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Abstract

We introduce a novel kernel-based information-theoretic framework for two-sample
testing, leveraging the representation Jensen-Shannon divergence (RJSD). RJSD
captures higher-order information from covariance operators in reproducing Kernel
Hilbert spaces and avoids Gaussianity assumptions, providing a robust and flexible
measure of divergence between distributions. We develop RJSD-based variants
of Maximum Mean Discrepancy (MMD) approaches, demonstrating superior
discriminative power in extensive experiments on synthetic and real-world datasets.
Our results position RJSD as a powerful alternative to MMD, with the potential
to significantly impact kernel-based learning and distribution comparison. By
establishing RJSD as a benchmark for two-sample testing, this work lays the
foundation for future research in kernel-based divergence estimation and its broad
range of applications in machine learning.

1 Introduction

The problem of non-parametric two-sample testing, which aims to detect differences between two data
distributions given only observations, remains a fundamental challenge in machine learning. Among
the most widely used metrics for two-sample testing is the Maximum Mean Discrepancy (MMD)
[Gretton et al., 2012]. MMD consists of mapping the distributions into a reproducing kernel Hilbert
space (RKHS) and computing the distance between their mean embeddings. In the past decade,
MMD has been a dominant approach in kernel-based two-sample testing, and several MMD-based
two-sample tests have been proposed, leading to significant advances in the field [Gretton et al., 2012,
Sutherland et al., 2016, Jitkrittum et al., 2016, Liu et al., 2020, Schrab et al., 2023, Biggs et al., 2024].
Despite its widespread adoption, MMD’s reliance on first-order moment information has motivated
the exploration of alternative methods.

Recent advances in kernel-based divergence estimation offer a promising direction. Specifically,
covariance operators (second-order moment information) in RKHS can be used to formulate distribu-
tion divergences [Harandi et al., 2014, Minh, 2015, Zhang et al., 2019, Minh, 2021, 2023]. However,
these measures often assume Gaussianity in the representation space, which may not hold in practice.
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To address these limitations, a novel kernel-based information-theoretic framework called the repre-
sentation Jensen-Shannon divergence (RJSD) has been proposed as a versatile alternative [Hoyos-
Osorio et al., 2023]. RJSD is formulated as the von Neumann Jensen-Shannon divergence between
infinite-dimensional covariance operators in reproducing kernel Hilbert spaces (RKHS). This for-
mulation provides a proper divergence between distributions in the input space without relying on
density estimation or assuming Gaussianity in the feature space, making it a powerful alternative to
existing approaches.

RJSD not only extends the concept of divergence in RKHS but also holds a direct connection to MMD.
We show that MMD can be viewed as a particular case of RJSD, while RJSD captures higher-order
information, leading to improved performance in tasks like two-sample testing. Additionally, RJSD
can be readily estimated from samples in the input space using Gram matrices.

In this work, we leverage RJSD to propose a novel kernel-based information-theoretic framework
for two-sample testing. Inspired by three well-known MMD-based tests, including MMD-Split
[Sutherland et al., 2016], MMD-Deep [Liu et al., 2020], and MMD-Fuse [Biggs et al., 2024], we
develop RJSD-based variants, enabling more powerful and flexible testing procedures. Our work
significantly advances kernel-based two-sample testing, providing a robust alternative to MMD. We
evaluate the efficacy of our approach through extensive experiments, demonstrating its potential to
improve the state-of-the-art in two-sample testing.

2 Preliminaries and background

In this section, we introduce the notation and discuss fundamental concepts.

2.1 Notation

Let (X ,F) be a measurable space. Let M1
+(X ) be the space of probability measures on X , and let

P, Q ∈ M1
+(X ) be two probability measures dominated by a σ-finite measure λ on (X ,F) (Similar

notation from Stummer and Vajda [2012]). Then, the densities p = dP
dλ and q = dQ

dλ have common
support (the densities are positive on X ). X ∼ P and Y ∼ Q are two random variables distributed
according to P and Q.

