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Abstract—In this paper, a novel controller with prescribed-
time performance is designed for dynamic positioning (DP)
system of ships with model uncertainty and unknown time-
varying disturbances. Initially, an error transformation function
with zero initial value is introduced by constructing fixed-time
funnel boundaries (FTFBs) and a fixed-time tracking perfor-
mance function (FTTPF). The proposed controller ensures stable
convergence of the new error, maintaining it within fixed upper
and lower boundaries. When the prescribed time is reached, the
system state will achieve prescribed-time (PT) stability. Secondly,
by deploying radial basis function neural networks (RBF-NNs)
and dynamic surface control (DSC), adaptive controller with
simple forms are rationally applied to Backstepping technology,
and the uncertain terms of the system are approximated online,
the singularity and complexity explosion problems of the ship
control system are also addressed. In addition to that, the
stability analysis results of the system prove that all errors of the
closed-loop system are semi-global uniformly ultimately bounded
(SGUUB) stable. Finally, the simulation results on a DP ship
confirm the superiority of the proposed scheme.

Index Terms—Dynamically positioned ships, prescribed-time
control, fixed-time funnel boundaries, Backstepping

I. INTRODUCTION

In marine engineering, dynamic positioning (DP) systems
are critical for maintaining precise ship positions and orien-
tations in the marine environment [1]. These systems enable
ships to hold exact positions or follow predetermined paths
without anchoring by utilizing thrusters and power systems.
This capability is crucial for marine engineering operations,
including oil and gas drilling, underwater pipeline installation,
and cable laying. As marine operations grow more complex,
traditional DP methods encounter significant challenges, such
as environmental disturbances, system parameter uncertainties,
and operational efficiency concerns [2].

Consequently, researchers are increasingly adopting ad-
vanced control strategies to improve the performance and
adaptability of DP systems. However, the highly nonlinear
terms of ship dynamics and the continuously changing ma-
rine environment often cause traditional control methods to
struggle under extreme conditions. Furthermore, most existing

This work is partially supported by the Fundamental Research Funds for
the Central Universities (Grant No.3132024129), the Fisrst-Class Disciplines
Cross Research Project (Grant No.2023JXA04). (Corresponding author: Chen-
feng Huang.)

DP control strategies depend on extended control processes to
achieve stability [3], which may not always be the optimal
solution. Therefore, developing a control strategy that can
respond quickly and complete tasks within a prescribed time
is particularly crucial.

With the rapid advancement of control technologies and
methods in recent years, DP systems have been more broader
application in maritime operations and offshore exploration
for ships and drilling platforms. For instance, in the presence
of unknown ship parameters, [4] developed a robust adaptive
observer for DP systems, capable of estimating ship velocities
and unknown parameters under external disturbances. An
adaptive observer based on neural networks (NNs) was de-
veloped to estimate the velocity data of the unmanned surface
vessel (USV) in [5], even though both the system parameters
and nonlinearities of the USV were presumed to be uncertain.
NNs approximation techniques are used to compensate for
uncertainty and unknown external disturbances, removing the
prerequisite for a priori knowledge of ship parameters and
external disturbances. Meanwhile, MLP technology is em-
ployed to address the computational explosion problem [6]
[8]. However, in [7], static NNs are used for control force and
moment allocation of an over-actuated ship by measuring the
thruster force and commands and gathering data for practice
of the NNs.

Due to the time-varying boundary functions can achieve
prescribed performance of dynamic system on both transient
and steady-state phases, [10] proposed a novel boundary
function control approach and introduced an error transfor-
mation function, showing training stability of the closed-loop
systems with prescribed transient and steady-state functions.
In the field of marine engineering operations, [11] proposed
a robust adaptive prescribed performance control (RAPPC)
law by constructing a concise error mapping function and
achieved the DP prescribed performance control. To address
positioning error constraints, input saturation and unknown
external disturbances, [12] proposed a variable gain prescribed
performance control law and constructed the error mapping
functions to integrate the prescribed performance boundary to
the controller design. Soon after that, a robust fault-tolerant
control allocation scheme is developed to distribute again the
forces among faulty actuators in [13]. Its performance function



is united with an auxiliary in-between control technique to
create a high-level controller.

