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Abstract
Prior work suggests that language models man-
age the limited bandwidth of the residual stream
through a ”memory management” mechanism,
where certain attention heads and MLP layers
clear residual stream directions set by earlier lay-
ers. Our study provides concrete evidence for
this erasure phenomenon in a 4-layer transformer,
identifying heads that consistently remove the out-
put of earlier heads. We further demonstrate that
direct logit attribution (DLA), a common tech-
nique for interpreting the output of intermediate
transformer layers, can show misleading results
by not accounting for erasure.

1. Introduction
Understanding the internal mechanisms of language models
is an increasingly urgent scientific and practical challenge
(Zhao et al., 2023; Luo & Specia, 2024). For instance, we
lack a clear explanation of the interaction between internal
components, such as attention heads and MLPs. Elhage et al.
(2021) referred to residual stream dimensions as memory or
bandwidth that components use to communicate with each
other.

Memory management Elhage et al. (2021) observe that
there are much more computational dimensions (such as
neurons and attention head result dimensions) than residual
stream dimensions, thus we should expect residual stream
bandwidth to be in high demand. The authors speculated
that some model components perform a memory manage-
ment role, clearing residual stream dimensions set by earlier
components to free some of this bandwidth.

Direct logit attribution (DLA) is a technique for interpret-
ing the output activations of model components in vocabu-
lary space (Wang et al., 2022; Elhage et al., 2021; nostalge-
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braist, 2020). In particular, DLA applies the unembedding
matrix to model internal activations, effectively skipping fur-
ther computation of downstream components. This method
implicitly assumes continuity of the residual stream, mean-
ing a direction written to the stream stays conserved through-
out the forward pass. However, the continuity assumption
would not hold if some components erase residual directions
set by earlier ones.

Overall, our main contributions are as follows:

• Defining erasure, a form of memory management in
transformer models and proposing projection ratio, a
metric for quantifying erasure

• Presenting a concrete example of erasure in a 4-layer
transformer

• Demonstrating that DLA can yield misleading results
when erasure is present

Figure 1. The output of attention head L0H2 across the residual
stream with (green) and without (red) erasure behavior. We show
the median projection ratios between residual stream activations
and L0H2, with and without V-composition patching. Shaded
region represents 25th and 75th quantiles.

2. Methods
We characterize erasure as 3 steps during a forward pass
of a model: (1) A writing component adds its output to the
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residual stream. (2) Subsequent components read this infor-
mation to perform their function. (3) An erasing component
removes the writing component’s output from the residual
stream, by reading it and writing out a negative version.

2.1. Identifying writing components

We examine whether the output of each component, once
written to the residual stream, persists in subsequent trans-
former layers. To quantify this, we define the projection
ratio

PR(a,b) :=
a · b
||b||2

, (1)

which measures the proportion of vector b present in vector
a. We set a to be the residual stream activations at each layer
and b to be the output of each attention head or MLP. This
allows us to track how much of each component’s output
remains in the residual stream as it propagates through the
model.

2.2. Identifying erasing components

To identify erasing components, we look for components
that write to the residual stream in the direction opposite
to the previously identified writing components. We quan-
tify this with the projection ratio, this time setting a to be
the output of a writing component and b outputs of other
components.

2.3. Investigating causality

To investigate a causal relationship between writing and era-
sure, we repeat experiments identifying writing and erasing
components, while intervening on the direct path between
them with activation patching (Zhang & Nanda, 2023).

Specifically, to compute the value vector of an erasing at-
tention head, we use a modified residual stream activation,
where the output of the writing component is set to zero.
In other words, we perform activation patching with zero
ablation to the V-composition (as defined by Elhage et al.
(2021) and applied by Wang et al. (2022); Heimersheim &
Janiak (2023); Lieberum et al. (2023)) of writer and erasure
heads. Put simply, V-composition is the direct path between
the output of an upstream component and the value input of
a downstream attention head.

Zero-ablation of the writing component’s output allows us
to observe the impact on the erasing behavior and establish a
causal link between the two components. For example, to in-
vestigate the causality of L0H2 (an early writing component)
on L2H2 (a later erasing component), we can subtract the
output of L0H2 from the value input of L2H2. This helps
answer the question ”how does L2H2 behave differently
when L0H2’s output is not present?”.

