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Abstract
Graph learning tasks often hinge on identify-
ing key substructure patterns—such as triadic
closures in social networks or benzene rings in
molecular graphs—that underpin downstream per-
formance. However, most existing graph neu-
ral networks (GNNs) rely on message passing,
which aggregates local neighborhood informa-
tion iteratively and struggles to explicitly cap-
ture such fundamental motifs, like triangles, k-
cliques, and rings. This limitation hinders both
expressiveness and long-range dependency mod-
eling. In this paper, we introduce the Neural
Graph Pattern Machine (GPM), a novel frame-
work that bypasses message passing by learn-
ing directly from graph substructures. GPM ef-
ficiently extracts, encodes, and prioritizes task-
relevant graph patterns, offering greater expres-
sivity and improved ability to capture long-range
dependencies. Empirical evaluations across four
standard tasks—node classification, link predic-
tion, graph classification, and graph regression—
demonstrate that GPM outperforms state-of-the-
art baselines. Further analysis reveals that GPM
exhibits strong out-of-distribution generalization,
desirable scalability, and enhanced interpretabil-
ity. Code and datasets are available at: https:
//github.com/Zehong-Wang/GPM.

1. Introduction
Graphs serve as a fundamental abstraction for modeling
complex systems across domains such as social networks,
drug discovery, and recommender systems (Zhang et al.,
2024c;d; Ma et al., 2025a; Zhang et al., 2024b; Ma et al.,
2023; Fu et al., 2023). Many real-world problems can be
formulated as classification or regression tasks on graphs.
For example, molecular property prediction can be cast as
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a graph classification task, where atoms and bonds are rep-
resented as nodes and edges, respectively (Hu et al., 2020).
In e-commerce, predicting user preferences naturally trans-
lates into link prediction on user-item interaction graphs
(Ying et al., 2018). A key insight of these tasks is that the
certain substructures encode meaningful inductive biases
(Xu et al., 2019; Zhao et al., 2022), emerging as predictive
patterns. For instance, triadic closure, where three nodes
form a closed triangle, is ubiquitous in social, biological,
and communication networks (Granovetter, 1973). It serves
as an indicator of stable node relationships and is instrumen-
tal in tasks like node classification (Jin et al., 2020) and link
prediction (Huang et al., 2015). In molecular graphs, the
benzene ring—a six-carbon cyclic structure—is a canoni-
cal example of a stable substructure with implications for
chemical reactivity (Rong et al., 2020). We refer to such
recurring substructures, including triangles, rings, and other
motifs, as substructure patterns or graph patterns. These
patterns form the building blocks of graph semantics and
are central to understanding and improving performance in
graph-based learning tasks.

Despite the critical role of substructure patterns in graph
learning, most graph neural networks (GNNs) (Kipf &
Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018)
operate under the message passing paradigm (Gilmer et al.,
2017), which iteratively aggregates local neighborhood in-
formation rather than directly modeling graph substructures.
While message passing GNNs have demonstrated strong
empirical performance on tasks such as node classification,
link prediction, and graph classification, numerous stud-
ies (Xu et al., 2019; Verma & Zhang, 2019; Garg et al.,
2020; Chen et al., 2020; Tang & Liu, 2023; Zhang et al.,
2024a) highlight their inherent limitations in capturing ba-
sic patterns like triangles, stars, and k-cliques, owing to
their equivalence to the 1-dimensional Weisfeiler-Leman
(1-WL) test (Xu et al., 2019). To address these limitations,
various enhancements have been proposed, including po-
sitional encodings (Murphy et al., 2019; Loukas, 2020),
graph transformers (Kreuzer et al., 2021; Rampasek et al.,
2022), and higher-order GNNs (Morris et al., 2019; Zhao
et al., 2022; Qian et al., 2024; Ma et al., 2025b), which ex-
tend expressiveness beyond 1-WL. However, these methods
remain fundamentally tied to message passing, and often
suffer from challenges such as limited interpretability, high
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Figure 1. The workflow of Neural Graph Pattern Machine (GPM). Given a graph dataset, GPM utilizes a random walk tokenizer to
extract a set of patterns representing the learning instances (nodes, edges, or graphs). These patterns are first encoded by a sequential
model and then processed by a transformer encoder, which identifies the dominant patterns relevant to downstream tasks.

computational cost, and biased inductive assumptions.

To go beyond the message passing, recent research has be-
gun exploring the use of graph patterns as discrete tokens to
represent nodes, links, or entire graphs. While promising,
this line of work is still in its early stages and faces three
key challenges. (1) Universal Graph Tokenizer: Extracting
graph patterns requires a tokenizer that can adapt to node-,
link-, and graph-level tasks. Unlike sentences and images,
which inherently have sequential structures, tokenizing
graph instances is challenging due to their non-Euclidean
nature. Existing tokenizers tend to be task-specific, such
as the Hop2token tokenizer (Chen et al., 2023) for node
tasks and the METIS tokenizer (He et al., 2023) for graph
tasks. (2) Effective Pattern Encoder: The model must ef-
ficiently and comprehensively encode the extracted graph
patterns. Current approaches often use message passing
as a pattern encoder (Chen et al., 2022; He et al., 2023;
Behrouz & Hashemi, 2024) or auxiliary module (Behrouz &
Hashemi, 2024) to provide graph inductive biases. However,
the limited expressiveness of message passing in identifying
basic substructures leads to information loss in encoding
graph patterns. (3) Important Pattern Identifier: As the
sampled patterns may be duplicated or noisy, it is crucial
to identify the most relevant patterns for downstream do-
mains. For example, in social networks that favor localized
patterns, the model should emphasize patterns that preserve
local information. However, existing methods are gener-
ally evaluated on benchmarks with long-range dependencies
(Dwivedi et al., 2023; 2022; Platonov et al., 2023); their
effectiveness on graphs favoring localized or mixed depen-
dencies remains unclear.

To address these challenges, we introduce the Neural Graph
Pattern Machine (GPM), where the workflow is illustrated
in Figure 1. We design a random walk-based tokenizer to
sample graph patterns, which is computationally efficient
(Grover & Leskovec, 2016) and can be naturally adapted
to various tasks. The key insight is that the combination
of semantic path and anonymous path of a random walk

matches a particular graph pattern (proved in Section 3.1).
By leveraging this insight, we model graph patterns by sep-
arately encoding the semantic paths and anonymous paths
of the corresponding walks, thereby comprehensively cap-
turing the preserved graph inductive biases. The encoded
graph patterns are then fed into a transformer layer (Vaswani
et al., 2017) that identifies the important patterns dominating
downstream tasks. To provide a deeper understanding on the
superiority of GPM over message passing, we demonstrate
that GPM can distinguish non-isomorphic graphs that GNNs
cannot identify and can model long-range dependencies that
GNNs fail to capture. Furthermore, we conduct extensive
experiments on node-, link-, and graph-level tasks to demon-
strate that GPM is applicable to various graph tasks and
outperforms state-of-the-art baselines. Our experimental
results also show that GPM is robust to out-of-distribution
issues, and can be readily scaled to large graphs, large model
sizes, and distributed training. In addition, the mechanism
for identifying dominant substructures enables GPM to have
desirable model interpretability.