Inspired by the above research work, The contributions of
this paper are as follows:

1) Building upon the research foundation of reference [11],
this article proposes an adaptive prescribed-time control
scheme for DP system of ship with model uncertain
and unknown environment disturbances. Unlike the re-
liance on initial conditions discussed in reference [10],
the construction of the fixed-time tracking performance
function (FTTPF) ensures that the controller’s prescribed
performance is no longer dependent on initial conditions.
Furthermore, the new dynamic errors will deviate from
an initial value of 0, remaining consistently confined
within the set fixed-time tracking performance function
(FTFBs).

2) Based on NNs, unknown functions of the new dynamic
error derivative terms and unknown model parameters of
the ship are approximated online. In addition, the adap-
tive parameters based on weight allocation are reduced
to two to compensate for the unknown gain function.
The dynamic surface control (DSC) filtering technique is
introduced to address the complexity explosion problem
caused by the differentiation of the virtual controller,
thereby reducing the computational burden. Finally, two
comparative simulations of a DP ship is executed to
demonstrate the effectiveness of the proposed algorithm.

II. MATHEMATICAL MODEL OF DYNAMICALLY
POSITIONED SHIPS AND PROBLEM FORMULATION

In the design of DP systems, a ship is considered a multi-
input multi-output (MIMO) control system that includes dy-
namics influenced by mass, damping, stiffness, and external
disturbances. On the basis of the seakeeping and maneuvering
theory, the following three DOF nonlinear mathematical model
is used to describe the dynamic behavior of the ship in the
presence of disturbances [14]:

η̇ = J(ψ)υ (1)

Mυ̇ +D(υ)υ = τ + τd (2)

where η = [x, y, ψ]> ∈ R3 represent the attitude vector
including the surge position x, the sway position y and the
heading ψ ∈ [0, 2π] in the earth-fixed coordinate system.
υ = [u, v, r]> ∈ R3 denotes the velocity vector of the
ship in the body-fixed coordinate system, which composed
of the surge velocity u, sway velocity v and yaw velocity
r, respectively. J(ψ) is the velocity transformation matrix as
follow:

J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3)

with J−1 (ψ) = J> (ψ) and ‖J(ψ)‖ = 1. Equation (4)
gives the specific expression of the positive definite symmetric
inertia matrix M ∈ R3×3, which including additional mass.

Equation (5) gives the specific expression of the nonlinear
hydrodynamic function D(υ)υ.

M =

m−Xu̇ 0 0
0 m− Yv̇ mxG −Xṙ

0 mxG −Xṙ Iz −Nṙ

 (4)

D(υ)υ =

D1

D1

D3


D1 = −Xuu−X|u|u|u|u+ Yv̇v|r|+ Yṙrr

D2 = −Xu̇ur − Yvv − Yrr −X|v|v|v|v −X|v|r|v|r
D3 = (Xu̇ − Yv̇)uv − Yṙur −Nvv −Nrr −N|v|v|v|v

−N|v|r|v|r

(5)

where m are ship’s mass, Iz are moment of inertia and Xu,
X|u|u, Yv̇ , etc., are every hydrodynamic force derivatives. It is
obvious from the expression in (5) that the nonlinear damping
force composed of linear and quadratic terms. In the controller
design of this paper, D(υ)υ is an uncertain term in which the
structure and parameters are unknown and is approximated
online using NNs in later section.
τ = [τu, τv, τr]

> ∈ R3 denotes the control inputs, which are
the forces and moments generated by the equipped actuators
on the ship consisting of the shaft thruster, the tunnel thruster,
and the azimuth thruster. In order to simplify the control
inputs, all actuator devices inputs are fused into three degrees
of freedom : τu in surge, τv in sway and τr in yaw. τd = [τdu,
τdv , τdr]> indicates the unknown time-varying environment
distraction induced by wind, and waves.

Assumption 1. The environment disturbance τdυ is bounded
in the marine environment, indicating the existence of bounded
τ̄dυ > 0 for τdυ . i.e., |τdυ| < τ̄dυ .

