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Abstract

Multi-modal Large Language Models are in-001
creasingly prominent due to their superior002
reasoning abilities to excel at complex tasks.003
Prevailing benchmarks related to multi-modal004
reasoning attempt to assess MLLMs through005
yes/no or multi-choice questions, which by de-006
sign can introduce position bias and overlook007
the intermediate reasoning process, thereby008
rendering the results less convincing. To this009
end, we systematically categorize the reasoning010
tasks into deductive, abductive and analogical011
reasoning, and introduce InfiMM-Eval, a man-012
ually curate benchmark featuring 279 diverse013
and nuanced reasoning questions across these014
categories. The questions are designed to be015
fully open-ended to better represent the char-016
acteristics of generative models. To mitigate017
the challenge of answering complex reason-018
ing questions, we encourage models to gener-019
ate intermediate reasoning steps. These steps020
are incorporated into the evaluation protocol021
to reduce bias towards plausible guesses or re-022
sponses that lack definitive answers, while fa-023
cilitating the assessment of more nuanced rea-024
soning skills. This evaluation scheme closely025
resembles the method by which humans eval-026
uate exams in real-world settings, enabling a027
more reliable assessment. We evaluate a large028
selection of trending MLLMs to reveal the dis-029
crepancies in reasoning abilities between open-030
source and proprietary MLLMs. Additionally,031
we conduct a comprehensive analysis of three032
reasoning related factors, highlighting poten-033
tial directions for further research in elevating034
MLLMs in reasoning tasks.035

1 Introduction036

Exhibiting exceptional proficiency in a wide range037

of NLP tasks (Devlin et al., 2018; Radford et al.,038

2019), large language models (LLMs) have led039

to the development of multi-modal large language040

models (MLLMs), which incorporate multi-modal041

perception, primarily visual information, into lan-042

Question: Are 
all of the cats 
the same color?

Answer: No

Question: Based on the first image, 
if the second image is called 
Eastface, what should we call the 
third image?

Answer: It should be Westface.

Question: Why is the 
person wearing a helmet?

Answer: The woman 
wants to shield her eyes 
from the stinging and 
tears caused by onions.

Question: If this crack 
continues to grow, 
which season is 
probably approaching ?

Answer: spring is 
approaching 

N/A

1. The scene shows a 
crack in the snow 
exposing the soil.

2. An expanding gap 
hints at rising 
temperatures and 
melting snow.

3. This often indicates 
the approach of spring.

1. The woman is peeling 
onions wearing a large 
helmet.

2. Cutting onions 
releases a compound 
that, when meeting eye 
moisture, forms sulfuric 
acid, causing irritation.

3. The helmet is her way 
of preventing this eye 
discomfort.

1. The current image shows that 
the person is deeper in the hole on 
a beach when the name is 
changed from Johnny Deep to 
Johnny Deeper. 
2. To follow this pattern, we should 
also change the Eastface to obtain 
the name for the third image. The 
person in the third image is facing 
the opposite direction as to the 
one in the second image.
3. Therefore, we should name it 
Westface.

Existing Benchmarks InfiMM-Eval Benchmark

Reasoning Steps

Abductive ReasoningDeductive Reasoning Analogical Reasoning
(1)

(2)

(3)

Reasoning Steps Reasoning Steps Reasoning Steps

Figure 1: Comparison between existing MLLM bench-
marks and InfiMM-Eval. Left: Existing benchmarks
involve basic reasoning tasks with simple responses.
Right: InfiMM-Eval consists of deductive, abductive,
and analogical reasoning, each of which includes one
or multiple images, one question and one answer with
nuanced intermediate reasoning steps.

