given in parentheses.

Dataset Model MCC ↑ Precision ↑ RMSLE ↓ Spearman’s ρ ↑

D
AV

IS
DTIAM 0.566 (0.014) 0.543 (0.013) 0.736 (0.010) 0.672 (0.017)

DeepDTAGen 0.642 (0.014) 0.691 (0.015) 0.788 (0.017) 0.617 (0.027)

ProSmith 0.631 (0.010) 0.619 (0.013) 0.688 (0.004) 0.700 (0.012)

ASMI-Reg 0.601 (0.048) 0.646 (0.063) 0.772 (0.057) 0.639 (0.023)

ASMI-DR 0.685 (0.005) 0.772 (0.016) 0.713 (0.028) 0.696 (0.014)

B
in

di
ng

D
B DTIAM 0.606 (0.026) 0.678 (0.021) 0.820 (0.020) 0.779 (0.009)

DeepDTAGen 0.722 (0.014) 0.827 (0.018) 0.865 (0.029) 0.748 (0.009)

ProSmith 0.607 (0.041) 0.678 0.033) 0.808 (0.026) 0.785 (0.013)

ASMI-Reg 0.446 (0.231) 0.620 (0.140) 0.926 (0.116) 0.699 (0.081)

ASMI-DR 0.745 (0.016) 0.839 (0.018) 0.834 (0.032) 0.774 (0.013)

est MCC on both datasets with only a marginal difference in RMSLE and Spearman’s ρ relative to
ProSmith.

Relative to its regression counterpart ASMI-Reg, ASMI-DR yields sizeable gains across all metrics,
highlighting the benefit of the proposed framework. Moreover, the MCC of ASMI-DR on DAVIS
also surpasses that of dedicated classification DTI models (Table A2), indicating that incorporating
the dose-response training objective not only preserves affinity estimation accuracy but also leads to
superior binary activity prediction.

8 CONCLUSION

In this study, we reformulate an EC50 regression task as a series of binary classifications that mimic
in vitro dose-response assays. Leveraging the monotonicity of the dose-response curve, we first
sample binary activity labels at a given molecular concentration, and then train a novel model ar-
chitecture that estimates the probability P (active|s,m, c) that a molecule activates a protein at a
concentration c. Querying this model at concentrations spanning several orders of magnitude en-
ables fitting a generalised logistic model 1, which yields both the final predicted activity (curve’s
maximum) and EC50 (curve’s inflection point) in a unified framework.

We demonstrate that training a model according to our proposed Algorithm 1 simultaneously out-
performs both state-of-the-art activity prediction models and EC50 regression baselines on the chal-
lenging M2OR dataset. The proposed pipeline even surpasses a common in vitro primary screening
in out-of-distribution settings, achieving errors below one log unit.

Algorithm 1 provides a principled way how to include screening outcomes in the model training.
However, a naive extension of the Algorithm 1 to screening data introduces a substantial label imbal-
ance at concentrations near the boundaries of the sampling interval, and a future work can refine the
sampling procedure for abundant screening data. While our predictions align well with experimen-
tal measurements, the current pipeline does not yet account for receptor inhibition or multi-ligand
interactions (e.g., allosteric modulation, competitive antagonism). It also introduces computational
overhead at inference time, as it requires multiple queries across different concentrations to esti-
mate a single EC50 value. However, the computational costs are substantially lower compared to
structure-based approaches such as Boltz-2, which ASMI-DR surpasses by 0.385 in RMSLE.

Olfactory receptors (ORs) form the largest subfamily of GPCRs – targets for nearly 30% of approved
drugs – yet 48% of tested OR sequences remain orphaned without a known ligand (Lalis et al.,
2024b). In olfaction, revealing the response of these proteins is crucial in deciphering the odour
coding and solving the ever-present challenge of smell prediction. Our approach opens a new avenue
for characterising both odour coding and the drugability of ORs.
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REPRODUCIBILITY STATEMENT