Remark 1. When modeling ship DP systems, it is often
necessary to accurately characterize and predict the effects of
environmental disturbances on the ship. In order to simplify the
model and to facilitate the design and testing of control algo-
rithms, these environmental disturbances can be approximated
and modeled using a sine-cosine function. The frequency,
amplitude and phase of the interference can be easily adjusted
using the sine-cosine function to simulate different intensities
and types of environmental conditions.

In the setting of unknown time-varying disturbances and
model uncertainty, the goal of the control is to find a control
laws τ makes the ship’s position (x, y) and heading ψ
successfully reach the desired position ηd within the prescribed
time. At the same time, the constructed zero-initial-value error
function also converges within the set boundaries within the
settling time and arbitrarily small errors, and all the errors are
bounded all the time.

III. FUNNEL CONTROL AND FUNNEL VARIABLE

In the context of advanced control strategies for DP systems,
particularly those addressing strict timing requirements, the
concepts of FTFBs and FTTPF are integral. These are designed



to ensure that the control system adheres to performance
metrics strictly within a settling interval, regardless of initial
conditions. In this section, the definitions of FTFBs and
FTTPF are introduced for the purpose of imposing error
bounds on them and constructing new error functions.

A. The Design Of Prescribed-time Funnel Boundary

Definiion 1. [15] FTFBs define the permissible bounds within
which the system’s states must remain over time. These bound-
aries are set to compact over a fixed-time period, ensuring that
the system’s behavior converges to the desired state within
the settling duration. These boundaries are particularly useful
in scenarios where rapid and reliable system stabilization is
crucial.

Equation (6) is selected as an FTFBs with the following
traits: (1) Γ(t) > 0 and Γ̇(t) ≤ 0; (2) lim

t→Tj
Γ(t) = ΓjT ; (3)

Γ(t) = ΓjT for ∀t ≥ Tj with Tj being the predefined fixed
time after which the boundary ceases to contracting.

Γjυ =

{
Γjv0tanh

(
λjt
t−Tjv

)
+ Γjv0 + ΓjvT , t ∈ [0, Tjv)

ΓjvT , t ∈ [Tjv,∞)
(6)

where Γjv0, ΓjvT and ΓjvT are the initial and final boundary
values, λj is the decay rate, j = 1, 2 and Tjv is the predefined
fixed time after which the boundary ceases to contracting.

Definiion 2. [16] FTTPF is a function designed to evaluate
and ensure the system’s tracking performance over a fixed
time, dictating how the tracking error should decrease over
time to meet specific performance criteria by a predefined
deadline.

ϕυ(t) =

{
e
− kυt
Tfυ−t , t ∈ [0, Tfυ)

0, t ∈ [Tfυ,∞)
(7)

Equation (7) is concretely constructed as an FTTPF with the
following properties : (1)ϕ(0) = 1; (2) lim

t→Tfυ

ϕ(t) = 0 and

ϕ(t) = 0 for ∀t ≥ Tfυ with Tfυ being a prescribed settling
time. Γjv0, ΓjvT , λj , Tjv, Tfυ and kυ are positive constant.

B. Funnel Error Transformation

In this paper, by embedding FTTPF ϕυ(t) we construct a
new error χ(t) variable with 0 initial value as in (9).

z1 = η − ηd (8)

χ(t) = z1(t)− z1(0)ϕυ(t) = η − ηd − z1(0)ϕυ(t) (9)

Then, Γjυ , j = 1, 2, is applied to ensure that the following
symmetry performance constraints on χ(t) which are satisfied.

−Γ1υ < χ(t) < Γ2υ (10)

where ηd = [xd, yd, ψd]
> represents the desired position

of the ship DP system. Besides, to simplify the design of the
controller, T1v = T2v is adopted in this paper. In order to
comply with the definition of χ(t) and the requirements of (9),
χ(0) = z1(0)−z1(0)ϕυ(0) = 0 guarantees that the initial state
−Γ1υ(0) < χ(0) < Γ2υ(0) ⇔ −Γ1υ(0) + z1(0) < z1(0) <

Γ2υ(0)+z1(0) is always satisfied, which implicitly means that
Γ1υ and Γ2υ no longer need to be redesigned in order to keep
the characteristic that initial value is 0 of the new error.