guage models for more versatile content under- 043

standing and generation across domains (Alayrac 044

et al., 2022; Rombach et al., 2022; Driess et al., 045

2023; Ghosal et al., 2023). Leading proprietary 046

models such as Palm-e (Driess et al., 2023), 047

Flamingo (Alayrac et al., 2022), RT-2 (Brohan 048

et al., 2023), and GPT-4V(ision) (OpenAI, 2023b) 049

have exemplified the extensive applicability and 050

promising potential of MLLMs. The open-source 051

community has also contributed significantly to the 052

field through the development of innovative archi- 053

tectures and the creation of curated instruction fine- 054

tunning datasets, including MiniGPT-4 (Zhu et al., 055

2023a), LLaVA (Liu et al., 2023b), IDEFICS (Lau- 056

rençon et al., 2023), etc. Each model provides 057

distinct insights, exploring a variety of data recipes 058

and approaches on multi-modal alignment. 059

Reasoning is a key factor for human-level intel- 060

ligence especially in complex tasks (McCarthy, 061

2007; Darwiche, 2018), yet it is challenging to 062

1



evaluate and often escalates unpredictably, requir-063

ing specialized benchmarks such as ARB (Sawada064

et al., 2023), ARC (Clark et al., 2018), and065

GSM8k (Cobbe et al., 2021). The desire for spe-066

cialized reasoning benchmarks for MLLMs is even067

more critical considering the complexity of multi-068

modal perception (Zellers et al., 2019a).069

Recent advancements in the MLLMs field have070

led to the establishment of comprehensive evalu-071

ation benchmarks such as MME (Fu et al., 2023),072

MMBench (Liu et al., 2023c), SeedBench (Li et al.,073

2023b), and MathVista (Lu et al., 2023). While074

reasoning ability is an important factor assessed in075

these benchmarks, there lacks a consistent catego-076

rization of reasoning capabilities which is critical077

for generating fine-gained analysis and comprehen-078

sive insights. Existing benchmarks may not fully079

challenge the limits of advanced models like GPT-080

4V due to their reliance on simple responses or081

multiple-choice formats, which do not adequately082

reflect the complexity and format diversity of rea-083

soning tasks. Additionally, such constrained for-084

mats coupled with the lack of intermediate reason-085

ing steps render the results susceptible to plausible086

short answers and cases when no definite answers087

are generated. This highlights the need for a rig-088

orous and holistic benchmark to accurately assess089

the reasoning capabilities of advanced MLLMs.090

To address the issues identified above, we in-091

troduce the InfiMM-Eval benchmark which is092

designed to evaluate open-ended complex multi-093

modal reasoning problems. Drawing on the work094

of (Conner et al., 2014) in the field of logical rea-095

soning, we categorize samples into three reasoning096

paradigms: deductive, abductive, and analogical097

reasoning. The example of each category is shown098

in Figure 1. This categorization encompasses a099

broad range of practical applications in reasoning,100

and thus offers comprehensive insights into the rea-101

soning capabilities of MLLMs. In addition to only102

offering question-answer pairs like other bench-103

marks, InfiMM-Eval incorporates explicit reason-104

ing steps that delineate the derivation of ground105

truth answers. This approach not only minimizes106

the potential for results to be swayed by fortuitous107

guesses but also embraces open-ended responses,108

which are inherently more aligned with the com-109

plexities encountered in real-world situations. This110

enhancement ensures a more precise and practical111

evaluation, especially in scenarios that demand in-112

tricate reasoning. To the best of our knowledge,113

InfiMM-Eval represents the first open-ended multi-114

modal QA benchmark featuring manually curated 115

intermediate reasoning steps as ground truth. 116

The inclusion of reasoning steps facilitates the 117

creation of a more sophisticated evaluation proto- 118

col. Our evaluation protocol is designed following 119

the rubric grading format that is widely used in 120

exams, where the response receives full marks for 121

a directly correct answer, or partial scores based 122

on the relevance and logic of its intermediate rea- 123

soning steps. This method not only underscores 124

the model’s proficiency in generating correct an- 125

swers, but also provides a thorough analysis of its 126

decision-making process for a fully acurate evalu- 127

ation. We employ an LLM-based evaluator to ex- 128

ecute this evaluation protocol for better efficiency. 129

With a collection of 279 high-quality and diverse 130

samples across three reasoning categories, it is our 131

hope that this benchmark will serve a cornerstone 132

in the MLLMs’ reasoning evaluation, similar to 133

HumanEval (Chen et al., 2021) in code generation. 134

Our contributions can be summarized as follows: 135

• We present InfiMM-Eval, a manually curated 136

high-quality benchmark, featuring complex 137

reasoning questions tailored to fully assess 138

the MLLMs. 139

• We propose a robust protocol to evaluate open- 140

ended model responses. By integrating inter- 141

mediate reasoning steps with final answers, 142

the evaluation results are more accurate and 143

more aligned with real-world scenarios. 144

• We evaluate a broad spectrum of leading 145

MLLMs on InfiMM-Eval, and analyze the 146

related factors to the reasoning capabilities 147

through extensive ablation studies. 148

2 Related Work 149

2.1 Multi-modal LLMs 150

The evolution of LLMs has inspired research on 151

integrating visual signal into LLMs. For example, 152

Flamingo (Alayrac et al., 2022) integrates the Per- 153

ceiver Resampler (Jaegle et al., 2021) and gated 154

attention modules onto LLMs, bridging visual en- 155

coders and LLMs, thereby proving highly effec- 156

tive in in-context learning capability for vision- 157

language tasks. Other large-scale models like Palm- 158

e (Driess et al., 2023), RT-2 (Brohan et al., 2023), 159

and GPT-4V(ision) (OpenAI, 2023b) have also un- 160

derscored the extensive applicability and promising 161

potential of MLLMs. 162
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Various smaller-sized MLLMs have emerged re-163

cently. Mini-GPT4 (Zhu et al., 2023b) utilizes the164

instruction-tuned Vicuna (Chiang et al., 2023), and165

fine-tunes a linear layer to align vision and lan-166

guage representations. LLaMA-Adapter (Zhang167

et al., 2023b) introduces a lightweight adapter to168

enable the adaptability of LLaMA to visual in-169

puts. BLIP-2 (Li et al., 2023d) incorporates the170

Q-Former, adding a crucial alignment stage to con-171

nect the frozen LLM with the visual modality,172

notably excelling in Visual Question Answering173

(VQA) tasks. InstructBLIP (Dai et al., 2023) fo-174

cuses on fine-tuning the Q-Former using diverse175

instruction tuning datasets, enhancing its perfor-176

mance in visual scene comprehension and visual di-177

alogues. In contrast, Otter (Li et al., 2023a), refines178

the OpenFlamingo (Awadalla et al., 2023) for im-179

proved instruction-following capabilities and more180

effective usage of in-context samples. Multimodal-181

CoT (Zhang et al., 2023c) integrates chain-of-182

thought (Kojima et al., 2022; Wei et al., 2022b)183

into the multimodal domain, showcasing robust re-184

sults on the ScienceQA benchmark. MMICL (Zhao185

et al., 2023b) tackles the challenges posed by multi-186

modal inputs with multiple images, targeting in-187

tricate multi-modal prompts and detailed text-to-188

image references. LLaVA (Liu et al., 2023b) em-189

ploys a simple linear connector and fine-tunes190

the entire LLM to boost performance. The up-191

graded version, LLaVA-1.5 (Liu et al., 2023a), in-192

corporates large-scale instruction tuning and high-193

resolution images, resulting in superior perfor-194

mance across multiple benchmarks.195

2.2 MLLM Evaluation Benchmarks196

Different vision-language benchmarks have been197

introduced to evaluate the specific reason-198

ing capabilities of MLLMs. For instance,199

Winoground (Thrush et al., 2022) assesses200

the visual-linguistic compositional reasoning,201

RAVEN (Zhang et al., 2019) focuses on relational202

and analogical reasoning, OK-VQA (Marino et al.,203

2019) examines reasoning with external knowl-204

edge, and VCR (Zellers et al., 2019b) evaluates205

visual commonsense reasoning related to people206

in video frames. Other benchmarks, such as207

TextVQA (Singh et al., 2019), FigureQA (Kahou208

et al., 2018), and ScienceQA (Saikh et al., 2022),209

have also made significant contributions by ad-210

dressing reasoning within diverse contexts. Math-211

Vista (Lu et al., 2023) provides a consolidated as-212

sessment of mathematical reasoning capabilities.213

In addition to the above-mentioned reasoning- 214

specific benchmarks, comprehensive benchmarks 215

have been proposed, which also include assess- 216

ments of various reasoning capabilities. For in- 217

stance, MME (Fu et al., 2023) evaluates reasoning 218

capabilities of commonsense reasoning, numeric 219

calculation, text translation, and code understand- 220

ing. MMBench (Liu et al., 2023c) assesses logi- 221

cal, attribute, and relation reasoning, while SEED- 222

Bench (Li et al., 2023c) contains visual reason- 223

ing, action prediction, and procedure understand- 224

ing. All above benchmarks use multiple-choice 225

question format to simplify the evaluation process. 226

As studied in (Zong et al., 2023), multiple-choice 227

questions may include bias and additional hints, 228

popular MLLMs are vulnerable to adversarial per- 229

mutation in answer sets for multiple-choice prompt- 230

ing. On the other hand, scoring by final answer 231

correctness only underestimates the importance of 232

reasoning process, which is not enough to under- 233

stand the models’ reasoning capability. 234

Thus, open-ended benchmarks are needed to 235

better align with the generative nature of re- 236

cent MLLMs. However, traditional metrics, like 237

CIDEr (Vedantam et al., 2015), SPICE (Ander- 238

son et al., 2016), etc. are not suitable for open- 239

ended QA evaluation. Human evaluations are pro- 240

hibitively costly. Luckily, (Chiang and Lee, 2023) 241

suggest LLMs can be an alternative to human eval- 242

uators. Recent open-ended QA benchmarks for 243

MLLMs, such as TouchStone (Bai et al., 2023c), 244

VisIT-Bench (Bitton et al., 2023), and MM-Vet (Yu 245

et al., 2023b), also employ LLM-based evaluators. 246

This further demonstrates the reliability of LLM- 247

based evaluators in such context. 248

2.3 Reasoning in MLLMs 249

Human reasoning, essential for intelligence, in- 250

volves analyzing information to derive logical in- 251

sights (Yu et al., 2023a; Huang and Chang, 2022; 252

Walton, 1990). LLMs have demonstrated substan- 253

tial reasoning abilities in NLP tasks, as evidenced 254

in recent studies (Kojima et al., 2022; Huang and 255

Chang, 2022; Wei et al., 2022a; Yao et al., 2022; 256

Webb et al., 2023). Similar capabilities are ob- 257

served in (Driess et al., 2023; OpenAI, 2023b). 258

However, MLLMs research field lacks a system- 259

atic and unified framework for categorizing rea- 260

soning capability. Current benchmarks fragment 261

reasoning into numerous task-specific categories, 262

e.g. commonsense reasoning, math reasoning, code 263

understanding, procedure understanding. Such cat- 264
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egorization may potentially obscure a holistic un-265