The anonymised code is attached with the submission or available here: https:
//drive.google.com/file/d/11d7RkYYG-vlY2OYnMPYhiLgaHKGpAdx4/view?
usp=drive_link. Preprocessed data and all splits used in the work can be downloaded from
the links in the readme. Data preprocessing steps are described in Section A.4. All baseline models
were either run with the default hyperparameters or the results were taken from the corresponding
publication, as indicated in table captions.
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Tomašević, Xiaoting Li, Rudolf L. Z. Ganzoni, Bilal Kicin, Lisa Reichert, Kacper J. Patej, Uxı́a
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A APPENDIX

A.1 SAMPLING PSEUDO-CODE

Algorithm 1: Training

Input: Dataset D = {(si,mi), Ai, li}i with
molecules mi, sequences si, EC50
value Ai, and activity label li

Input: Concentration range (L,U)
Input: Margins εL, εU
X = [], Y = []
for batch ∼ D do

for i, (m, s), A, label, in
enumerate(batch) do
/* Set negative examples

and truncate to (L,U)
if label = 0 then A← U + εL
if A > U + εL then A← U + εL
if A < L− εU then A← L− εU
/* Sample a concentration c

and a training label ltr
c ∼ Unif(L,U)
if c ≤ A− εL then ltr ← 0
else if c ≥ A+ εU then ltr ← 1
else ltr ∼ Unif(0, 1)
X[i]← (m, s, c), Y [i]← ltr

end
/* Get batch sample weights

based on probability of
drawing a label for a
given concentration.

W ← Get sample weights(batch)
/* Train as a standard

classification task

Ŷ ← model(X)

loss← loss func(Ŷ , Y,W )
/* Take gradient of the loss

and update model weights.
end

Algorithm 2: Inference
Input: Moleclue-sequence pair (m, s)
Input: Set C of concentrations uniformly

covering range (L,U)
Function DS curve(c, A, q, M , b):

return
(M−b)/(1+pow(10,−q(c−A)))+b

Y = []
for i, c in enumerate(C) do

Y [i]← model((m, s, c))
end
/* Use any standard algorithm to

fit a curve

Â, q̂, M̂ , b̂← fit(DS curve, x = C,
y = Y )
/* Return the estimated EC50 and

the probability of activity

return Â, M̂

A.2 SAMPLE WEIGHTS

Prediction of the protein-molecule response is inherently an imbalanced problem, and most of the
experimental data are inactive. To account for the label distribution, we use standard imbalance
ratio weights (Fernández et al., 2018). However, the sampling presented in Algorithm 1 dynamically
generates labels in each iteration and changes the raw data label distribution, since active EC50 pairs
can contribute to the inactive labels. Therefore, we calculate class weights on the fly for each batch
by estimating the probability P (l|c) that a label l is sampled for a given concentration c.

Formally, denote the truncated experimental EC50 values as Ai
trunc = trunc(ECi

50, (Clow −
ϵU , Chigh + ϵL)). Then the probability that a label l is sampled for a concentration c in a batch
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of size n is given by a number of times c is below or above the truncated EC50:

P (l = 0|c) ≈ #{i|c ≤ Ai
trunc − ϵL}
n

(2)

P (l = 1|c) ≈ #{i|c ≥ Ai
trunc + ϵU}
n

(3)

P (l ∈ (0, 1)|c) = 1− P (l = 0|c)− P (l = 1|c) (4)

Note that EC50 of inactive pairs is set to +∞, thus Ai
trunc = U + ϵL for these pairs. Given the

above estimate of the label probability, we set the class weights for each triplet (s,m, c) as

wclass(l, c) =
1

2P (l|c)
(5)

A.3 MODEL DETAILS

A.3.1 MODEL ARCHITECTURE

Figure A1: GNN embedding block. Node and edge feature matrices X and E, respectively, are
embedded and processed by a message passing neural network (MPNN) (Gilmer et al., 2017). Cat-
egorical features are passed through a standard embedding layer and continuous features are passed
through a dense layer before being concatenated together. The sequence representation, comprising
a d-dimensional vector per each amino acid, is passed through a single dense layer to form the input
to the subsequent cross block. MPNN is composed of an edge update function that concatenates
edge features, incoming node features, and outgoing node features and passes them through a dense
layer followed by ReLU. It uses GRU (Cho et al., 2014) as a node update function. Symbols ,
stand for row-wise concatenation and ReLU activation function, respectively.
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(a)

(b)