2.4. Erasure as a potential confounder in DLA
interpretation

We hypothesize that erasure can lead to misleading results
when using DLA to interpret the role of writing components.
If an erasing component removes the output of a writing
component from the residual stream, the writing compo-
nent’s contribution to the final logits (as measured by DLA)
will be diminished, as the effects of the two components
will largely cancel out.

To test this, we collect prompts from the model’s training
dataset and measure the contribution of the identified writing
and erasing components to the logit difference between
the model’s top two next token predictions. We isolate
the erasing effect by applying DLA only to the part of the
erasing components’ output that comes from V-composition
with the writing component. This is obtained by taking the
erasing components’ output on a standard forward pass and
subtracting their output from a modified forward pass where
the writing component’s output is zeroed out in the residual
stream.

2.5. Verifying DLA predictions through context
manipulation

To find examples that yield significant DLA results for the
writing component, we search for tokens whose unembed-
ding directions consistently align with the writing compo-
nent’s output. Having identified tokens that yield significant
DLA results, we investigate whether these results are gen-
uine contributions of the writing component or artifacts of
erasure. For each selected token, we construct a prompt
that makes the token a natural next-word prediction, and the
model indeed predicts it as the most likely continuation.

We then measure the logit difference between the selected
token and the model’s second most likely prediction using
DLA in two scenarios: (1) a clean run with the original
prompt and (2) a run where the input to the writing com-
ponent is patched with randomly sampled prompts from
the training dataset. If the writing component is genuinely
using the information in the prompt to infer the best predic-
tion, then patching its input should significantly reduce the
logit difference observed in the clean run. Conversely, if the
DLA predictions are primarily artifacts of erasure, patching
the input should have little impact on the observed logit
differences.

2.6. Model architecture and training

For our experiments, we utilized a GELU-4L model (Nanda,
2022). This model is based on a GPT-2 style transformer
architecture with 4 transformer layers, learned positional
embeddings, and layer normalization. It employs GELU
activations in the MLP layers, uses separate embedding and
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unembedding matrices (not tied), and has a residual stream
dimension of 512. The model was trained on a dataset of 22
billion tokens, comprising 80% web text and 20% Python
code.

3. Results
3.1. Output of head L0H2 is being erased

We measured the projection ratio between residual stream
activations at subsequent layers and outputs of every trans-
former component in forward passes on 300 random sam-
ples of the model’s training data.

We distinguish the states of the residual stream in GELU-4L
as follows: resid pre 0 before any attention or MLP layers
(just token and positional embeddings), resid mid n after
the attention layer n, and resid post n after the MLP layer
n, where n = 0, 1, 2, 3 denotes the layer index.

The most interesting results were observed for attention
head 2 in layer 0 (L0H2), shown by the green line (clean) in
Figure 1. We can track the presence of L0H2’s information
in the residual stream across subsequent layers of the model.

Initially, we see a projection ratio close to 0 at resid pre 0,
as L0H2 has not written to the residual stream yet. After
L0H2 writes to the residual stream at resid mid 0, the pro-
jection ratio goes to about 1, meaning its output is fully
present in the residual stream. The projection ratio stays
close to 1 between resid mid 0 and resid post 1. However,
between resid post 1 and resid mid 2, attention heads ap-
pear to remove the information that L0H2 originally wrote,
resulting in a much smaller projection ratio, close to 0.

3.2. Layer 2 attention heads are erasing L0H2

In Figure 2, we can see the projection ratio between the
outputs of every component in layers 1 to-3 and the output
of head L0H2. We find that 6 out of 8 attention heads in layer
2, numbered 2 to 7, have consistently negative projection
ratio, implying that they are writing to the residual stream
in the direction opposite to L0H2. In aggregate, they are
responsible for erasing 90.7% 1 of the output of L0H2. We
refer to them as erasing heads.

3.3. Erasure depends on writing

Figure 1 shows the projection ratio of residual stream onto
L0H2 in the clean run and in a patched run, where we pre-
vented V-composition between L0H2 and erasing heads. As
we can see, in the patched run the projection ratio remains
high after the attention block in layer 2 (0.91 in patched,

1The distribution of projection ratio between the sum of erasing
heads output and L0H2 has quantiles: 25% = -1.128, 50%=-0.907,
75%=-0.700.

Figure 2. Median projection ratios between components in layers
1–3 and head L0H2. Error bars represent 25th and 75th quantiles.

0.12 in clean), indicating that around 85% of the erasure
in layer 2 is dependent of V-composition. We note that the
projection ratio goes down after layer 2, suggesting that
components in subsequent layers are involved in the erasure
as well.