By introducing the constructed Γ1υ and Γ2υ , the maximum
overshoot, settling time, and steady boundaries of χ(t) can
be determined by max{Γ1v0 + Γ1vT, Γ2v0 + Γ2vT}, Tjv and
ΓjvT , respectively. The changing of z1(t) is required to be
preassigned over [0, Tfυ) due to −Γ1υ (t) + z1 (0)ϕυ (t) <
z1 (t) < Γ2υ (t) + z1 (0)ϕυ (t) for ∀t ∈ [0, Tfυ). From the
above analysis, (10) can be reformulated as:

−Γ1(t) < χ(t) = z1(t)− z1(0)Φ1 < Γ2(t),∀t ≥ 0 (11)

where Γ1 = [Γ1u, Γ1v, Γ1r]
>, Γ2 = [Γ2u, Γ2v, Γ2r]

>

and Φ1 = [ϕu, ϕv, ϕr]
>.

Although the extant FC results can tuned the transient
and steady-state responses of z1, the corresponding problem
is the need to rely on specific initial conditions. To solve
this problem, inspiring from [17], we introduce the following
variable transformation:

ϑ(t) = χ(t) + µ(t) (12)

with

µ(t) = (Γ1(t)− Γ2(t)) /2, ω(t) = (Γ1(t) + Γ2(t)) /2 (13)

From (12) and (13), (11) is equivalent to

−ω(t) < ϑ(t) < ω(t) (14)

To improve control performance and achieve control objec-
tives, the funnel error transformation as given by equation (15)
is applied.

ξ1(t) =
ϑ(t)√

ω2(t)− ϑ2(t)
(15)

The derivation of (15) yields ξ̇1

ξ̇1(t) = Φ2

(
η̇ − η̇d − z1(0)Φ̇1(t) + µ̇(t)− ϑ(t)ω̇(t)/ω(t)

)
(16)

where Φ2 = ω2 (t)/

√
(ω

2
(t)− ϑ2 (t))

3
> 0. It should be not-

ed that for complex representations of ξ̇1, NNs are employed
to approximate the uncertain terms. In the subsequent function
formulations, function arguments are omitted to simplify the
presentation and improve readability.

IV. ADAPTIVE PT FUNNEL CONTROL DESIGN FOR
DYNAMIC POSITIONED SHIPS

In this section, adaptive parameters are introduced using
NNs for online approximation of the uncertainty terms arising
during the controller design process. The Backstepping means
is utilized to design the virtual controller αυ and the control
law τ for the second-order ship motion mathematical model
(1) and (2). The DSC technique is applied to address the
complexity in deriving αυ . The controller design procedure
consists of two steps for the attitudes and velocity parts. The
specific details of the controller design are detailed in IV-A,
and the corresponding stability analysis is detailed in IV-B.



A. Controller Design

Step 1: In the ship’s DP system, the reference attitude signal
ηd is a constant with derivative 0, meaning η̇d = 0. It is noted
that in the derivative form of the boundary transformation error
ξ1, Φ2(−z1 (0) Φ1 (t)+µ̇ (t)−ϑ (t) ω̇ (t) /ω (t)) represents the
unknown function vector. It can be obtained as (17) by using
RBF-NNs F1 (η).

F1(η) = Φ2 (−z1(0)Φ1(t) + µ̇(t)− ϑ(t)ω̇(t)/ω(t))

= S1 (η)A1η + εη

=

sx (η) 0 0
0 sy (η) 0
0 0 sψ (η)

AxAy
Aψ

xy
ψ

+

εxεy
εψ


(17)

where εη is corresponding upper bound vector. sx (η) =
sy (η) = sψ (η) due to these RBF functions are with the same
input vector υ. Let θ1 = ‖A1η‖2, where θ̂1 represents the
estimated values of θ1. From the above analysis, the immediate
virtual controller αυ is determined as shown in (18).

