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Abstract  

In this paper, we present an intelligent system that has the 
capabilities of automatically selecting topology classes and 
optimizing circuit parameters of DC-DC power converters 
for a given design specification.  The system, Machine-
Learning-enhanced Automated Circuit Configuration and 
Evaluation of Power Converters (ML-ACCEPT), uses a 
hybrid of machine learning technologies, decision tree 
inference, reinforcement learning and deep neural networks.  
The system gives high accurate recommendations of design 
topology classes and computationally efficient results in 
optimizing power efficiencies in power converter design. 

1   Introduction 

Electrical power converters (e.g., AC to DC, DC to DC, DC 

to AC) are critically important in today’s electronic world 

as it processes over 70% of the electricity usage (Bose 

2013).  They become even more important in the coming 

decades for the key role they play in the carbon-neutral 

energy system (Hannan et al. 2019). According to a recent 

report (Market Watch, 2021), the power-converter market 

was valued at 207 million USD and is projected to reach 292 

million USD by 2026, at a compound annual growth rate 

(CAGR) of 5.9% during the forecast period.  

 The power converters consist of interconnected 

individual circuit components (e.g., resistors, capacitors, 

inductors, diodes, and switching devices), making their 

design quite complex and prone to inefficiency. Some 

existing design tools have a certain level of intelligence to 

aid the design process. However, to our best knowledge, 

none of them has the capability of automating the electrical 

circuit design processes.  The circuit design usually involves 

selecting, configuring, and optimizing the individual 

components to enable available sources (e.g., high-voltage 

DC power) to be converted to the desired output (e.g., lower-

voltage DC power with a desired voltage ripple), subject to 

application-specific (e.g., plasma generation and automotive 

applications) thermal and packaging considerations. The 

state-of-the-art circuit design of power converters is still 

heavily reliant on human experts to manually select the 

optimal topology and determine the design parameters with 

human’s experience and intuitions, which can be very time-

consuming, inefficient, and labor intensive. Designing a 

converter to meet a specific application requirement is a 

complicated process due to the wide range of design 

components, parameters, topologies, and their 

corresponding performances.  

In this paper, we present a machine learning framework, 

Machine-Learning-enhanced Automated Circuit 

Configuration and Evaluation of Power Converters (ML-

ACCEPT), designed to make intelligent selection of DC-DC 

converter topologies that satisfy a given design specification 

and optimize design parameters.  This paper is organized as 

follows.  Section 2 presents the major machine learning 

algorithms in ML-ACCEPT, Section 3 presents the 

experiments we conducted to evaluate the performances of 

ML-ACCEPT, and Section 4 concludes the paper. 

2   Automatic Selection of DC-DC Power 

Converter Topologies and Design 

Optimization 

Fig. 1 presents an overview of ML-ACCEPT.  ML-

ACCEPT combines decision tree (DT) learning (Safavian 

and Landgrebe 1991), reinforcement learning (RL) (Sutton 

and Barto 2018), deep learning (LeCun, Bengio and Hinton 

2015), physics-based simulation, and expert knowledge to 

make an intelligent recommendation of DC-DC power 

converter topology classes that meet the specified design 



 

 

and performance requirements.  The recommendation 

includes the information of the best topology classes, 

optimal settings of major design parameters and the 

expected power efficiency.  It first collects a gold standard 

data (GSD) of DC-DC design samples in 11 topology 

classes based on expert knowledge.  A decision tree is 

trained on the GSD to make a recommendation of topology 

classes that best meet the input design specification along 

with the expected power efficiency performances.  Based on 

the selected topology classes, we use an RL algorithm to 

search for the optimal design parameters with respect to the 

power efficiency.  RL uses the data generated by the 

simulation models developed based on the physics of all 11 

topology classes for parameter evaluation.  In order to 

reduce the time of online searching and offline training, we 

developed a deep neural network as the surrogate model for 

each topology class to mimic the respective physics-based 

simulation model (PBSM).   

2.1 Exploring Expert Knowledge for DC-DC 

Converter Topology Selection   

Based on an extensive study of the DC-DC power converters 

used in engineering practice and research (Zehendner and 

Ulmann 2017; Falin 2010; Gorij et al. 2019; Paez et al. 

2018), we identified 11 classes of commonly used and 

emerging DC/DC converter topologies and collected design 

cases to build the knowledge base.  Table 1 shows the 

selected topology classes and the number of design cases 

collected by power electronics experts. These data samples 

are referred to as the Gold Standard Data (GSD) throughout 

this paper. The design samples were collected from DC-DC 

converter products (Digi-key, 2021; TI products, 2021), 

design tutorials provided by electronics vendors (Linear 

technology, 2021), text books (Hart, D. W. 2011; Mohan, 

N., Undeland, T.M. and Robbins, W.P. 2003; Zehendner 

and Ulmann 2017), and technical papers (Falin, J. 2010, 

Gorij et al. 2019; Paez et al. 2018), and authors’ own R&D 

projects. 

