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Abstract

Multi-modal Large Language Models are in-
creasingly prominent due to their superior
reasoning abilities to excel at complex tasks.
Prevailing benchmarks related to multi-modal
reasoning attempt to assess MLLMs through
yes/no or multi-choice questions, which by de-
sign can introduce position bias and overlook
the intermediate reasoning process, thereby
rendering the results less convincing. To this
end, we systematically categorize the reasoning
tasks into deductive, abductive and analogical
reasoning, and introduce InfiMM-Eval, a man-
ually curate benchmark featuring 279 diverse
and nuanced reasoning questions across these
categories. The questions are designed to be
fully open-ended to better represent the char-
acteristics of generative models. To mitigate
the challenge of answering complex reason-
ing questions, we encourage models to gener-
ate intermediate reasoning steps. These steps
are incorporated into the evaluation protocol
to reduce bias towards plausible guesses or re-
sponses that lack definitive answers, while fa-
cilitating the assessment of more nuanced rea-
soning skills. This evaluation scheme closely
resembles the method by which humans eval-
uate exams in real-world settings, enabling a
more reliable assessment. We evaluate a large
selection of trending MLLMs to reveal the dis-
crepancies in reasoning abilities between open-
source and proprietary MLLMs. Additionally,
we conduct a comprehensive analysis of three
reasoning related factors, highlighting poten-
tial directions for further research in elevating
MLLMs in reasoning tasks.

1 Introduction

Exhibiting exceptional proficiency in a wide range
of NLP tasks (Devlin et al., 2018; Radford et al.,
2019), large language models (LLMs) have led
to the development of multi-modal large language
models (MLLMs), which incorporate multi-modal
perception, primarily visual information, into lan-
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Figure 1: Comparison between existing MLLM bench-
marks and InfiMM-Eval. Left: Existing benchmarks
involve basic reasoning tasks with simple responses.
Right: InfiMM-Eval consists of deductive, abductive,
and analogical reasoning, each of which includes one
or multiple images, one question and one answer with
nuanced intermediate reasoning steps.

guage models for more versatile content under-
standing and generation across domains (Alayrac
et al., 2022; Rombach et al., 2022; Driess et al.,
2023; Ghosal et al., 2023). Leading proprietary
models such as Palm-e (Driess et al., 2023),
Flamingo (Alayrac et al., 2022), RT-2 (Brohan
et al., 2023), and GPT-4V(ision) (OpenAl, 2023b)
have exemplified the extensive applicability and
promising potential of MLLMs. The open-source
community has also contributed significantly to the
field through the development of innovative archi-
tectures and the creation of curated instruction fine-
tunning datasets, including MiniGPT-4 (Zhu et al.,
2023a), LLaVA (Liu et al., 2023b), IDEFICS (Lau-
rencon et al., 2023), etc. Each model provides
distinct insights, exploring a variety of data recipes
and approaches on multi-modal alignment.
Reasoning is a key factor for human-level intel-
ligence especially in complex tasks (McCarthy,
2007; Darwiche, 2018), yet it is challenging to



evaluate and often escalates unpredictably, requir-
ing specialized benchmarks such as ARB (Sawada
et al.,, 2023), ARC (Clark et al., 2018), and
GSMBS8k (Cobbe et al., 2021). The desire for spe-
cialized reasoning benchmarks for MLLMs is even
more critical considering the complexity of multi-
modal perception (Zellers et al., 2019a).

Recent advancements in the MLLMs field have
led to the establishment of comprehensive evalu-
ation benchmarks such as MME (Fu et al., 2023),
MMBench (Liu et al., 2023c), SeedBench (Li et al.,
2023b), and MathVista (Lu et al., 2023). While
reasoning ability is an important factor assessed in
these benchmarks, there lacks a consistent catego-
rization of reasoning capabilities which is critical
for generating fine-gained analysis and comprehen-
sive insights. Existing benchmarks may not fully
challenge the limits of advanced models like GPT-
4V due to their reliance on simple responses or
multiple-choice formats, which do not adequately
reflect the complexity and format diversity of rea-
soning tasks. Additionally, such constrained for-
mats coupled with the lack of intermediate reason-
ing steps render the results susceptible to plausible
short answers and cases when no definite answers
are generated. This highlights the need for a rig-
orous and holistic benchmark to accurately assess
the reasoning capabilities of advanced MLLMs.

To address the issues identified above, we in-
troduce the InfiMM-Eval benchmark which is
designed to evaluate open-ended complex multi-
modal reasoning problems. Drawing on the work
of (Conner et al., 2014) in the field of logical rea-
soning, we categorize samples into three reasoning
paradigms: deductive, abductive, and analogical
reasoning. The example of each category is shown
in Figure 1. This categorization encompasses a
broad range of practical applications in reasoning,
and thus offers comprehensive insights into the rea-
soning capabilities of MLLMs. In addition to only
offering question-answer pairs like other bench-
marks, InfiMM-Eval incorporates explicit reason-
ing steps that delineate the derivation of ground
truth answers. This approach not only minimizes
the potential for results to be swayed by fortuitous
guesses but also embraces open-ended responses,
which are inherently more aligned with the com-
plexities encountered in real-world situations. This
enhancement ensures a more precise and practical
evaluation, especially in scenarios that demand in-
tricate reasoning. To the best of our knowledge,
InfiMM-Eval represents the first open-ended multi-

modal QA benchmark featuring manually curated
intermediate reasoning steps as ground truth.

The inclusion of reasoning steps facilitates the
creation of a more sophisticated evaluation proto-
col. Our evaluation protocol is designed following
the rubric grading format that is widely used in
exams, where the response receives full marks for
a directly correct answer, or partial scores based
on the relevance and logic of its intermediate rea-
soning steps. This method not only underscores
the model’s proficiency in generating correct an-
swers, but also provides a thorough analysis of its
decision-making process for a fully acurate evalu-
ation. We employ an LL.M-based evaluator to ex-
ecute this evaluation protocol for better efficiency.
With a collection of 279 high-quality and diverse
samples across three reasoning categories, it is our
hope that this benchmark will serve a cornerstone
in the MLLMs’ reasoning evaluation, similar to
HumanEval (Chen et al., 2021) in code generation.
Our contributions can be summarized as follows:

* We present InfiMM-Eval, a manually curated
high-quality benchmark, featuring complex
reasoning questions tailored to fully assess
the MLLMs.