derstanding of the reasoning capacities of MLLMs.266

Our study advocates for a directional classification267

of reasoning in MLLMs, anchored in established268

logical principles (Bronkhorst et al., 2020; Dow-269

den, 2018), focusing on deductive, abductive, and270

analogical reasoning, essential in human cognition.271

Detailed categorization and corresponding exam-272

ples can be found in Appendix A.273

In this work, we present InfiMM-Eval, an open-274

ended VQA benchmark specifically created to eval-275

uate the reasoning abilities of MLLMs. This bench-276

mark features systematic design and categorization277

of reasoning questions, aimed at comprehensively278

assessing MLLMs’ reasoning capabilities.279

3 InfiMM-Eval Benchmark280

3.1 Data Collection281

Compared with the extensive, automatically col-282

lected MLLM reasoning datasets as discussed in283

prior studies (Li et al., 2023a; Liu et al., 2023b;284

Zhao et al., 2023a), our InfiMM-Eval initiative is285

dedicated to the manual creation of a high-quality286

evaluation benchmark. This benchmark is partic-287

ularly designed to evaluate the multi-step reason-288

ing abilities increasingly evident in contemporary289

MLLMs. It specifically emphasizes deductive, ab-290

ductive, and analogical reasoning, which are fun-291

damental to routine human cognitive processes.292

In alignment with this principle, the process of293

collecting data for our evaluation benchmark can294

be broadly categorized into the following steps:295

Question and Answer Collection. Our method-296

ology involved engaging eight annotators with ad-297

vanced education level, each tasked with sourc-298

ing a wide range of images from varied scenar-299

ios. These images were sourced from a variety of300

platforms, including online platforms and existing301

public dataset, notably adopting 25 samples from302

MM-Vet (Yu et al., 2023b). The primary objective303

for these annotators was to create a comprehen-304

sive set of questions and answers. It was impera-305

tive that these questions were crafted to rigorously306

test the multi-step logical reasoning capabilities307

of MLLMs. To ensure the complexity of the task,308

the questions were designed to be intricate enough309

to preclude the possibility of immediate answers310

based purely on visual observation.311

To ensure the robustness of this study, specific312

guidelines were established for the formulation of313

questions. Although the answers format were per-314

mitted a degree of openness, the questions them- 315

selves were required to have a single logic path. 316

This means that despite the potential openness in 317

responses, the line of reasoning to arrive at these 318

answers should be fairly consistent among different 319

individuals. For example, overly subjective ques- 320

tions like “What is your feeling when you see this 321

image?” were excluded. These types of questions 322

do not align with the standard of robustly eliciting 323

a logical reasoning pathway. 324

Additionally, we instructed annotators to cate- 325

gorize each question from the following aspects. 326

Each question is reviewed by a minimum of 3 an- 327

notators. The final categorization is determined 328

through a majority vote to ensure the reliability. 329

• Reasoning category: In alignment with prin- 330

ciples of logical reasoning, questions are to be 331

classified into one of three categories: deduc- 332

tive, abductive, or analogical reasoning. 333

• Question complexity: The complexity of a 334

question is assessed based on multiple crite- 335

ria, including the number of logical steps re- 336

quired for resolution, the extent of knowledge 337

needed, and the presence of any elements that 338

might introduce confusion or misinterpreta- 339

tion. Our guidelines delineate questions into 340

“High” and “Moderate” complexity levels, pri- 341

marily based on the number of intermediate 342

reasoning steps involved. Nevertheless, an- 343

notators are afforded discretion to apply their 344

judgment in borderline cases. 345

• Question intuitivity: This dimension evalu- 346

ates how intuitively one can grasp the essence 347

of the question and the possible answers. An- 348

notators have the liberty to classify questions 349

as either “Intuitive” or “Counter-Intuitive” de- 350

pending on their immediate perception of the 351

question’s clarity and the straightforwardness 352

of its potential answers. 353

Quality Control. To guarantee the exceptional 354

quality of our benchmark, we implemented a thor- 355

ough cross-validation protocol. Each sample un- 356

derwent validation by two independent annotators. 357

Their evaluation is based on a comprehensive set 358

of standards, which includes: 359

• Appropriateness: Each image and question 360

is examined for inappropriate or offensive con- 361

tent, ensuring fairness, diversity, and suitabil- 362

ity for a diverse audience. 363
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Figure 2: InfiMM-Eval benchmark statistics: (a) indi-
cates distribution of reasoning categories and their re-
spective reasoning complexity; (b) represents the statis-
tic of counter-intuitive versus intuitive reasoning ques-
tions; and (c) shows the breakdown of the number of
reasoning steps per question.

• Consistency analysis: The relationship be-364

tween the question, answer, and reasoning365

steps are carefully evaluated to ensure they366

are logically aligned and coherent.367

• Image relevance: This criterion assesses368

whether the image is essential for answering369

the question, thereby filtering samples where370

questions could be answered without the vi-371

sual aid.372

• Complexity requirement: Questions deemed373

overly simplistic, answerable by a cursory374

glance at the image without substantive logi-375

cal engagement, were excluded.376

• Subjectivity and discrepancy: If a question377

is found to be too subjective, or if the val-378

idators’ answers significantly differ from the379

original answer, the question is either revised380

or removed.381

• Question format diversity: We ensure a382

diverse representation of question formats,383

avoiding the overuse of any particular format384

of questions.385

After rigorously applying these quality control mea-386

sures in several review cycles, our benchmark was387

refined to include 279 high-quality samples. All388

samples satisfy our stringent criteria for accuracy,389

relevance, and cognitive challenge, ensuring a ro-390

bust and reliable dataset.391
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Figure 3: The distribution of visual content categories in
InfiMM-Eval. A single image can encompass multiple
visual content categories.

