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Abstract

Reinforcement learning algorithms have been widely used for decision-making tasks
in various domains. However, the performance of these algorithms can be impacted
by high variance and instability, particularly in environments with noise or sparse
rewards. In this paper, we propose a framework to perform statistical online infer-
ence for a sample-averaged Q-learning approach. We adapt the functional central
limit theorem (FCLT) for the modified algorithm under some general conditions
and then construct confidence intervals for the Q-values via random scaling. We
conduct experiments to perform inference on both the modified approach and its
traditional counterpart, Q-learning using random scaling and report their coverage
rates and confidence interval widths on two problems: a grid world problem as
a simple toy example and a dynamic resource-matching problem as a real-world
example for comparison between the two solution approaches.

1 Introduction

Reinforcement learning (RL) has emerged as a powerful paradigm for training agents to make se-
quential decisions in complex and uncertain environments. While many RL algorithms have shown
remarkable success in a variety of applications, there is a growing recognition of the need to in-
corporate statistical inference techniques into RL to enhance its robustness, reliability, and inter-
pretability. This motivation stems from the inherently stochastic nature of RL environments, where
randomness can arise from various sources, such as sensor noise, unobservable state variables, or
even the inherent uncertainty in the agent’s interactions with the environment. Statistical inference
plays an important role in several real-world applications ranging from financial analysis of stocks
and other financial assets to critical applications like medical research where confidence intervals
of mean difference in outcomes between treatment and control groups are calculated to determine
whether a new drug or treatment is effective. Several frequently employed methods in statistical
inference, particularly for computing confidence intervals, encompass bootstrapping, spectral vari-
ance, and batch-means, among others. The majority of these methods leverage the central limit
theorem (CLT) to attain the asymptotic covariance of estimate distributions of our RL algorithms.
One promising research direction is the application of the functional central limit theorem (FCLT)
to RL algorithms, particularly in the context of Q-learning. The FCLT, which provides a theoret-
ical foundation for the emergence of normality in certain functionals of random processes, offers a
novel perspective for understanding the statistical properties of Q-learning and related algorithms.
Leveraging FCLT results in the context of Q-learning can help provide insights into its convergence
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behavior and uncertainty quantification, making it a valuable tool for characterizing its statistical
properties. This paper aims to explore and leverage the FCLT to advance our understanding of
statistical inference, specifically for a sample-averaged variant of the Q-learning algorithm, called
sample-averaged Q-learning. Our main contribution lies in providing theoretical guarantees for our
sample-averaged Q-learning algorithm under standard assumptions and further demonstrate higher
accuracy of our method using a random scaling approach for computing confidence measures on a
few numerical examples.

The remainder of the paper is organized as follows. In Section 2, we review relevant literature
on statistical inference methods, in the context of stochastic gradient descent(SGD) and RL. In
Section 3, we provide the problem setup and propose our sample-averaged Q-learning. In Section
4, we discuss the main theoretical result in detail and provide the method to perform statistical
inference for the proposed sample-averaged Q-learning. In Section 6, we present numerical results
and compare the confidence measures of Q-values obtained from both the vanilla Q-learning method
and our proposed sample-averaged Q-learning approach on two numerical examples. Our approach
showcases higher accuracy in terms of the coverage rates and confidence interval lengths.

2 Literature Review

The literature on statistical inference methods in the context of SGD and RL has seen significant
growth in recent years, with researchers proposing various methodologies to address the challenges
associated with making statistical inferences from data generated by these methods, specifically iid
and Markovian data.