2.2 Kernel Mean Embedding

Let κ : X ×X → R≥0 be a positive definite kernel. There exists a mapping ϕ : X → H, where H is a
reproducing kernel Hilbert space, such that κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. The kernel mean embedding
is a mapping µ from M1

+(X ) to H defined as follows [Smola et al., 2007]: For P ∈ M1
+(X ),

µP = EX∼P [ϕ(X)] =

∫
X

ϕ(x) dP (x)

For a bounded kernel, κ(x, x) < ∞ for all x ∈ X , we have that for any f ∈ H, EX∼P [f(X)] =
⟨f, µP ⟩H.

2.3 Covariance Operator

Another related mapping is the uncentered covariance operator [Baker, 1973], one of the most
important and widely used tools in RKHS theory. In this case, P ∈ M1

+ is mapped to an operator
CP : H → H given by:

CP = EX∼P [ϕ(X)⊗ ϕ(X)] =

∫
X
ϕ(x)⊗ ϕ(x) dP (x), (1)

where ⊗ is the tensor product. Similarly, for any f, g ∈ H, EX∼P [f(X)g(X)] = ⟨g, CPf⟩H.

The covariance operator is positive semidefinite and Hermitian (self-adjoint). Additionally, if the
kernel is bounded, that is κ(x, y) < ∞, the covariance operator is trace class [Sanchez Giraldo et al.,
2014, Bach, 2022]. Therefore, the spectrum of the covariance operator is discrete and consists of
non-negative eigenvalues λi with

∑
λi < ∞, for which we can extend functions on R such as t log(t)

and tα to covariance operators via their spectrum [Naoum and Gittan, 2004].
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2.4 Information theory with covariance operators

Throughout this paper, unless otherwise stated, we will assume that:

(A1) κ : X × X → R≥0 is a positive definite kernel with an RKHS mapping ϕ : X → H such that
κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H, and κ(x, x) = 1 ∀x ∈ X .

Under this assumption, the covariance operator CP defined in Eqn. 1 is unit-trace. Note that since
κ(x, x) = 1, we have that, Tr (ϕ(x)⊗ ϕ(x)) = ∥ϕ(x)∥2 = 1. Hence, the spectrum of the covariance
operator consists of non-negative eigenvalues λi with

∑
λi = 1, for which we can extend notions of

entropy from the spectrum of unit-trace covariance operators.

Definition 1. Let X be a random variable taking values in X and probability measure P . Assume
(A1) holds, and let CP be the corresponding unit-trace covariance operator defined in Eqn. 1. Then,
the representation (kernel) entropy of X is defined as:

HH(X) = S(CP ) = −Tr (CP logCP ) , (2)

where S(·) is a generalization of the von Neumann entropy [Von Neumann, 2018] for trace class
operators, and it can be equivalently formulated as S(CP ) = −∑

λi log λi.

Although the representation entropy has similar properties to those of Shannon entropy, it is important
to emphasize that they are not equal, and thus estimating representation entropy does not amount to
estimating Shannon entropy. Instead, the representation entropy incorporates the data representation.
Its properties are not only determined by the data distribution but also depend on the representation
(kernel).

2.4.1 Empirical estimation of representation entropy

Let X = {xi}ni=1 ∼ P be n i.i.d samples of a random variable X with probability measure P . An
empirical estimate of representation entropy can be obtained based on the spectrum of the empirical
uncentered covariance operator CX . Consider the Gram matrix KX , consisting of all pairwise kernel
evaluations between data points in the sample X , that is, (KX)ij = κ(xi,xj) for i, j = 1, . . . , n. It
can be shown that CX and 1

nKX have the same non-zero eigenvalues [Sanchez Giraldo et al., 2014,
Bach, 2022]. Based on this equivalence, the estimator of representation entropy can be expressed in
terms of the Gram matrix KX as follows:

Proposition 1. The empirical kernel-based representation entropy estimator of X is

ĤH(X) = S(CX) = S
(
1
nKX

)
= −Tr

(
1
nKX log 1

nKX

)
= −

n∑
i=1

λi log λi, (3)

where λi denotes the ith eigenvalue of 1
nKX . The eigen-decomposition of KX has O(n3) time

complexity.