* We propose a robust protocol to evaluate open-
ended model responses. By integrating inter-
mediate reasoning steps with final answers,
the evaluation results are more accurate and
more aligned with real-world scenarios.

* We evaluate a broad spectrum of leading
MLLMs on InfiMM-Eval, and analyze the
related factors to the reasoning capabilities
through extensive ablation studies.

2 Related Work
2.1 Multi-modal LLMs

The evolution of LLMs has inspired research on
integrating visual signal into LLMs. For example,
Flamingo (Alayrac et al., 2022) integrates the Per-
ceiver Resampler (Jaegle et al., 2021) and gated
attention modules onto LL.Ms, bridging visual en-
coders and LLMs, thereby proving highly effec-
tive in in-context learning capability for vision-
language tasks. Other large-scale models like Palm-
e (Driess et al., 2023), RT-2 (Brohan et al., 2023),
and GPT-4V (ision) (OpenAl, 2023b) have also un-
derscored the extensive applicability and promising
potential of MLLMs.



Various smaller-sized MLLMs have emerged re-
cently. Mini-GPT4 (Zhu et al., 2023b) utilizes the
instruction-tuned Vicuna (Chiang et al., 2023), and
fine-tunes a linear layer to align vision and lan-
guage representations. LLaMA-Adapter (Zhang
et al., 2023b) introduces a lightweight adapter to
enable the adaptability of LLaMA to visual in-
puts. BLIP-2 (Li et al., 2023d) incorporates the
Q-Former, adding a crucial alignment stage to con-
nect the frozen LLM with the visual modality,
notably excelling in Visual Question Answering
(VQA) tasks. InstructBLIP (Dai et al., 2023) fo-
cuses on fine-tuning the Q-Former using diverse
instruction tuning datasets, enhancing its perfor-
mance in visual scene comprehension and visual di-
alogues. In contrast, Otter (Li et al., 2023a), refines
the OpenFlamingo (Awadalla et al., 2023) for im-
proved instruction-following capabilities and more
effective usage of in-context samples. Multimodal-
CoT (Zhang et al., 2023c) integrates chain-of-
thought (Kojima et al., 2022; Wei et al., 2022b)
into the multimodal domain, showcasing robust re-
sults on the ScienceQA benchmark. MMICL (Zhao
et al., 2023b) tackles the challenges posed by multi-
modal inputs with multiple images, targeting in-
tricate multi-modal prompts and detailed text-to-
image references. LLaVA (Liu et al., 2023b) em-
ploys a simple linear connector and fine-tunes
the entire LLM to boost performance. The up-
graded version, LLaVA-1.5 (Liu et al., 2023a), in-
corporates large-scale instruction tuning and high-
resolution images, resulting in superior perfor-
mance across multiple benchmarks.

2.2 MLLM Evaluation Benchmarks

Different vision-language benchmarks have been
introduced to evaluate the specific reason-
ing capabilities of MLLMs. For instance,
Winoground (Thrush et al.,, 2022) assesses
the visual-linguistic compositional reasoning,
RAVEN (Zhang et al., 2019) focuses on relational
and analogical reasoning, OK-VQA (Marino et al.,
2019) examines reasoning with external knowl-
edge, and VCR (Zellers et al., 2019b) evaluates
visual commonsense reasoning related to people
in video frames. Other benchmarks, such as
TextVQA (Singh et al., 2019), FigureQA (Kahou
et al., 2018), and ScienceQA (Saikh et al., 2022),
have also made significant contributions by ad-
dressing reasoning within diverse contexts. Math-
Vista (Lu et al., 2023) provides a consolidated as-
sessment of mathematical reasoning capabilities.

In addition to the above-mentioned reasoning-
specific benchmarks, comprehensive benchmarks
have been proposed, which also include assess-
ments of various reasoning capabilities. For in-
stance, MME (Fu et al., 2023) evaluates reasoning
capabilities of commonsense reasoning, numeric
calculation, text translation, and code understand-
ing. MMBench (Liu et al., 2023c) assesses logi-
cal, attribute, and relation reasoning, while SEED-
Bench (Li et al., 2023c) contains visual reason-
ing, action prediction, and procedure understand-
ing. All above benchmarks use multiple-choice
question format to simplify the evaluation process.
As studied in (Zong et al., 2023), multiple-choice
questions may include bias and additional hints,
popular MLLMs are vulnerable to adversarial per-
mutation in answer sets for multiple-choice prompt-
ing. On the other hand, scoring by final answer
correctness only underestimates the importance of
reasoning process, which is not enough to under-
stand the models’ reasoning capability.

Thus, open-ended benchmarks are needed to
better align with the generative nature of re-
cent MLLMs. However, traditional metrics, like
CIDEr (Vedantam et al., 2015), SPICE (Ander-
son et al., 2016), etc. are not suitable for open-
ended QA evaluation. Human evaluations are pro-
hibitively costly. Luckily, (Chiang and Lee, 2023)
suggest LLMs can be an alternative to human eval-
uators. Recent open-ended QA benchmarks for
MLLMSs, such as TouchStone (Bai et al., 2023c),
VisIT-Bench (Bitton et al., 2023), and MM-Vet (Yu
et al., 2023b), also employ LLM-based evaluators.
This further demonstrates the reliability of LLM-
based evaluators in such context.

2.3 Reasoning in MLLMs

Human reasoning, essential for intelligence, in-
volves analyzing information to derive logical in-
sights (Yu et al., 2023a; Huang and Chang, 2022;
Walton, 1990). LLMs have demonstrated substan-
tial reasoning abilities in NLP tasks, as evidenced
in recent studies (Kojima et al., 2022; Huang and
Chang, 2022; Wei et al., 2022a; Yao et al., 2022;
Webb et al., 2023). Similar capabilities are ob-
served in (Driess et al., 2023; OpenAl, 2023b).
However, MLLMs research field lacks a system-
atic and unified framework for categorizing rea-
soning capability. Current benchmarks fragment
reasoning into numerous task-specific categories,
e.g. commonsense reasoning, math reasoning, code
understanding, procedure understanding. Such cat-



egorization may potentially obscure a holistic un-
derstanding of the reasoning capacities of MLLMs.
Our study advocates for a directional classification
of reasoning in MLLMs, anchored in established
logical principles (Bronkhorst et al., 2020; Dow-
den, 2018), focusing on deductive, abductive, and
analogical reasoning, essential in human cognition.
Detailed categorization and corresponding exam-
ples can be found in Appendix A.