Li et al. (2018) introduce a statistical inference framework using SGD. Their methodology relies on
the asymptotic properties of SGD and established convergence results. It provides a foundation for
making statistical inferences on parameters learned through SGD optimization. This approach is
less expensive than bootstrapping for large data size and parameter dimensionality, that is, there
is no need for re-sampling many times. An added advantage is that this approach only uses first-
order information and we can also conduct finite sample inference. Fang et al. (2018) present online
bootstrap confidence intervals for the SGD estimator. By incorporating bootstrapping techniques
into the analysis, they proposed a method for constructing confidence intervals for the parameters
learned through SGD, addressing the problem of estimating uncertainty in this context. Chen
et al. (2020) propose statistical inference for model parameters in SGD. Their work provides a
comprehensive framework involving two methods, namely batch-means and plug-in estimators for
quantifying uncertainty in parameter estimates. They show that the plug-in estimator achieves faster
convergence than batch means, while the batch-means estimator needs less storage and calculation.
Chen et al. (2021) propose a statistical inference method for online decision-making via SGD. Their
approach utilizes asymptotic normality results to construct confidence intervals for online decision
rules. They derived an inverse probability-weighted value estimator to estimate the optimal value,
and proposed plug-in estimators to estimate the variance of the parameters. Lee et al. (2022)
propose a novel technique through an FCLT result that enables them to develop an efficient online
inference method via random scaling. They show the robustness of their inference method for SGD
algorithms using simulation experiments. The above methods are well suited to cases where the data
is generated by an iid sampling procedure and are unable to account for the underlying dependence
structure of the observations following a Markovian structure.

Ramprasad et al. (2023) propose an online bootstrap inference method for policy evaluation in RL.
They leverage the bootstrap technique to construct confidence intervals for policy value estimates
in both on- and off-policy estimates. The approach adapts to non-i.i.d. and temporally correlated
data encountered in RL tasks, making it suitable for dynamic environments. However, this method
may be computationally intensive and sensitive to the choice of bootstrap parameters. Li et al.
(2023) propose the Polyak-Ruppert-Averaged Q-learning algorithm and provide an FCLT result
showing their algorithm is statistically efficient. However, they require stronger conditions on their
noise moments. Xie & Zhang (2022) introduce a statistical online inference approach in averaged
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stochastic approximation. They develop a unified framework for analyzing algorithms such as SGD
and Q-learning from the perspective of stochastic approximation. They establish an FCLT for time-
homogeneous Markov chains under weaker conditions and then construct confidence intervals for
parameters via random scaling. Since the random scaling approach uses a studentized approach to
obtaining the variance, it avoids additional estimation steps and hyper-parameters, resulting in its
higher accuracy over traditional estimators like bootstrapping and batch-means.

3 Problem Setup

An infinite-horizon MDP is represented by M = (S, A, γ, P, R, r), where S is the state space and A
is the action space, γ ∈ (0, 1) is the discount factor, P : S × A → ∆(S) represents the probability
transition kernel, R : S×A → [0, ∞) is the random reward, and r : S×A → [0, ∞) is the expectation
of the reward. For a given deterministic policy π : S → A, the Q-function for any state-action pair
(s, a) ∈ S × A is given by,

Qπ(s, a) = Eτ∼π

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (1)

where τ = {(st, at)}t≥0 is a trajectory of the MDP induced by the policy π. The optimal Q-function
Q∗ is defined as Q∗(s, a) = maxπ Qπ(s, a). We know that Q∗ is the unique fixed point of the Bellman
operator T , where

T (Q)(s, a) = r(s, a) + γEs′∼P (·|s,a) max
a′∈A

Q (s′, a′) .

Suppose that we have a sequence of i.i.d. observations {(ri, s′
i), i = 1, 2, . . . } given state action pair

(s, a). For each (s, a) ∈ S × A at the t-step, we generate Bt rewards Rt,1(s, a), . . . , Rt,Bt
(s, a) and

the associate next states S′
t,1, . . . , S′

t,Bt
. We consider dividing them into several batches.

To estimate Q∗, the sample-averaged Q-learning will have the following update rule:

Qt+1(s, a) = Qt(s, a) − ηt

{
Qt(s, a) − T̂t+1(Qt)(s, a)

}
(2)

(3)

where

T̂t+1(Qt)(s, a) = 1
Bt

Bt∑
i=1

Rt,i(s, a) + γ

Bt

Bt∑
i=1

max
a′

i

Qt(S′
t,i, a′

i). (4)

and γ is the discount factor. In particular, when Bt = 1 is a constant, it reduces to vanilla Q-
learning. Hence, our sample-averaged approach can be considered as a generalization of the single-
sample vanilla Q-learning algorithm. It can be easily shown that T̂t is an unbiased estimator of the
Bellman operator T .