3 The representation Jensen-Shannon divergence

Definition 2. Let P and Q be two probability measures defined on a measurable space (X ,F), and
(A1) is satisfied. Then, the representation Jensen-Shannon divergence (RJSD) between P and Q is
defined as [Hoyos-Osorio et al., 2023]:

DH
JS(P,Q) = S

(
CP + CQ

2

)
− 1

2
(S(CP ) + S(CQ)) . (4)

3.1 Properties

First, we show that RJSD relates to the maximum mean discrepancy (MMD) with kernel κ2, where
MMD is defined as MMD2

κ(P,Q) = ∥µP − µQ∥2H.
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Lemma 1. For all probability measures P and Q defined on X , and covariance operators CP and
CQ with RKHS mapping ϕ(x) such that ⟨ϕ(x), ϕ(x)⟩H = 1 ∀x ∈ X :

DH
JS(P,Q) ≥ 1

8
∥CP − CQ∥2HS =

1

8
MMD2

κ2(P,Q)

Proof: See Appendix A.1.

Theorem 1. Let κ2 be a characteristic kernel. Then, the representation Jensen-Shannon divergence
DH

JS(P,Q) = 0 if and only if P = Q.

Proof. It is clear that if P = Q then DH
JS(P,Q) = 0. We now prove the opposite. According to

Lemma 1, DH
JS(P,Q) = 0 implies that MMD2

κ2(P,Q) = 0. Then, if MMD2
κ2(P,Q) = 0 and the

kernel κ2 is characteristic, then P = Q [Gretton et al., 2012], completing the proof.

This theorem demonstrates that RJSD defines a proper divergence between probability measures in
the input space.

Additionally, RJSD has a direct connection with its classical counterpart.

Theorem 2. [Hoyos-Osorio et al., 2023, Theorem 3] For all probability measures P and Q defined
on X , and unit-trace covariance operators CP and CQ, the following inequality holds:

DH
JS(P,Q) ≤ DJS(P,Q), (5)

where DJS(P,Q) is the traditional Jensen-Shannon divergence.

3.2 Empirical Estimation of the representation Jensen-Shannon divergence

Given two sets of samples X = {xi}ni=1 ⊂ X and Y = {yi}mi=1 ⊂ X drawn from two unknown
probability measures P and Q, we propose the following RJSD estimator:

Kernel-based estimator: Let κ be a positive definite kernel, Z be the mixture of the samples
of X and Y , that is, Z = {zi}n+m

i=1 where zi = xi for i ∈ {1, . . . , n} and zi = yi−n for
i ∈ {n+ 1, . . . , n+m}. Finally, let KZ be the kernel matrix consisting of all normalized pairwise
kernel evaluations of the samples in Z, that is, the samples from both distributions. Moreover, let
KX and KY be the pairwise kernel matrices of X and Y respectively.

Notice that the sum of uncentered covariance operators in the RKHS corresponds to the covariance
operator of the mixture of samples in the input space, that is, n

n+mCX + m
n+mCY = CZ .

Since CZ,CX ,CY and 1
n+mKZ,

1
nKX , 1

mKY share the same non-zero eigenvalues respectively,
the divergence can be directly computed from samples in the input space as follows.

Proposition 2. The empirical kernel-based RJSD estimator for a kernel κ is

D̂ κ
JS(X,Y ) = S

(
1

n+mKZ

)
−

(
n

n+mS
(
1
nKX

)
+ m

n+mS
(

1
mKY

))
. (6)

This estimator, however, presents an upward bias that causes an undesired effect. The kernel RJSD
estimator can be trivially maximized when the sample’s similarities are negligible, for example,
when the kernel bandwidth σ in a Gaussian kernel is close to zero (see Fig. 1(a)). This behavior is
caused by the discrepancy between the number of samples used to estimate S( 1

n+mKZ) compared to
S( 1nKX), and S( 1

mKY ), which causes S( 1
n+mKZ) to grow faster and up to log(n+m) compared

to S( 1nKX) and S( 1
mKY ) that can only grow up to log(n) and log(m) respectively. To reduce the

bias of the estimator in Eqn. 6 and avoid trivial maximization, we need to regularize S( 1
n+mKZ)

so that it estimates up to similar values of entropy than S( 1nKX) and S( 1
mKY ). We propose the

following alternative:
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Figure 1: Comparing RJSD estimators with Gaussian kernel while varying the kernel bandwidth.
The figure illustrates the estimated divergences between two Cauchy distributions (d = 1) with
Jensen-Shannon divergence (JSD) JSD = 0.5× log(2).

