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Abstract

Evidential reasoning aims to infer hidden causes from observed effects. In the
context of fault detection, it is possible to trace the cause of anomalies by combining
evidential reasoning with physical knowledge. However, experts may not have
full knowledge of the physical systems, and data may not be large enough to learn
from scratch. We develop an online evidential reasoning algorithm that blends
machine learning with expert-provided physical knowledge about causal structure
and functional form. The expert first represents possible causes and effects in
the structure of a Bayesian Network, then provides physics-informed priors about
the model relating failure modes to effects, allowing inference in the absence of
strong supervision. As data are sampled from the physical system, predictions
are generated using a quasi-Bayesian mixture of the expert’s judgment and a data-
driven estimate. With simulated datasets, we evaluate the conditions under which
the system converges to correct causal inferences under weak supervision, and
small amounts of strong supervision from the expert. We find that the approach is
able to make accurate inferences with little or no data unless the expert’s physical
model is very incorrect or the signal to noise ratio across error modes is small.

1 Introduction

Evidential reasoning aims to make inferences from observed effects to hidden causes [14], and is
important in many applications, from medical diagnosis, to analyzing the root cause of a manufac-
turing machine’s failure (a.k.a root cause analysis or RCA). In the manufacturing case, patterns in
measurable quantities (e.g., sound, vibration, force) captured during operation will vary over time
due to changes of operation, component degradation, corrosion, overheating, and other effects. A
Bayesian Network (Bayes Net) can connect the observed sensor measurements (effects) to their
hidden causes. A maintenance technician or engineer forms expectations about the patterns of
observed variables given different failure modes, such as degradation after a specified number of
cycles. The expert’s task is to study the patterns (sensor readings) to determine whether the system is
healthy, and if not, remedy the cause of the problem before failure occurs. Predictive maintenance
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approaches that combine expert knowledge and machine learning to solve the evidential reasoning
problem have the potential to reduce costs, improve situational awareness, and optimize machine
operation [15, 2, 18]. Schedule based maintenance, on the other hand, is suboptimized as it risks
both performing maintenance tasks when not needed, resulting in excess cost, and missing failure in
progress, resulting in lost of productivity due to unplanned downtime.

Because machine failure is costly, algorithms would ideally be able to detect faults before they
occur, with little supervision. Physical knowledge about expected patterns may be provided by a
knowledgeable expert or collection of experts. In some cases, this knowledge may be represented as
a system of ordinary differential equations (ODEs) or partial differential equations (PDEs). Recent
research has used neural networks to leverage this kind of prior physical knowledge [23, 4, 16]. An
effective algorithms should also be able to adapt to streaming data, reduce the burden of system
operators, and be robust to operator mis-specification of the relationship between signal patterns
and hidden causes. Leveraging expert knowledge about the potential causes and physical functional
relationships underlying machine operation, we propose an approach that: 1) incorporates expert-
provided physical knowledge into the modeling of machine failure modes, 2) uses an expert-informed
Bayes Net to simplify the evidential reasoning inference problem, and 3) combines an expert’s
judgment with a data-driven model to solve the root cause analysis problem.

2 Related Work

Machine learning approaches to root-cause analysis may use supervised learning combined with
physics-based feature engineering, such as using a signal’s frequency spectrum in a vibration model.
Many features in both the time and frequency domains have proved useful, including the energy ratio,
side-band index, sideband level factor, root mean squared error, energy operator, skewness, kurtosis,
crest, energy ratios of wavelet coefficients, ensemble empirical mode decomposition, wavelet kernel
local fisher discriminant analysis, among others [9, 24]. Feng et al. [9] use a local connection network
with normalized sparse auto-encoders, and Hong et al. [8] use Gaussian Process regression to model
bearing degradation, where the rMSE of the GP fit on normal data and tested on new data is used to
classify failure one day in advance.

Another important tool is the use of Bayes Nets. In more general settings, Kaufman et al. [10]
propose a method for estimating the Markov blanket for some variables in large networks, which
improves subsequent Bayesian inference using Gibbs sampling. Louizos et al. [17] use variational
auto-encoders to represent confounders as latent variables to estimate causal effects.