4 Asymptotic Results

In this section, we provide a theoretical result for the constant sample-averaged Q-learning update
given in equation (2) such that Bt = B ≥ 1, where B is a constant. Specifically, to state our
FCLT result, we first show that our sample-averaged Q-learning process converges to a stationary
distribution and, we further provide an upper bound for the bias arising from the gap between the
expectation and the ground truth solution. Finally, we establish the FCLT for our sample-averaged
Q-learning algorithm which enables us to perform inference using a random scaling method.

Assumption A1 (Uniformly bounded reward). The random reward R is non-negative and uni-
formly bounded, i.e., 0 ⩽ R(s, a) ⩽ 1 almost surely for all (s, a) ∈ S × A.

In the above assumption, we impose a boundedness condition on the random reward of the model.
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4.1 Functional Central Limit Theorem for sample-averaged Q-learning

Theorem 1 Assume access to a generative model for each state-action pair (s, a) ∈ S × A. Let
Q ∈ R|S|×|A| be the matrix form of the Q-function Q(s, a). Then there exists a constant η0 > 0 such
that for any η ∈ (0, η0),

1. the sample-averaged Markov process (Qt)t≥0 defined by (2) has a unique stationary distri-
bution Qη

2. for Q ∼ Qη, we have EQη ||Q − Q∗||∞ = O(η1/2)

3. The following FCLT holds

1√∑T
t=1 B−1

t

⌊rT ⌋∑
t=1

(Qt − EQη
Q) ⇒ Σ

1
2
Qη

M(r), 0 ≤ r ≤ 1, (5)

where (Mr))r≥0 is the d-dimensional standard Brownian motion and ΣQη =
limn−→∞ ncovQη

(Q̄n) is the asymptotic covariance matrix.

A direct consequence of Theorem 1 with r = 1 is the asymptotic distribution of the sample-averaged
estimator via averaging, which is summarized as the following corollary.

Corollary 1 Under the uniform bounded reward assumption, it follows that

T√∑T
t=1 B−1

t

(
Q̄T − Q∗) L−→ N(0, Ω)

Noting that there are total N =
∑T

t=1 Bt observations used after T iterations, by Corollary 1 , we
can quantify the asymptotic covariance of Q̄T by

Var
(√

NQ̄T

)
≈ N

∑T
t=1 B−1

t

T 2 Ω =
∑T

t=1 Bt

∑T
t=1 B−1

t

T 2 Ω.

It can be verified that the estimator Q̄T with a constant batch size Bt = B is asymptotically
efficient with an asymptotic covariance matrix Ω. However, when Bt is diverging, it suffers from an
efficiency loss. Obtaining an efficient sample-averaged estimator for Q-learning is out of the scope
of this paper.

4.2 Online inference via Random Scaling

In this section, we propose an online algorithm based on Theorem 1 for constructing a confidence
interval of Q∗. Before proceeding, let us introduce the random scaling quantity:

D̂T = 1
T

T∑
s=1

{
1

mT

s∑
t=1

(
Qt − Q̄T

)} {
1

mT

s∑
t=1

(
Qt − Q̄T

)}⊤

,

where mT =
√∑T

t=1 B−1
t . If we further define a stochastic process

M̂(r) := m−1
T

⌈rT ⌉∑
t=1

(Qt − Q∗)
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it can be verified that M̂(1) = Tm−1
T

(
Q̄T − Q∗)

and

D̂T =
∫ 1

0
(M̂(r) − rM̂(1))(M̂(r) − rM̂(1))⊤dr.

As a consequence of the continuous mapping theorem and Theorem 1, we obtain the following result,
which can be easily shown using Theorem 1 and continuous mapping theorem.