2. Related Works
Expressive Bottleneck of Message Passing. Traditional
message passing GNNs (Kipf & Welling, 2017; Hamilton
et al., 2017; Veličković et al., 2018) suffer from well-known
issues, particularly on limited expressiveness. Their ex-
pressiveness is fundamentally bounded by the 1-WL test
(Xu et al., 2019; Corso et al., 2020), which restricts the
ability to distinguish basic structures such as stars, cycles,
and cliques (Chen et al., 2020; Garg et al., 2020; Zhang
et al., 2024a; Qian et al., 2025). To address this limitation,
three main research directions have emerged. First, expres-
sive GNN variants enhance the message passing framework
by incorporating higher-order structure encodings (Maron
et al., 2019a; Bouritsas et al., 2022) and node positional
embeddings (Murphy et al., 2019; Loukas, 2020), but often
suffer from scalability challenges (Azizian & marc lelarge,
2021). Second, random walk-based approaches (Zhang
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Figure 2. The overview framework of GPM.

et al., 2019; Fan et al., 2022; Jin et al., 2022; Wang & Cho,
2024) improve long-range modeling (Welke et al., 2023),
but often sacrifice local pattern understanding (Tönshoff
et al., 2023). Third, graph transformers (Kreuzer et al.,
2021; Ying et al., 2021) utilize global attention to capture
arbitrary node dependencies and exceed WL expressiveness,
but incur quadratic complexity, limiting scalability to large
graphs (Wu et al., 2023). While these approaches extend
message passing in expressiveness, they are often imple-
mented as extensions or complements to the message pass-
ing, failing to directly and effectively model graph patterns.
This observation motivates the need for a fundamentally
different approach, as pursued in this work. A more detailed
discussion is provided in Appendix A.

Graph Patterns as Tokens. Early methods for leveraging
graph patterns often relied on primitive training paradigms.
For instance, DGK (Yanardag & Vishwanathan, 2015) uses
graph kernels to measure relationships between (substruc-
ture) patterns, while AWE (Ivanov & Burnaev, 2018) em-
ploys anonymous random walks to encode pattern distribu-
tions in graphs. More recent approaches tokenize graphs
into sequences of substructures. GraphViT (He et al., 2023),
for example, splits a graph into multiple subgraphs using
graph partitioning algorithms (Karypis, 1997), encodes each
subgraph individually via message passing, and aggregates
the resulting embeddings to represent the entire graph. Sim-
ilarly, GMT (Baek et al., 2021) decomposes nodes into a
multiset, with each set representing a specific graph pattern.
However, these methods are limited to graph-level tasks. On
the other hand, NAGphormer (Chen et al., 2023) and GC-
Former (Chen et al., 2024) utilize Hop2token and neighbor-
hood sampling, respectively, to tokenize patterns represent-
ing individual nodes; Yet, they are tailored for node-level
tasks. To address this, SAT (Chen et al., 2022), GNN-AK

(Zhao et al., 2022), and GraphMamba (Behrouz & Hashemi,
2024) propose task-agnostic tokenization methods. How-
ever, these methods often rely on message passing either as
the pattern encoder or as an auxiliary module, inheriting the
limitations of message passing. While the aforementioned
methods have shown empirical success, none fully meet
our criteria: (1) a universal graph tokenizer, (2) an effective
pattern encoder, and (3) the ability to identify important
patterns relevant to downstream tasks. Our proposed GPM
overcomes these challenges.

3. Neural Graph Pattern Machine
Let G = (V, E ,X,E) denote a graph, where V is the set of
nodes with |V| = N , E ⊆ V × V is the set of edges with
|E| = E, and X and E represent the node and edge feature
matrices, respectively. Each node v ∈ V is associated with a
feature vector xv ∈ Rdn , and each edge e ∈ E is associated
with a feature vector ee ∈ Rde (if applicable). We define
graph patterns as subgraphs that represent small, recurring
substructures, such as triangles, stars, cycles, etc.

3.1. Pattern Tokenizer

Tokenization is an essential step for converting a given in-
stance into a sequence of patterns. Existing methods typ-
ically rely on pre-defined strategies. For example, large
language models (LLMs) employ pre-defined vocabularies
(Brown et al., 2020) to decompose a sentence into a se-
quence of tokens, where each token represents a concept or
entity. Similarly, vision transformers use patch tokenizers
to partition an image into a sequence of grids (Dosovitskiy
et al., 2021). However, a universal tokenizer for graphs
has yet to be established. A straightforward approach is to
construct a unified substructure vocabulary via efficient sub-
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graph matching (Sun et al., 2012), and then use this vocabu-
lary to describe patterns for each instance (e.g., node, edge,
or graph). However, the vocabulary construction and pattern
matching are obviously inefficient and cannot scale well to
large graphs. To address this challenge, GPM bypasses the
need for an explicit fixed vocabulary by approximating the
pattern matching process via random sampling.

The task now is to sample patterns that effectively describe
graph instances. Ideally, the sampling process should be
efficient and produce diverse patterns to enable scalability
for large graphs. To achieve this, we propose leveraging
random walks for sampling graph patterns. An (unbiased)
random walk w (length = L) is defined as a node sequence
w = (v0, v1, . . . , vL), generated via a Markov chain:

P (vi+1 | v0, . . . , vi) = 1[(vi, vi+1) ∈ E ]/D(vi), (1)

where D(vi) represents the degree of node vi. Utilizing this
landing probability, it becomes straightforward to generate
a sequence of random walks starting at node v.

Next, we discuss why this basic strategy is effective for
sampling graph patterns and demonstrate that each random
walk inherently depicts a unique graph pattern. Before
delving into this, we introduce the concept of anonymous
walks (Ivanov & Burnaev, 2018).

Definition 3.1 (Anonymous Walk (Ivanov & Burnaev,
2018)). Given a random walk w = (v0, v1, . . . , vL), its
corresponding anonymous walk is defined as a sequence of
integers ϕ = (γ0, γ1, . . . , γL), where γi = min pos(w, vi).
The mapping from the random walk to its anonymous path
is represented by w 7→ ϕ.