In this work, we present InfiMM-Eval, an open-
ended VQA benchmark specifically created to eval-
uate the reasoning abilities of MLLMs. This bench-
mark features systematic design and categorization
of reasoning questions, aimed at comprehensively
assessing MLLMs’ reasoning capabilities.

3 InfiMM-Eval Benchmark

3.1 Data Collection

Compared with the extensive, automatically col-
lected MLLM reasoning datasets as discussed in
prior studies (Li et al., 2023a; Liu et al., 2023b;
Zhao et al., 2023a), our InfiMM-Eval initiative is
dedicated to the manual creation of a high-quality
evaluation benchmark. This benchmark is partic-
ularly designed to evaluate the multi-step reason-
ing abilities increasingly evident in contemporary
MLLMs. It specifically emphasizes deductive, ab-
ductive, and analogical reasoning, which are fun-
damental to routine human cognitive processes.

In alignment with this principle, the process of
collecting data for our evaluation benchmark can
be broadly categorized into the following steps:
Question and Answer Collection. Our method-
ology involved engaging eight annotators with ad-
vanced education level, each tasked with sourc-
ing a wide range of images from varied scenar-
i0s. These images were sourced from a variety of
platforms, including online platforms and existing
public dataset, notably adopting 25 samples from
MM-Vet (Yu et al., 2023b). The primary objective
for these annotators was to create a comprehen-
sive set of questions and answers. It was impera-
tive that these questions were crafted to rigorously
test the multi-step logical reasoning capabilities
of MLLMs. To ensure the complexity of the task,
the questions were designed to be intricate enough
to preclude the possibility of immediate answers
based purely on visual observation.

To ensure the robustness of this study, specific
guidelines were established for the formulation of
questions. Although the answers format were per-

mitted a degree of openness, the questions them-
selves were required to have a single logic path.
This means that despite the potential openness in
responses, the line of reasoning to arrive at these
answers should be fairly consistent among different
individuals. For example, overly subjective ques-
tions like “What is your feeling when you see this
image?” were excluded. These types of questions
do not align with the standard of robustly eliciting
a logical reasoning pathway.

Additionally, we instructed annotators to cate-
gorize each question from the following aspects.
Each question is reviewed by a minimum of 3 an-
notators. The final categorization is determined
through a majority vote to ensure the reliability.

* Reasoning category: In alignment with prin-
ciples of logical reasoning, questions are to be
classified into one of three categories: deduc-
tive, abductive, or analogical reasoning.

Question complexity: The complexity of a
question is assessed based on multiple crite-
ria, including the number of logical steps re-
quired for resolution, the extent of knowledge
needed, and the presence of any elements that
might introduce confusion or misinterpreta-
tion. Our guidelines delineate questions into
“High” and “Moderate” complexity levels, pri-
marily based on the number of intermediate
reasoning steps involved. Nevertheless, an-
notators are afforded discretion to apply their
judgment in borderline cases.

* Question intuitivity: This dimension evalu-
ates how intuitively one can grasp the essence
of the question and the possible answers. An-
notators have the liberty to classify questions
as either “Intuitive” or “Counter-Intuitive” de-
pending on their immediate perception of the
question’s clarity and the straightforwardness
of its potential answers.

Quality Control. To guarantee the exceptional
quality of our benchmark, we implemented a thor-
ough cross-validation protocol. Each sample un-
derwent validation by two independent annotators.
Their evaluation is based on a comprehensive set
of standards, which includes:

* Appropriateness: Each image and question
is examined for inappropriate or offensive con-
tent, ensuring fairness, diversity, and suitabil-
ity for a diverse audience.
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Figure 2: InfiMM-Eval benchmark statistics: (a) indi-
cates distribution of reasoning categories and their re-
spective reasoning complexity; (b) represents the statis-
tic of counter-intuitive versus intuitive reasoning ques-
tions; and (c) shows the breakdown of the number of
reasoning steps per question.

* Consistency analysis: The relationship be-
tween the question, answer, and reasoning
steps are carefully evaluated to ensure they
are logically aligned and coherent.

* Image relevance: This criterion assesses
whether the image is essential for answering
the question, thereby filtering samples where
questions could be answered without the vi-
sual aid.

¢ Complexity requirement: Questions deemed
overly simplistic, answerable by a cursory
glance at the image without substantive logi-
cal engagement, were excluded.

* Subjectivity and discrepancy: If a question
is found to be too subjective, or if the val-
idators’ answers significantly differ from the
original answer, the question is either revised
or removed.

* Question format diversity: We ensure a
diverse representation of question formats,
avoiding the overuse of any particular format
of questions.

After rigorously applying these quality control mea-
sures in several review cycles, our benchmark was
refined to include 279 high-quality samples. All
samples satisfy our stringent criteria for accuracy,
relevance, and cognitive challenge, ensuring a ro-
bust and reliable dataset.
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Figure 3: The distribution of visual content categories in
InfiMM-Eval. A single image can encompass multiple
visual content categories.

3.2 Dataset Statistics

In summary, our InfiMM-Eval benchmark consists
of 279 manually curated reasoning questions, asso-
ciated with a total of 342 images. Out of these, 25
images are adopted from MM-Vet, enriching the
diversity and scope of the dataset.

We present a comprehensive statistical analysis
of the dataset. Figure 2 (a) illustrates the distribu-
tion across various reasoning types: 49 questions
pertain to abductive reasoning, 181 require deduc-
tive reasoning, and 49 involve analogical reasoning.
Furthermore, the dataset is divided into two folds
based on reasoning complexity, with 108 classi-
fied as “High” reasoning complexity and 171 as
“Moderate” reasoning complexity. For both abduc-
tive and deductive reasoning categories, the ratio of
“High” to “Moderate” questions reasoning complex-
ity is approximately 1 : 2, whereas for analogical
reasoning, this ratio is closer to 1 : 1. This distribu-
tion underscores the high quality of our benchmark.
Notably, the dataset includes 23 questions that en-
tail counter-intuitive reasoning (See Appendix for
more details), further exemplifying the diversity of
our benchmark, as depicted in Figure 2 (b). Addi-
tionally, as Figure 2 (c) indicates, about 76% (212
out of 279) of the reasoning questions require three
or more steps to solve.

Figure 3 demonstrates the diversity of visual
content in our image collection, categorized by
GPT-4V into a predefined set of concepts.