αv = − 1

Φ2J(ψ)

(
k1ξ1 +

S1
TS1θ̂1
2a12

ξ1 +
1

4
‖ Φ2 ‖2ξ1

)
(18)

where k1 is a strictly positive diagonal matrix of parameters.
the DSC technique, i.e., a first-order low-pass filter (19), is
applied here, considering that the derivatives of a are difficult
to obtain and complex in form.

tvβ̇v + βv = αv, βv (0) = αv(0) (19)

tv is a constant time-related matrix, and the input velocity
vector signal αv is transformed into the output velocity vector
βv which is the reference vector for the velocity signal in the
second step. Defining the error vector qυ = [qu, qv, qr]

> =
αυ − βυ , z2 = βυ − υ, the derivative of qυ is acquired along
with (18) and (19).

q̇υ = −β̇υ + α̇υ

= tυ
−1qυ +Bυ

(
z1, ż1, ψ, r, θ̂1,

˙̂
θ1

)
(21)

where Bυ = [Bu(·), Bv(·), Br(·)]> is a vector which includes
3 bounded continuous functions. Otherwise, there are the
unknown positive value B̄υ =

[
B̄u(·), B̄v(·), B̄r(·)

]>
such

that |Bυ| ≤ B̄υ . Then, the dynamic error z1 can be expressed
as (21).

Step 2: Together with the time derivative (19) of z2 yields
the corresponding result as (22).

ż2 = β̇υ − υ̇ = M−1
(
Mβ̇υ +D(υ)υ − τ − τd

)
(22)

It is noted that D(υ)υ is the uncertain term in the dynamic
positioning system. Similar to the treatment of the unknown

function vector in the first step, RBF-NNs are used to approx-
imate this uncertainty term as follows:

F2 (υ,A2) = S2(υ)A2υ + ευ

=

su (v) 0 0
0 sv (v) 0
0 0 sr (r)

AuAv
Ar

uv
r

+

εuεv
εr


(23)

In (23), the output vector F2 = [f2(u), f2(v), f2(r)]
contains three components correspond to the u, v, r com-
ponent velocities. Let θ2 = ‖A2υ‖2, where θ̂2 represents the
estimated values of θ2. The application of RBF-NNs simplifies
the design of subsequent controller and adaptive laws, while
reducing the computational complexity of the algorithms to
enhance control performance.

In the derivation of formulas involving NNs, three key
applications of Youngs inequality are highlighted below:

Φ2ξ1F1 ≤ ξ1(S1A1η + εη)

≤ S1
TS1 ‖A1η‖2

2a12
ξ1

2 +
1

2
a1

2 + ξ1
2 +

1

4
εη

2

(24)
z2F2 ≤ z2(S2A2υ + ευ)

≤ S2
TS2 ‖A2υ‖2

2a22
z2

2 +
1

2
a2

2 + z2
2 +

1

2
εv

2

(25)

−Φ2J(ψ)ξ1qv ≤ ‖ qv ‖2 +
1

4
‖ Φ2 ‖2ξ12 (26)

Based on the above analysis, (27) is chosen as the control
input τ for the ship dynamic positioning system in this paper.
Equation (28), (29) are the expression for the adaptive rate ˙̂

θ1,
˙̂
θ2.

τ = k2z2 + β̇v +
S2

TS2θ̂2
2a22

z2 + Φ2J(ψ)ξ1 (27)

˙̂
θ1 =

γ1S1
TS1θ̂1

2a12
− ς1θ̂1 (28)

˙̂
θ2 =

γ2S2
TS2θ̂2

2a22
− ς2θ̂2 (29)

where k2 is a strictly negative diagonal parameter matrix, a1,
a2, γ1, γ2, ζ1 and ζ2 is positive design constants. It can be
obviously observed that the designed controller has a very
simple form, which significantly reduces the computational
load and memory usage. Next, the semi-global uniformly
ultimately bounded (SGUUB) stability of the DP system
is demonstrated after incorporating the proposed algorithm,
through a stability analysis.