Power Series Expansion Approximation: Let A be a positive semidefinite matrix, such that
∥A∥2 ≤ 1, where ∥A∥2 = maxi(λi) denotes the spectral or L2-norm, (which is the case for all
trace-normalized kernel matrices). Then, the following power series expansion converges to log(A)
[Higham, 2008]:

log(A) = −
∞∑
j=1

(I −A)j

j
.

We propose approximating the logarithm by truncating this series to a lower order.

Proposition 3. The power-series kernel entropy estimator of X is:

Sp(
1
nKX) =

p∑
j=1

1

j
Tr

(
1
nKX

(
I − 1

nKX

)j)
, (7)

where p is the order of the approximation.

Proposition 4. The power-series RJSD estimator is

D̂ κ
pJS(X,Y ) = Sp

(
1

n+mKZ

)
−

(
n

n+mSp

(
1
nKX

)
+ m

n+mSp

(
1
mKY

))
.

This approximation has two purposes. First, it avoids the need for eigenvalue decomposition. Second,
it indirectly regularizes the three entropy terms of the divergence, where KZ is regularized more

strongly due to its larger size. For example, Sp(KZ) ≤
p∑

j=1

1
j (1 − 1

n+m )j while Sp(KX) ≤
p∑

j=1

1
j (1− 1

n )
j and Sp(KY ) ≤

p∑
j=1

1
j (1− 1

m )j .

By increasing the order, the gap between the maximum entropies obtained by the three entropy
terms grows, leading to the behavior discussed above. Truncating the power series helps avoid trivial
maximization of the divergence at lower kernel bandwidths (see Fig. 1(b)). Consequently, the RJSD
power series expansion offers a more robust estimator that goes beyond reducing computational costs.

Next, we show an important connection between the power-series RJSD estimator and MMD:

Theorem 3. Assume(A1) and let p = 1 be the order of the power series expansion approximation.
Then, given two sets of samples X = {xi}ni=1 ∼ P and Y = {yi}ni=1 ∼ Q:

D̂ κ
pJS(X,Y ) =

1

4
M̂MD

2

κ2(X,Y )

Proof: See Appendix A.2.
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This theorem establishes that RJSD extends MMD to higher-order statistics of the kernel matrices
and the covariance operator. While MMD captures second-order interactions of data projected in
the reproducing kernel Hilbert space (RKHS) defined by the kernel function κ, RJSD incorporates
higher-order statistics, enhancing the measures’ sensitivity to subtle distributional differences.

4 Two-sample Testing with RJSD

We evaluate the discriminatory power of RJSD for two-sample testing. Given two sets of samples,
X = {xi}ni=1 and Y = {yi}mi=1, drawn from P and Q respectively, two-sample testing aims to
determine whether P and Q are identical. The null hypothesis H0 states P = Q, while the alternative
hypothesis H1 states P ̸= Q. A hypothesis test is then performed, rejecting the null hypothesis if
D(P,Q) > ε for some distance or divergence D and threshold ε > 0.

Let Z = {zi}n+m
i=1 = {x1, . . .xn,y1, . . . ,ym} be the combined sample. One common approach

to perform two-sample testing is through permutation tests. These tests apply permutations of the
combined data Z to approximate the distribution of the divergence measurement under the null
hypothesis. Finally, this distribution determines the rejection threshold ε according to some specified
significance level. In this experiment, we employ RJSD as the divergence measure to perform
hypothesis testing.

Taking inspiration from 3 well-known MMD-based tests, we designed RJSD-based versions of MMD-
Split [Sutherland et al., 2016], MMD-Deep [Liu et al., 2020], and MMD-Fuse [Biggs et al., 2024].
RJSD-Split involves splitting the data into training and testing sets to identify the optimal kernel
bandwidth on the training set and subsequently evaluate performance on the testing set. Leveraging
the lower bound in Eqn. 3, we propose selecting the kernel hyper-parameters that maximize RJSD
as these parameters enhance the distinguishability between the two distributions [Sutherland et al.,
2016]. Since the kernel-based estimator is not suitable for maximization with respect to the kernel
hyperparameters, we use the power-series RJSD estimator.