Inclusion of experts in machine learning has gained interest in recent years. Abdollahi et al. [1] use
expert guidance to optimize the selection of parameter spaces and hyper-parameters in the challenging
task of 3D printing soft materials. Gennatas et al. [7] use expert decision rules as priors in a machine
learning model. Xu et al. [26] use mis-specified expert functions in the form of pairwise comparisons
for optimization.

3 Using expert-provided Bayes Nets for root cause analysis

We next describe an approach to use expert-provided Bayes Nets in the evidential reasoning task.
Assume a physical system has S sensors s1, s2, . . . sS . For any time interval [0, t], we are interested
in the quantity p(m|s1,0, s2,0, ...s1,t, s2,t, . . . sS,t) where m is a set of causes (normal or failure
modes) with categorical input spaceM, and si,t denotes the measurements of sensor i at time t. If
both the sensors and failure modes are observed, one can train physics-based neural network models
{ψi

m} (see next section for ψ) to fit the sensor i’s readings to a pattern, according to specific failure
modes.

Bayes Nets capture the fact that it is unlikely that all failure modes affect all sensors. Causal
relationships between the hidden states m and the observed variables s are initially given
by experts as a Bayes Net G. Using the Bayes Net we can factorize the joint distribution
p(m, s1,0, s2,0, ...s1,t, s2,t, . . . sS,t) into a product of conditional distributions based on the par-
ents (Pa) of each sensor: p(m, s1,0, s2,0, ...s1,t, s2,t, . . . sS,t) =

∏S
i=1 p(si,0, si,1, ...si,t, |Pa(si) ⊆

m)) · p(m).

2



With this factorization it is possible to do likelihood-based inference if robust likelihoods are available
for the conditional distributions of p(si,0, si,1, ...si,t, |Pa(si) ⊆m)). In our model we impose the
assumption that the distribution of sensors with respect to the fault vector m satisfies a Gaussian
distribution, such that p(si,0, si,1, ...sit|m) ∼

∏t
j=0N (ψi

m(j), σ2
i ). A sequence is predicted based

on the neural network ψi
m with input [0, t] and compared with each si,j , j ∈ [0, t] to see how similar

two functions behave in terms of mean squared error. Our goal is to: 1) Estimate m̃ by the conditional
probabilities, and 2) update ψi

m based on streaming data.

The approach works as follows:

1. Construct Bayes Net G from the expert’s engineering analysis of the system
2. For S sensors s1,0, s2,0, ...s1,t, s2,t, . . . sS,t and hidden state m, factorize their joint distri-

bution according to G

p(m, s1,0, s2,0...s1,t, s2,t, . . . sS,t) ∝
S∏

i=1

p(si,0, si,1, ...si,t|Pa(si) ⊆m)p(m) (1)

where Pa(si) ⊆m are the parents of sensor i in G
3. Initialize ψi

m with an expert’s assessment of the time series model for each sensor i and
each combination of its parents

4. For each of the sensors and failure mode combinations, label the sensor data st observation
with:

m̃ = argmax
m∈M

[ S∏
i=1

p(si,0, si,1, ...si,t|Pa(si) ⊆m)p(m)
]

(2)

= argmax
m∈M

[ S∏
i=1

t∏
j=0

N
(
si,j ;ψi

m(j), σ2
i

)
p(m)

]
(3)

5. Label the data vector st with the label m̃, which indicates the failure modes that cause the
machine to produce this data. (Optional strong expert supervision: Ask the expert to verify
the accuracy of the label by inspecting the machine.)