Figure A2: Update blocks. (a) Node update block. The inputs are the node embedding matrix
X ′, the sequence representation matrix s′, and the concentration vector cw. X ′ is passed through
Layer norm (LN) (Ba et al., 2016) and concatenated with cw to become queries in multi-head cross-
attention (XSS MHA) (Vaswani et al., 2017). Sequence representation s′ serves as keys/values, and
the output of cross-attention is added to the normalised node embeddings via a residual connection
(He et al., 2015). The purpose of XSS MHA is to learn the difference in the node representation
that is induced by the interaction with the protein. The resulting updated node embeddings are then
processed by feed-forward network (FFN) (Vaswani et al., 2017) and together with edge embeddings
E form input to Graph isomorphism network (GIN) (Xu et al., 2019). (b) Sequence update block.
Analogously, the inputs to the block are the node embedding matrix X ′′, the sequence representation
matrix s′, and the concentration vector cw. s′ is passed through Layer norm (LN) and concatenated
with cw to become queries in multi-head cross-attention (SXX MHA). Node embeddings X ′′ are
keys/values in cross-attention, and the output of SXX MHA is added to the normalised sequence
representation. The goal of SXX MHA is to learn the difference in the sequence representation
induced by the interaction with the molecule at the given concentration. The updated sequence
embedding is then passed through FFN and then to a Transformer block consisting of self-attention
(Vaswani et al., 2017) and a second FFN.
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Figure A3: Final mixing block. The updated node embedding matrix X ′′ and the updated sequence
representation s′′ are concatenated together and form an input to self-attention (Vaswani et al., 2017).
Note that unlike the case of update blocks, softmax in this self-attention is performed simultaneously
through both molecular node and amino acid embeddings. The output of the attention layer is
passed through FFN, aggregated via attention pooling (Eqn. (2) in (Hladiš et al., 2023)), and finally
processed by a dense layer for a final activity prediction. The part of the FFN output corresponding to
the sequence representation is also used for masked language modelling task (MLM). The symbols

, , , , stand for column-wise concatenation, ReLU activation function, sigmoid activation
function, elementwise multiplication and summation, respectively.

A.3.2 MOLECULAR FEATURES

Table A1: Initial node and edge features. Cat. stands for categorical features.

Atom features Bond features

C
at

.

Atomic number Bond type
Chiral tag Stereo type
Hybridisation Is aromatic
Is aromatic

C
on

tin
ou

s Formal charge
Num. of implicit Hs
Explicit valence
Mass

A.3.3 HYPERPARAMETERS AND ASMI ARCHITECTURAL CHOICES

During the ASMI architecture development we experimented with several choices, such as MPNN
(Gilmer et al., 2017), GIN (Xu et al., 2019) or GAT (Veličković et al., 2018) as the choice of the
GNN layer in Node update block, and PNA (Corso et al., 2020) and attention pooling (Hladiš et al.,
2023) as the final pooling function. A systematic sweep over sampling hyperparameters ϵL and ϵU
was not performed.

A.3.4 ASMI-DR TRAINING

ASMI-DR is trained according to Algorithm 1 with 1500 epochs, batch size of 1024, and margins
ϵL = ϵU = 0.25. During training, we apply dropout of 0.1 in the attention layers, 0.2 in the FFN
layers, and 0.5 just before the output layer. Padding is set to 32 nodes and 64 edges, which covers all
molecules in the M2OR dataset. The initial learning rate is set to 1√

256
and we use 6000 warm-up

steps for the scheduler. The best epoch was chosen based on the validation set comprising 10% of
randomly selected pairs. All models are implemented in JAX (Bradbury et al., 2018) and FLAX
(Heek et al., 2024) and they were trained on Nvidia A100 SXM4 80GB GPUs or Nvidia H100 NVL
94GB GPUs.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.3.5 ASMI-PROB TRAINING

To train the concentration-free version of the proposed architecture, we mostly follow Hladiš et al.
(2023). However, we drop Pair imbalance weights (Eqn. (5) in (Hladiš et al., 2023)) as these weights
are related to the in vitro exploration of protein-molecule pairs and we observe that these weights
lower the performance. We also experimented with weights based on the receptor broadness (Lalis
et al., 2024b) (data not shown), but their gain was not significantly different compared to standard
class imbalance weights. We train ASMI-Prob for 2500 epochs with the batch size 1024 and the
initial learning rate 1√

256
. The best epoch was chosen based on the validation set comprising 10%

of randomly selected pairs.