3.2 Dataset Statistics 392

In summary, our InfiMM-Eval benchmark consists 393

of 279 manually curated reasoning questions, asso- 394

ciated with a total of 342 images. Out of these, 25 395

images are adopted from MM-Vet, enriching the 396

diversity and scope of the dataset. 397

We present a comprehensive statistical analysis 398

of the dataset. Figure 2 (a) illustrates the distribu- 399

tion across various reasoning types: 49 questions 400

pertain to abductive reasoning, 181 require deduc- 401

tive reasoning, and 49 involve analogical reasoning. 402

Furthermore, the dataset is divided into two folds 403

based on reasoning complexity, with 108 classi- 404

fied as “High” reasoning complexity and 171 as 405

“Moderate” reasoning complexity. For both abduc- 406

tive and deductive reasoning categories, the ratio of 407

“High” to “Moderate” questions reasoning complex- 408

ity is approximately 1 : 2, whereas for analogical 409

reasoning, this ratio is closer to 1 : 1. This distribu- 410

tion underscores the high quality of our benchmark. 411

Notably, the dataset includes 23 questions that en- 412

tail counter-intuitive reasoning (See Appendix for 413

more details), further exemplifying the diversity of 414

our benchmark, as depicted in Figure 2 (b). Addi- 415

tionally, as Figure 2 (c) indicates, about 76% (212 416

out of 279) of the reasoning questions require three 417

or more steps to solve. 418

Figure 3 demonstrates the diversity of visual 419

content in our image collection, categorized by 420

GPT-4V into a predefined set of concepts. 421

3.3 Dataset Comparison 422

We provide a detailed comparison with other 423

MLLMs reasoning benchmarks in Appendix C fo- 424

cusing on the aspects including data domain, data 425

collection, answer format and whether intermedi- 426

ate reasoning steps are provided and considered. In 427

summary, unlike other benchmarks, InfiMM-Eval 428

features compiling questions from open-domain 429
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real-world scenarios that involve more complex430

and unique logical reasoning processes. Addition-431

ally, our benchmark considers the accuracy of inter-432

mediate reasoning steps in the computation of the433

final metric. InfiMM-Eval is designed to comple-434

ment existing benchmarks by offering an additional435

measure for evaluating the reasoning capabilities436

of MLLMs.437

4 Experiments438

In this section, we delineate the experimental set-439

tings to assess the reasoning capabilities in contem-440

porary MLLMs. Specifically, we furnish a com-441

prehensive description of evaluation baselines and442

protocols in section 4.1. Subsequent to this, we443

conduct thorough evaluations and ablation stud-444

ies on a range of MLLMs using our InfiMM-Eval445

dataset, as detailed in section 4.2. The prompts446

we used for evaluating each model can be found in447

Appendix E.448

4.1 Evaluation Protocol449

Considering the open-ended nature of question-450

answering in the InfiMM-Eval benchmark and the451

generative capabilities of modern MLLMs, it be-452

comes clear that solely assessing answer correct-453

ness is insufficient, e.g. in Figure 4. In line with454

recent studies (Bai et al., 2023c; Bitton et al., 2023;455

Yu et al., 2023b), we also employ LLMs as eval-456

uators. However, our approach is distinct in its457

integration of both questions and answers, as well458

as the ground-truth and model-predicted reason-459

ing steps into the LLM prompt. The inclusion of460

structured reasoning steps into the LLM context461

facilitates the accommodation of diverse model462

outputs and establishes a comprehensive and jus-463

tified scoring system. As elaborated in section 1,464

our grading protocol awards full marks for direct465

correctness, with partial scores assigned based on466

the relevance and logic of reasoning steps. This467

method evaluates not only the model’s accuracy in468

answer generation but also offers a an in depth anal-469

ysis of its decision-making process, illuminating its470

reasoning pathways. For any given question q, its471

score sq falls within the range of [0, 1]. The over-472

all score S over the entire dataset, which includes473

considerations of reasoning complexity detailed in474

section 3.2, is calculated as475

S =

∑
x∈M sx + 2 ·

∑
y∈H sy

|M |+ 2 · |H|
× 100%, (1)476

Question: I live in Alaska and want to find a
place far awar from me to spend my Christmas
Holiday. Which place in above scenes would I
probably choose? 

GroundTruth Answer: The scene in first image 

Reasoning Steps:
1. The first image displays a tropical beach with palm trees and a surfboard, indicating a warm and humid
environment.
2. The second image depicts a snowy landscape with igloos, suggesting a cold environment; the presence
of the aurora indicates a polar or near-polar location.
3. If I live in Alaska, it is cold during Christmas. Snow and the aurora can be easily seen in Alaska.
4. Great sun and beach during the winter season must be far from Alaska.
5. If I prefer to spend the Christmas holidays in a faraway place, the beach in first image would be more
suitable.

AI Response: Beach

Grade without reasoning: 0.0 Grade with reasoning: 1.0

Figure 4: In this example, model can successfully an-
swer the question, however, due to the nature of open-
ended response, the model’s response cannot be judged
correctly solely based on question and answer.

where M and H denote the sets of questions catego- 477

rized as having “Moderate” and “High” reasoning 478

complexity, sx and sy denote score of each ques- 479

tion belong to “Moderate” or “High” categories 480

respectively, a coefficient of 2 is applied to “High” 481

complexity category to balance the number of sam- 482

ples of each complexity category. 483

4.2 Benchmarking MLLMs on InfiMM-Eval 484

We evaluate a diverse range of MLLMs on InfiMM- 485

Eval for their reasoning abilities, including GPT- 486

4V (OpenAI, 2023a), LLaVA-1.5 (Liu et al., 487

2023b), Otter (Li et al., 2023a), MiniGPT-v2 (Zhu 488

et al., 2023a), InstructBlip (Dai et al., 2023), Blip- 489

2 (Li et al., 2023d), LLaMA-Adapter-V2 (Zhang 490

et al., 2023b), InternLM-XComposer (Zhang et al., 491

2023a), QWen-VL-Chat (Bai et al., 2023a), and 492

Fuyu (Bavishi et al., 2023). 493

The principal findings are encapsulated in Ta- 494

ble 1, derived from employing the most effective 495

prompt strategy for each model. Among all evalu- 496

ated MLLMs, GPT-4V is particularly noteworthy, 497

exhibiting unparalleled proficiency across all rea- 498

soning domains and complexities, with an overall 499

reasoning score of 77.44. In the realm of open- 500

source MLLMs, InfiMM-v1 is distinguished as the 501

front-runner with the highest 41.32 overall score, 502

marginally surpassing SPHINX-v2. Additionally, 503

we observe that models fine-tuned with explicit in- 504

structions, display superior performance compared 505

to their solely pretrained counterparts, exemplified 506

by models such as Otter and OpenFlamingo-v2. 507

Table 1 further provides a granular breakdown 508

of scores, reflecting the varied reasoning capabili- 509

ties of the MLLMs. GPT-4V continues to exhibit 510
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Table 1: Results for various MLLMs. Open-source models best performances are indicated with underlines.