6. With nm̃ as the number of labels for class m̃, use learning rate 0 ≤ α(nm̃) ≤ α(nm̃+1) ≤ 1

to update ψi
m̃ using backpropagation:

ψm̃
i,updated = α(nm̃)ψm̃

i + (1− α(nm̃))ψm̃
i,expert (4)

4 Integrating expert-provided physics into learning time-series functions

Machinery is governed by the classical mechanics and electrodynamics and consequently, the
machine’s sensor readings and signals will be governed by a systems of ODEs or PDEs that represent
the underlying physics. The aim of predictive analytics is thusto solve for the parameters of the
equations that govern the patterns of the data, under various anomaly scenarios. Our approach aids
the experts by training the neural network ψ on a series of time-dependent readings for each sensor
and failure mode.

We leverage recent advances in physics-based modeling to improve machinery models using neural
networks that require little or no data for accurate estimation. Specifically, we use physics-constrained
loss functions to approximate the solution to an ODE/PDE using a neural network [21, 22, 20]. The
approach learns a hidden function u(t, x) such that [20]:

∂u

∂t
+N [u;λ] = 0 (5)

where N [u;λ] is an arbitrary non-linear differential operator parameterized by λ and x ∈ RD. For
example, the 1D Berger’s equation is N [u;λ] = λ1u

∂u
∂x − λ2

∂2u
∂2x . To enforce the physics-based

constraint, the approach defines f(t, x) = ∂u
∂t + N [u;λ] and adds

∑T
t=1 f(t, x)

2 as a regularizer,
where ∂u

∂t and N [u;λ] are calculated using auto-differentiation on the fitted neural network.
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In our approach, we treat this differential equation information as imperfect prior knowledge provided
by the expert. Model predictions are then based partly on a data-driven model, and partly on the
expert’s guess about the system’s physical dynamics ψexpert. To capture the data-driven component,
we use a neural network with two hidden layers and sine activation functions [25] to predict physical
quantities of interest at each timestep. Prior research [22] finds that such an architecture can learn to
reproduce not only the positions in a fluid flow problem, but also the governing PDE equations. The
use of sinusoidal activation functions in physics-informed neural networks was rigorously studied in
the SIREN architecture to deal with the infinite local minima problem [25], with the ability to solve
boundary value problems including Poisson, Helmholtz, and wave equations.

5 Summary of the role of the expert

The expert plays a key role in several stages of the proposed approach. Here we provide an overview
of the expert’s role in each part of the algorithm.

Bayes Net. The expert provides a Bayesian network G for the algorithm. For failure mode analysis,
this often takes the form of a bipartite graph, where the first part of the graph consists of the failure
modes F , and the second part includes the observable sensors S. The directed edges E link failure
modes to some subset of the sensors. Experts should be able to construct such a graph based on their
engineering knowledge of the system, particularly if they are experienced with the machine.

Assessment of the causal model. The expert provides an assessment of how the sensor observations
behave given different configurations of failure modes. For example, in the case of a turning or
cutting machine, there is usually a fundamental frequency at which the system vibrates, and chattering
or other problems with the system add new frequencies. This additivity of signals can be used to
simplify the combinatorial problem of specifying the conditional distribution of each sensor for all
combinations of its parents. For the algorithm to be useful, the expert needs to be able to give precise
enough estimates such that the difference between the signals across normal and failure modes is
larger than the noise variance in the system.

Estimation of failure modes distribution. Although not used in our current approach, the expert
can also provide base rate (unconditional) guesses about the probability of different failure modes. As
the system is continuously fitting data-driven models and weakly classifying hidden states as failure
modes at each timestep, it is possible for these estimates to also be data driven.

Strong supervision. We assume the expert can inspect the machine to determine whether the
algorithm correctly classifies the failure modes. This might be visual inspection, diagnostic testing,
or other relevant engineering analyses. Strong supervision is particularly important when the expert
is inaccurate in the initial estimates (or is unable to provide estimates). If a previously unobserved
malfunctioning cause is detected, the expert can add additional nodes (F, S) and edges (E) to refine
the Bayesian network G. The ideal scenario is that the expert can give strong supervision with the
system; that is, the expert can detect all misclassified labels and provide correct feedback.