Anonymous walks encode random walks as sequences of
relative positions, preserving anonymity by avoiding the
explicit recording of specific nodes. Each anonymous walk
thus captures a unique graph topology pattern. For instance,
as illustrated in Figure 3, the random walks “A-B-C-A-D”
and “C-D-E-C-A” both correspond to the same anonymous
path “0-1-2-0-3,” representing a triangle-shaped substruc-
ture with an additional connection. In addition, the random

walk “A-C-E-D-A” maps to the anonymous path “0-1-2-3-0,”
which represents a rectangle-shaped substructure. Note we
refer the original random walks as semantic paths.

Recent findings (Micali & Zhu, 2016; Ivanov & Burnaev,
2018) have demonstrated that the distribution of anonymous
paths originating from a node v is sufficient to reconstruct
the subgraphs induced by all nodes within a fixed distance
from v. Consequently, we state the following proposition,
establishing that anonymous paths encapsulate sufficient
topological information to describe each node.

Proposition 3.2. (Informal) Given a node v ∈ V , assume
the task requires information from the k-hop ego-graph
B(v, k) = (V ′, E ′). A sufficiently large set of patterns, sam-
pled via l-length anonymous walks with l = O(|E ′|), can
provide distinguishable topological representations.

The proof is sketched in Appendix C.1. This proposition
demonstrates that the distribution of anonymous paths start-
ing from a node is sufficient to capture its topological proper-
ties. Naturally, two nodes u and v can be considered to share
similar graph patterns if their anonymous path distributions
are similar. This proposition can be extended to links and
graphs by treating them as combinations of nodes, with the
corresponding distributions. Thus, for each random walk,
we can derive both a semantic path (capturing node features)
and an anonymous path (capturing topological structures),
where their combination conceptually represents a certain
graph pattern. Then, we have the proposition.

Proposition 3.3. (Informal) Jointly encoding semantic
paths and anonymous paths via any bijective mappings pro-
vides a comprehensive representation of the graph inductive
biases encapsulated in the corresponding graph pattern.

This proposition, proved in Appendix C.2, implies that
graph patterns can be effectively encoded by combining
the individually encoded semantic and anonymous paths.

Applicability to Graph-based Tasks. The method is capa-
ble of tokenizing nodes, edges, and graphs. For node-level
tasks, the tokenizer samples k patterns for a node v. For
edge-level tasks, the tokenizer samples k patterns starting
from the endpoints u and v of an edge e = (u, v). For graph-
level tasks, the tokenizer samples k patterns for each graph
by randomly selecting starting nodes within the graph.

3.2. Pattern Encoder

As discussed above, any graph pattern can be represented
as the combination of a semantic path and an anonymous
path. Given a graph pattern, let the semantic path be w =
(v0, . . . , vn) and the anonymous path be ϕ = (γ0, . . . , γn).
These paths are encoded separately using two distinct en-
coders, which are combined to form the pattern embedding:

p = ρs(w) + λ · ρa(ϕ), (2)
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where p denotes the pattern embedding, ρs and ρa are the
encoders for the semantic path and the anonymous path,
respectively, and λ is a weighting coefficient.

Semantic Path Encoder. To encode the semantic path,
we construct a sequence of node features according to the
semantic path as [x0, . . . ,xn], where nodes may appear
multiple times. The encoder ρs can be any model capa-
ble of processing sequential data. By default, we use the
transformer encoder due to its superior expressiveness in
capturing long-range dependencies. The alternatives can
be mean aggregator or GRU (Chung et al., 2014). The
encoding process is defined as:

ρs(w) = ρs([h0, . . . ,hn]), hi = Wxi + b, (3)

where x = [x ∥ e] represents the concatenation of node
features x and optional edge features e (if applicable). Note
that in a path, the number of edges is one less than the num-
ber of nodes. To address this mismatch, edge features are
padded with a zero vector at the beginning of the sequence.

Node Positional Embedding. To incorporate advanced
topological information, it is optional to concatenate node
positional embeddings (PEs) with the node features. This
approach has been shown to be effective to enhance model
expressiveness (Kreuzer et al., 2021; Rampasek et al., 2022;
He et al., 2023; Chen et al., 2023). The augmented node
features are represented as:

xi = [xi ∥ ei−1,i ∥ αi], (4)

where xi denotes the node features, ei−1,i represents op-
tional edge features, and αi refers to the optional positional
embedding. In this work, we utilize widely adopted PEs, in-
cluding random-walk structural embeddings (RWSE) (Ram-
pasek et al., 2022) and Laplacian eigenvector embeddings
(Lap) (Kreuzer et al., 2021). Empirically, we observe that
the choice of PE depends on the dataset. Notably, the model
can still achieve competitive performance even without the
positional embeddings.

Anonymous Path Encoder. For an anonymous path ϕ =
(γ0, . . . , γn), we adopt a similar approach to encode the path
as used for semantic paths, with a key distinction: anony-
mous nodes lack explicit features. Instead of employing
one-hot encoding for each anonymous index, inspired by
Tönshoff et al. (2023), we utilize an advanced method that
encodes both anonymous indices and connectivity infor-
mation. Specifically, for an anonymous path of length k,
each node vi is assigned a k-dimensional vector zi, where
zi,j = 1[γi = γj ]. This encoding not only captures identity
information but also encodes loop structures. We refer to
this representation as loop-based adjacency. Consequently,
any anonymous path can be expressed as ϕ = [z0, . . . ,zn],
which can then be processed using encoder ρa:

ρa(ϕ) = ρa([z0, . . . ,zn]). (5)

In this work, we adopt GRU as the default encoder due to
its balance of expressiveness and computational efficiency.

3.3. Important Pattern Identifier

For each graph instance, we use a set of encoded patterns
P = [p0, . . . ,pm] to describe its characteristics. Since the
patterns are randomly sampled from the graph, it is essen-
tial to identify the most relevant patterns for downstream
tasks. To achieve this, we employ a transformer encoder
to highlight the dominant patterns by learning their relative
importance. The encoding process is defined as follows:

Q = PWQ, K = PWK , V = PWV , (6)

Attn(P ) = softmax

(
QK⊤
√
dout

)
V ∈ Rn×dout , (7)

P ′ = FFN(P +Attn(P )), (8)

where WQ,WK ,WV are trainable parameter matrices,
dout is the dimension of the query matrix Q, and FFN
represents a two-layer MLP. We utilize multi-head attention,
which has proven effective in practice by concatenating
multiple attention mechanisms. Additionally, multiple trans-
former layers can be stacked to further enhance the capacity.

Let P ′ = [p′
0, . . . ,p

′
m] denote the output of the final trans-

former layer. These outputs are aggregated for downstream
predictions using an additional prediction head:

ŷ = Head

(
1

m

m∑
i=1

p′
i

)
, (9)

where Head is a linear prediction layer. A mean readout
function is applied over all pattern embeddings to compute
the instance embedding, which is then used for prediction.