Reasoning Category Reasoning Complexity
MLLMs LLM IFT

Deductive Abductive Analogical Moderate High
Overall

OpenFlamingo-v2 (Awadalla et al., 2023) MPT-7B (Team, 2023b) No 8.88 5.3 1.11 9.47 4.72 6.82
MiniGPT-v2 (Zhu et al., 2023a) LLaMA2-7B (Touvron et al., 2023) Yes 11.02 13.28 5.69 14.45 7.27 10.43
Fuyu-8B (Bavishi et al., 2023) Persimmon-8B (Elsen et al., 2023) No 16.42 21.49 7.78 23.06 9.91 15.7
BLIP-2 (Li et al., 2023d) OPT-2.7B (Zhang et al., 2022) No 22.76 18.96 7.5 24.05 14.18 19.31
InternLM-XComposer-VL (Zhang et al., 2023a) InternLM-7B (Team, 2023a) Yes 26.77 35.97 18.61 39.13 17.18 26.84
InstructBLIP (Chung et al., 2022) FLAN-T5-XXL (Chung et al., 2022) Yes 27.56 37.76 20.56 40.64 18.09 28.02
LLaMA-Adapter V2 (Gao et al., 2023) LLaMA-7B (Touvron et al., 2023) No 28.7 46.12 22.08 41.33 21.91 30.46
Otter (Li et al., 2023a) LLaMA-7B Yes 22.49 33.64 13.33 35.79 12.31 22.69
mPLUG-Owl2 (Ye et al., 2023) LLaMA-7B Yes 23.43 20.6 7.64 28.79 13.18 20.05
IDEFICS-9B-instruct (Laurençon et al., 2023) LLaMA-7B Yes 22.99 34.63 20.56 34.45 16.73 24.53
Emu (Sun et al., 2023) LLaMA-13B Yes 28.9 36.57 18.19 36.18 22.0 28.24
LLaVA-1.5 (Liu et al., 2023b) Vicuna-13B (Chiang et al., 2023) Yes 30.94 47.91 24.31 47.4 21.0 32.62
CogVLM-Chat (Wang et al., 2023) Vicuna-7B Yes 36.75 47.88 28.75 55.67 22.5 37.16
Qwen-VL-Chat (Bai et al., 2023a) Qwen-14B (Bai et al., 2023b) Yes 37.55 44.39 30.42 46.61 30.09 37.39
SPHINX-v2 (Lin et al., 2023) LLaMA2-13B Yes 42.17 49.85 20.69 54.85 27.31 39.48
InfiMM-v1 (Team, 2024) LLaMA2-13B Yes 41.69 49.70 32.36 61.81 25.09 41.32

GPT-4V (OpenAI, 2023a) GPT-4 Yes 74.86 77.88 69.86 93.98 58.98 74.44

its dominance across all reasoning dimensions. In-511

terestingly, most open-source models lag behind512

GPT-4V, especially in analogical reasoning, which513

requires not only the detailed comprehension of im-514

age content, but also the ability to transfer knowl-515

edge from known instances to analogous situations.516

To dive deeper, we stratify questions into two lev-517

els of complexity: “Moderate” and “High”. See Ap-518

pendix B for visualization of examples with varied519

reasoning complexities. It is noteworthy that GPT-520

4V consistently outperforms in addressing both521

moderate and high-complexity questions. Among522

the open-source models, InfiMM-v1 notably ex-523

cels in managing moderate complexity questions,524

whereas Qwen-VL-Chat is particularly adept at525

handling high-complexity questions.526

4.3 Factors Related to Reasoning Ability527

Because InfiMM-Eval benchmark provides an ac-528

curate evaluation on MLLMs’ reasoning ability,529

we further conduct a more fine-grained analysis530

on examining the impact of different MLLM tech-531

niques and factors over reasoning ability, including532

Chain-of-Thought (CoT) (Kojima et al., 2022; Wei533

et al., 2022b), in-context learning (Li et al., 2023a;534

Alayrac et al., 2022; Dong et al., 2022), and differ-535

ent model scales.536

4.3.1 Results with Chain-of-Thought Prompt537

In this section, we present a quantitative analy-538

sis examining the impact of CoT prompting on539

MLLMs. The results are detailed in Table 2.540

We adopt a CoT prompting technique similar to541

that described in (Kojima et al., 2022) by appending542

“Let’s think step by step” to the end of each question543

to enhance the reasoning capabilities of the model.544

Our results indicate varied performance changes545

Table 2: Comparative evaluation results of MLLMs with
and without Chain-of-Thought prompts.

MLLMs CoT Deductive Abductive Analogical Overall

BLIP-2
w/o 22.13 18.66 5.69 18.52
w 22.76 18.96 7.5 19.31

InstructBLIP
w/o 25.2 34.48 16.94 25.27
w 27.56 37.76 20.56 28.02

LLaVA-1.5
w/o 30.94 47.91 24.31 32.62
w 31.18 48.51 22.78 32.6

Qwen-VL-Chat
w/o 38.55 45.91 22.5 36.82
w 37.55 44.39 30.42 37.39

GPT-4V
w/o 69.88 77.88 67.08 70.72
w 74.86 77.88 69.86 74.44

Table 3: Results with in-context learning example.

MLLMs ICL Deductive Abductive Analogical Overall

Otter
w/o 22.49 33.64 13.33 22.69
w 23.25 32.58 14.31 23.18

Qwen-VL-Chat 7B
w/o 33.73 46.82 30.28 35.32
w 38.84 44.39 27.22 37.62

GPT-4V
w/o 74.86 77.88 69.86 74.44
w 74.82 80.45 64.17 73.8

across different models. Open-source models gen- 546

erally exhibit a minimal differences in performance, 547

whereas GPT-4V exhibits a notable improvement 548

of 3.7 with CoT prompts. We hypothesize that 549

this phenomenon is attributed to differences in 550

language model size and data quality during the 551

instruction-finetuning (IFT) stage of model training. 552

The majority of open-source MLLMs are limited 553

by smaller language models, typically with less 554

than 14 billion parameters, inherently constraining 555

their reasoning abilities. Additionally, the scale 556

and quality of the IFT datasets, commonly used in 557

open-source MLLMs, influence the outcome sig- 558

nificantly. A considerable portion of the IFT data, 559

primarily sourced from VQA (Goyal et al., 2017), 560

lacks in reasoning and commonsense knowledge. 561
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This raises a question about the feasibility of repli-562