B. Stability Analysis

Select the Lyapunov function as following:

V =
1

2
ξ1
>ξ1+

1

2
z2
>Mz2 +

1

2
qυ
>qυ +

1

2γ1
θ̃>1 θ̃1 +

1

2γ2
θ̃>1 θ̃1

(30)



where θ̃1 = θ̂1 − θ1, and θ̃2 = θ̂2 − θ2. By considering
ϑ(t)/

√
ω2(t)− ϑ2(t) and z2 = βυ − υ, the time derivative

of V is expressed as:

V̇ = ξ1
>ξ̇1 + z2

TMż2 + qυ
T q̇υ +

1

γ1
θ̃T1

˙̂
θ1 +

1

γ1
θ̃T2

˙̂
θ2 (31)

According to (24), (26), ‖J(ψ)‖ = 1 and Young’s inequal-
ity, it is obtained that

ξ1
>ξ̇1 = ξ1

> [Φ2J(ψ) (αv − (z2 − qv)) + S1A1η + εη]

= ξ1
>

{
Φ2J(ψ)

(
− 1

Φ2
J(ψ)

−1

(
k1ξ1 +

S>1 S1θ̂1
2a12

ξ1

+
1

4
‖Φ2‖2ξ1

)
− (z2 − qv)

)}
+ ξ1

>S1A1η + ξ1
>εη

≤ ξ1T
{
−k1ξ1 −

S1
TS1θ̂1
2a12

ξ1 −
1

4
‖ Φ2 ‖2ξ1

}

− ξ1>Φ2J(ψ)z2−ξ1>Φ2J(ψ)qv+
S1
>S1 ‖A1η‖2

2a12
ξ1
>ξ1

+
1

2
a1

2 + ξ1
>ξ1 +

1

4
εη

2

≤−k1ξ1>ξ1+
S1
>S1

(
θ1−θ̂1

)
2a12

ξ1
>ξ1−

1

4
‖ Φ2 ‖2ξ1>ξ1

−ξ1>Φ2J(ψ)z2+‖ qv ‖2 +
1

4
‖ Φ2 ‖2ξ1>ξ1 + ξ1

>ξ1

+
1

4
εη

2 +
1

2
a1

2

≤ −k1ξ1>ξ1 −
S1

TS1θ̃1
2a12

ξ1
>ξ1 − ξ1>Φ2J(ψ)z2

+ ‖ qv ‖2 + ξ1
>ξ1 +

1

4
εη

2 +
1

2
a1

2 (32)

In view of (22), (23), (25) and (27), ‖J(ψ)‖ = 1 and
Young’s inequality, it follows that

z2
>Mż2 = z2

>M
[
M−1

(
Mβ̇v +Dυ − τ − τd

)]
= z2

>

[
Mβ̇v + F2 −

(
k2z2 + β̇v +

S2
TS2θ̂2
2a22

z2

)

− Φ2R(ψ)ξ1 − τd

]

≤z2>(M−I) β̇v+
S2
>S2θ̂2
2a22

z2
>z2+

1

2
a2

2+z2
>z2

+
1

2
εv

2−k2z2>z2−
S2
>S2θ̂2
2a22

z2+Φ2R(ψ)z2
>ξ1−z2>τd

≤z2>(M−I) β̇v+
S2
>S2θ̃2
2a22

z2
>z2+

1

2
a2

2+z2
>z2

+
1

2
εv

2−k2z2>z2 + Φ2R(ψ)z2
>ξ1−z2>τd (33)

It is worth noticing that

z2 (M − I) β̇v ≤
∥∥(M − I) tv

−1∥∥2
F
‖z2‖2 +

1

4
‖qv‖2 (34)

−z2τd ≤ z2>z2 +
τd
>τd
4

(35)

Note that I is the identity matrix. Then (33) becomes

z2
>Mż2 ≤

∥∥(M − I) tv
−1∥∥2

F
‖z2‖2 + 2z2

>z2 − k2z2>z2

− S2
>S2θ̃2
2a22

z2
>z2 +

1

4
‖qv‖2 + Φ2R(ψ)z2

>ξ1

+
τd
>τd
4

+
1

2
a2

2 +
1

2
ευ

2 (36)

Incorporating adaptive law (28) and θ̃2 = θ̂2− θ2, (37) and
(38) is obtained.