Class Token. For improved interpretability, a class to-
ken pcls can be appended to the sequence of pattern em-
beddings before transformer encoding, such that P =
[pcls,p0, . . . ,pm]. The downstream prediction is then
based solely on the encoded class token, modifying Equation
9 as ŷ = Head(p′

cls). This approach evaluates the signif-
icance of individual graph patterns for downstream tasks
based on the attention scores on the class token. Note that
the primary purpose of using the class token is to enhance
interpretability rather than to improve model performance,
although it may also serve as an efficient summarization of
the entire pattern set (Dosovitskiy et al., 2021).

3.4. Training Strategies

Test-Time Augmentation. For a single instance, we select
k patterns to represent its characteristics, where empiri-
cal evidence suggests that a larger k generally improves
performance. However, increasing k imposes additional
computational costs, as the self-attention has a quadratic
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time complexity with respect to the input length, O(k2). In-
spired by test-time scaling in LLMs (Snell et al., 2024), we
address this trade-off by training the model with m patterns
and using k patterns during inference, where k ≫ m. By
default, we set m = 16 and k = 128. To further reduce the
computational overhead of pattern sampling, we pre-sample
k patterns during preprocessing and randomly select m pat-
terns during training. The time consumption is minimal,
taking less than 10 seconds on most datasets. Even for the
largest dataset used (∼2,500,000 nodes), the sampling time
remains under 2 minutes on an Nvidia A40 GPU.

Multi-Scale Learning. Recent studies have demonstrated
the effectiveness of multi-scale learning across various do-
mains (Liao et al., 2019; Chen et al., 2021). Inspired by
the success of multi-scale learning in visual transformers
(Chen et al., 2021), which process small and large patch
tokens within a single model, we propose sampling pat-
terns of varying sizes. Specifically, during tokenization, we
sample patterns with lengths [l1, l2, . . . ] instead of using a
fixed length l. By default, the multi-scale lengths are set to
[2, 4, 6, 8]. Note the number of patterns remains unchanged.
Additional implementation details are in Appendix B.

3.5. How Does GPM Surpass Message Passing?

Advancing Expressivity. Message passing frameworks
can distinguish non-isomorphic graphs that are distinguish-
able by the 1-WL isomorphism test (Xu et al., 2019). We
demonstrate that GPM surpasses message passing in ex-
pressiveness under the following mild assumptions: (1) the
graphs are connected, unweighted, and undirected, and (2)
the number of sampled patterns is sufficiently large.
Theorem 3.4. Under the reconstruction conjecture assump-
tion, GPM can distinguish all pairs of non-isomorphic
graphs given a sufficient number of graph patterns.

The proof is sketched by first demonstrating the expressive
power of a simplified variant of GPM and then generalizing
to the full model. The detailed proof is in Appendix C.3.
Based on the theorem, it is readily to extend to the following
corollary.
Corollary 3.5. For k ≥ 1, there exist graphs that can be
distinguished by GPM using walk length k but not by the
k-WL isomorphism test.

The proof of this result is detailed in Appendix C.4. This
corollary highlights that GPM is at least as expressive as
message passing frameworks and high-order GNNs. Empir-
ically, GPM successfully distinguishes graphs that remain
indistinguishable under the 3-WL test (Appendix E.1).

Tackling Over-Squashing. Another limitation of message
passing is their focus on localized information, which pre-
vents them from effectively capturing long-range dependen-
cies within graphs. In contrast, GPM demonstrates supe-

rior capability in modeling long-range interactions. Follow-
ing He et al. (2023), we evaluate this capability using the
TREENEIGHBORSMATCHING (Alon & Yahav, 2021). Our
GPM perfectly fits the data with task radius up to 7, yet
message passing methods exhibit over-squashing effects as
early as task radius 4 (Appendix E.2).

4. Experiments
4.1. Applicability to Graph-based Tasks

To evaluate the effectiveness of our method on all graph
predictive tasks (node, link, and graph), we conduct exten-
sive experiments such as node classification, link prediction,
graph classification, and graph regression.

Node Classification. We conduct experiments on bench-
mark datasets of varying scales, with their statistics and ho-
mophily ratios summarized in Table 1. The datasets include
Products, Computer, Arxiv, WikiCS, CoraFull, Deezer,
Blog, Flickr, and Flickr-S (Small). We adopt the dataset
splits from Chen et al. (2023) and Chen et al. (2024): public
splits for WikiCS, Flickr, Arxiv, and Products; 60/20/20
train/val/test split for CoraFull and Computer; 50/25/25
split for the remaining datasets. Accuracy is used as the
evaluation metric. The baselines include message passing
GNNs (GCN, GAT, APPNP, GPR-GNN, OrderedGNN),
random walk-based GNNs (RAW-GNN, RUM), and graph
transformers (GraphGPS, SAN, NodeFormer, GOAT, NAG-
phormer, GraphMamba, VCR-Graphormer, and GCFormer).
As presented in Table 1, our GPM consistently outperforms
message passing GNNs and random walk-based GNNs
across all datasets. When compared to graph transform-
ers specifically designed for node classification, our method
achieves superior performance on most datasets, with the
exception of CoraFull. Although NAGphormer slightly out-
performs GPM on CoraFull, its Hop2Token mechanism
constraints the method on node-level tasks.

Link Prediction. We evaluate the link prediction perfor-
mance on three datasets: Cora, Pubmed, and ogbl-Collab.
Following Guo et al. (2023), we split the edges into 80/5/15
train/val/test sets and use Hits@20 for Cora and Pubmed,
and Hits@50 for ogbl-Collab for evaluation. The baselines
include GCN, LLP, RUM, NodeFormer, and NAGphormer.
The results, along with dataset statistics, are summarized
in Table 2. Notably, graph transformer methods such as
NodeFormer and NAGphormer do not achieve competitive
performance and, in some cases, perform worse than mes-
sage passing GNNs. This discrepancy may arise from the in-
ductive bias provided by message passing, which iteratively
updates node representations based on their neighborhoods
and is inherently well-suited for modeling connectivity be-
tween nodes. Our GPM achieves the best performance
across all evaluated datasets. This superior performance is
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Table 1. Node classification results, where the best-performing model is highlighted in bold, and the second-best method is underlined.
PRODUCTS COMPUTER ARXIV WIKICS CORAFULL DEEZER BLOG FLICKR FLICKR-S

# Nodes 2,449,029 13,752 169,343 11,701 19,793 28,281 5,196 89,250 7,575
# Edges 123,718,024 491,722 2,315,598 431,206 126,842 185,504 343,486 899,756 479,476
Homophily Ratio H(G) 0.81 0.78 0.65 0.65 0.57 0.53 0.40 0.32 0.24

