
Enhancing Demand-Oriented Regionalization with
Agentic AI and Local Heterogeneous Data for

Adaptation Planning

Seyedeh Mobina Noorani1,2∗, Shangde Gao1,3, Changjie Chen1,3, Karla Saldaña Ochoa1

1College of Design, Construction and Planning, University of Florida
2Department of Electrical and Computer Engineering, University of Florida

3Florida Institute for Built Environment Resilience (FIBER), University of Florida
Gainesville, FL 32611, USA

Abstract

Conventional planning units or urban regions, such as census tracts, zip codes, or
neighborhoods, often do not capture the specific demands of local communities
and lack the flexibility to implement effective strategies for hazard prevention
or response. To support the creation of dynamic planning units, we introduce a
planning support system with agentic AI that enables users to generate demand-
oriented regions for disaster planning, integrating the human-in-the-loop principle
for transparency and adaptability. The platform is built on a representative initial-
ized spatially constrained self-organizing map (RepSC-SOM), extending traditional
SOM with adaptive geographic filtering and region-growing refinement, while AI
agents can reason, plan, and act to guide the process by suggesting input features,
guiding spatial constraints, and supporting interactive exploration. We demonstrate
the capabilities of the platform through a case study on the flooding-related risk in
Jacksonville, Florida, showing how it allows users to explore, generate, and evalu-
ate regionalization interactively, combining computational rigor with user-driven
decision making.

1 Introduction

Today’s urban governance relies on planning units (or regions) to design and implement policies
for growth, management, and adaptation to socioeconomic and environmental changes [12]. These
spatial frameworks allow planners to evaluate the distribution of resources [16], assess policy impacts
[14], and ensure policy coherence on multiple scales [3]. The planning units also provide shared
reference points to facilitate stakeholder participation and transparent decision making [8, 11].

Existing planning units, such as administrative boundaries or census divisions, were designed for
specific purposes, such as to speed up mail delivery, and were often misaligned with the demands
of urban governance. For example, census units can reflect population-based data collection rather
than hazard exposure or social vulnerability, while other regions may not capture spatial patterns of
climate risk [13]. The rigidity of these units, combined with limited local knowledge and inconsistent
fine-grained data, limits the ability of planners to design regions tailored to specific disaster or
adaptation objectives [6, 15].

Data-driven regionalization can offer a promising solution by integrating multidimensional local
data to produce homogeneous spatially contiguous regions aligned with planning objectives [1,

∗Correspondence: s.noorani@ufl.edu

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) UrbanAI Workshop.



7, 17]. Unlike conventional units, data-driven regionalization has the potential to capture social,
environmental and physical heterogeneity and can support evidence-based decision making for
targeted interventions. However, implementing such regionalizations remains challenging due to the
complexity of constraints, the need for interpretability, and the iterative nature of planning decisions.

Recent advances in large language models (LLMs) and agentic AI provide new opportunities to
support planners who lack training in geospatial or geocoding analysis in this process [5, 18]. By
combining generative reasoning, constraint-aware guidance, and human-in-the-loop interaction,
agentic AI can help planners develop spatial divisions and iteratively refine generated regions
[4, 5, 18]. Such platforms can integrate multi-dimensional data, offer interpretable outputs, and
facilitate collaborative exploration, transforming regionalization into an adaptive, interactive process
aligned with local priorities and disaster-specific needs.

Building on this opportunity, we present an agentic AI based planning support system that implements
a data-driven demand-oriented regionalization framework, RepSC-SOM (Representative-initialized,
Spatially Constrained Self-Organizing Map). The core regionalization framework extends traditional
SOM with representative-based initialization, adaptive geographic filtering, and region-growing
refinement, while AI agents can assist users in suggesting input features, guiding spatial constraints,
and supporting interactive exploration. The system can produce spatially coherent regions that capture
localized vulnerabilities and risk profiles of hazards by integrating high-quality local socioeconomic
and environmental data. Through interactive exploration and human-in-the-loop refinement, the
platform can enhance flexibility, transparency, and adaptability in spatial planning, supporting
precise resource allocation, prioritization of interventions, and coordinated responses in disaster risk
management and climate adaptation.

2 Methods

2.1 Architecture of Agentic AI-Enhanced Planning Support System for Regionalization

We present a central planning agent to orchestrate the regionalization workflow (Fig. 1). This agentic
AI conversational system for hazard-aware regionalization turns open-ended planning questions into
defensible end-to-end analyses. The system is designed to facilitate transparent, adaptive, and user-
driven spatial analysis through natural language interaction. Users engage with the platform through
a conversational interface, specifying their study area and hazard of interest. The agentic back-end
interprets these inputs and autonomously coordinates a sequence of analytical steps: geocoding
the user’s location, selecting and configuring relevant geospatial datasets (e.g., Florida Geographic
Data Library [2]), and visualizing spatial features as interactive map layers. The agent further
summarizes the characteristics of the data set and obtains user preferences for feature selection and
the number of regions to generate. Once the user’s preferences are set, the agent calls the RepSC-SOM
regionalization algorithm, integrating the resulting spatial partitions into the map interface for user
exploration. Throughout the process, the agent maintains the context dialogue and adapts to user
responses, while ensuring a seamless experience. Therefore, this architecture enables non-technical
users to perform advanced spatial analyses and explore alternative scenarios, lowering barriers to the
application of machine learning in geospatial decision support.