6 Synthetic experiments

We examine the ability of the proposed approach to recover time series functions and accurately
classify error modes with little or no data, focusing on a) the amount of data required, b) noise in the
data generating process, c) bias in the expert’s judgments, and d) strong supervision. In a real machine
deployed in a manufacturing environment, the Bayesian Network and functional relationships can be
quite complex. For the purpose of initial demonstration, we use a simple Bayesian network with two
sensors S = {s1, s2} and three failure modes F = {f1, f2, f3}. The directed edges depict the failure
modes that are parents of each sensor, as shown by Figure 1. The probability of each failure mode
occurring is characterized by independent Bernoulli random variables with probability p of being
active during any time window T = [T1, T2].
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Figure 1: Bayesian network represented as bipartite graph with sensors S = {s1, s2} and failure
modes F = {f1, f2, f3}.

Each sensor outputs either the normal operation signal (no failure modes are active) or a sum of the
signals produced by the active failure modes. This means that each element m ∈m is also m ∈ F .
Let siT denote the signal observed by sensor i during the time interval T , then we have

siT =

{
ψ0
i (T ), if no fault∑
m∈F 1(m = 1)ψm

i (T ), if fault occurs
(6)

where ψm
i is the function that produces signals when fault m occurs, ψ0

i produces the normal
functioning signals.

Before data are collected from the machine, experts provide an assessment of the functional causal
model for each sensor for all combinations of its parent failure modes, with a maximum of 2|F |

assessments. Ideally, given an arbitrary time window t, the estimate for sensor i follows (Pr(|ŝiT −
siT |) > ε) < δ). As we have more data collected and with correct expert’s intervention, we want our
estimated ŝi to get closer to the true si.

6.1 Experiment 1: Time windows

First we consider the case where the expert provides nearly accurate estimates of the signal for each
failure mode in the presence of small amounts of noise. We examine the amount of data required for
the algorithm to accurately learn the sum of periodic functions. Our key variable manipulated in the
experiment is the time window size, proportional to the number of observations collected after the
failure occurs. Ideally this number will be small so that faults can be identified early and machine
down-time will be small.

Data Generation. Our assumption is that the expert already knows how s1 and s2 behave during
normal operation (sin(t) and cos(t), respectively). When a failure occurs, the two sensors s1 and
s2 are generated with the same periodic functions, according to Table 1. This simplification does
not affect the generality of the approach, because different neural networks are still required to learn
the periodic functions for each combination of failure modes. We assume all combinations of errors
occur with equal probability. Sensor measurements are collected for 1 observation per 0.2 seconds,
with T samples are collected for a time window of T × 0.2 seconds. The experiment varies the length
of time T for collection of sensor data. Our primary outcomes are the accuracy of failure mode
classification and resulting average MSE’s between the modeled functions and data.

Table 1: Parameters for Data Generation in Experiment 1
Fault Mode Expert’s Assumption Actual Equation

1 2 cos(5t) 2.2 cos(5t) + εt ∼ N(0, 0.01)
2 −2.4 cos(1.9t) −0.7 cos(2.2t) + εt ∼ N(0, 0.01)
3 0.6 cos(0.5t) 0.7 cos(0.5t) + εt ∼ N(0, 0.01)

Training. We train independent SIREN models for each combination of sensors and failure modes.
For each of the SIREN models, we initialize 2 internal layers of 256 nodes with sine activation and 1
output sine layer. We also use the expert’s strong supervision when the model misclassifies the labels.
We repeat this experiment for 25 iterations(assuming the machine is breaking down 25 times) for
each of the failure modes.
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Results. Table 2 reports the accuracy of root cause classifications and Figure 4 shows the MSE for
s1. We find that a small time window causes the classifier to slowly converge, as shown in Figure
4. The accuracy improves as the time window expands, but the small time window does not affect
the classification accuracy too much, reflecting the expert’s initial accuracy. Function recovery is
possible with around 10 to 15 iterations, regardless of the time window sizes.