A.3.6 ASMI-REG TRAINING

We train the regression variant of the proposed architecture similarly to ASMI-DR. We train for
1500 epochs with the batch size of 1024, the initial learning rate 1√

256
, 6000 warm-up steps, and

graph padding of 32 and 64 for nodes and edges, respectively. We use l2 loss to train the model. For
inactive pairs, we set training EC50 values to 1M. As before, the best epoch was chosen based on the
validation set comprising 10% of randomly selected pairs.

A.4 DATA PREPROCESSING

A.4.1 M2OR

M2OR gathers 77611 experiments, some of which correspond to the same protein-molecule pairs,
and 71454 are screening data. During preprocessing, we first discard mixtures of molecules and
experiments measuring the basal activity (i.e., experiments performed at molecular concentration of
0M). We also discard data reporting ”fold” and ”micro-ampere” units. We further remove the data
with inconsistent activity decisions between experiments. For screening data, we remove experi-
ments where, for a given protein-molecule pair, the activity decision in the higher concentration is
”inactive” and in a lower concentration it is ”active”. We exclude galaxolide due to its unspecific
response (Lalis et al., 2024b) and we also exclude molecules with molecular graphs composed of
more than 32 nodes or 64 directed edges. In addition, we exclude putative pseudo genes with se-
quence length lower than 296 amino acids. Finally, we change the units to log10(mM) and if there
are multiple dose-response experiments for a given pair, we take the mean of the EC50 values. After
preprocessing, the dataset consists of 1427 EC50 values for active pairs, 4346 inactive dose-response
pairs, and 60256 screening samples.

A.4.2 DAVIS

We downloaded the curated data from PyTDC library (Huang et al., 2021). Since PyTDC does not
provide activity label, and for consistency with the previous work, we obtain the labels from the
preprocessed data from HyperAttentionDTI publication (Zhao et al., 2021). We exclude 6 protein
sequences longer than 1736 amino acids, and we exclude molecular graphs with more than 128
nodes or 256 directed edges. Finally, we changed the units to log10(µM). After preprocessing, the
data contains 6881 active and 17667 inactive pairs.

A.4.3 BINDINGDB

We downloaded the curated data from PyTDC library (Huang et al., 2021). If there are duplicated
experiments for the same pair, we take the lowest Kd. After analysing the data distribution, and in
line with standard practeces (Huang et al., 2021), we consider pairs with Kd ≥ 10µM as inactive.
We exclude 12 protein sequences longer than 2048 amino acids, and we exclude molecular graphs
with more than 128 nodes or 256 directed edges. Finally, we changed the units to log10(µM). After
preprocessing, the data contains 19233 active and 23001 inactive pairs.

A.4.4 KIBA

We downloaded the preprocessed dataset from HyperAttentionDTI publication (Zhao et al., 2021).
We exclude 2 protein sequences longer than 1408 amino acids, and we exclude molecular graphs
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with more than 128 nodes or 256 directed edges. After preprocessing, the data contains 22154 active
and 94195 inactive pairs.

A.5 EVALUATION DETAILS

A.5.1 In vitro EC50 ERROR

Measuring EC50 in vitro is prone to errors arising from several different sources (Malo et al., 2006;
Brideau et al., 2003). In this work, this error is estimated by root mean squared logarithmic error
(RMSLE) based on the protein-molecule pairs for which more than one dose-response experiment
has been conducted. Formally, the error is given by the differences between individual EC50 values
and the mean EC50 corresponding to the same protein-molecule pair:

Experimental RMSLE =

√√√√ 1

L

K∑
k=1

Ik∑
i=1

(xi,k − µk)2 (6)

where K is the number of protein-molecule pairs with multiple EC50 experiments, Ik is the number
of experiments per pair k, xi,k is the individual EC50 value i for pair k in logarithmic scale, µk =∑Ik

i=1 xi,k is the mean of the experiments for pair k and L =
∑K

k=1 Ik is the total number of
experiments for protein-molecule pairs with multiple EC50 values in the dataset.