3.3 Dataset Comparison

We provide a detailed comparison with other
MLLMs reasoning benchmarks in Appendix C fo-
cusing on the aspects including data domain, data
collection, answer format and whether intermedi-
ate reasoning steps are provided and considered. In
summary, unlike other benchmarks, InfiMM-Eval
features compiling questions from open-domain



real-world scenarios that involve more complex
and unique logical reasoning processes. Addition-
ally, our benchmark considers the accuracy of inter-
mediate reasoning steps in the computation of the
final metric. InfiMM-Eval is designed to comple-
ment existing benchmarks by offering an additional
measure for evaluating the reasoning capabilities
of MLLMs.

4 Experiments

In this section, we delineate the experimental set-
tings to assess the reasoning capabilities in contem-
porary MLLMs. Specifically, we furnish a com-
prehensive description of evaluation baselines and
protocols in section 4.1. Subsequent to this, we
conduct thorough evaluations and ablation stud-
ies on a range of MLLMs using our InfiMM-Eval
dataset, as detailed in section 4.2. The prompts
we used for evaluating each model can be found in
Appendix E.

4.1 Evaluation Protocol

Considering the open-ended nature of question-
answering in the InfiMM-Eval benchmark and the
generative capabilities of modern MLLMs, it be-
comes clear that solely assessing answer correct-
ness is insufficient, e.g. in Figure 4. In line with
recent studies (Bai et al., 2023c; Bitton et al., 2023;
Yu et al., 2023b), we also employ LLMs as eval-
uators. However, our approach is distinct in its
integration of both questions and answers, as well
as the ground-truth and model-predicted reason-
ing steps into the LLM prompt. The inclusion of
structured reasoning steps into the LLM context
facilitates the accommodation of diverse model
outputs and establishes a comprehensive and jus-
tified scoring system. As elaborated in section 1,
our grading protocol awards full marks for direct
correctness, with partial scores assigned based on
the relevance and logic of reasoning steps. This
method evaluates not only the model’s accuracy in
answer generation but also offers a an in depth anal-
ysis of its decision-making process, illuminating its
reasoning pathways. For any given question g, its
score s, falls within the range of [0, 1]. The over-
all score S over the entire dataset, which includes
considerations of reasoning complexity detailed in
section 3.2, is calculated as

ZJ:EM Sz + 2- ZyEH Sy

S:
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x 100%, (1)

Question: | live in Alaska and want to find a
place far awar from me to spend my Christmas
Holiday. Which place in above scenes would |
probably choose?

GroundTruth Answer: The scene in first image

Reasoning Steps:

1. The first image displays a tropical beach with palm trees and a surfboard, indicating a warm and humid
environment.

2. The second image depicts a snowy with igloos, acold
of the aurora indicates a polar or near-polar location.

; the presence

3. If I live in Alaska, it is cold during Christmas. Snow and the aurora can be easily seen in Alaska.

4. Great sun and beach during the winter season must be far from Alaska.

5. 1f | prefer to spend the Christmas holidays in a faraway place, the beach in first image would be more
suitable.

@ Al Response: Beach

Grade without reasoning: 0.0 Grade with reasoning: 1.0

Figure 4: In this example, model can successfully an-
swer the question, however, due to the nature of open-
ended response, the model’s response cannot be judged
correctly solely based on question and answer.

where M and H denote the sets of questions catego-
rized as having “Moderate” and “High” reasoning
complexity, s, and s, denote score of each ques-
tion belong to “Moderate” or “High” categories
respectively, a coefficient of 2 is applied to “High”
complexity category to balance the number of sam-
ples of each complexity category.

4.2 Benchmarking MLLMs on InfiMM-Eval

We evaluate a diverse range of MLLMs on InfiMM-
Eval for their reasoning abilities, including GPT-
4V (OpenAl, 2023a), LLaVA-1.5 (Liu et al,
2023b), Otter (Li et al., 2023a), MiniGPT-v2 (Zhu
et al., 2023a), InstructBlip (Dai et al., 2023), Blip-
2 (Li et al., 2023d), LLaMA-Adapter-V2 (Zhang
et al., 2023b), InternLM-XComposer (Zhang et al.,
2023a), QWen-VL-Chat (Bai et al., 2023a), and
Fuyu (Bavishi et al., 2023).

The principal findings are encapsulated in Ta-
ble 1, derived from employing the most effective
prompt strategy for each model. Among all evalu-
ated MLLMs, GPT-4V is particularly noteworthy,
exhibiting unparalleled proficiency across all rea-
soning domains and complexities, with an overall
reasoning score of 77.44. In the realm of open-
source MLLMs, InfiMM-v1 is distinguished as the
front-runner with the highest 41.32 overall score,
marginally surpassing SPHINX-v2. Additionally,
we observe that models fine-tuned with explicit in-
structions, display superior performance compared
to their solely pretrained counterparts, exemplified
by models such as Otter and OpenFlamingo-v2.

Table 1 further provides a granular breakdown
of scores, reflecting the varied reasoning capabili-
ties of the MLLMs. GPT-4V continues to exhibit



Table 1: Results for various MLLMs. Open-source models best performances are indicated with underlines.

Reasoning Category Reasoning Complexity

ICELE LR Lott Deductive Abductive Analogical Moderate High Occal
OpenFlamingo-v2 (Awadalla et al., 2023) MPT-7B (Team, 2023b) No 8.88 53 1.11 9.47 4.72 6.82
MiniGPT-v2 (Zhu et al., 2023a) LLaMA2-7B (Touvron et al., 2023)  Yes 11.02 13.28 5.69 14.45 7.27 10.43
Fuyu-8B (Bavishi et al., 2023) Persimmon-8B (Elsen et al., 2023) No 16.42 21.49 7.78 23.06 9.91 15.7
BLIP-2 (Li et al., 2023d) OPT-2.7B (Zhang et al., 2022) No 22.76 18.96 7.5 24.05 14.18 19.31
InternLM-XComposer-VL (Zhang et al., 2023a) InternLM-7B (Team, 2023a) Yes 26.77 35.97 18.61 39.13 17.18 26.84
InstructBLIP (Chung et al., 2022) FLAN-T5-XXL (Chung et al., 2022)  Yes 27.56 37.76 20.56 40.64 18.09 28.02
LLaMA-Adapter V2 (Gao et al., 2023) LLaMA-7B (Touvron et al., 2023) No 28.7 46.12 22.08 41.33 2191 30.46
Otter (Li et al., 2023a) LLaMA-7B Yes 22.49 33.64 13.33 35.79 12.31 22.69
mPLUG-OwI2 (Ye et al., 2023) LLaMA-7B Yes 2343 20.6 7.64 28.79 13.18 20.05
IDEFICS-9B-instruct (Laurencon et al., 2023) LLaMA-7B Yes 22.99 34.63 20.56 3445 16.73 24.53
Emu (Sun et al., 2023) LLaMA-13B Yes 28.9 36.57 18.19 36.18 22.0 28.24
LLaVA-1.5 (Liu et al., 2023b) Vicuna-13B (Chiang et al., 2023) Yes 30.94 4791 2431 474 21.0 32.62
CogVLM-Chat (Wang et al., 2023) Vicuna-7B Yes 36.75 47.88 28.75 55.67 225 37.16
Qwen-VL-Chat (Bai et al., 2023a) Qwen-14B (Bai et al., 2023b) Yes 37.55 44.39 30.42 46.61 30.09 37.39
SPHINX-v2 (Lin et al., 2023) LLaMA2-13B Yes 42.17 49.85 20.69 54.85 27.31 39.48
InfiMM-v1 (Team, 2024) LLaMA2-13B Yes 41.69 49.70 32.36 61.81 25.09 41.32
GPT-4V (OpenAl, 2023a) GPT-4 Yes ‘ 74.86 77.88 69.86 ‘ 93.98 58.98 74.44