Table 2: Accuracy of model classification for failure modes, varying the window size .
Window Size F1 F2 F3 F1,F2 F1,F3 F2,F3 F1,F2,F3
WS = 5 1.00 0.88 0.96 0.96 0.88 0.96 0.72
WS = 15 0.96 0.96 1.00 0.84 0.92 1.00 0.92
WS = 25 1.0 1.00 1.00 1.00 1.00 0.96 0.92
WS = 35 0.96 0.96 1.00 0.92 1.00 1.00 1.00
WS = 45 1.00 1.00 1.00 1.00 1.00 0.96 0.96

6.2 Experiment 2: Noise variance

Here we examine how noise in the sensor measurements affects function recovery and failure mode
classification. The approach is the same as Experiment 1, but with a fixed window size of T = 25,
and the actual equation has a range of different noise variances σ2

i ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1}.
Results. The failure mode classification accuracy is shown in Table 3, with MSEs for fitting s1 in
Figure 6. The classification accuracy drops as the sensor observations become more noisy. For larger
variances, the MSEs vacillate instead of converging to their lower bound, meaning that the model
fails to recover the underlying mean function. Note that this happens with a σ2

i of approximately 0.4,
where accuracy drops significantly across SIREN models.

Table 3: Accuracy of model classification for failure modes with different noise variances.
Noise Variance F1 F2 F3 F1,F2 F1,F3 F2,F3 F1,F2,F3
σ2
i = 0.1 1.00 1.00 1.00 0.96 0.92 0.96 0.96
σ2
i = 0.2 0.92 1.00 1.00 0.84 1.00 0.96 0.92
σ2
i = 0.4 0.96 0.96 0.8 0.64 0.88 0.88 0.40
σ2
i = 0.8 0.32 0.40 0.16 0.52 0.52 0.16 0.44
σ2
i = 1.0 0.64 0.08 0.20 0.28 0.24 0.12 0.24

6.3 Experiment 3: Expert accuracy and supervision

There are two critical cases where the model’s performance depends on expert judgment: 1) when the
experts do not have full knowledge of the underlying physical equations for the failure modes, and 2)
when the experts are unavailable for providing strong supervision to correct misclassifications. We
examine the model’s performance in each scenario. To illustrate model performance, we focus only
on the classification of failure mode F2.

Expert’s prior knowledge. We vary two components of the expert’s assessment: 1) the am-
plitude of the sine or cosine functions and the frequency of the sine or cosine functions. We
use a training strategy similar to the previous experiments, see Table 4. Scale parameters θ1
are generated from {−10,−5,−2, 0, 2, 5, 10} and frequency parameters θ2 are generated from
{0.1, 1, 1.5, 2, 2.5, 3, 3.5}. When we alter θ1, θ2 is fixed to be the same as the frequency parameter in
actual equation (2.2). When we alter θ2, θ1 is taken to be the same as the scale parameter in the actual
equation (−0.7). We use 30 iterations instead of 25, to fully observe F2. We assume the experts give
correct classification labels when the model misclassifies.

Results. We show the performance of the model under different prior knowledge, with its accuracy
in detecting F2 and the MSE convergence for F2. For simple periodic functions, if enough data are
given to the SIRENs for each of the iterations and an expert corrects misclassified labels, the model
is able to give relatively accurate predictions. In both cases, the MSE between the true function and
predicted function converges in Figure 5. We further compare the accuracy results without expert
supervision (labels), provided in Table 5.
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Table 4: Parameters for Data Generation in Experiment 3.
Fault Mode Expert’s Assumption Actual Equation

1 2 cos(5t) 2.2 cos(5t) + εt ∼ N(0, 0.01)
2 θ1 cos(θ2t) −0.7 cos(2.2t) + εt ∼ N(0, 0.01)
3 0.6 cos(0.5t) 0.7 cos(0.5t) + εt ∼ N(0, 0.01)