A.5.2 DOCKING AND BOLTZ-2 DETAILS

Docking protocol. Gypsum-DL (v1.2.0) was used to generate 3D molecular structures from
SMILES to SDF, accounting for ionisation, tautomeric, chiral, cis/trans, and ring-conformational
states at pH 7.0 ± 0.5. Structures were converted from SDF to MOL2 with Open Babel 3.1.0 and
then to PDBQT using MGLTools (v1.5.7). Docking was performed with SMINA (Oct 15, 2019,
based on AutoDock Vina 1.1.2) (Masters et al., 2020) using the Vinardo scoring function (Quiroga
& Villarreal, 2016) and an exhaustiveness of 8. Olfactory receptor models were obtained from the
AlphaFold DB (Varadi et al., 2023; 2021). Polar hydrogens were added with PDB2PQR (v3.6.1),
with protonation states assigned by PROPKA (v1.0) at pH 7.0, followed by minimisation with the
AMBER99 force field. Protein structures were converted from PQR to PDBQT using MGLTools,
and all receptors were superimposed with PyMOL (v2.5.4).

Boltz-2 inference. Olfactory receptor sequences and molecular SMILES were obtained from the
M2OR database. We performed the experiments with Boltz-2 default parameters except: the number
of diffusion samples was set to 25 for both the structure and affinity modules, and the number of
recycling steps was set to 10.

A.6 EVALUATION ON DRUG-TARGET INTERACTION DATASETS

To validate our architectural choices in Section 5, we evaluate a concentration-free version of the
model, ASMI-Prob, on two standard drug-target interaction (DTI) benchmarks: KIBA (Tang et al.,
2014) and DAVIS (Davis et al., 2011). We compare our architecture against state-of-the-art methods,
including MolTrans (Huang et al., 2020), HyperAttentionDTI (Zhao et al., 2021).

As shown in Table A2, our architecture outperforms MolTrans in AveP on both benchmarks. It lags
behind HyperAttentionDTI by 2.1% and 1.9% on KIBA and DAVIS, respectively, with a superior
precision, whereas HyperAttentionDTI exhibit a higher recall. However, our proposed architecture
excels in a challenging M2OR dataset, outperforming the DTI baselines by a margin. Notably, MCC
of ASMI-DR trained by Algorithm 1 also surpasses all the DTI baselines on DAVIS dataset. This
result demonstrates that our architecture is not only effective for its primary OR-molecule activation
task but also robust enough to compete with the state-of-the-art on standard DTI benchmarks.

A.7 SAMPLING WITH EC50 LOWER BOUND AND SCREENING DATA

Screening. Before running demanding dose-response experiments, a screening is performed on
a large number of protein-molecule pairs to assess the plausibility of the tested compounds to be
ligands (Saito et al., 2009; Geithe et al., 2015; Yasi et al., 2019). The candidate molecules are first
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Table A2: Performance on the KIBA and DAVIS drug-target interaction benchmarks and on M2OR.
For M2OR, the results for MAARDTI are taken from Zhan et al. (2025) and the results for MolTrans,
HyperAttentionDTI, and GNN-CLS are taken from Hladiš et al. (2023). Standard deviation is given
in parentheses.

Model AveP Precision Recall MCC
D

AV
IS

MolTrans 0.798 (0.017) 0.593 (0.041) 0.857 (0.023) 0.584 (0.022)

HyperAttentionDTI 0.844 (0.008) 0.767 (0.014) 0.774 (0.016) 0.680 (0.006)

GNN-CLS 0.744 (0.015) 0.699 (0.013) 0.666 (0.016) 0.564 (0.011)

ASMI-Prob 0.828 (0.028) 0.790 (0.012) 0.680 (0.028) 0.639 (0.023)

ASMI-Reg 0.817 (0.026) 0.646 (0.063) 0.818 (0.030) 0.601 (0.048)

ASMI-DR 0.808 (0.015) 0.772 (0.016) 0.775 (0.017) 0.685 (0.005)

K
IB

A

MolTrans 0.767 (0.026) 0.501 (0.032) 0.875 (0.009) 0.583 (0.030)