its dominance across all reasoning dimensions. In-
terestingly, most open-source models lag behind
GPT-4V, especially in analogical reasoning, which
requires not only the detailed comprehension of im-
age content, but also the ability to transfer knowl-
edge from known instances to analogous situations.

To dive deeper, we stratify questions into two lev-
els of complexity: “Moderate” and “High”. See Ap-
pendix B for visualization of examples with varied
reasoning complexities. It is noteworthy that GPT-
4V consistently outperforms in addressing both
moderate and high-complexity questions. Among
the open-source models, InfiMM-v1 notably ex-
cels in managing moderate complexity questions,
whereas Qwen-VL-Chat is particularly adept at
handling high-complexity questions.

4.3 Factors Related to Reasoning Ability

Because InfiMM-Eval benchmark provides an ac-
curate evaluation on MLLMs’ reasoning ability,
we further conduct a more fine-grained analysis
on examining the impact of different MLLM tech-
niques and factors over reasoning ability, including
Chain-of-Thought (CoT) (Kojima et al., 2022; Wei
et al., 2022b), in-context learning (Li et al., 2023a;
Alayrac et al., 2022; Dong et al., 2022), and differ-
ent model scales.

4.3.1 Results with Chain-of-Thought Prompt

In this section, we present a quantitative analy-
sis examining the impact of CoT prompting on
MLLMs. The results are detailed in Table 2.

We adopt a CoT prompting technique similar to
that described in (Kojima et al., 2022) by appending
“Let’s think step by step” to the end of each question
to enhance the reasoning capabilities of the model.
Our results indicate varied performance changes

Table 2: Comparative evaluation results of MLLMs with
and without Chain-of-Thought prompts.

MLLMs CoT Deductive Abductive Analogical Overall
BLIP-2 WVQO ;géz }g:gg 5729 iggf
InstructBLIP WV/]O 2275526 24714712 ;(6)22 ;gé;
Lavals Moo e AT el
envicm 15 LN o
PV N e eoss Teds

Table 3: Results with in-context learning example.

MLLMs ICL Deductive Abductive Analogical Overall
Otter wlo 2249 33.64 1333 22.69
w2325 32.58 1431 23.18
wio 3373 46.82 3028 3532
Qwen-VL-Chat 78 38.84 4439 2722 37.62
wlo  74.86 77.88 69.86 7444
GPT-4V w7482 80.45 6417 738

across different models. Open-source models gen-
erally exhibit a minimal differences in performance,
whereas GPT-4V exhibits a notable improvement
of 3.7 with CoT prompts. We hypothesize that
this phenomenon is attributed to differences in
language model size and data quality during the
instruction-finetuning (IFT) stage of model training.
The majority of open-source MLLMs are limited
by smaller language models, typically with less
than 14 billion parameters, inherently constraining
their reasoning abilities. Additionally, the scale
and quality of the IFT datasets, commonly used in
open-source MLLMs, influence the outcome sig-
nificantly. A considerable portion of the IFT data,
primarily sourced from VQA (Goyal et al., 2017),
lacks in reasoning and commonsense knowledge.



This raises a question about the feasibility of repli-
cating of CoT’s success in multimodal contexts.

4.3.2 Results with In-Context Learning

To examine the impact of in-context learning on the
reasoning abilities of MLLMs, we selected three
models ranging from the high-performing GPT-
4V, alongside leading open-source models such as
QWen-VL-Chat and Otter. It is noteworthy that
only Otter incorporates in-context learning during
its training phase. We randomly select an example
from our dataset and concatenate it to the prompts
during inference for each query, so that the selected
example can help refine the reasoning process and
ideally enhance the performance of these models.

As shown in Table 3, it is notable that the in-
tegration of in-context learning technique does
not enhance, and may slightly impair, the perfor-
mance of the GPT-4V. In contrast, marginal im-
provements in performance are observed in the Ot-
ter and Qwen-VL-Chat. These results underscore
the complex and diverse nature of the benchmark
employed in this study. Specifically, for the high-
performing GPT-4V, the randomly selected ICL
examples might significantly diverge from the test
samples. Conversely, for models with smaller lan-
guage encoders, such as Otter and Qwen-VL-Chat,
which initially demonstrate inferior performance
compared to GPT-4V, the inclusion of ICL exam-
ples potentially aids in the reasoning process, albeit
the impact is relatively limited.

4.3.3 Results with LLMs of Varied Scales

Table 4 presents the evaluation results of MLLMs
employing LL.Ms of different scales. The size of
the LLMs is a critical determinant in augmenting
the reasoning capabilities of MLLMs. For instance,
considering Qwen-VL(Bai et al., 2023b) as a case
study, there is a noticeable increase in the overall
reasoning score concurrent with the expansion of
the LLM’s size. Specifically, when the model’s
size is increased from 7B to 14B parameters, its
reasoning score increases from 35.32 to 37.39.
Furthermore, we also report the reasoning ca-
pability of standalone language models, such as
Vicuna (Chiang et al., 2023) and GPT4 (OpenAl,
2023b), by replacing images with their correspond-
ing textual descriptions. Prompting GPT-4 directly
with only the question resulted in a reasoning score
close to 0, as shown in the first row of Table 4).
This suggests that the inclusion of visual elements
is essential for accurate and effective responses. As

Table 4: Results of MLLMs with varied LLM sizes.