Table 5: The accuracy of the model under various parameters, comparing strong and no supervision.
Parameters Expert Labels No Labels
θ1 = −5, θ2 = 2.2 1.0 0.86
θ1 = −2, θ2 = 2.2 1.0 1.0
θ1 = 0, θ2 = 2.2 1.0 1.0
θ1 = 2, θ2 = 2.2 1.0 0.0
θ1 = 5, θ2 = 2.2 1.0 0.0
Accuracy Expert Labels No Labels
θ2 = 1.0, θ1 = −0.7 1.0 0.0
θ2 = 1.5, θ1 = −0.7 1.0 0.0
θ2 = 2.0, θ1 = −0.7 1.0 1.0
θ2 = 2.5, θ1 = −0.7 1.0 1.0
θ2 = 3.5, θ1 = −0.7 1.0 0.0

Supervision. We conduct the same experiments as shown in Table 4, varying the scale θ1
and frequency θ2 with two common ranges of parameters, θ1 ∈ {−5,−2, 0, 2, 5}, and θ2 ∈
{1, 1.5, 2, 2.5, 3}. However, here we assume that the expert cannot provide any labels.

Results. The MSE for convergence is shown in Figure 7 and the accuracy in comparison with strong
supervision is shown in Table 5. Without the expert’s correction of the wrongly classified labels, the
model does not properly modify the internal physical neural network associated with the failure mode,
leading to non-convergence of the MSE. Our experiment shows that the expert’s strong supervision is
important, especially in the event of limited data, to initialize the physical models.

7 Turning data and chatter diagnosis

In this section we apply our approach to a real machining dataset by Khasawneh et. al. [11] who
examine tool chattering during a turning task under different settings for workpiece and cutting edge.
The sensor signals are simultaneously collected at a sampling frequency of 160 kHz. The processed
data are low-pass filtered using a Butterworth filter of order 100, and then subsampled to 10 kHz. We
use the processed and tagged x-axis signals from the triaxial accelerometer. In addition to desired
normal operation (stable, s), there are three non-stable modes: intermediate chatter (precursor to
failure) (i), chatter (failure mode) (c), and unknown (failures other than chattering) (u), see Figure 2.
In prior work, classifying the chattering data was accomplished by extracted features from signals
based on Topological Data Analysis (TDA) and nonlinear time series analysis [12] (accuracy score of
0.97), or the usage of wavelet packet transform (WPT) and ensemble empirical mode decomposition
(EEMD) [27] (accuracy score of 0.94).

Figure 2: The experimental setup showing the workpiece, the cutting tool, and the attached accelerom-
eters (left). The surface finish corresponding to different chatter labels[27] (right).
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While the methods in [12] and [27] train and test the model on the entire dataset, we simulate
a zero-shot environment with few or no data in the beginning and train our classification model
sequentially. We have also made use of different levels of EEMD[5] to denoise the input chatter
data. The chattering data consists of variable length time-series data-points which are split into
non-overlapping chunks with time window of 500 observations each for consistency. The model
observes one chunk at each instance which is classified and subsequently used to update the model.
For SIREN, we use 3 hidden layers of 256 nodes, and an output linear layer. For LSTM, we apply 2
hidden layers of 256 nodes, and an output linear layer. The process proceeds for 1000 iterations, with
expert’s supervision once every 10 iterations, as well as each of the first 10 iterations. For expert’s
prior guesses, we provide approximate equations based on the judgement of a single chunk(500 data)
for each scenario, see Table 6.

Table 6: Expert’s Prior Guesses for Chattering Data
Fault Mode Expert’s Assumption

stable(s) 0.004 sin(2400 · t) + 0.08+ ∼ N(0, 0.0001)
unknown(u) 0.005 sin(6000 · t) + 0.015+ ∼ N(0, 0.0001)

intermediate(i) 0.002 sin(14000) + 0.004+ ∼ N(0, 0.0001)
chatter(c) 0.015 sin(3000 · t) + 0.001+ ∼ N(0, 0.0001)

7.1 Result

The average classification accuracy for all scenarios in the chattering dataset is shown by Table 7 for
SIREN and LSTM models respectively. The rows indicate the original data, and the denoised data
decomposed by 1, 2, 3, 4 intrinsic mode functions(IMFs) during each EEMD decomposition. Figure
3 shows the accuracy over the number of iterations for the SIREN and LSTM models on the original
data.