GCN (Kipf & Welling, 2017) 75.64±0.21 89.65±0.52 71.74±0.29 77.47±0.85 61.76±0.14 62.70±0.70 94.12±0.79 50.90±0.12 84.58±0.49

GAT (Veličković et al., 2018) 79.45±0.59 90.78±0.13 72.01±0.20 76.91±0.82 64.47±0.18 61.70±0.80 93.47±0.63 50.70±0.32 85.11±0.67

APPNP (Gasteiger et al., 2019) 77.58±0.47 90.18±0.17 69.40±0.50 78.87±0.11 65.16±0.28 66.10±0.60 94.77±0.19 50.36±0.55 84.66±0.31

GPRGNN (Chien et al., 2021) 79.76±0.59 89.32±0.29 71.10±0.12 78.12±0.23 67.12±0.31 63.20±0.84 94.36±0.29 48.32±1.20 85.91±0.51

OrderedGNN (Song et al., 2023) - 92.03±0.13 - 79.01±0.68 69.21±0.23 66.12±0.75 95.90±0.44 51.20±0.32 88.68±0.54

RAW-GNN (Jin et al., 2022) - 90.98±0.73 - 78.01±0.58 68.64±0.55 65.11±0.64 94.96±0.70 49.58±0.38 86.53±0.65

RUM (Wang & Cho, 2024) 78.68±1.40 90.62±0.24 70.54±0.30 78.20±0.29 70.42±0.08 64.25±0.62 94.16±0.35 50.97±0.32 87.25±0.66

GraphGPS (Rampasek et al., 2022) OOM 91.19±0.54 70.97±0.41 78.66±0.49 55.76±0.23 60.56±0.62 94.35±0.52 45.15±2.41 83.61±0.70

SAN (Kreuzer et al., 2021) - 89.83±0.16 - 78.46±0.99 59.01±0.34 64.29±0.35 90.21±0.20 OOM OOM
NodeFormer (Wu et al., 2022) 72.93±0.13 86.98±0.62 67.19±0.83 74.73±0.94 71.01±0.14 66.40±0.70 93.79±0.76 51.23±0.64 88.30±0.22

GOAT (Kong et al., 2023) 82.00±0.43 90.96±0.90 72.41±0.40 77.00±0.77 68.55±0.34 65.31±0.24 94.40±0.08 48.30±0.47 88.16±0.95

NAGphormer (Chen et al., 2023) 73.55±0.21 91.22±0.14 70.13±0.55 77.16±0.72 71.51±0.13 65.54±0.57 94.42±0.63 49.66±0.29 86.85±0.85

GraphMamba (Behrouz & Hashemi, 2024) - - 72.48±0.00 - - - - - -
VCR-Graphormer (Fu et al., 2024) - 91.04±0.12 - 77.69±0.33 68.78±0.29 65.28±0.51 93.92±0.37 50.77±0.61 86.23±0.74

GCFormer (Chen et al., 2024) - 91.63±0.18 - 78.12±0.50 69.70±0.54 65.16±0.33 96.03±0.44 50.28±0.69 87.90±0.45

GPM 82.62±0.39 92.28±0.39 72.89±0.68 80.19±0.41 71.23±0.51 67.26±0.22 96.71±0.59 52.22±0.19 89.41±0.47

Table 2. Link prediction results.
CORA PUBMED OGBL-COLLAB

# Nodes 2,708 19,717 235,868
# Edges 10,556 88,648 2,570,930

GCN (Kipf & Welling, 2017) 84.14±1.19 85.06±3.79 44.75±1.07

LLP (Guo et al., 2023) 89.95±2.01 87.23±4.92 49.10±0.57

RUM (Wang & Cho, 2024) 88.74±0.60 85.87±3.93 48.19±0.94

NodeFormer (Wu et al., 2022) 80.78±1.44 83.93±4.72 46.56±0.62

NAGphormer (Chen et al., 2023) 86.87±1.58 86.46±4.09 47.56±0.52

GPM 92.85±0.54 88.29±5.15 49.70±0.59

likely due to the effectiveness of the captured patterns in
accurately reflecting the connectivity between nodes.

Graph Classification and Regression. We evaluate the
model on six graph datasets: social networks (IMDB-B,
COLLAB, Reddit-M5K, Reddit-M12K) for classification
and molecule graphs (ZINC and ZINC-Full) for regression.
We use 80/10/10 train/val/test splits for social networks, and
the public splits for molecule graphs. The baselines include
message passing GNNs (GIN, PNA, GNN-AK), graph ker-
nels (DGK), random walk-based methods (AWE, CRaWl,
AgentNet, RUM), and graph transformers (GMT, SAN,
Graphormer, GPS, SAT, DeepGraph, GraphViT, GEANet).
The results, along with dataset statistics, are presented in
Table 3. We observe that graph transformers generally out-
perform message passing GNNs, likely due to their superior
capability in modeling long-range dependencies. Notably,
our GPM consistently outperforms all other methods across
datasets of varying scales, particularly outperforming meth-
ods that also utilize graph patterns as tokens (e.g., GMT,
SAT, GraphViT). This might because these methods still rely
on message passing as the encoder for individual patterns,
thereby inheriting the limitations of message passing. In

contrast, our GPM eliminates the need for message passing,
potentially enabling more effective substructure learning.

4.2. Out-of-Distribution Generalization

We evaluate the model robustness under distribution shifts
between training and testing sets. Under the setting, the
model is trained on a source graph and evaluated on a target
graph, with a 20/80 val/test split. We conduct experiments
on citation networks, ACM and DBLP (using accuracy as
the metric), as well as social networks Twitch (using AUC
as the metric). The Twitch dataset consists of six graphs
(DE, EN, ES, FR, PT, RU), where the model is trained on
DE and evaluated on the remaining graphs. For baselines,
in addition to the methods used in previous experiments, we
include domain adaptation and OOD generalization base-
lines such as DANN, SR-GNN, StruRW, and SSReg. The
experimental results are summarized in Table 4. We observe
that standard graph learning methods struggle in this setting,
highlighting their limited robustness to OOD testing. In con-
trast, our GPM outperforms existing OOD-specific methods
in settings such as A → D and Twitch, demonstrating supe-
rior robustness to OOD challenges. This can be attributed
to GPM’s pattern learning ability that potentially identifies
shared patterns between source and target graphs, whereas
message passing is sensitive to subtle structural changes
(Wang et al., 2024c). Furthermore, the performance of
GPM is enhanced when combined with OOD techniques
such as DANN and SSReg, achieving significant improve-
ments across all settings, particularly in D → A.