Similarly, RJSD-Deep involves learning the parameters of the following characteristic kernel
κθ(x, y):

κθ(x, y) = [(1− ϵ)κ1(fθ(x), fθ(y)) + ϵ]κ2(x, y),

where fθ : X → F represents a deep network that extracts features from the data, thereby enhancing
the kernel’s flexibility and its ability to capture the structure of complex distributions accurately. Here,
0 < ϵ < 1, and κ1 and κ2 are Gaussian kernels. Ultimately, we learn the network weights, the kernel
bandwidths for κ1 and κ2, and the value of ϵ that maximizes RJSD.

On the other hand, RJSD-Fuse consists in combining the RJSD estimates of different kernels κ ∈ K
drawn from a distribution ρ ∈ M1

+(K). Then, these different values are passed through a weighted
smooth maximum function that considers information from each kernel simultaneously, resulting in a
new statistic. The fused statistic with parameter λ > 0 is defined as:

F̂USEJS(X,Y ) =
1

λ
log

(
Eκ∼ρ

[
exp

(
λD̂ κ

pJS(X,Y )
)])

.

This method does not require data-splitting since the optimal kernel is chosen unsupervised through
the log-sum-exponential function. See Appendix B.1 for implementation details.

5 Experiments and Results

We evaluate RJSD discriminatory power using one synthetic dataset and two real-world benchmark
datasets for two-sample testing. The Mixture of Gaussians dataset [Biggs et al., 2024] consists of
2-dimensional mixtures of four Gaussians P and Q with means at (±µ,±µ) and diagonal covariances.
All components of P have unit variance, while only three components of Q have unit variance, with
the standard deviation σ in the fourth component being varied. The null hypothesis H0 : P = Q
corresponds to the case where σ = 1. The Galaxy MNIST dataset [Walmsley et al., 2022] consists
of four categories of galaxy images captured by a ground-based telescope. P represents uniformly
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Figure 3: Test Power comparison different methods.

sampled images from the first three categories, while Q represents samples drawn from the first three
categories with probability 1− c and from the fourth category with probability c ∈ [0, 1]. We vary
the corruption level c, with the null hypothesis corresponding to the case where c = 0. Finally, the
CIFAR 10 vs 10.1 dataset [Liu et al., 2020] compares the distribution P of the original CIFAR-10
dataset [Krizhevsky et al., 2009] with the distribution Q of CIFAR-10.1, which was collected as an
alternative test set for models trained on CIFAR-10.

We compare the test power of RJSD-Split, RJSD-Deep, and RJSD-Fuse against various MMD-based
tests: data splitting (MMD-Split)[Sutherland et al., 2016], Smooth Characteristic Functions (SCF)
[Jitkrittum et al., 2016], the MMD Deep kernel (MMD-Deep) [Liu et al., 2020], Automated Machine
Learning (AutoTST) [Kübler et al., 2022], kernel thinning to (Aggregate) Compress Then Test (CTT
& ACTT)[Domingo-Enrich et al., 2023], and MMD Aggregated (Incomplete) tests (MMDAgg &
MMDAggInc) [Schrab et al., 2023] and MMD-FUSE [Biggs et al., 2024].

5.1 Results

We first investigate the impact of increasing the approximation order p in the power-series expansion
on test performance. Fig. 2 illustrates this effect across various datasets and scenarios. For the
mixture of Gaussians with a fixed standard deviation σ = 2 and n = m = 500, we analyze the test
power of RJSD-Split as p increases (leftmost). The results indicate a monotonic increase in test
power up to a particular order, after which it declines. This pattern was consistently observed across
different standard deviations. Similarly, for the Galaxy MNIST (n = m = 500) and CIFAR-10 vs.
10.1 (n = m = 2021) datasets, we evaluate RJSD-Deep with varying approximation orders. The
trend was consistent across all scenarios, with higher-order approximations outperforming lower
ones. Notably, p = 10 achieved the highest test power in each case. It is important to note that p = 1
corresponds to MMD, highlighting that RJSD consistently exhibits superior test power compared to
MMD.
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Table 1: Average test power for CIFAR-10 vs. CIFAR-10.1.