2.2 A Decision Tree for Automatic Selection of 

DC-DC Converter Topology   

A DT is a nonparametric classification model constructed 

from a given set of training data and a fixed set of attributes 

using a recursive search scheme.  We use the GSD shown in 

Table 1 as the training data to build a DT model for 

automatically selecting the DC/DC converter topologies that 

meet the design requirements.  Five key design attributes 

were used as input feature vectors: {Input voltage, Output 

voltage, Output power, Power efficiency, Isolation}. We 

added an additional constraint attribute x6: Vin/Vout, which 

reflects Step-down or Step-up property in DC/DC 

converters. The following describes the three major 

computational components in the DT learning process. 

 

Topology FB Forward Push 

Pull 

HB DAB LLC Buck Boost Buck-

boost 

Switch-

cap 

Flyback Total 

#Samples 89 56 85 25 74 102 37 46 41 45 27 627 

 Table 1: GSD: DC-DC converter design samples in 11 commonly used topology classes 

Figure 1: An overview of the ML-ACCEPT system  



 

 

Building a decision tree for DC-DC converter topology 

selection using GSD 

Let D be all the design cases contained in GSD.  The DT 

learning algorithm is a recursive process that uses the well-

known classification and regression tree (CART) method 

(Safavian, S.R. and Landgrebe, D. 1991) to evaluate and select 

attributes to split at each branch node. It starts with a single 

node named as the root with the all the design cases D. 

During the learning process, in each node a particular 

subset of D is processed. If all elements of the subset meet 

with one of the stopping criteria, the node is tagged as a leaf 

and the split stops. Otherwise, the attribute has the minimum 

Gini value is chosen to split the node into branches along 

with the new sub-datasets based on their attribute values. 

The procedure repeats until one of the following stopping 

criteria is met, (1) all design cases in the current training set 

belong to a single topology class, (2) the number of cases 

associated with a node is less than a predetermined 

threshold, MinParentSize, and (3) If the node is split, the 

number of cases in at least one child node would be less than 

the pre-determined threshold, MinLeafSize.  

After the DT learning, each leaf node contains the 

topology classes of the design cases in GSD that match with 

the design attributes specified along the path from the root 

to the leaf node, and the statistics of the power efficiencies 

associated with the design cases in each topology class. 

 

Decision Tree Learning from interval samples 

Many power converter design applications, users specify 

attributes such as input and output voltages in the form of 

intervals rather than single values, which are typically the 

attribute format used in building a DT. In order to make the 

DT more powerful, it is important to enable a DT to learn 

design attributes directly from intervals. We developed a 

new algorithm, Decision Tree learning from Intervals (DTI), 

which uses a modified C4.5 algorithm. In the C4.5 

algorithm, a probability is calculated to determine splitting 

attribute and splitting criterion whereas in DTI we replaced 

the probability measure with probabilistic cardinality (PC) 

(Qin, Xia and Li 2009). The PC of the training dataset over 

an interval [a, b] is the sum of the probabilities of each 

instance whose corresponding attributes falls in the interval 

[a, b]. The DTI algorithm can generate DTs from both 

interval samples and single value samples; therefore it is 

more flexible in dealing with various training data formats. 

 

Parameter optimization 

As we discussed above the two parameters, MinLeafSize 

and MinParentSize control the size of DT.  In order to avoid 

DT from overfitting the training data, we developed follow-

ing approach to select the proper values of these two control 

parameters.  A step-by-step grid search with a search range 

and a step size assigned to parameter MinLeafSize and to 

MinParentSize. For each pair of values of these two param-

eters, we conduct a 10-fold cross validation strategy to gen-

erate and evaluate the decision tree models using this pair of 

parameters values.  With the 10-fold cross validation, the 

training data are randomly sampled into stratified 10 parti-
tions among all 11 topology classes. At each fold, a decision 

tree is trained using 9 partitions of the data samples using 

the pair of parameters, and evaluated on data in the remain-

ing partition. The pair of values that give the best average 

performances over all 10 folds are chosen to be the optimal 

values of MinParentSize and MinLeafSize respectively for 

use in the DT learning process.  

2.3 Developing RL-based algorithms for circuit 

design parameter optimization 

As discussed in section 2.2, the DT is designed to provide 

feasible DC-DC converter topology classes that meet with 

the input design requirement. The next task is to optimize 

the circuit design parameters of each candidate topology 

with respect to power efficiency using RL (Glatt et al. 2022).  

For a finite Markov decision process (Puterman 2014), Q-

learning (Watkins and Dayan 1992) finds an optimal policy 

in the sense of maximizing the expected value of the total 

reward over all successive steps, starting from the current 

state. We also investigated the deep deterministic policy 

gradient (DDPG) method (Lillicrap 2015) to optimize the 

performance of converters. DDPG is an off-policy deep 

reinforcement learning (DRL) algorithm aimed at learning 

dynamics in continuous state and action spaces. It is a more 

generalized training approach with deep neural networks. 

Both Q-learning and DDPG can work well if the number of 

optimizing parameters is small, but DDPG performs better 

for problems with large state/action spaces.  