cating of CoT’s success in multimodal contexts.563

4.3.2 Results with In-Context Learning564

To examine the impact of in-context learning on the565

reasoning abilities of MLLMs, we selected three566

models ranging from the high-performing GPT-567

4V, alongside leading open-source models such as568

QWen-VL-Chat and Otter. It is noteworthy that569

only Otter incorporates in-context learning during570

its training phase. We randomly select an example571

from our dataset and concatenate it to the prompts572

during inference for each query, so that the selected573

example can help refine the reasoning process and574

ideally enhance the performance of these models.575

As shown in Table 3, it is notable that the in-576

tegration of in-context learning technique does577

not enhance, and may slightly impair, the perfor-578

mance of the GPT-4V. In contrast, marginal im-579

provements in performance are observed in the Ot-580

ter and Qwen-VL-Chat. These results underscore581

the complex and diverse nature of the benchmark582

employed in this study. Specifically, for the high-583

performing GPT-4V, the randomly selected ICL584

examples might significantly diverge from the test585

samples. Conversely, for models with smaller lan-586

guage encoders, such as Otter and Qwen-VL-Chat,587

which initially demonstrate inferior performance588

compared to GPT-4V, the inclusion of ICL exam-589

ples potentially aids in the reasoning process, albeit590

the impact is relatively limited.591

4.3.3 Results with LLMs of Varied Scales592

Table 4 presents the evaluation results of MLLMs593

employing LLMs of different scales. The size of594

the LLMs is a critical determinant in augmenting595

the reasoning capabilities of MLLMs. For instance,596

considering Qwen-VL(Bai et al., 2023b) as a case597

study, there is a noticeable increase in the overall598

reasoning score concurrent with the expansion of599

the LLM’s size. Specifically, when the model’s600

size is increased from 7B to 14B parameters, its601

reasoning score increases from 35.32 to 37.39.602

Furthermore, we also report the reasoning ca-603

pability of standalone language models, such as604

Vicuna (Chiang et al., 2023) and GPT4 (OpenAI,605

2023b), by replacing images with their correspond-606

ing textual descriptions. Prompting GPT-4 directly607

with only the question resulted in a reasoning score608

close to 0, as shown in the first row of Table 4).609

This suggests that the inclusion of visual elements610

is essential for accurate and effective responses. As611

Table 4: Results of MLLMs with varied LLM sizes.

Models LLM Caption Deductive Abductive Analogical Overall

GPT-4 GPT-4 - 5.82 5.0 2.5 5.06
Vicuna-7B LLaMA-7B GPT-4V cap. 38.01 48.98 30.0 38.53
Vicuna-13B LLaMA-13B GPT-4V cap. 34.42 58.78 34.69 38.75
SOLAR-0-70b LLaMA-70B GPT-4V cap. 48.56 64.49 33.47 48.71
GPT-4 GPT-4 GPT-4V cap. 54.59 66.73 45.1 55.05
Vicuna-7B(CoT) LLaMA-7B GPT-4V cap. 34.42 58.78 34.69 38.75
Vicuna-13B(CoT) LLaMA-13B GPT-4V cap. 39.39 46.33 34.08 39.68
SOLAR-0-70B(CoT) LLaMA-70B GPT-4V cap. 54.7 67.14 47.35 55.59
GPT-4(CoT) GPT-4 LLaVA1.5 cap. 23.29 44.7 29.17 29.74
GPT-4(CoT) GPT-4 GPT-4V cap. 55.75 66.53 51.22 56.85

LLaVa-1.5
LLaMA2-7B-Chat - 27.8 33.28 21.11 27.51
LLaMA2-13B-Chat - 30.94 47.91 24.31 32.62

Qwen-VL-Chat
Qwen-7B - 33.73 46.82 30.28 35.32
Qwen-14B - 37.55 44.39 30.42 37.39

we increase the model size of the LLaMA, from 612

7B to 70B, there is a noticeable improvement in 613

reasoning scores when utilizing high-quality image 614

descriptions generated by GPT-4V. The applica- 615

tion of CoT markedly enhances the performance 616

of SOLAR-0-70B, elevating its scores from 48.71 617

to 55.59. In contrast, this technique does not pro- 618

duce proportionate enhancements in smaller mod- 619

els, such as those with 7B and 13B. 620

The GPT-4 model demonstrates optimal reason- 621

ing performance when it employs the CoT tech- 622

nique in conjunction with image descriptions gen- 623

erated by GPT-4V. A significant reduction in perfor- 624

mance is noted when these descriptions are substi- 625

tuted with those produced by LLaVA-1.5. Further 626

analysis reveals that the detailed information in 627

GPT-4V’s descriptions, including OCR and exten- 628

sive commonsense knowledge, is crucial for en- 629

hancing the “multi-modal” reasoning capabilities 630

of standalone LLMs. 631

For more ablation studies, please see Ap- 632

pendix F. 633

5 Conclusion 634

In this paper, we introduce InfiMM-Eval, a compre- 635

hensive benchmark specifically designed to eval- 636

uate complex reasoning capabilities in MLLMs. 637

InfiMM-Eval incorporates questions and answers 638

for each data sample as well as detailed reasoning 639

steps. We employ GPT-4 for the assessment and 640

grading. Our evaluation covers a broad spectrum 641

of MLLMs. We conduct extensive ablation stud- 642

ies to discern performance disparities among these 643

models. The findings reveal that GPT-4V attains 644

an overall score of 74.44. It is noteworthy that the 645

top-performing open-source MLLMs still largely 646

fall behind GPT-4V. InfiMM-Eval is poised to be a 647

foundational benchmark for future enhancements 648

in advancing reasoning capabilities of MLLMs. 649
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6 Limitations650

In this section, we delve into the possible con-651

straints and shortcomings of the current InfiMM-652

Eval benchmark. Furthermore, we identify and653

suggest potential pathways for enhancement.654

• Expanding reasoning categories: The655

InfiMM-Eval benchmark represents an initial656

endeavor to scrutinize the capability of de-657

ductive, abductive, and analogical reasoning658

in contemporary MLLMs. Notwithstanding,659

the spectrum of human reasoning transcends660

these categories, incorporating more complex661

forms such as inductive and causal reason-662

ing. Future iterations of this benchmark aim663

to encompass a broader range of reasoning664

categories, thereby facilitating a more compre-665

hensive assessment of reasoning capabilities.666

• Enhancing evaluation experiences: Due to667

the size of the benchmark and the nature of668

LLM-based evaluation protocol, we have de-669

cide to only release images and correspond-670

ing questions, while maintaining an evalua-671

tion server that allows the public to submit672

model predictions to obtain final scores. This673

approach ensures that intermediate steps and674

answers remain confidential to prevent data675

leakage. We will conduct further research to676

develop a more refined metric and evaluation677

protocol, aims to provide intermediate reason-678

ing step scores to better diagnostic MLLMs679

without compromising data.680

7 Ethical considerations681

This work proposes an MLLMs evaluation bench-682

mark, with potential risks of being misused for683

assessing models trained for harmful usage, e.g.684

malicious web agent. Our benchmark design and685

methodology aim to minimize these risks, ensuring686

their impact remains low.687
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Appendix1085