2.2 Overview of RepSC-SOM Framework for Demand-Oriented Data-Driven Regionalization

In the RepSC-SOM framework, regionalization is carried out through a SOM-based three-step
Embedding-Clustering-Refining process, in which the study area is represented as a grid cell raster.
The outputs at each step are transparent and interpretable, enabling users to adjust the configurations
and intervene in the process as needed. In the Embedding step, the input features selected by users
are projected into higher dimensional latent spaces using an auto-encoder [9], which can capture the
complex interactions and dependencies among the input features. Meanwhile, the SOM is initialized
according to the geographic threshold, which is based on the semivariogram of the data of input
features and is the basis for both the number and the initial states of the neurons. The Clustering
step then uses the Embedding output as the input, iteratively assigning grid cells in the study area
to their Best Matching Units (BMUs) and updating neurons with their spatial neighbors, thereby
forming preliminary clusters. In this process, the selection of the BMU for each grid cell involves two
stages: candidate SOM neurons are first filtered within a geographic threshold using the Haversine
distance [10], and then the most similar SOM neuron in the feature space is chosen as the BMU.

2



User Agentic AI

Datasets

Geospatial
Datasets

Knowledge
for Planning

Tools

Geo-coding Geoprocessing

Memory

Regionalization
Configuration

Conversation
History

Metadata Filter RepSC-SOM

Define study area

Define disaster type

Select features

Visualization

Candidate Features

Regionalization Outputs

Figure 1: Architecture of the Agentic AI-enhanced planning support system for regionalization

The weight of each SOM neuron is updated based on the features of the grid cells that selected it
as their BMU. After multiple iterations, the SOM assigns each grid cell the weight of its BMU.
Finally, in the Refining step, the spatially constrained SOM output is postprocessed to improve spatial
compactness and reduce fragmentation: grid cells are first spatially partitioned into initial regions,
which are then iteratively merged through a region-growing process guided by the number of regions
expected by users, the feature similarity, and spatial constraints. The output of the Refining step is
the regionalization result and is then presented to the users.

3 Demonstration of the Proposed Agentic AI-Enhanced Planning Support
System.

We demonstrate the capabilities of our proposed system through case studies in urban areas facing
diverse climate and disaster risks. The demonstration highlights how the proposed platform supports
planners in designing targeted intervention strategies to address hazard-specific vulnerabilities by
integrating local data, identifying priority areas, and refining regional boundaries.

Figure 2: Screenshot of the proposed platform showing input features for regionalization based on
user-specified study area and disaster type.

Interactive Selection of Input Features Based on Study Area and Disaster Type. Users can begin
by specifying their study area (Jacksonville, FL, in this case) and the type of disaster (flooding, in
this case) through the platform interface. Based on the selected region and the disaster type, the
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LLM-based system dynamically selects and presents the candidate features for regionalization, such
as socioeconomic indicators, environmental conditions, and the infrastructure vulnerability (Fig. 2).

Regionalization Using the RepSC-SOM Framework. After selecting the suggested features, users
specify the desired number of regions. The system then runs the RepSC-SOM regionalization and
presents the results on an interactive map (Fig. 3), where users can interpret and evaluate the output.

Figure 3: Screenshot of the proposed platform displaying the regionalization output.

Human-in-the-Loop Refinement. The platform supports an iterative human-in-the-loop workflow,
allowing users to provide feedback, adjust input features, or explore alternative configurations based
on the regionalization output. AI agents can respond to user input by updating the regionalization,
ensuring that the final regions reflect both computational rigor and user knowledge. This process
enables planners to generate demand-oriented, adaptive planning regions tailored to local priorities
and disaster-specific considerations.

4 Conclusion

Our study demonstrates that a planning support system with agentic AI can support urban planners
without a coding background to generate planning units that better capture local disaster risks than
conventional units. By operationalizing the RepSC-SOM framework and leveraging heterogeneous
local socioeconomic and environmental data, the platform can address mismatches between tradi-
tional boundaries and spatial heterogeneity, allowing the identification of priority areas, optimized
resource allocation, and evidence-based adaptive urban governance. Its interactive, human-in-the-loop
design allows regions to flexibly respond to dynamic hazard patterns and evolving urban conditions,
supporting resilient and equitable adaptation strategies.
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