Table 7: The accuracy of SIREN- and LSTM-based BN, under different IMFs of denoised data
Data with different IMFs SIREN LSTM
Original 0.63 0.62
1 IMF 0.58 0.61
2 IMFs 0.86 0.76
3 IMFs 0.28 0.32
4 IMFs 0.21 0.20

Both SIREN and LSTM models achieve best accuracy for denoised data at 2 IMFs (0.86 and 0.76
respectively). As expected, the models perform better with increasing data updates. Both models
underperform due to increased data complexity (data generated from complex mechanical systems)
and noise present in the chattering dataset. Our model performs less accurately than state-of-the-art
models introduced by Khasawneh et. al. [12] and Yesilli et. al. [27], which rely on specific physical
knowledge or feature extractions that are tailored by experts for the chattering processes. Moreover,
their classification results are reported for entire variable length time sequences. Our model does not
rely heavily on prior physical knowledge (underlying PDEs, which are often unknown in practice) and
feature extraction. We believe this setup allows for better generalization to more than just chattering
signals, for example, acoustic signals and imagery data.

8 Conclusion

We provide an initial test of an online evidential reasoning machine learning model under various
window sizes at each time of query, different levels of noise, inaccurate prior knowledge, and expert
supervision. Overall, our results suggest that 1) function recovery and accuracy are high when the
expert proposes a reasonably accurate model of the physical process and is able to supervise the
model when it makes errors, even when the number of observations are small; 2) function recovery
and accuracy may degrade when the expert is either very wrong or there is too much noise in the
system; 3) a small amount of strong supervision from the expert can realign the algorithm in the
presence of inaccurate initial estimates or noise.
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Figure 3: Left: Accuracy of first 1000 iterations for BN training with SIREN. Right: Accuracy of
first 1000 iterations for BN training with LSTM.

9 Broader impact and future work

Modern machine learning models used for research have increased in complexity and size, leading
for example to significant energy consumption and resource use. The implications of such have
not been fully explored and are still in nascent stages. García-Martín et al. [6] describe methods
to estimate energy consumption of machine learning models. At the same time many emerging
applications suffer from constrained or sparse data sets that prevent supervised learning models from
being fully effective. Our future work aims to continue study of the effects of expert-guidance in
learning systems to make use of all possible knowledge of the system being modeled, hopefully
leading to both reduced model complexity and improved model inferencing.

Another area of interest is joint learning of experts and machines. Interesting questions include "Can
machines guide experts in learning?" and "Can machines teach experts new physics?". Feedback
loops through which machines can communicate to experts with information and suggestions can
improve learning and teaching. In the current framework, this would be advising the experts on the
effectiveness of the priors provided or the causal relations.

Finally, inclusion of neural differential equations (ODEs, PDEs) is an area where experts may be
able to provide stronger functional form assumptions to the network. Chen et al. [3] represent the
transformations of inputs through a neural network as a continuous ordinary differential equation
rather than discrete layers. Maulik et al. [19] apply the approach to the viscous Berger’s equation.
Recently, Kidger et al. [13] use controlled differential equations to allow neural differential equation
time series models with missing data and irregularly spaced temporal observations. It is an interesting
direction to explore the utility of experts in suggesting such differential equation based regularizers
for neural networks.
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10 Appendix and addtional plots

Figure 4: Mean square error over 25 iterations by error mode for different time windows(SIREN).

(a) Change the expert’s guess on scales. (b) Change the expert’s guess on frequencies.

Figure 5: MSE convergence between true and predicted functions(SIREN)
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Figure 6: Mean square error over 25 iterations by error mode for different variance of data(SIREN).

(a) Change the expert’s guess on scales. (b) Change the expert’s guess on frequencies.

Figure 7: With weak expert’s intervention, MSE convergence between true and predicted func-
tions(SIREN)
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