A Detailed reasoning categorizations1086

Deductive reasoning derives new conclusions from established premises (Johnson-Laird, 1999), ensuring1087

that the steps of inference align with established logical rules. To illustrate, consider the deductive1088

example presented on the right of Figure 1: the premises include observations as “snow is presented in1089

image”, “soil is revealed after snow melting, looks like crack”, and “crack is expanding”. From these1090

premises, the deductive conclusion drawn from premises is “current season is winter, after winter it will1091

be spring”. Deductive reasoning capability is vital for MLLMs in various domains. This encompasses1092

automatic fact-checking of multi-modal information and multi-modal legal reasoning for interpreting1093

legal documents, among other applications.1094

Abductive reasoning determines the most plausible explanation, grounded in common sense for a specific1095

set of observations (Douven, 2011). This form of reasoning is often viewed as the converse of deductive1096

reasoning. in the abductive scenario illustrated in Figure 1, the observation is “a person is cutting an1097

onion while wearing a helmet”. Given the commonsense knowledge that “Onions can release compounds1098

causing eyes irritation”, the most plausible explanation for the question is “eye protection”. The capability1099

of abductive reasoning extends to causal inference in complex systems. It can be applied, but is not limited1100

to, inferring public sentiment from economic data and news, or predicting trends from text, images, and1101

videos.1102

Analogical reasoning facilitates the transfer of knowledge from known instances to analogous situations1103

(Goswami, 1991). In the example illustrated in Figure 1, the first image demonstrates a proposition that1104

the naming convention is a play on words involving depth. The second and third images should adhere1105

to a similar pattern. Specifically, while the individual in the second image is facing east, the person in1106

the third image faces west, suggesting that his name should logically be “Westface”. The capability1107

for analogical reasoning is pivotal in comparative analysis, which constitutes a fundamental aspect of1108

in-context learning.1109

B Examples with varied complexities1110

We presents a curated set of examples from our dataset in Figure 5, varying in reasoning complexity,1111

alongside corresponding responses from InfiMM-v1 and GPT-4V.1112

C MLLM reasoning evaluation benchmarks comparison1113

We compare our proposed benchmark with prevailing MLLM reasoning evaluation benchmark in Table 5.1114

Table 5: MLLM reasoning evaluation benchmarks comparison.

Dataset Domains Source # Samples Answer Format Reasoning Steps

ScienceQA (Lu et al., 2022) Natural science, social science, and language
science.

Collected from online learning
platform.

10332 questions Multi-Choice 90% with explanations, not
used in evaluation.

MathVista (Lu et al., 2023) Mathematical reasoning with visual contexts. Aggregated from public datasets
and manually collected

6141 questions 55% Multi-Choice, and
44% free-form

Partial contain explanation,
not used in evaluation.

MM-Vet (Yu et al., 2023b) 6 VL abilities, including reasoning Manual collected 218 questions Free-form None

MMMU (Yue et al., 2023) College-level subject knowledge. Manually collected 11.5K questions 94% Multi-Choice, 6%
Free-form

17% with Explanation, not
used in evaluation.

InfiMM-Eval (Ours) Open-ended common sense complex multi-
modal reasoning.

Manually collected 279 questions Free-form text 100% with explanation, used
in evaluation.

D Counter-intuitive examples1115

We provide more counter-intuitive examples of InfiMM-Eval in Figure 6.1116

14



ID: 19
Reasoning Complexity: Moderate

Question: Which city might this facility be located in?

Answer: Pittsburgh

Reasoning Steps:
1. Notice the prominent letter 'P' on the field, which could
represent the initial of the city's name or the name of the
team.
2. The yellow bridge and skyline in the background are
reminiscent of Pittsburgh, a city known for these features and
starting with 'P.'
3. The scene depicts a baseball game; given that Pittsburgh's
MLB team is the Pirates, the 'P' likely stands for Pirates.
4. The color yellow is a hallmark of the Pittsburgh Pirates,
further reinforcing the connection.

GPT-4V: This facility is likely located in Pittsburgh. The reasoning behind this is the
presence of the "P" logo on the field, which is associated with the Pittsburgh Pirates, a Major
League Baseball team. Additionally, the Roberto Clemente Bridge, a distinctive yellow bridge in
Pittsburgh, can be seen in the background. The skyline also matches that of downtown
Pittsburgh.
Grade: 1.0

InfiMM-v1: The facility in image is likely located in Pittsburgh, as the baseball stadium is
full of fans watching a baseball game, and the skyline of Pittsburgh can be seen in the
background. The presence of city skyline suggests that the stadium is suited within or close to
the city, making it a popular location for sports events and entertainment. 
Grade: 1.0

ID: 312

Reasoning Complexity: High
Question: Look at the first 3 images. Which app should the 4th image be?
Answer: Whatsapp

Reasoning Steps:
1. The first image is tape player with Spotify logo on it. The color and function of the player are aligned with
Spotify.
2. The second image is 3D glasses with Netflix logo on it. The function and color of it are aligned with Netflix.
3. The third image is a beeper with a Facebook logo on it. The function and color of it are aligned with Facebook.
4. The 4th image is a green cell phone. Its color is green. The function of the phone is contacting friends.
5. According to common sense, Whatsapp's logo is green, and it is usually used for contacting friends

GPT-4V: The 4th image should be associated with WhatsApp. The first three images
show old technology devices branded with modern digital platforms: Spotify, Netflix, and
Facebook. Following this pattern, the 4th image, a walkie-talkie, should be associated with
another modern digital communication platform, and WhatsApp fits this category.
Grade: 1.0

InfiMM-v1: Netflix.

Grade: 0.0

GPT-4V: The tourist will see the parasols in the following order of colors: red, white,
green, blue, and purple. I arrived at this conclusion by observing the arrangement of the
parasols from left to right in the image.green, blue, and purple. I arrived at this conclusion by
observing the arrangement of the parasols from left to right in the image.
Grade: 0.8

InfiMM-v1: Green, red, blue.

Grade: 0.0

GPT-4V: The person is not adding toothpicks to the noodle soup. The image shows a
person using a pepper shaker to add pepper to the soup. The holes in the pepper shaker
create an optical illusion, making it appear as if toothpicks are being poured into the soup. The
"toothpicks" are actually the table surface showing through the holes of the pepper shaker.
Grade: 0.0

InfiMM-v1 : The person adds toothpicks to the noodle soup to keep the ingredients, such
as the noodles and vegetables, submerged in the broth and prevent them from floating to the
surface. This ensures that the dish remains visually appealing.
Grade: 0.0

(a) (b)

(c) (d)

ID: 200

Reasoning Complexity: High

Question: If tourists want to visit this
place, list colors of parasols in order?
Answer: The tourist will see colors
of red, white, light green, green, blue
and purple.
Reasoning Steps:
1. This is a dock.
2. Tourists who want to check this
place will go from left to right.
3. There are 6 parasols with colors
red, white, light green, green, blue and
purple.
4. The order of parasols from left to
right is red, white, light green, green,
blue and purple

ID: 185
Reasoning Complexity: High

Question: Why does the person add toothpicks to the
noodle soup?

Answer: The person probably mistakes the bottle of
toothpicks as a bottle of spice

Reasoning Steps:
1. There are holes on top of the lid of the bottle of
toothpicks.
2. These holes make it look similar to a bottle of
seasoning spice.
3. The person probably mistakes the bottle of
toothpicks as a bottle of spice.