HyperAttentionDTI 0.819 (0.004) 0.718 (0.008) 0.770 (0.005) 0.680 (0.005)

GNN-CLS 0.704 (0.010) 0.610 (0.014) 0.683 (0.005) 0.555 (0.012)

ASMI-Prob 0.802 (0.012) 0.738 (0.024) 0.655 (0.059) 0.628 (0.034)

M
2O

R

MolTrans 0.638 (0.066) 0.402 (0.053) 0.822 (0.027) 0.476 (0.042)

MAARDTI 0.700 0.700 0.595 0.555
HyperAttentionDTI 0.737 (0.015) 0.609 (0.028) 0.773 (0.020) 0.584 (0.022)

GNN-CLS 0.780 (0.012) 0.689 (0.016) 0.698 (0.042) 0.605 (0.017)

ASMI-Prob 0.801 (0.044) 0.716 (0.065) 0.728 (0.037) 0.625 (0.036)

ASMI-Reg 0.698 (0.010) 0.692 (0.047) 0.720 (0.035) 0.621 (0.048)

ASMI-DR 0.754 (0.018) 0.773 (0.028) 0.722 (0.051) 0.671 (0.016)

Figure A4: Example of a dose-response curve for an active (grey/red) and inactive pair (black). The
crosses represent the data available in the dataset, the coloured lines are sampling regions, and the
grey line is an unknown actual active curve. The blue lines correspond to screening data, the red
lines are sampling regions for active EC50 data, and the black line is the sampling region for inactive
EC50 data. r0, r1, b, M , and M+b

2 are experimentally measured responses which are not available
in the data.

tested at a single concentration in a primary screening, followed by a secondary screening with 2 to
4 different concentrations. Screening can lead to a significant label noise (Lalis et al., 2024b), but
can cover a large number of protein-molecule pairs, and considering its lower price, it constitutes
the majority of the available data.

In Section 4, we consider sampling training data B = {(si,mi, ci,j), Li,j}i,j using dose-response
experiments only. However, our framework allows for a straightforward extension of the same
sampling procedure to the abundant screening data. Since several normalisation procedures are
followed in the screening data treatment, we assume that a screening experiment results in a binary
decision about whether an interaction between a protein and a molecule at a given concentration
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Table A3: Sampling regions for all available data types and all possible training labels. ϵL, ϵU are
lower and upper margins, respectively. The case EC50 > ct stands for EC50 experiments where
activity was observed, but the EC50 is out of range of the tested concentrations, and the authors
reported the lower bound ct for the EC50 value.

Data type Decision Li,j = 0 Li,j ∼ Unif(0, 1) Li,j = 1

EC50 active [Clow, EC50 − ϵL] (EC50 − ϵL, EC50 + ϵU ) [EC50 + ϵU , Chigh]
EC50 inactive [Clow, Chigh] ∅ ∅
EC50 > ct active [Clow, ct − ϵL] (ct − ϵL, Chigh] ∅
Screening active ∅ [Clow, ct + ϵU ) [ct + ϵU , Chigh]
Screening inactive [Clow, cs − ϵL] (cs − ϵL, Chigh] ∅

elucidates the response in the cell. For secondary screening, decisions at multiple concentrations are
available, and we treat them as multiple primary screenings.

Consider that a concentration cs has been tested with the corresponding response decision Ls ∈
{0, 1}. If the experimental response decision is ”inactive” (Ls = 0), the monotonicity of the dose-
response curve implies that for all lower concentrations c ≤ cs the response decision would also
be inactive (Figure A4). Analogously, if the response decision is Ls = 1, all higher concentrations
c ≥ cs would lead to the ”active” decision. Therefore, ”one-sided” training samples and their
corresponding response decisions can be obtained for each protein-molecule pair i, by uniformly
sampling a concentration ci,j ∈ [Clow, Chigh] and then sampling a decision Li,j according to the
experimental decision. If Ls = 0, then for ci,j ≤ cs we set Li,j = 0 and for ci,j > cs we uniformly
sample a soft label Li,j ∼ Unif(0, 1). Similarly, if Ls = 1, then for ci,j ≥ cs we set Li,j = 1
and we sample a soft label Li,j ∼ Unif(0, 1) for ci,j < cs. Screening can lead to label noise, and
the true activity might be different from the decision available in the data. To further control the
sampling, we take into account the uncertainty about the label by margins ϵL and ϵU . A summary
of all possible sampling regions is given in Table A3.