4.3. Scalability

Large Graphs. Each graph instance (e.g., node, edge, or
graph) is represented by k patterns, with an encoding com-
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Table 3. Graph classification and regression (i.e., ZINC and ZINC-Full) results.
IMDB-B ↑ COLLAB ↑ REDDIT-M5K ↑ REDDIT-M12K ↑ ZINC ↓ ZINC-FULL ↓

# Graphs 1,000 5,000 4,999 11,929 12,000 249,456
# Nodes (in average) ∼19.8 ∼74.5 ∼508.5 ∼391.4 ∼23.2 ∼23.2
# Edges (in average) ∼193.1 ∼4914.4 ∼1189.7 ∼913.8 ∼49.8 ∼49.8

GIN (Xu et al., 2019) 73.26±0.46 80.59±0.27 45.88±0.78 39.37±1.40 0.526±0.051 0.088±0.002

DGK (Yanardag & Vishwanathan, 2015) 66.96±0.56 73.09±0.25 41.27±0.18 32.22±0.10 - -
PNA (Corso et al., 2020) 72.31±3.67 74.73±1.09 42.18±2.96 38.57±1.86 0.142±0.010 0.067±0.009

GNN-AK+ (Zhao et al., 2022) 75.00±4.20 77.35±0.93 47.78±1.12 40.60±0.99 0.080±0.001 0.034±0.007

AWE (Ivanov & Burnaev, 2018) 74.45±5.83 73.93±1.94 50.46±1.91 39.20±2.09 0.094±0.005 0.059±0.005

CRaWl (Tönshoff et al., 2023) 73.69±2.05 77.17±0.78 48.81±1.67 40.72±0.65 0.085±0.004 0.036±0.005

AgentNet (Martinkus et al., 2023) 75.88±3.60 77.30±1.98 47.71±0.94 42.15±0.13 0.144±0.016 0.040±0.006

RUM (Wang & Cho, 2024) 81.10±4.50 75.50±0.58 48.66±0.76 41.66±0.15 - -

GMT (Baek et al., 2021) 73.48±0.76 78.94±0.44 49.96±1.21 40.63±0.94 - -
SAN (Kreuzer et al., 2021) 76.00±1.90 74.45±2.46 50.76±0.41 39.92±1.02 0.139±0.006 -
Graphormer (Ying et al., 2021) 76.74±0.86 78.82±1.21 48.98±0.30 41.42±0.42 0.122±0.006 0.025±0.004

GPS (Rampasek et al., 2022) 77.76±0.98 77.41±0.56 49.09±0.71 41.55±0.16 0.070±0.004 -
SAT (Chen et al., 2022) 78.29±1.26 78.35±0.85 47.02±0.88 42.14±0.07 0.094±0.008 0.036±0.002

DeepGraph (Zhao et al., 2023) - - - - 0.072±0.004 -
GraphViT (He et al., 2023) 78.05±1.00 78.79±0.74 48.39±0.78 40.17±0.52 0.073±0.001 0.035±0.005

GEANet (Liang et al., 2024) - - - - 0.193±0.001 -

GPM 82.67±0.47 80.70±0.74 51.87±1.04 43.07±0.29 0.064±0.004 0.021±0.002

Table 4. Out-of-distribution (OOD) generalization results.
A → D D → A TWITCH

GCN (Kipf & Welling, 2017) 59.02±1.04 54.26±0.78 56.68
GAT (Veličković et al., 2018) 61.67±3.54 58.98±5.78 56.86
APPNP (Gasteiger et al., 2019) 49.05±8.94 57.54±4.32 54.26
RUM (Wang & Cho, 2024) 60.38±3.69 52.95±6.91 58.59
NodeFormer (Wu et al., 2022) 65.69±5.09 55.33±2.25 54.17
NAGphormer (Chen et al., 2023) 65.01±4.10 55.40±2.31 54.19

DANN (Ganin et al., 2016) 68.92±3.29 63.07±1.65 60.71
SR-GNN (Zhu et al., 2021) 68.30±1.26 62.43±1.08 59.65
StruRW (Liu et al., 2023) 70.19±2.10 65.07±1.98 61.46
SSReg (You et al., 2023) 69.04±2.95 65.93±1.05 60.43

GPM 74.91±5.07 59.57±2.97 61.63
GPM + DANN 75.39±3.98 63.03±3.58 62.98
GPM + SSReg 75.66±3.04 67.30±1.94 62.77

A and D are abbreviation of ACM and DBLP. Twitch is averaged over 5 settings.

plexity of O(k2) and an overall complexity of O(n · k2)
(see Appendix D), where n ≫ k2 denotes the number of
instances. This design enables GPM to efficiently scale to
large graphs using mini-batch training. We evaluate GPM on
large-scale graph datasets, e.g., Products, ogbl-Collab, and
ZINC-Full (Tables 1, 2, and 3). GPM achieves competitive
performance across these large-scale benchmarks.

Large Models. Leveraging the transformer architecture,
GPM naturally scales to larger model sizes by stacking ad-
ditional transformer layers, as illustrated in Figure 4 (Top).
Empirically, increasing model parameters enhances perfor-
mance on large-scale graphs. In contrast, message passing
GNNs (GAT in this case) struggle to scale due to the over-
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Figure 4. Model scalability analysis. (Top) Number of Parameters
vs. Accuracy. (Bottom) Number of GPUs vs. Acceleration Ratio.

smoothing effect. The architectural details of large-scale
GPM models are presented in Table 7 in Appendix.

Distributed Training. Transformers have demonstrated
remarkable efficiency in distributed training due to the par-
allelization of self-attention mechanism (Shoeybi et al.,
2019). In contrast, message passing GNNs are less efficient
for distributed training, as their iterative message passing
introduces sequential dependencies and incurs significant
communication overhead when computational nodes are
distributed across machines. By leveraging a transformer-
based architecture, GPM achieves superior efficiency in
distributed training compared to message passing GNNs on
PRODUCTS, as shown in Figure 4 (Bottom). Further details
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Table 5. Model component ablation. “PE” denotes positional em-
bedding, “AP” is anonymous path, and “SP” is semantic path.

PRODUCTS ARXIV OGBL-COLLAB COLLAB

C
om

p.

GPM 82.62±0.39 72.89±0.68 49.70±0.59 80.70±0.74

w/o PE 82.47±0.21 72.59±0.23 49.59±0.65 78.00±1.07

w/o AP 81.99±0.68 72.47±0.40 48.43±0.97 78.33±0.24

w/o PE & AP 80.74±0.65 71.40±0.76 48.24±0.97 75.40±0.99

SP
E

nc
. Mean 80.42±0.48 72.08±0.66 47.83±1.00 76.27±0.47

GRU 80.91±0.33 72.23±0.41 48.12±0.55 74.00±1.57

Transformer 82.62±0.39 72.89±0.68 49.70±0.59 80.70±0.74
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Figure 5. Training loss and model performance on PRODUCTS

with varying sampling criteria.

and discussions are provided in Appendix F.1.