Figure 3. Median projection ratios between selected heads in layer
2 and head L0H2, with and without V-composition patching. Error
bars represent 25th and 75th quantiles.

Figure 3 compares projection ratios between erasing heads
and L0H2 in patched and clean runs. While these heads
express consistently negative projection ratios in the clean
run, the median goes close to zero in the patched run. These
result show that the erasure behaviour disappears when we
prevent V-composition between L0H2 and the erasing heads.

3.4. DLA contributions of writing and erasure are
highly anti-correlated

To investigate how erasure can affect the interpretation of
writing components using DLA, we applied the method-
ology described in Section 2.4. We collected 30 random
samples from the model’s training dataset and considered
the top 2 next token predictions at every sequence position.

The results, shown in Figure 4, reveal a strong negative
correlation (r=-0.702) between the DLA contributions of
the writing head L0H2 and the erasing heads in layer 2.
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The line of best fit has a slope of -0.613, indicating that on
average, the erasing heads remove about 61% of L0H2’s
apparent contribution to the final logits, as measured by
DLA.

This anti-correlation suggests that DLA results for the writ-
ing component L0H2 may be largely artifacts of the down-
stream erasure. When the writing component appears to
make a large contribution to the final logits according to
DLA, the erasing components tend to make a similarly large
contribution in the opposite direction. As a result, the net
effect of the writing component on the final output may be
much smaller than what DLA alone would suggest.

Figure 4. Correlation between the effects of writing and erasure on
the logit difference of top 2 model predictions, according to DLA.

3.5. Adversarial examples of high DLA values without
direct effect

We selected four tokens for which the unembedding di-
rection aligns with the output of L0H2: " bottom", "
State", " ", and " Church". Then, we constructed
four prompts such that the model predicts one of the tokens
with highest probability.

1. prompt: "It’s in the cupboard, either
on the top or on the"
top-2 tokens: " bottom", " top"
(logit difference 1.07)

2. prompt: "I went to university at
Michigan"
top-2 tokens: " State", " University"
(logit difference 1.89)

3. prompt: "class MyClass:\n\tdef"
top-2 tokens: " ", " get"
(logit difference 3.02)

Figure 5. Logit difference of top 2 predictions on adversarial ex-
amples, according to DLA. Patched refers to replacing the input
to the head L0H2 (top) or other heads with high logit difference
according to DLA (bottom) with one from a run on unrelated text
with the same number of tokens (300 examples). The orange bars
show median with error bars at the 25th and 75th quantiles.

4. prompt: "The church I go to is the
Seventh-day Adventist"
top-2 tokens: " Church", " church"
(logit difference 0.94)

We use the methodology described in Section 2.5. We find
that patching the input to L0H2 with unrelated text does
not affect the DLA-measured logit difference, as shown in
Figure 5 (top). Therefore, we conclude that L0H2 does not
directly contribute to the model predictions in prompts 1 to
4, despite significant DLA values.

For example, if we change Prompt 1 to a context completely
different to the vertical placement of an object in a cup-
board (such as in the patched run), we no longer expect the
model to differentially boost the logit of " bottom" over
" top". However, DLA of L0H2 still suggests that L0H2
is indeed differentially boosting the " bottom" token,
and this remains true for 300 randomly sampled inputs.

The invariance of L0H2’s DLA to input tokens is unusual.
We reran the patching experiment for four other attention
heads that, according to DLA, have the highest direct effect
on logit difference for the respective prompt in Figure 5
(bottom). In contrast to L0H2, the results for these heads
are severely affected by the patch, as expected.

4. Conclusion
In this paper, we presented a concrete example of memory
management in a 4-layer transformer model. It is impor-
tant to note that our study focused on a single model and a
specific attention head. Further research is needed to deter-
mine the extent to which these phenomena generalize across
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different model components and model sizes.

Our findings also highlight the need for caution when using
DLA, as in the presence of the erasure phenomenon, these
results can be misleading. To mitigate this, we advocate for
testing effects across varied prompts, particularly those with
different correct next token completions, as averaging over
many prompts can cancel out spurious results. Moreover,
we recommend complementing DLA with activation patch-
ing to measure both direct and indirect effects of model
components.

Software and Data
All experiments can be reproduced using
our Colab notebook, available at https:
//colab.research.google.com/drive/
16Kp-4iH330a1dF6F0ntPK7kfNuxqkvfZ
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