EC50 lower bound. It is possible that an increase in the response has been observed in a dose-
response assay, but the EC50 is outside the range of the tested concentrations. Thus, the curve cannot
be fitted and only a lower bound ct of the EC50 is available. In such cases, negative samples can
still be drawn from the dose-response curve, and the sampling is analogous to the negative screening
case.

A.7.1 PERFORMANCE WITH SCREENING DATA

We report the performance of incorporating the screening data in the activity decision and EC50
estimation tasks in Table A4. For out-of-distribution (OOD) evaluation, we contrast a standard gen-
eralisation task on unseen proteins and molecules without any prior information (all w/o screening)
against a scenario where the screening data of the test set pairs are available to the model during
training (all w/ screening). Furthermore, we also report the performance of a model trained only on
the screening data in an i.i.d. case (screening only).

To reflect the difference in label uncertainty of the screening and dose-response experiments, we
oversample the dose-response data. For evaluation in Table A4, we sample 15 concentrations from
each dose-response experiment in each epoch. Note that the test sets in Table A4 are identical to
those in Section 7 and contain only dose-response assay data, excluding screening.

Although the screening data constitutes 91% of the preprocessed M2OR, its integration in Algorithm
1 lowers the activity decision performance. In the OOD case, the EC50 estimation error decreases
slightly compared to the training without screening, but these results are evaluated on less pairs due
to the lower MCC. Using only the screening data substantially lags behind the training with dose-
response experiments. However, it still achieves an EC50 estimation error of 0.95 log units on the
correctly predicted active pairs, outperforming Boltz-2 in both MCC and RMSLE.

Overall, while screening can cover a substantial number of protein-molecule pairs, it provides less
information compared to dose-response experiments. Screening data only allows for ”one-sided”
sampling in Algorithm 1, which leads to a severe label imbalance, especially for concentrations close
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Table A4: Comparison of the performance when trained with the dose-response data only (ASMI-
DR), all data including screening (all), and the screening data only (screening only). In the out-
of-distribution evaluation, we either report a case when the screening data of the test set pairs are
available to the model during training (all w/ screening) or a standard case when no information
about the test set pairs is available (all w/o screening). Standard deviation is given in parentheses.

Datacase Name MCC ↑ Precision ↑ RMSLE ↓ Spearman’s ρ ↑
Primary sc. 0.238 0.563
Secondary sc. 0.476 0.704

EC50 error 0.334

i.i
.d

.

Mean model 0.899 (0.025)

Boltz-2 0.108 (0.033) 0.541 (0.117) 1.110a (0.037) 0.148 (0.052)

ASMI-Reg 0.621 (0.048) 0.692 (0.047) 1.213 (0.135) 0.399 (0.122)

ASMI-DR 0.671 (0.016) 0.773 (0.028) 0.725 (0.070) 0.648 (0.065)

all 0.652 (0.028) 0.772 (0.120) 0.553 (0.148)

screening only 0.134 (0.103) 0.950 (0.187) 0.077 (0.138)

Se
qu

en
ce Si

ng
le

ASMI-Reg 0.398 (0.112) 0.506 (0.142) 1.543 (0.512) 0.150 (0.281)

ASMI-DR 0.481 (0.031) 0.642 (0.038) 0.761 (0.150) 0.470 (0.119)

all w/o screening 0.358 (0.088) 0.755 (0.085) 0.531 (0.142)

all w/ screening 0.284 (0.090) 0.749 (0.042) 0.469 (0.068)

C
lu

st
er ASMI-Reg 0.238 (0.123) 0.362 (0.113) 1.889 (0.481) -0.145 (0.158)

ASMI-DR 0.218 (0.043) 0.461 (0.162) 1.170 (0.269) 0.040 (0.150)

all w/o screening 0.012 (0.060) 1.014 (0.312) 0.127 (0.159)

all w/ screening 0.083 (0.098) 0.922 (0.152) 0.277 (0.148)