Models LLM Caption ‘ Deductive ~ Abductive ~ Analogical ~Overall
GPT-4 GPT-4 - 5.82 5.0 2.5 5.06
Vicuna-7B LLaMA-7B GPT-4V cap. 38.01 48.98 30.0 38.53
Vicuna-13B LLaMA-13B GPT-4V cap. 34.42 58.78 34.69 38.75
SOLAR-0-70b LLaMA-70B GPT-4V cap. 48.56 64.49 33.47 48.71
GPT-4 GPT-4 GPT-4V cap. 54.59 66.73 45.1 55.05

Vicuna-7B(CoT) LLaMA-7B
Vicuna-13B(CoT) ~ LLaMA-13B
SOLAR-0-70B(CoT) LLaMA-70B
GPT-4(CoT) GPT-4
GPT-4(CoT) GPT4
LLaMA2-7B-Chat -

LLaVa-1.5 LLaMA2-13B-Chat - ‘

GPT-4V cap. 34.42 58.78 34.69 38.75
GPT-4V cap. 39.39 46.33 34.08 39.68
GPT-4V cap. 54.7 67.14 47.35 55.59
LLaVAL.5 cap. 23.29 44.7 29.17 29.74
GPT-4V cap. 55.75 66.53 51.22 56.85

27.8 33.28 21.11 27.51
30.94 47.91 24.31 32.62

Qwen-7B - ‘ 33.73 46.82 30.28 35.32

Quen-VL-Chat Qwen-14B 37.55 4439 3042 3739

we increase the model size of the LLaMA, from
7B to 70B, there is a noticeable improvement in
reasoning scores when utilizing high-quality image
descriptions generated by GPT-4V. The applica-
tion of CoT markedly enhances the performance
of SOLAR-0-70B, elevating its scores from 48.71
to 55.59. In contrast, this technique does not pro-
duce proportionate enhancements in smaller mod-
els, such as those with 7B and 13B.

The GPT-4 model demonstrates optimal reason-
ing performance when it employs the CoT tech-
nique in conjunction with image descriptions gen-
erated by GPT-4V. A significant reduction in perfor-
mance is noted when these descriptions are substi-
tuted with those produced by LLaVA-1.5. Further
analysis reveals that the detailed information in
GPT-4V’s descriptions, including OCR and exten-
sive commonsense knowledge, is crucial for en-
hancing the “multi-modal” reasoning capabilities
of standalone LLMs.

For more ablation studies, please see Ap-
pendix F.

5 Conclusion

In this paper, we introduce InfiMM-Eval, a compre-
hensive benchmark specifically designed to eval-
uate complex reasoning capabilities in MLLMs.
InfiMM-Eval incorporates questions and answers
for each data sample as well as detailed reasoning
steps. We employ GPT-4 for the assessment and
grading. Our evaluation covers a broad spectrum
of MLLMs. We conduct extensive ablation stud-
ies to discern performance disparities among these
models. The findings reveal that GPT-4V attains
an overall score of 74.44. It is noteworthy that the
top-performing open-source MLLMs still largely
fall behind GPT-4V. InfiMM-Eval is poised to be a
foundational benchmark for future enhancements
in advancing reasoning capabilities of MLLM:s.



6 Limitations

In this section, we delve into the possible con-
straints and shortcomings of the current InfiMM-
Eval benchmark. Furthermore, we identify and
suggest potential pathways for enhancement.

* Expanding reasoning categories: The
InfiMM-Eval benchmark represents an initial
endeavor to scrutinize the capability of de-
ductive, abductive, and analogical reasoning
in contemporary MLLMs. Notwithstanding,
the spectrum of human reasoning transcends
these categories, incorporating more complex
forms such as inductive and causal reason-
ing. Future iterations of this benchmark aim
to encompass a broader range of reasoning
categories, thereby facilitating a more compre-
hensive assessment of reasoning capabilities.

¢ Enhancing evaluation experiences: Due to
the size of the benchmark and the nature of
LLM-based evaluation protocol, we have de-
cide to only release images and correspond-
ing questions, while maintaining an evalua-
tion server that allows the public to submit
model predictions to obtain final scores. This
approach ensures that intermediate steps and
answers remain confidential to prevent data
leakage. We will conduct further research to
develop a more refined metric and evaluation
protocol, aims to provide intermediate reason-
ing step scores to better diagnostic MLLMs
without compromising data.

7 Ethical considerations

This work proposes an MLLMs evaluation bench-
mark, with potential risks of being misused for
assessing models trained for harmful usage, e.g.
malicious web agent. Our benchmark design and
methodology aim to minimize these risks, ensuring
their impact remains low.
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Appendix

A Detailed reasoning categorizations

Deductive reasoning derives new conclusions from established premises (Johnson-Laird, 1999), ensuring
that the steps of inference align with established logical rules. To illustrate, consider the deductive
example presented on the right of Figure 1: the premises include observations as “snow is presented in
image”, “soil is revealed after snow melting, looks like crack”, and “crack is expanding”. From these
premises, the deductive conclusion drawn from premises is “current season is winter, after winter it will
be spring”. Deductive reasoning capability is vital for MLLMs in various domains. This encompasses
automatic fact-checking of multi-modal information and multi-modal legal reasoning for interpreting
legal documents, among other applications.

Abductive reasoning determines the most plausible explanation, grounded in common sense for a specific
set of observations (Douven, 2011). This form of reasoning is often viewed as the converse of deductive
reasoning. in the abductive scenario illustrated in Figure 1, the observation is “a person is cutting an
onion while wearing a helmet”. Given the commonsense knowledge that “Onions can release compounds
causing eyes irritation”, the most plausible explanation for the question is “eye protection”. The capability
of abductive reasoning extends to causal inference in complex systems. It can be applied, but is not limited
to, inferring public sentiment from economic data and news, or predicting trends from text, images, and
videos.

Analogical reasoning facilitates the transfer of knowledge from known instances to analogous situations
(Goswami, 1991). In the example illustrated in Figure 1, the first image demonstrates a proposition that
the naming convention is a play on words involving depth. The second and third images should adhere
to a similar pattern. Specifically, while the individual in the second image is facing east, the person in
the third image faces west, suggesting that his name should logically be “Westface”. The capability
for analogical reasoning is pivotal in comparative analysis, which constitutes a fundamental aspect of
in-context learning.