1

γ1
θ̃>1

˙̂
θ1 ≤

1

γ1
θ̃>1

(
γ1S1

>S1ξ1
>ξ1

2a12
− ς1θ̂1

)

≤ S1
>S1θ̃

>
1 ξ1
>ξ1

2a12
− ς1θ̃

>
1 θ̂1
γ1

(37)

θ̃>1 θ̂1 ≤ θ̃>1 (θ̃1 + θ1)

≤ θ̃>1 θ̃1 + θ̃>1 θ̃
>
1

≤ 2θ̃>1 θ̃1 +
1

4
θ1

2 (38)

Substituting (38) into (37), one gets

1

γ1
θ̃>1

˙̂
θ1 ≤

S1
>S1θ̃

>
1 ξ1
>ξ1

2a12
− 2ς1
γ1
θ̃>1 θ̃1 −

ς1
4γ1

θ1
2 (39)

As the same as above steps, another gets:

1

γ2
θ̃>2

˙̂
θ2 ≤

S2
>S2θ̃

>
2 z2

>z2
2a22

− 2ς2
γ2
θ̃>2 θ̃2 −

ς2
4γ2

θ2
2 (40)

Using (21) and Young’s inequality, qυ>q̇υ follows that

qυ
>q̇υ ≤ −

∑
i=u,v,r

qi2
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i qiB̄
2
i
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b

2
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1
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2
i

2b

)
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)
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i qi
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2

]

≤ −
∑

i=u,v,r

[(
1

ti
− B̄2

i

2b

)
qi

2

]
+

3b

2
(41)

Submitting (32) (36) (39) (40) and (41) into (31), the time



derivative V̇ is written as (42).

V̇ ≤−(k1−I) ξ1
>ξ1−(k2−2I) z2

>z2+
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−1∥∥2
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)
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≤ −2aV + % (42)

where a=λmin

{
−(k1−I),−(k2−2I) +

∥∥(M−I)t−1v
∥∥
F
,{

5/4−
∑

i=u,v,r

[
1/ti−B̄i/2b

]}
,−2ς1/γ2−2ς2/γ2

}
, %=1/(4ε2η)

+1/(2a21) + τd
>τd/4 + 1/(2a22) + 1/(2ε2υ)− ς1θ21/(4γ1)

−ς2θ22/(4γ2) + 3b/2.
By integrating both sides of equation (42), we obtain:

V (t) ≤
(
V (0)− %

2a

)
e(−2at) +

%

2a
(43)

According to the closed-loop gain shaping algorithm [18], all
errors variables in closed-loop system decrease to the compact
set Ω :=

{(
ξ1, z2, qv, θ̃1, θ̃2

)∣∣∣‖ξ1‖ ≤ C0, C0 >
√
%/a
}

as

t → ∞ by choosing appropriate parameters. C0 >
√
%/a

is a positive constant. Thus, the closed-loop control system is
SGUUB stable under the proposed control scheme, given the
positive constant C0, where all signal errors in the closed-loop
system can be made arbitrarily small.

V. SIMULATION

In this section, to verify the effectiveness of the proposed
prescribed-time algorithm, a simulation example for a supply
ship (length: 76.2m, mass: 4.591×106kg) equipped with a DP
system is executed and compared with the Optimum-seeking
Guidance scheme (OSG) in [19] and robust control scheme in
[20]. The ship mathematic model parameters are presented in
TABLE I. In the modeling of ship Dynamic Positioning (DP)
systems, it is essential to precisely characterize and predict the
impacts of environmental disturbances, such as wind, waves,
and ocean currents on the ship’s performance. For the sake
of simplifying the ship model and facilitating the design and
testing of control algorithms, these environmental disturbances
are approximated and modeled using a sine-cosine function
(44).

TABLE I
MODEL PARAMETERS

Indexes Values Indexes Values
Xu̇ −0.72 × 106 Xu̇ 5.0242 × 104

Yv̇ −3.6921 × 106 Yv 2.7229 × 106

Yṙ −1.0234 × 106 Yr −4.3933 × 106

Iz −Nṙ 3.7454 × 109 Y|v|v 1.7860 × 104

X|u|u 1.0179 × 103 Y|v|r −3.0068 × 105

Nv −4.3821 × 106 Nr 4.1894 × 106

N|v|v −2.4684 × 105 N|v|r 6.5759 × 106

Fig. 1. Trajectory of the ship in xy-plane.