Theorem 2 Under our bounded reward assumption, it holds that

T 2

m2
T

(
Q̄T − Q∗)

D̂−1
T

(
Q̄T − Q∗)⊤ L−→ M(1)

{∫ 1

0
M̄(r)M̄⊤(r)dr

}−1

M⊤(1).

Here M(r) is d-dimensional standard Brownian motion on [0, 1], and M̄(r) = M(r)− rM(1). As a
consequence, it follows that

κ̂ =
T

(
Q̄T,j − Q∗

j

)
mT

√
D̂T,jj

L−→ M1(1)
(∫ 1

0
{M1(r) − rM1(1)}2

dr

)−1/2

:= κ.

Here Q̄T,j , Q∗
j are the j-th entry of Q̄T , Q∗, D̂T,jj is the j-th diagonal element of D̂T , and M1(r) is

a one-dimensional standard Brownian motion.

Theorem 2 shows that we can construct a statistic κ̂ that is asymptotically pivotal. As a consequence,
we can construct a (1 − α) × 100%-level confidence interval for Q∗

j as follows:

Q̄T,j ± κα/2
mT

T

√
D̂T,jj .

Here κα/2 is the upper α/2-quantile of the random variable κ. As shown in Abadir & Paruolo (1997),
the distribution of κ is a mixed normal and symmetric around zero. The values of κα can be found
in Table 1 in Abadir & Paruolo (1997).

5 Numerical experiments

In this section, we will conduct a computational study to assess the performance of our proposed
sample-averaged Q-learning algorithm as compared to the vanilla Q-learning algorithm using the
random scaling method. We will first use a grid world problem to illustrate the performance in
a small state and action space. We will further provide a case study in the context of real-world
dynamic supply-demand matching, where the states and corresponding actions are high-dimensional
and their spaces are significantly larger.

5.1 Grid World Problem

In this section, we consider synchronous Q-learning in a Grid World environment. The environment
consists of 3 × 4 grids as its state space. At each grid, the agent can choose to go “up”, “down”,
“left” or “right” into the next grid. If it touches the edge or the block (i.e., the black grid), then it
stays still. It stops after arriving at the blue/orange grid. Each immediate reward is -1 at grey grids,
and +10/ - 10 at the blue/orange grid, respectively. The discount factor is set to γ = 0.9. Under
this deterministic reward setting, the optimal policy at each grid is represented by a red arrow in
Figure 1.

Now, we consider randomizing the immediate reward at each grid with a N (0, σ2) Gaussian noise.
We set σ = 2 and the learning rate η = 0.1. The performance of the random scaling method
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for Vanilla Q-learning and sample-averaged Q-learning (batch) are compared in three aspects: the
coverage rates for EQη Q and Q∗, and the lengths of confidence intervals. Here, the expected Q-value
EQη Q is approximated by 500,000 Monte Carlo simulations, and the true Q-value Q∗ is derived by
Q-learning in the deterministic reward setting. The nominal coverage rate is chosen as 95%. We
perform 10,000 iterations of both algorithms on this problem.

It can be observed from Table 1 that the coverage rates for the random scaling (RS) method for
vanilla Q-learning are consistently higher than the ones with sample-averaged Q-learning. It can be
seen that the confidence interval lengths converge to approximately the same values for both cases.
However, to draw more conclusions about both the sampling Q-learning methods, examples with
more complexity need to be considered as the current grid world example has few states and action
spaces and, therefore is not extensive enough to draw conclusive results. Hence, we next consider a
non-trivial learning problem.