M
ol

ec
ul

e Si
ng

le

ASMI-Reg 0.531 (0.054) 0.572 (0.086) 1.729 (0.347) 0.286 (0.152)

ASMI-DR 0.593 (0.074) 0.663 (0.098) 0.920 (0.096) 0.474 (0.116)

all w/o screening 0.469 (0.085) 0.916 (0.070) 0.406 (0.035)

all w/ screening 0.547 (0.060) 0.895 (0.152) 0.428 (0.137)

C
lu

st
er ASMI-Reg 0.395 (0.082) 0.548 (0.151) 1.561 (0.371) 0.154 (0.107)

ASMI-DR 0.398 (0.077) 0.572 (0.115) 0.818 (0.154) 0.298 (0.116)

all w/o screening 0.309 (0.091) 0.798 (0.112) 0.154 (0.135)

all w/ screening 0.227 (0.065) 0.748 (0.044) 0.274 (0.114)

aDue to the low MCC, the evaluation is also done on incorrectly classified pairs.
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to the boundaries of the sampling region. Indeed, if screening is performed at a high concentration
cs ≈ Chigh, then without access to the inactive dose-response data, which provides inactive samples
{(si,mi, ci,j), Li,j = 0} for all ci,j ∈ [Clow, Chigh], the model only has access to active examples
at cs ≈ Chigh. In future work, we aim to address this limitation by adjusting the sampling strategy
for the screening data.

A.8 EC50 ORDER EVALUATION

According to the primacy coding theory in olfaction (Wilson et al., 2017; Zwicker, 2019), the order
of activation of olfactory receptors plays a pivotal role in the odour perception of a molecule. To
assess the ability of the model to assign the rank, we evaluate the mean Spearman’s rank correlation
for individual molecules and proteins in Table A5. While the rank correlation per protein reaches a
level comparable to the correlation among all the pairs (ASMI-DR in Table A5), the correlation per
molecule is 40% lower in the i.i.d. case. Notably, the model achieves a higher ρ per molecule for
novel molecules, but it fails to predict the order of activation per molecule when considering a new
protein sequence.

Table A5: EC50 order evaluation. Spearman’s ρ is the rank correlation between the EC50 estimated
from the ASMI-DR model predictions and the experimentally measured values. Rows per molecule
and per protein correspond to the mean of correlation per molecule and per protein, respectively.
The standard deviation of 5 runs is given in parentheses.

Datacase Name MCC ↑ Precision ↑ RMSLE ↓ Spearman’s ρ ↑

i.i
.d

.

ASMI-Reg 0.621 (0.048) 0.692 (0.047) 1.213 (0.135) 0.399 (0.122)

ASMI-DR 0.671 (0.016) 0.773 (0.028) 0.725 (0.070) 0.648 (0.065)

per molecule 0.319 (0.225)

per sequence 0.528 (0.052)

Se
qu

en
ce Si

ng
le

ASMI-Reg 0.398 (0.112) 0.506 (0.142) 1.543 (0.512) 0.150 (0.281)

ASMI-DR 0.481 (0.031) 0.642 (0.038) 0.761 (0.150) 0.470 (0.119)

per molecule -0.134 (0.063)

per sequence 0.464 (0.142)

C
lu

st
er ASMI-Reg 0.238 (0.123) 0.362 (0.113) 1.889 (0.481) -0.145 (0.158)

ASMI-DR 0.218 (0.043) 0.461 (0.162) 1.170 (0.269) 0.040 (0.150)

per molecule 0.167 (0.357)

per sequence 0.151 (0.243)

M
ol

ec
ul

e Si
ng

le

ASMI-Reg 0.531 (0.054) 0.572 (0.086) 1.729 (0.347) 0.286 (0.152)

ASMI-DR 0.593 (0.074) 0.663 (0.098) 0.920 (0.096) 0.474 (0.116)

per molecule 0.244 (0.144)

per sequence 0.290 (0.134)

C
lu

st
er ASMI-Reg 0.395 (0.082) 0.548 (0.151) 1.561 (0.371) 0.154 (0.107)

ASMI-DR 0.398 (0.077) 0.572 (0.115) 0.818 (0.154) 0.298 (0.116)

per molecule 0.246 (0.244)

per sequence 0.150 (0.170)
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