Tests Power
RJSD-Fuse 1.000
MMD-Fuse 0.937
MMD-Agg 0.883
RJSD-Deep 0.868
MMD-Deep 0.744

CTT 0.711
ACTT 0.678

AutoML 0.544
MMD-Split 0.316

MMD-Agg-Inc 0.281
SCF 0.171

Bold: Best approach
Underline: Best data-splitting approach

Fig. 3 compares the test power of various approaches across the tested datasets. In most scenarios,
RJSD-Fuse (p = 10) consistently outperforms or matches the performance of state-of-the-art methods
like MMD-Fuse and MMD-Agg. Similarly, RJSD-Deep and RJSD-Split also demonstrate superior
test power compared to their MMD counterparts in most cases. However, in the Galaxy MNIST
dataset, when the sample size is increased, RJSD-Deep leads in performance, while RJSD-Fuse
slightly falls behind MMD-Fuse. This discrepancy may be attributed to our estimator’s lack of bias
correction, which could affect certain cases.

Additionally, Table 1 presents the average power test for CIFAR-10 vs. CIFAR-10.1 computed over
ten distinct training sets and 100 testing sets per training set (total of 1000 repetitions). Again, RJSD-
Fuse (p = 10) achieves the highest test power, outperforming all other methods. Also, RJSD-Deep
achieves the maximum power among data-splitting techniques, significantly surpassing MMD-Deep.
These results highlight the robustness and efficacy of RJSD in measuring and detecting differences in
distributions, demonstrating its potential as a powerful alternative to MMD for both statistical testing
and broader machine-learning applications.

6 Conclusions

In this work, we introduced a novel kernel-based information-theoretic framework for two-sample
testing, leveraging the representation Jensen-Shannon divergence (RJSD). We presented a method
that extends beyond traditional MMD-based approaches by incorporating higher-order information
from kernel matrices. Our framework offers a more robust and flexible measure of divergence
between distributions without assuming Gaussianity. Moreover, we developed RJSD-based variants
of well-known MMD tests, including MMD-Split, MMD-Deep, and MMD-Fuse, offering more
flexible and powerful testing procedures.

Empirical results demonstrate the superior discriminative power of RJSD in two-sample testing tasks,
positioning it as a robust alternative to MMD. RJSD’s ability to capture more nuanced differences
between distributions showcases its potential as a foundational tool for future machine learning
research and applications. Given its versatility, ease of estimation from samples, and performance
improvements, RJSD holds promise to significantly impact the field of kernel-based learning and
contribute to advancing state-of-the-art methodologies in distribution comparison.

Further research is needed to analyze the bias and variance of the representation Jensen-Shannon
divergence estimators under both null and alternative hypotheses. This analysis will offer important
insights into the reliability of our methods for two-sample testing and lead to more principled
approaches to bias correction in our estimators.

References
Francis Bach. Information theory with kernel methods. IEEE Transactions on Information Theory,

2022.

8



Charles R Baker. Joint measures and cross-covariance operators. Transactions of the American
Mathematical Society, 186:273–289, 1973.

Felix Biggs, Antonin Schrab, and Arthur Gretton. Mmd-fuse: Learning and combining kernels for
two-sample testing without data splitting. Advances in Neural Information Processing Systems, 36,
2024.

Carles Domingo-Enrich, Raaz Dwivedi, and Lester Mackey. Compress then test: Powerful kernel
testing in near-linear time. arXiv preprint arXiv:2301.05974, 2023.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Mehrtash Harandi, Mathieu Salzmann, and Fatih Porikli. Bregman divergences for infinite dimen-
sional covariance matrices. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1003–1010, 2014.

Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

Jhoan K Hoyos-Osorio, Santiago Posso-Murillo, and Luis G Sanchez-Giraldo. The representation
jensen-shannon divergence. arXiv preprint arXiv:2305.16446, 2023.

Wittawat Jitkrittum, Zoltán Szabó, Kacper P Chwialkowski, and Arthur Gretton. Interpretable
distribution features with maximum testing power. Advances in Neural Information Processing
Systems, 29, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jonas M Kübler, Vincent Stimper, Simon Buchholz, Krikamol Muandet, and Bernhard Schölkopf.
Automl two-sample test. Advances in Neural Information Processing Systems, 35:15929–15941,
2022.

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J Sutherland. Learning
deep kernels for non-parametric two-sample tests. In International conference on machine learning,
pages 6316–6326. PMLR, 2020.