Figure 5: Samples with MLLMs’ responses and scores. Hallucinations and errors are highlighted in red.
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ID: 164
Reasoning Complexity: High

Question: What is the correct answer for
the equation in the 4th row?

Answer: The Value of the question
mark should be 109.

Reasoning Steps:
1. The first row shows that three coconut trees equal 30, which means one palm is 10.
2. The second row shows that one coconut tree plus two pots and two flowerpots equals 38, which
means that one pot is 7.
3. The third row shows that 3 teacups equal 18, which means that a teacup is 6.
4. The fourth row asks the value of one flowerpot plus a coconut tree in a flowerpot multiplied by
one teacup, which gives us 109.

ID: 169
Reasoning Complexity: Moderate

Question: Is there a blanket on top of
the car?

Answer: No, there is snow on the car,
which looks like a towel or blanket.

Reasoning Steps:
The snow appears to have slid down without completely falling off, creating a wave-like
formation. This makes to look like a blanket, but it is not.

Counter-Intuitive: Yes Counter-Intuitive: Yes

ID: 175
Reasoning Complexity: High

Question: What should we draw in the blank?

Reasoning Steps:
1. In the first row, from left to right, the caption changes from "Apple" to "Dis a apple".
2. Therefore , in the second row, from left to right, we should also add "Dis a" in front of
"Pear", which gives us "Dis a Pear".
3. As "Dis a Pear" sounds the same as "disappear", we don't need to draw anything beyond it.

Counter-Intuitive: Yes

Answer: We don't need to draw anything
because the "Pear" disappears.

ID: 225

Reasoning Complexity: High

Question: The doctor asked me to control
my weight. Is it OK for me to eat these as my
lunch?

Answer: Yes.

Reasoning Steps:
1. In the image, there is a bag of MacDonald chips and a burger. If you check it carefully, the
chips is made of apple and burger is made of watermelon, apple, banana and kiwi
2. The doctor asked me to control weight, so it would be better for me to get away from junk
food
3. Since the above food is made of fruit, it's ok for me to eat

Counter-Intuitive: Yes

ID: 230

Reasoning Complexity: High

Question: Can you recall a type of food
from this?

Answer: Pumpkin Pie.

Reasoning Steps:
1. In this image, there is a pumpkin. There
is a series of numbers curved on it
"3.1415926535897"
2. The series of numbers is Pi
3. So the food should be pumpkin pie

Counter-Intuitive: Yes ID: 325
Reasoning Complexity: High

Question: According to the image, what
should we name the image where each of
these two bears only has one ear?

Reasoning Steps:
1. The first subimage is named as
"Bears" and each of the bears have two
ears.
The second subimage is named as "B"
and neither of the bears have ears.
Therefore, the image where each of thse
two bears has one ear should be named
as "Bear".

Counter-Intuitive: Yes

Answer: It should be "Bear".

Figure 6: More counter-intuitive examples of InfiMM-Eval.

E Model inference prompts1117

We list prompts we used for different models in Table 6. For Chain-of-thought prompts, we simply add1118

“Let’s think step by step” at the end of the prompt.1119

F Additional ablation study1120

In this section, we listed additional ablation studies on InfiMM-Eval.1121

F.1 Multi-Images as input results1122

Taking multiple images as input is a crucial capability for MLLMs to do multi-round dialogues and1123

interactive step-by-step reasoning. In this section, we explore current MLLMs’ multi-image reasoning1124

capability. We compare MLLM’s performance by feeding each image seperately and concatenate multiple1125

images horizontally into a single one. Results are listed below in Table 7.1126

We select Fuyu-8B, EMU and GPT-4V for comparison since these models should support multiple1127

images as input by design. Fuyu-8B is a pretrained only model, which does not follow instruction very1128

well, thus cannot achieve good results. For EMU, the instruction finetuning data usually do not contain1129

multi-image samples, this could be the reason that there’s no evidence of performance improvement. For1130

GPT-4V, there is a substantial drop after concatenating images together. If the trained model internally1131

cuts the image into patches for processing, such as Fuyu-8B, concatenating images into a single image1132

might impact their input patches and lead to worse performance.1133
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Table 6: Prompts used for evaluations of different models. {Image} represents image binary, {Question} stands for
the questions.

MLLMs Inference Parameters Prompts

GPT-4V
temperature: 0.0

top_p: 0.0
max_tokens: 256

System Prompt: You are a helpful assistant for helping answer questions.
Most questions are related to reasoning.

User Prompt: Here are a list of image detailed descriptions generated by an AI model:
Image 1: {Image}
Image 2: {Image}

...
Please answer the following question: {Question}

OpenFlamingo-v2
max_new_tokens: 512

num_beams: 3
{image}User: {question} GPT:<answer>

MiniGPT-v2
do_sample: False

max_new_tokens: 256
<s>[INST]<Img>{Image} </Img>{Question} [/INST]

Fuyu-8B max_new_tokens:16 {Image}{Question}

BLIP-2
temperature: 1.0

max_new_tokens: 20
{Image} Question:{Question}

Answer:

InternLM-XComposer-VL
temperature: 1.0

max_new_tokens: 1024
<|User|>{Image} {Question}, answer this question <eoh><|Bot|>

InstructBLIP
temperature: 1.0

max_new_tokens: 128
{Image}{Question}

LLaMA-Adapter V2
max_gen_len: 256
temperature: 0.1

top_k: 0.75

Below is an instruction that describes a task.
Write a response that appropriately completes the request using a single word or phrase.

Instruction: {Image} {Question}
Response:

Otter
num_beams:3

max_new_tokens:512
{Image}User: {Question} GPT:

mPLUG-Owl2 max_new_tokens: 256
USER: {Image}{Question}

Answer the question using a single word or phrase. ASSISTANT:

IDEFICS-9B-instruct
temperature: 1.0

max_new_tokens:200

User:
{image}

{Question}
Assistant:

Emu
temperature: 1.0

max_new_tokens: 128

System Prompt: You will be presented with an image: [IMG]{Image}[/IMG].
You will be able to see the image after I provide it to you.

Please answer my questions based on the given image.
<|System Prompt|>USER: {Question} ASSISTANT:

LLaVA-1.5
temperature: 1.0

top_p: 1.0
max_tokens: 256

System Prompt: A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user’s questions.

{Image}...{Image}
{Question}

CogVLM-Chat
temperature: 0.8

max_new_tokens: 2048
{Image}{Question}

Qwen-VL-Chat
do_sample: False

num_beams: 1
max_new_tokens: 100

<im_start>You are a helpful assistant. <im_end>
Picture 1 {Image}
Picture 2 {Image}

...
{Question}
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Table 7: Ablation study results on InfiMM-Eval’s subset with multiple images as input. There are 47 samples with
multiple images, which contain 27 moderate complexity questions and 20 high complexity questions.

MLLMs Concatenate Score (Multi-Img)

Fuyu-8B
Yes 8.21
No 7.16

EMU
Yes 28.21
No 27.76

GPT-4V
Yes 57.61
No 71.19
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