τdu = 2 (1 + 35sin (0.2t+ 15cos(0.5t)))(N)

τdv = 2 (1 + 30cos (0.4t+ 20cos(0.1t)))(N)

τdr = 3 (1 + 30cos (0.3t+ 10sin(0.5t)))(N ·m)

(44)

k1 = diag [0.2, 0.38, 0.20] , k2 = diag [44, 12.8, 78.1] ;

tv=0.05× I; a1 =a2 = 80; γ1 =γ2 = 0.5; ς1 = ς2 =0.5;

Tjυ = [Tju, Tjv, Tjr] = [80s, 80s, 90s] ;

Tfυ= [Tfu, Tfv, Tfr]= [80s, 80s, 90s] ; (45)

In this simulation, the desired attitude is set to ηd =
[0m, 0m, 0deg]. The initial states are set to η(0) =
[12m, 14m, 10deg], υ(0) = [0m/s, 14m/s, 10deg/s].
The concrete parameters values setting follows (45). Besides,
the RBF-NNs for F1 and F1 consisted of 25 nodes with
centers spaced in [−2.5m/s, 2.5m/s] for x, y, u and r,
[−0.16 m/s, 0.16 m/s] for ψ and r, respectively. For the
comparison algorithms, corresponding parameters refers to
[19] and [20].

Fig. 1 exhibits simulation results under the proposed algo-
rithm, OSG and robust control making the ship stay at the
desired attitude in the xy-plant. It is clear that the proposed
algorithm provides a more satisfactory trajectory accuracy
compared to the algorithms for comparison. Fig. 2 illustrates
that the ship attitude x, y and ψ are stabilized to the desired
attitude near the prescribed-time Tjυ . The proposed scheme
achieves faster stabilization compared to the schemes for
comparison. The velocities of surge, sway and yaw are showed



Fig. 2. Ship’s actual position (x, y) and heading ψ.

Fig. 3. Ship’s surge velocity u, sway velocity v and yaw rate r.

in Fig. 3. The proposed scheme has a improved convergence
performance. Fig. 4 illustrates the fluctuation of the values
of the three input signals over time. It is apparent that prior
to system stabilization, the proposed scheme exhibits superior
convergence performance of τr compared to other schemes.
Once the system has stabilized, the values of τu and τv in the
proposed scheme converge more rapidly towards zero, further
outperforming the other schemes in convergence efficiency.
Finally, it can be seen that the constructed new error is
successfully confined within the boundaries and converges
stably to 0 at the moment of settling time Tfu, Tfv, Tfr as
shown in Fig. 5. Additionally, Fig. 6 and Fig. 7 illustrate the
fitting performance between the estimated and true values of

Fig. 4. Ship’s surge force τu, sway force τv and yaw force τr .

Fig. 5. The new error ξ1 for the simulation with the proposed scheme.

the adaptive parameters θ1 and θ2, respectively, representing
the approximation capability of the RBF-NNs for the system
uncertainties terms. It can be observed that, within the permis-
sible margin of error, the RBF-NNs successfully approximate
uncertainties terms described by (13) and (17).

In summary, the NNs-based prescribed-time control scheme
proposed in this paper demonstrates superior performance and
robustness compared to the schemes for comparison. By intro-
ducing FTFBs, FTTFBs and constructing new error functions,
the control laws are made more concise. Finally, the proposed
scheme is validated through simulations to demonstrate its
effectiveness on DP ships.



Fig. 6. The estimation performance of θ1.

Fig. 7. The estimation performance of θ2.

VI. CONCLUTION

In this paper, a novel NNs-based control scheme is proposed
for the ship DP system under model uncertain and unknown
environmental disturbances, making the new dynamic errors
converging within fixed boundaries. The prescribed-time per-
formance of the algorithm is validated through by a simulation
example and two comparative simulations with satisfactory
results. Consequently, the prescribed-time control algorithm
proposed in this paper can be applied to ships performing DP
tasks, enabling the ship’s dynamic system to achieve more
precise time-based prescribed performance.

Given the presence of multiple dynamic actuators in en-
gineering practices related to marine equipment, future re-
search on the proposed algorithm could focus on the issue

of actuator control allocation. In addition, the integration of
event-triggered control, fault-tolerant control, and blind zone
constraints could further enhance the development of this
control algorithm toward more advanced and precise control
techniques.
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