4.4. Ablation Study

Impact of Model Components. Table 5 presents the model
component ablation study results. Both positional embed-
dings (PE) and anonymous paths (AP) contribute to captur-
ing topological information, with PE encoding relative node
positions and AP characterizing pattern structures. Empir-
ically, AP has a greater impact than PE, suggesting that
the model prioritizes understanding pattern structures over
node locations. For the semantic path (SP) encoder, the
Transformer achieves the best due to its ability to adaptively
model both localized and long-range dependencies. More
results and discussions are provided in Appendix F.2.

Impact of Training Tricks. Both multi-scale training and
test-time augmentation contribute to improved performance.
Specifically, multi-scale training increases average accuracy
from 70.72 to 72.34 by incorporating hierarchical substruc-
ture knowledge. Test-time augmentation uses fewer sub-
structure patterns during training (e.g., 16 at training vs.
128 at inference), which significantly reduces training cost
with negligible performance drop (72.43 to 72.34). Full
details are provided in Appendix F.3.

GPM Automatically Learns Data Dependencies. Lever-
aging the transformer architecture, GPM automatically iden-
tifies dominant patterns. Experiments on the PRODUCTS
(Figure 5) demonstrate that unbiased random walk sampling
(p = 1, q = 1) achieves the best results, over localized
(p = 0.1, q = 10) and long-range (p = 10, q = 0.1) sam-
pling, by allowing the model to autonomously balance lo-
calized and long-range dependencies. Detailed discussions
are provided in Appendix G.
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Figure 6. Model interpretation on ZINC.

4.5. Model Interpretation

GPM leverages self-attention to identify the most relevant
patterns for downstream tasks by utilizing a class token to
aggregate pattern information. As an illustrative example,
Figure 6 presents the 24-th molecule graph from ZINC
(colors indicate different atom types) along with its top-9
key patterns, demonstrating that GPM effectively captures
topologically significant structures such as stars and rings in
molecules. Similarly, Figure 8 in Appendix visualizes the
results on COMPUTERS, highlighting that triangle structures
are predominant in e-commerce networks.

5. Conclusion
We propose GPM, a novel graph representation learning
framework that directly learns from graph substructure pat-
terns, eliminating the need for message passing. The archi-
tecture comprises three key components: a pattern sampler,
a pattern encoder, and an important pattern identifier. Exten-
sive experiments across node-, link-, and graph-level tasks
demonstrate the effectiveness of GPM, showcasing its supe-
rior robustness, scalability, and interpretability. Moreover,
GPM offers enhanced model expressiveness and a greater
capacity for capturing long-range dependencies.

Limitations and Future Works. The prediction perfor-
mance of GPM heavily depends on the quality of the sam-
pled patterns. In this work, we adopt a random sampling
strategy, aiming to sample as many patterns as possible to
construct a comprehensive pattern set. However, this ap-
proach may increase resource consumption during model
training and hyperparameter tuning. Developing an adaptive
sampling strategy tailored to specific downstream tasks or
designing a unified pattern vocabulary (Wang et al., 2024a;b)
could mitigate this issue. Furthermore, the current imple-
mentation of GPM is limited to supervised tasks. Future
extensions could include unsupervised learning (He et al.,
2022), integration with LLMs (Yuan et al., 2021; Liu et al.,
2024), incorporating external knowledge (Ni et al., 2025), or
adaptations for complex graph types, such as heterogeneous
graphs (Wang et al., 2023).
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
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A. Limitations of Message Passing and Recent Advances
The message passing paradigm (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018) in GNNs has well-
documented limitations, including restricted expressiveness, over-smoothing, over-squashing, and an inability to effectively
model long-range dependencies. Given our focus on learning graph patterns, this discussion emphasizes the issues of
expressiveness and notable advancements. Pioneering work by Xu et al. (2019) revealed that the expressive power of GNNs
is fundamentally bounded by the 1-WL isomorphism test. Building on this, Corso et al. (2020) demonstrated that no GNN
employing a single aggregation function can achieve the expressiveness of the 1-WL test when the neighborhood multiset
has uncountable support. Consequently, this constraint renders GNNs incapable of identifying critical graph structures, such
as stars, conjoint cycles, and k-cliques (Chen et al., 2020; Garg et al., 2020; Zhang et al., 2024a).

To address the expressiveness limitations of GNNs, three primary strategies have emerged. The first focuses on developing
expressive GNNs that enhance the message passing framework to surpass the constraints of the 1-WL test. For instance,
Maron et al. (2019b); Chen et al. (2019); Maron et al. (2019a) introduced k-order WL GNNs to emulate the k-WL test
within GNN architectures. Similarly, Alsentzer et al. (2020); Bouritsas et al. (2022); Bodnar et al. (2021); Zhao et al. (2022)
proposed advanced message passing mechanisms capable of detecting substructures in graphs, while Murphy et al. (2019);
Loukas (2020) incorporated node positional embeddings to boost the representational power of message passing GNNs.
Despite their increased expressiveness, these approaches often suffer from computational inefficiency (Azizian & marc
lelarge, 2021).

An alternative approach leverages random walk kernels to guide the message passing process, constraining interactions to
a limited range of nodes (Jin et al., 2022; Martinkus et al., 2023; Tönshoff et al., 2023; Wang & Cho, 2024; Chen et al.,
2025). Notably, Tönshoff et al. (2023) demonstrated that random walk-based methods can capture both small substructures
and long-range dependencies, while Wang & Cho (2024) showed that sufficiently long random walks can distinguish
non-isomorphic graphs. Moreover, these random walk approaches are theoretically more expressive than message passing
(Zhang et al., 2019; Fan et al., 2022; Welke et al., 2023; Michel et al., 2023; Graziani et al., 2024). Despite their strengths,
these methods tend to emphasize long-range dependencies at the expense of localized information (Tönshoff et al., 2023)
and lack interpretability regarding the specific graph knowledge being learned.

Lastly, graph transformers (GTs) (Kreuzer et al., 2021; Ying et al., 2021; Dwivedi & Bresson, 2020; Rampasek et al.,
2022; He et al., 2023; Chen et al., 2022) have emerged as a compelling alternative to traditional message passing GNNs.
Leveraging a global attention mechanism, GTs can capture correlations between any pair of nodes, enabling effective
modeling of long-range dependencies. Both theoretical and empirical studies (Kreuzer et al., 2021; Ying et al., 2021)
demonstrate that, under mild assumptions, graph transformers surpass the expressive power of WL isomorphism tests.
This represents a fundamental advantage over message passing GNNs in terms of expressiveness. However, the quadratic
complexity of all-pair node attention poses significant computational challenges, limiting the applicability of GTs to smaller
graphs, such as molecular graphs (Wu et al., 2023).