During the training process, the learning agent in both 

methods interacts frequently and directly with the dynamic 

environment by running the PBSM. Since a single 

simulation request can take from several seconds to tens of 

seconds to complete, the training time of the RL/DDPG-

based optimization system is too long to be feasible for this 

application. In order to reduce the training time for RL 

methods, we developed a surrogate model for each topology 

class of the power converters. The surrogate model is a deep 

neural network (DNN) trained using the data generated by 

the PBSM to mimic its behavior.  

 The circuit design parameters being used to optimize 

power efficiency include, switching frequency, inductance, 

capacitance, input voltage, output voltage, output power, 

phase shift in DAB converter, and other parameters related 

to MOSFET (resistance, diode voltage, rising and falling 

times).  Each of these parameters has a pre-defined search 



 

 

range and grid size.  For each DC-DC converter topology 

class, systematically run its PBSM at every grid point in the 

parameter space to generate measures of power efficiency. 

The dataset is used to train a deep neural network (DNN) as 

surrogate model of the PBSM for the topology class. The 

DNN is then used by the RL algorithms to estimate the 

power efficiency of a DC-DC converter with any sample of 

design parameters in the defined space.  

3   Experiments 

In this section, we present experiments conducted for 

evaluating the performances of ML-ACCEPT. We trained a 

DT using the GSD (see table 1) combined with a set of 104 

design cases with attributes specified in intervals. During 

the DT learning, the two tree pruning control parameters, 

MinLeafSize and MinParentSize were set to 2 and 5 

respectively, which were determined by the algorithm 

presented in Section 2.2. We evaluated the performances of 

the DT models using hit rates (HR) generated on the test sets 

in a 10-fold cross validation procedure. The HR was over 

89%, which implies that more than 89% of the test cases’ 

ground truths were contained in the DT selected topology 

classes that satisfy the user’s specified design criteria. 

 The following provides a comparison of the design cycles 

by human-experts and the ML-ACCEPT software in terms 

of time cost.  For each design case submitted by a user, the 

DT takes less than 1 second to generate a list of 

recommended topology classes that meet the specified 

design requirement.  Table 2 summarizes the computational 

cost for offline training and online optimization operations 

of Q-learning, DDPG and Brute force methods when 

applied to 200 design cases.   

    The Brute force method tests all possible solutions for 

each design case and selects the best solution. For the 200 

design cases, this method took more than 600 to 1000 hours 

to complete, about 3 to 5 hours per case in average. In the 

implementation of the Q-learning method, due to the 

restriction of the size of the Q-table, the 200 design cases 

were evenly divided into two batches, and the same offline 

pre-training process is applied to each training batch. For the 

DDPG method, all design cases can be trained 

simultaneously and only one offline pre-training process is 

required for all design cases. The offline pre-training 

process is to optimize the weights of DDPG, which took 2 

to 3 hours.  The off-line pre-training time for Q-learning is 

more than twice of the time needed for training DDPG. 

Both Q-learning and DDPG use the surrogate model, 

DNN, to mimic the PBSM for each topology class. PBSMs 

were all implemented using Matlab Simulink.  The DNN has 

two hidden layers with 512 nodes in each hidden layer, and 

its loss function is based on the mean square error. Its 

training data, 30,000 data points, were generated by running 

the respective the PMSM model of the topology class 

repeatedly using sampled parameter values This dataset is 

then randomly partitioned into a training (70%) and a test 

set (30%). The training of DNN took 1,000 training epochs, 

and the average prediction error of the DNNs is about 0.013 

on the test data. The process for surrogate modeling and 

training took approximately 24 hours for each topology 

class. After the training process, the optimal DNN is used 

by Q-learning and DDPG to predict the power efficiency of 

a power converter for a given instance of the design 

parameters. After the pre-training and the use of the 

surrogate model, the online design parameter optimization 

processing by either Q-learning or DDPG is very fast, less 

than 1 second for all 200 design cases.   

 Based on our survey data, typically a human-expert 

design cycle can take at least several days to complete the 

entire process, including information gathering, selecting 

topology candidates, developing the simulation models for 

the selected topologies, trying and evaluating various design 

parameters, and running various experiments. ML-

ACCEPT gives accurate selection of DC-DC converter 

topology classes and takes less than 1 second to conduct 

design parameter optimization. 

4   Conclusion 

We have presented a machine learning framework, ML-

ACCEPT for building an intelligent system for automatic 

selection of DC-DC converter topologies and optimization 

of design parameters. ML-ACCEPT is built on the design 

samples collected based on expert knowledge and uses DT 

models for automatic selection of DC/DC converter 

topologies that meet the design requirements. Our 

experiment results show that the HR of the DC-DC topology 

selection by the DT has reached more than 89%. ML-

ACCEPT implemented and evaluated two RL-based 

algorithms, Q-learning and DDGP, for optimizing design 

parameters with respect to power efficiency for a given DC-

Table 2: Comparison of computational cost in topology parameter optimization.  



 

 

DC converter topology with specified design descriptions.  

The experimental results demonstrated that when combined 

with a surrogate model of topology simulation, both RL 

algorithms took less than a second in obtaining optimal 

design parameters.  In conclusion, ML-ACCEPT provides 

an intelligent software tool for DC-DC converter design that 

can perform accurately on topology selection and is highly 

efficient in design optimization.   
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