Figure 1: Grid World

Table 1: Statistical Inference for Q-learning for Grid World Problem

n = 2000 n = 6000 n = 10000
η = 0.1, σ = 2

Cov. for Q∗ (%) RS for Vanilla QL 99.0 (0.054) 97.5 (0.021) 96.0 (0.0153)
RS for Sample-averaged QL 99.0 (0.075) 99.0 (0.025) 99.0 (0.0158)

Cov. for EQη
Q (%) RS for Vanilla QL 99.0 (0.054) 98.0 (0.021) 97.5 (0.0153)

RS for Sample-averaged QL 99.0 (0.075) 99.0 (0.025) 99.0 (0.0158)

Length RS for Vanilla QL 0.735 0.285 0.21
RS for Sample-averaged QL 1.0 0.345 0.215

5.2 Dynamic Matching Problem

We consider Q-learning in a dynamic resource-matching problem represented in Figure2. For sim-
plicity, the system consists of 2 demand and 2 supply types, that is, a 2x2 matching problem. The
reward matrix R is chosen such that r11 > r21 > r12 > r22 and is given by R = [8 5 ; 7 3].
Each immediate reward is the product of the quantity matched with the reward matrix. The possible
demand quantities for both types are (0, 1, 2, 3) with probabilities (0.5, 0.5, 0, 0) for both type 1 and
type 2 products. The discount factor is set to γ = 0.9.

We consider randomizing the immediate reward for each matching with a N (0, σ2) Gaussian noise.
We set σ = 2 and the learning rate η = 0.1. The performance of the random scaling method for
Vanilla Q-learning and sample-averaged Q-learning (batch) with a sample size B = 5 are compared
in three aspects: the coverage rates for EQη

Q and Q∗, and the lengths of confidence intervals. Here,
the expected Q-value EQη

Q is approximated by 5,000 Monte Carlo simulations, and the true Q-value
Q∗ is derived by Q-learning in the deterministic reward setting. The nominal coverage rate is chosen
as 95%. Since this problem contains larger state and action spaces, we perform 2,000 iterations of
both algorithms on this problem.
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Figure 2: Dynamic Resource-matching

It can be observed from Table 2 that while the coverage rates for the random scaling (RS) method for
both the Q-learning methods are approximately the same, the confidence interval lengths are much
tighter for the sample-average case, indicating much better accuracy in the confidence measures for
the dynamic resource-matching problem.

Table 2: Statistical Inference for Q-learning for Dynamic Matching Problem

n = 500 n = 1000 n = 2000
η = 0.1, σ = 2

Cov. for Q∗ (%) RS for Vanilla QL 99.9 99.9 99.9
RS for Sample-averaged QL 99.9 99.9 99.9

Cov. for EQη
Q (%) RS for Vanilla QL 99.9 99.9 99.9

RS for Sample-averaged QL 99.9 99.9 99.9

Length RS for Vanilla QL 299.4 199.5 113.8
RS for Sample-averaged QL 49.6 33.7 19.1

6 Conclusion

In this paper, we proposed a statistical inference procedure for a sample-averaged variant of Q-
learning. Based on an FCLT in the context of Markov chains, we established a corresponding FCLT
result for our proposed sample-averaged Q-learning. We conducted numerical experiments for both
the Q-learning variants and showed higher accuracy for our sample-averaged Q-learning approach
using random scaling. Some interesting extensions can be developing a random scaling method for
the following variants: (i) an adaptive sample-averaged Q-learning algorithm where the batch size
Bt changes adaptively with time; (ii) a linear function approximation (LFA) of the proposed sample-
averaged Q-learning. Extending the above approach to scheduled batch and LFA requires considering
additional rate conditions and assumptions on the linearly independent functions representing the
state, which can be regarded as future work.
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Appendix

A Proof of Theorem 1

We will first verify that T̂t is an unbiased estimator of the Bellman operator T . By direct examina-
tion, (2) can be written as

Qt+1(s, a) = Qt(s, a) + ηt

{
T̂t+1(Qt)(s, a) − Qt(s, a)

}
︸ ︷︷ ︸

Ŵt+1(Qt)(s,a)

. (6)