Hà Quang Minh. Affine-invariant riemannian distance between infinite-dimensional covariance
operators. In International Conference on Geometric Science of Information, pages 30–38. Springer,
2015.

Hà Quang Minh. Regularized divergences between covariance operators and gaussian measures on
hilbert spaces. Journal of Theoretical Probability, 34:580–643, 2021.

Ha Quang Minh. Entropic regularization of wasserstein distance between infinite-dimensional
gaussian measures and gaussian processes. Journal of Theoretical Probability, 36(1):201–296,
2023.

Adil G. Naoum and Asma I. Gittan. A note on compact operators. Publikacije Elektrotehničkog
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A Appendix / supplemental material

A.1 Proof Lemma 1

Proof. To prove this Lemma, we use (Proposition 4.e) in Bach [2022]. We have that

DKL (CP , CQ) ≥
1

2
∥CP − CQ∥2∗ ≥ 1

2
∥CP − CQ∥2HS,

where DKL is the kernel Kullback-Leibler divergence and ∥·∥∗ and ∥·∥HS denote the nuclear and
Hilbert-Schmidt norms respectively. Let CM =

CP+CQ

2 , then:

DJS(CP , CQ) =
1

2
DKL(CP , CM) +

1

2
DKL(CP , CM)

≥1

4

∥∥∥∥CP − 1

2
(CP + CQ)

∥∥∥∥2
∗
+

1

4

∥∥∥∥CQ − 1

2
(CP + CQ)

∥∥∥∥2
∗

≥1

4

∥∥∥∥12CP − 1

2
CQ

∥∥∥∥2
∗
+

1

4

∥∥∥∥12CQ − 1

2
CP

∥∥∥∥2
∗
=

1

8
∥CP − CQ∥2∗

and thus, DJS(CP , CQ) ≥ 1
8 ∥CP − CQ∥2∗ ≥ 1

8 ∥CP − CQ∥2HS.

Now, let ϕ : X 7→ H then, and {eα} be an orthonormal basis in H, we have that

Tr (ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y)) =
∑
α

⟨ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y)eα, eα⟩

=
∑
α

⟨ϕ(x)⟨ϕ(x), ϕ(y)⊗ ϕ(y)eα⟩, eα⟩

=
∑
α

⟨ϕ(x)⟨ϕ(x), ϕ(y)⟨ϕ(y), eα⟩⟩, eα⟩

=
∑
α

⟨ϕ(x)⟨ϕ(x), ϕ(y)⟩⟨ϕ(y), eα⟩, eα⟩

=
∑
α

⟨ϕ(x), eα⟩⟨ϕ(x), ϕ(y)⟩⟨ϕ(y), eα⟩

=⟨ϕ(x), ϕ(y)⟩
∑
α

⟨ϕ(x), eα⟩⟨ϕ(y), eα⟩ = ⟨ϕ(x), ϕ(y)⟩⟨ϕ(x), ϕ(y)⟩

=⟨ϕ(x), ϕ(y)⟩2 = κ(x, y)2

Note that for T : H 7→ H, Tr(T ∗T ) =
∑

α⟨Teα, T eα⟩ = ∥T∥2HS. In particular, if we have that
T = ϕ(x)⊗ ϕ(x)− ϕ(y)⊗ ϕ(y),

∥ϕ(x)⊗ ϕ(x)− ϕ(y)⊗ ϕ(y)∥2HS =Tr(ϕ(x)⊗ ϕ(x)ϕ(x)⊗ ϕ(x))− 2Tr(ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y))

+ Tr(ϕ(y)⊗ ϕ(y)ϕ(y)⊗ ϕ(y))

=κ2(x, x)− 2κ2(x, y) + κ2(y, y)

Finally, note that

∥CP − CQ∥2HS =Tr(EP [ϕ(x)⊗ ϕ(x)]EP ′ [ϕ(x)⊗ ϕ(x)])− 2Tr(EP [ϕ(x)⊗ ϕ(x)]EQ[ϕ(y)⊗ ϕ(y)])

+ Tr(EQ[ϕ(y)⊗ ϕ(y)]EQ′ [ϕ(y)⊗ ϕ(y)])

=Tr(EP,P ′ [ϕ(x)⊗ ϕ(x)ϕ(x′)⊗ ϕ(x′)])− 2Tr(EP,Q[ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y)])

+ Tr(EQ,Q′ [ϕ(y)⊗ ϕ(y)ϕ(y′)⊗ ϕ(y′)])

=EP,P ′ [κ2(x, x′)]− 2EP,Q[κ
2(x, y)] + EQ,Q′ [κ2(y, y′)],

which corresponds to squared MMD with kernel κ2(·, ·).
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Figure 4: Mixture of Gaussians and Galaxy MNIST datasets.