B Examples with varied complexities

We presents a curated set of examples from our dataset in Figure 5, varying in reasoning complexity,
alongside corresponding responses from InfiMM-v1 and GPT-4V.

C MLLM reasoning evaluation benchmarks comparison

We compare our proposed benchmark with prevailing MLLM reasoning evaluation benchmark in Table 5.

Table 5: MLLM reasoning evaluation benchmarks comparison.

Dataset Domains

Source ‘ # Samples Answer Format Reasoning Steps

ScienceQA (Lu et al., 2022, Natural science, social science, and language Multi-Choice

science.

Collected from online learning
platform.

10332 questions 90% with explanations, not

used in evaluation.

Aggregated from public datasets
and manually collected

55% Multi-Choice, and
44% free-form

6141 questions Partial contain explanation,

not used in evaluation.

MM-Vet (Yu et al., 2023b) 6 VL abilities, including reasoning Manual collected None

MMMU (Yue et al., 2023) College-level subject knowledge. Manually collected 11.5K questions 94% Multi-Choice, 6%

Free-form

17% with Explanation, not
used in evaluation.

InfiMM-Eval (Ours) Open-ended common sense complex multi- Free-form text

modal reasoning.

Manually collected 279 questions 100% with explanation, used

) ‘
MathVista (Lu et al., 2023) ‘ Mathematical reasoning with visual contexts.
‘ in evaluation.

218 questions | Free-form

D Counter-intuitive examples

We provide more counter-intuitive examples of InfiMM-Eval in Figure 6.
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C

Question: Which city might this facility be located in?

Answer: Pittsburgh

Reasoning Steps:

1. Notice the prominent letter 'P* on the field, which could
represent the initial of the city's name or the name of the
team.

2. The yellow bridge and skyline in the background are
reminiscent of Pittsburgh, a city known for these features and
starting with ‘P

3. The scene depicts a baseball game; given that Pittsburgh's
MLB team is the Pirates, the 'P' likely stands for Pirates.

4. The color yellow is a hallmark of the Pittsburgh Pirates,
further reinforcing the connection.

InfiMM-v1: The facility in image is likely located in Pittsburgh, as the baseball stadium is
full of fans watching a baseball game, and the skyline of Pittsburgh can be seen in the
background. The presence of city skyline suggests that the stadium is suited within or close to
the city, making it a popular location for sports events and entertainment.

Grade: 1.0

@ GPT-4V: This facility is likely located in Pittsburgh. The reasoning behind this is the
presence of the "P" logo on the field, which is associated with the Pittsburgh Pirates, a Major
League Baseball team. Additionally, the Roberto Clemente Bridge, a distinctive yellow bridge in
Pittsburgh, can be seen in the background. The skyline also matches that of downtown
Pittsburgh.

Grade: 1.0

ID: 312

\- R @
="
Reasoning Complexity: High

Question: Look at the first 3 images. Which app should the 4th image be?
Answer: Whatsapp

Reasoning Steps:

1. The first image is tape player with Spotify logo on it. The color and function of the player are aligned with
Spotify.

2. The second image is 3D glasses with Netflix logo on it. The function and color of it are aligned with Netflix.

3. The third image is a beeper with a Facebook logo on it. The function and color of it are aligned with Facebook.
4. The 4th image is a green cell phone. ts color is green. The function of the phone is contacting friends.

5. According to common sense, Whatsapp's logo is green, and it is usually used for contacting friends

InfiMM-v1: Netflix.

Grade: 0.0

@ GPT-4V: The 4th image should be associated with WhatsApp. The first three images
show old technology devices branded with modern digital platforms: Spotify, Netflix, and
Facebook. Following this pattern, the 4th image, a walkie-talkie, should be associated with
another modern digital communication platform, and WhatsApp fits this category.

Grade: 1.0

(a)

(b)

ID: 200

Question: If tourists want to visit this
place, list colors of parasols in order?
Answer: The tourist will see colors

of red, white, light green, green, blue
and purple.

Reasoning Steps:
1. This is a dock.
2. Tourists who want to check this
place will go from left to right.

3. There are 6 parasols with colors
red, white, light green, green, blue and
purple.

4. The order of parasols from left to
right is red, white, light green, green,
blue and purple

Reasoning Complexity: High

InfiMM-v1: Green, red, blue.

Grade: 0.0

@ GPT-4V: The tourist will see the parasols in the following order of colors: red, white,
green, blue, and purple. | arrived at this conclusion by observing the arrangement of the
parasols from left to right in the image.green, blue, and purple. | arrived at this conclusion by
observing the arrangement of the parasols from left to right in the image.

Grade: 0.8

Reasoning Complexity: High

Question: Why does the person add toothpicks to the
noodle soup?

Answer: The person probably mistakes the bottle of
toothpicks as a bottle of spice

Reasoning Steps:

1. There are holes on top of the lid of the bottle of
toothpicks.

2. These holes make it look similar to a bottle of
seasoning spice.

3. The person probably mistakes the bottle of
toothpicks as a bottle of spice.

InfiMM-v1 : The person adds toothpicks to the noodle soup to keep the ingredients, such
as the noodles and vegetables, submerged in the broth and prevent them from floating to the
surface. This ensures that the dish remains visually appealing.

Grade: 0.0

@ GPT-4V: The person is not adding toothpicks to the noodle soup. The image shows a
person using a pepper shaker to add pepper to the soup. The holes in the pepper shaker
create an optical illusion, making it appear as if toothpicks are being poured into the soup. The
"toothpicks" are actually the table surface showing through the holes of the pepper shaker.

Grade: 0.0

(©)

(@)

Figure 5: Samples with MLLMs’ responses and scores. Hallucinations and errors are highlighted in red.
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ID: 164 Counter-Intuitive: Yes

Can you solve this picture
puzzle in 20 seconds?
AL A
o - =
o . S - S
Reasoning Steps:

1. The first row shows that three coconut trees equal 30, which means one palm is 10.

2. The second row shows that one coconut tree plus two pots and two flowerpots equals 38, which
means that one pot is 7.

3. The third row shows that 3 teacups equal 18, which means that a teacup is 6.

4. The fourth row asks the value of one flowerpot plus a coconut tree in a flowerpot multiplied by
one teacup, which gives us 109.

Reasoning Complexity: High

Question: What is the correct answer for
the equation in the 4th row?

Answer: The Value of the question
mark should be 109.

ID: 169

Counter-Intuitive: Yes
Reasoning Complexity: Moderate

Question: Is there a blanket on top of
the car?