Now,

E{Ŵt+1(Qt)(s, a)|Qt(s, a)} = E{T̂t+1(Q)(s, a) − Qt(s, a)}

= E{ 1
Bt

Bt∑
i=1

rt,i(s, a) + γ
1

Bt

Bt∑
i=1

max
a′

i

Q(st,i, a′
i) − Qt(s, a)|Qt(s, a)}

By linearity of expectation,

= 1
Bt

E{
Bt∑
i=1

rt,i(s, a)|Qt(s, a)} + γ

Bt
E{

Bt∑
i=1

max
a′

i

Q(st,i, a′
i)|Qt(s, a)}

− E{Qt(s, a)|Qt(s, a)}

= 1
Bt

Bt∑
i=1

E{rt,i(s, a)|Qt(s, a)} + γ

Bt

Bt∑
i=1

E{max
a′

i

Q(st,i, a′
i)|Qt(s, a)}

− Qt(s, a)

Since the data is collected from a generative model,

= rt(s, a) + γEs′∼P (·|s,a){max
a′

Q(s′, a′)} − Qt(s, a)

Using the definition of T (Q)(s, a),

= T (Q)(s, a) − Qt(s, a)

Hence, from RHS we proved that T̂t is an unbiased estimator of T .

Now, denote L(X) as the distribution of the R.V. X. We need to prove that {L(Qt)}t≥0 is a Cauchy
sequence in the complete space P∞,1.

Suppose Q0 ∼ µ, and take any positive integer N > 0. For any k ≥ N and l ≥ 0, we need to show
that W∞,1(L(Qk), L(Qk+l)) is bounded, where for p, q ≥ 1, the Wasserstein distance Wp,q induced
from the Lp

(
Rd

)
space is defined by

Wp,q(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
Rd×Rd

∥x − y∥q
p dγ(x, y)

) 1
q

,

where Γ(µ, ν) is the set of all couplings of µ and ν; and denote Pp,q as its corresponding Wasserstein
space.
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Consider the process (2) started from Q
(1)
0 ∼ L(Q0) and Q

(2)
0 ∼ L(Ql). In the first k iterations, we

couple the two processes with the same randomness. From Lemma B.3 in Xie & Zhang (2022),

W∞,1(L(Qk), L(Qk+l)) = W∞,1(L(Q(1)
k ), L(Q(2)

k ))

≤ (1 − η − ηγ)kW∞,1(L(Q(1)
0 ), L(Q(2)

0 ))
≤ (1 − η − ηγ)NE||Ql − Q0||∞.

Since 0 ≤ rt(s, a) ≤ 1, for any l ≥ 0,

E||Ql+1||∞ = E||(1 − η)Ql + ηT̂l+1(Ql)||∞
≤ E{||(1 − η)Ql||∞ + ||ηT̂l+1(Ql)||∞}

By linearity of expectation,

= (1 − η)E||(Ql||∞ + ηE||T̂l+1(Ql)||∞

Since the reward variable is bounded,

≤ (1 − η)E||(Ql||∞ + η + ηE{ γ

B

B∑
i=1

max
a′

i

Ql(sl+1,i, a′
i)}

By linearity of expectation,

≤ (1 − η)E||(Ql||∞ + η + ηγ

B

B∑
i=1

E{max
a′

i

Ql(sl+1,i, a′
i)}

Since the data is collected from a generative model,

= (1 − η)E||(Ql||∞ + η + ηγEs′∼P (·|s,a){max
a′

Ql(sl+1, a′)}

By the definition of ∞-norm,

= (1 − η)E||(Ql||∞ + η + ηγE|| max
a′

Ql(sl+1, a′)||∞

= (1 − η + ηγ)E||Ql||∞ + η.

By induction, we have for any l ≥ 0,

E||Ql||∞ ≤ (1 − η − ηγ)lE||Q0||∞ + η

1 − (1 − eta + ηγ)

= (1 − η − ηγ)lE||Q0||∞ + 1
1 − γ

,

and thus, E||Ql||∞ is uniformly bounded for all l ≥ 0. As N −→ ∞, we have
W∞,1(L(Qk), L(Qk+l)) −→ 0, and therefore {L(Qt)}t≥0 is a Cauchy sequence in P∞,1, and its limit
Qη exists. Uniqueness can be easily proven using Lemma B.3 from Xie & Zhang (2022). Further-
more, the remaining statements 2. and 3. can be verified similarly as provided in Xie & Zhang
(2022).
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