A.2 Proof Theorem 3

Proof.

D̂ κ
pJS(X,Y ) = Tr

(
1
2nKZ(I − 1

2nKZ)
)
− 1

2
Tr

(
1
nKX(I − 1

nKX)
)
− 1

2
Tr

(
I − 1

nKY (
1
nKY )

)
= −Tr

(
1

4n2KZKZ

)
+

1

2
Tr

(
1
n2KXKX

)
+

1

2
Tr

(
1
n2KY KY

)
= − 1

4n2
∥KZ∥2F +

1

2n2
∥KX∥2F +

1

2n2
∥KY ∥2F

= − 1

4n2

2n∑
i,j

κ2(zi, zj) +
1

2n2

n∑
i,j

κ2(xi,xj) +
1

2n2

n∑
i,j

κ2(yi,yj)

=
1

4n2

n∑
i,j

κ2(xi,xj) +
1

4n2

n∑
i,j

κ2(yi,yj)−
2

4n2

n∑
i,j

κ2(xi,yj)

=
1

4
M̂MD

2

κ2(X,Y )

B Two-sample testing implementation details

B.1 RJSD-Fuse

Biggs et al. [2024] proposes MMD-Fuse, which computes a weighted smooth maximum of different
MMD values from different kernels κ ∈ K drawn from a distribution ρ ∈ M1

+(K). The proposed
statistic is defined as:

F̂USEMMD(X,Y ) =
1

λ
log

Eκ∼ρ

exp
λ

M̂MD
2

κ(X,Y )

Nκ(Z)

 .

Here, the different MMD estimates are normalized by a permutation invariant factor Nκ(Z) :=√
1

n×(n−1)

∑
i ̸=j κ(zi, zj)

2 to account for the different scales and variances of distinct kernels before
computing the “maximum". To include this term within our approach, instead of normalizing the
divergence estimates, we normalize the kernels by Nκ(Z), which in the case of p = 1 is equivalent
to MMD-Fuse. That is:
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Figure 5: CIFAR 10 vs 10.1 images.
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Figure 6: L2 distance distribution for the mixture of Gaussians and RJSD estimates for ten different
bandwidths tested.

D̂H
pJS(P,Q) = Sp

(
1

n+m
KZ√
Nκ(Z)

)
−

(
n

n+mSp

(
1
n

KX√
Nκ(Z)

)
+ m

n+mSp

(
1
m

KY√
Nκ(Z)

))
.

Notice that for p = 1, this is equivalent to MMD-Fuse, where the measurement is normalized.
However, normalizing the kernel allows the normalization to account for higher-order interactions
between the kernel matrices for p > 1.

Distribution over kernels: Similarly to MMD-Fuse, we use a collection of Laplacian κl
σ(x, x

′) =

exp
(
−∥x−x′∥1

σ

)
and Gaussian κg

σ(x, x
′) = exp

(
−∥x−x′∥2

2

2σ2

)
kernels with distinct bandwidths

σ > 0. In our implementation, we choose the bandwidths as the 5%, 15%, 25%, . . . 95% quantiles
of {∥z − z′∥r : z, z′ ∈ Z}, with r ∈ 1, 2 for the Laplace and Gaussian kernels respectively. This
choice is similar to MMD-Fuse, where ten bandwidths per kernel type are also selected. See Fig. 6.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The last paragraph of the conclusions discusses some of the current theoretical
limitations of the method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The proofs of the proposed theoretical results are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details of the two samples testing experiments are in the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code will be provided upon acceptance of the article.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Most implementation details are provided in the appendix. Other subtle details
can be found in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper presents the average power test over multiple randomized realiza-
tions of all the experiments, with a significance level of 0.05.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: This information will be released upon acceptance in the provided code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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