Answer: No, there is snow on the car,
which looks like a towel or blanket.

Reasoning Steps:

The snow appears to have slid down without completely falling off, creating a wave-like
formation. This makes to look like a blanket, but it is not.

ID: 175 Counter-Intuitive: Yes

» @

Apple Dis a apple

Reasoning Complexity: High

Question: What should we draw in the blank?

Answer: We don't need to draw anything
because the "Pear" disappears.

Pear

Reasoning Steps:

1. In the first row, from left to right, the caption changes from "Apple" to "Dis a apple".

2. Therefore , in the second row, from left to right, we should also add "Dis a" in front of
"Pear", which gives us "Dis a Pear".

3. As "Dis a Pear" sounds the same as "disappear", we don't need to draw anything beyond it.

ID: 225 Counter-Intuitive: Yes

Reasoning Complexity: High

Question: The doctor asked me to control
my weight. Is it OK for me to eat these as my
lunch?

Answer: Yes.

Reasoning Steps:
1. In the image, there is a bag of MacDonald chips and a burger. If you check it carefully, the
chips is made of apple and burger is made of watermelon, apple, banana and kiwi

2. The doctor asked me to control weight, so it would be better for me to get away from junk
food

3. Since the above food is made of fruit, it's ok for me to eat

ID: 230

Counter-Intuitive: Yes

Reasoning Complexity: High

Question: Can you recall a type of food
from this?

Answer: Pumpkin Pie.

Reasoning Steps:

1. In this image, there is a pumpkin. There
is a series of numbers curved on it
"3.1415926535897"

2. The series of numbers is Pi

3. So the food should be pumpkin pie

ID: 325 Counter-Intuitive: Yes
. —— Reasoning Complexity: High
| e g Complexity: Hig
2 v N Question: According to the image, what
1 \ should we name the image where each of

Bears

‘ Answer: It should be "Bear".

these two bears only has one ear?

1 Reasoning Steps:

‘n‘f 4 1. The first subimage is named as

A "Bears" and each of the bears have two
iﬂ

ears.
B The second subimage is named as "B"
and neither of the bears have ears.
‘ Therefore, the image where each of thse
two bears has one ear should be named
1 as "Bear".

Figure 6: More counter-intuitive examples of InfiMM-Eval.

E Model inference prompts

We list prompts we used for different models in Table 6. For Chain-of-thought prompts, we simply add

“Let’s think step by step” at the end of the prompt.

F Additional ablation study

In this section, we listed additional ablation studies on InfiMM-Eval.

F.1 Multi-Images as input results

Taking multiple images as input is a crucial capability for MLLMs to do multi-round dialogues and
interactive step-by-step reasoning. In this section, we explore current MLLMs’ multi-image reasoning
capability. We compare MLLM'’s performance by feeding each image seperately and concatenate multiple
images horizontally into a single one. Results are listed below in Table 7.

We select Fuyu-8B, EMU and GPT-4V for comparison since these models should support multiple
images as input by design. Fuyu-8B is a pretrained only model, which does not follow instruction very
well, thus cannot achieve good results. For EMU, the instruction finetuning data usually do not contain
multi-image samples, this could be the reason that there’s no evidence of performance improvement. For
GPT-4YV, there is a substantial drop after concatenating images together. If the trained model internally
cuts the image into patches for processing, such as Fuyu-8B, concatenating images into a single image
might impact their input patches and lead to worse performance.
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Table 6: Prompts used for evaluations of different models. {Image} represents image binary, { Question} stands for

the questions.

MLLMs ‘ Inference Parameters ‘ Prompts
System Prompt: You are a helpful assistant for helping answer questions.
Most questions are related to reasoning.
temperature: 0.0 User Prompt: Here are a list of image detailed descriptions generated by an Al model:
GPT-4V top_p: 0.0 Image 1: {Image}

max_tokens: 256

Image 2: {Image}

Please answer the following question: {Question}

OpenFlamingo-v2

max_new_tokens: 512
num_beams: 3

{image}User: {question} GPT:<answer>

do_sample: False

MiniGPT-v2 max_new. tokens: 256 <s>[INST]<Img>{Image} </Img>{Question} [/INST]
Fuyu-8B max_new_tokens:16 {Image} {Question}
BLIP-2 temperature: 1.0 {Image} Question:{Question}

max_new_tokens: 20

Answer:

InternLM-XComposer-VL

temperature: 1.0
max_new_tokens: 1024

<IUserl>{Image} {Question}, answer this question <eoh><IBot|>

InstructBLIP

temperature: 1.0
max_new_tokens: 128

{Image} {Question}

LLaMA-Adapter V2

max_gen_len: 256
temperature: 0.1
top_k: 0.75

Below is an instruction that describes a task.
Write a response that appropriately completes the request using a single word or phrase.
Instruction: {Image} {Question}
Response:

Otter

num_beams:3
max_new_tokens:512

{Image}User: {Question} GPT:

mPLUG-OwI2

max_new_tokens: 256

USER: {Image}{Question}
Answer the question using a single word or phrase. ASSISTANT:

IDEFICS-9B-instruct

temperature: 1.0
max_new_tokens:200

User:
{image}
{Question}
Assistant:

temperature: 1.0

System Prompt: You will be presented with an image: [IMG]{Image}[/IMG].
You will be able to see the image after I provide it to you.

Emu max_new_tokens: 128 Please answer my questions based on the given image.
<ISystem PromptI>USER: {Question} ASSISTANT:
System Prompt: A chat between a curious user and an artificial intelligence assistant.
temperature: 1.0 The assistant gives helpful, detailed, and polite answers to the user’s questions
LLaVA-1.5 top_p: 1.0 ) & i, »and p questions.

max_tokens: 256

{Image}...{Image}
{Question}

CogVLM-Chat

temperature: 0.8
max_new_tokens: 2048

{Image} {Question}

Qwen-VL-Chat

do_sample: False
num_beams: 1
max_new_tokens: 100

<im_start>You are a helpful assistant. <im_end>
Picture 1 {Image}
Picture 2 {Image}

{Que:svtion }
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Table 7: Ablation study results on InfiMM-Eval’s subset with multiple images as input. There are 47 samples with
multiple images, which contain 27 moderate complexity questions and 20 high complexity questions.

MLLMs Concatenate Score (Multi-Img)

Yes 8.21
Fuyu-8B No 7.16

Yes 28.21
EMU No 27.76

Yes 57.61
GPT-4V No 71.19
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