Crucially, the aforementioned methods primarily focus on developing advanced message passing frameworks rather than
directly encoding graph patterns. As a result, they may still inherit the limitations associated with message passing.

B. Implementation Details
B.1. Environments

Most experiments are conducted on Linux servers equipped with four Nvidia A40 GPUs. The models are implemented
using PyTorch 2.4.0, PyTorch Geometric 2.6.1, and PyTorch Cluster 1.6.3, with CUDA 12.1 and Python 3.9.

B.2. Training Details

The training of transformers is highly sensitive to regularization techniques. In our setup, we use the AdamW optimizer with
weight decay and apply early stopping after 100 epochs. Label smoothing is set to 0.05, and gradient clipping is fixed at 1.0
to stabilize training. The learning rate follows a warm-up schedule with 100 warm-up steps by default.

All experiments are conducted five times with different random seeds. The batch size is set to 256 by default.
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B.3. Model Configurations

We perform hyperparameter search over the following ranges: learning rate {1e-2, 5e-3, 1e-3}, positional embedding
dimension {4, 8, 20}, dropout {0.1, 0.3, 0.5}, weight decay {1e-2, 0}, and weighting coefficient λ ∈ {0.1, 0.5, 1.0}. For
pattern sampling, we set p = 1, q = 1 by default (see Appendix G for details). The model configuration includes a hidden
dimension of 256, 4 attention heads, and 1 transformer layer. The selected hyperparameters are summarized in Table 6.

Table 6. Hyper-parameter settings on predictive tasks.
PRODUCTS COMPUTER ARXIV WIKICS CORAFULL DEEZER BLOG FLICKR FLICKR-S

Task Node Node Node Node Node Node Node Node Node

Learning Rate 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.01 0.005
Dropout 0.3 0.1 0.1 0.5 0.1 0.1 0.1 0.5 0.3
Decay 0 0.01 0 0.01 0 0 0.01 0.01 0.01
Batch Size 256 256 256 256 256 256 256 256 256
PE Type Lap Lap Lap Lap Lap Lap Lap Lap Lap
PE Dim 4 8 4 8 8 16 16 8 4
AP Encoder MEAN GRU GRU GRU GRU GRU GRU MEAN GRU
λ 0.5 0.5 1 1 1 0.5 0.1 0.5 0.5

CORA PUBMED OGBL-COLLAB IMDB-B COLLAB REDDIT-M5K REDDIT-M12K ZINC ZINC-FULL
Task Link Link Link Graph Graph Graph Graph Graph Graph

Learning Rate 0.001 0.01 0.01 0.001 0.01 0.001 0.005 0.01 0.01
Dropout 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Decay 0 0.01 0 0 0 0 0.01 0 0
Batch Size 256 256 256 1024 1024 1024 256 1024 1024
PE Type Lap Lap Lap RW RW RW RW RW RW
PE Dim 4 4 4 8 4 8 8 8 8
AP Encoder GRU GRU GRU MEAN MEAN MEAN GRU GRU GRU
λ 0.5 1 0.5 0.1 0.1 0.1 0.1 1 1

B.4. Architectures in Model Scaling Analysis

In our scalability analysis (Section 4.3), we evaluate the performance of GAT and GPM across different model scales. The
detailed model architectures and corresponding parameter counts are provided in Table 7.

Table 7. Model architectures in model scaling analysis.
Architectures of GNN (GAT in this case)

# GNN Layers 2 2 2 3 3
# Number of Heads 8 24 32 48 112
# Hidden Dimension 512 1536 2048 3072 7168

ARXIV 0.35M 2.63M 4.56M 19.44M 104.07M
PRODUCTS 0.34M 2.6M 4.52M 19.37M 103.92M

Architectures of GPM

# Transformer Layers 1 1 3 3 3
# Number of Heads 4 4 4 8 16
# Hidden Dimension 64 256 256 512 1024

ARXIV 0.19M 2.94M 4.52M 20.04M 96.72M
PRODUCTS 0.21M 3.21M 4.79M 21.12M 100.96M

C. Proof
C.1. Proof of Proposition 3.2

We prove the proposition by introducing the following theorem first.
Theorem C.1 (Theorem 1 of (Micali & Zhu, 2016)). Given a graph G = (V, E), one can reconstruct B(v, k) = (V ′, E ′),
where n = |V ′|,m = |E ′|, the ego-graph induced by node v ∈ V with k radius, via an anonymous walk distribution Dl,
where l = O(m) starting at node v.
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As stated in the theorem, let Dl denote the distribution of anonymous walks sampled from a node v. This distribution is
sufficient to represent the complete k-hop ego-graph induced from v, B(v, k) = (V ′, E ′), where l = O(|E ′|). In other words,
if a set of patterns {ϕ1, ϕ2, . . . } can approximate Dl, this set can be used to reconstruct the corresponding ego-graph. Thus,
for each node, a set of l-length patterns is sufficient to reconstruct its respective k-hop ego-graph.

Next, we consider the scenario where a task requires information from the k-hop ego-graph B(v, k). Given that the ego-graph
distribution of each node can be reconstructed via anonymous walks, it becomes feasible to compare these distributions to
assess whether node representations are distinguishable. In general, the k-hop ego-graph distributions of two nodes u and v
are distinct unless they represent the same structural phenomena. Consequently, the corresponding pattern sets {ϕu

1 , ϕ
u
2 , . . . }

and {ϕv
1, ϕ

v
2, . . . } are also distinct, ensuring that each node retains a unique and distinguishable topological representation.

C.2. Proof of Proposition 3.3

As discussed, any graph pattern can be represented as a combination of a semantic path, which captures semantic information
(i.e., the specific nodes forming the pattern), and an anonymous path, which encodes topological structure (i.e., the overall
pattern structure). To effectively extract both types of information, these two paths can be encoded separately, preserving
semantic meaning and structural insight independently.

To ensure lossless compression, we employ bijective mappings to project these paths, guaranteeing that distinct paths
maintain unique representations. Given a semantic path w and its corresponding anonymous path ϕ, we introduce two
bijective projections: ρs : w → ps for semantic encoding and ρa : ϕ → pa for structural encoding. Consequently, to
comprehensively encode a given graph pattern, both the semantic and anonymous paths must be jointly represented.

C.3. Proof of Theorem 3.4

We outline the proof by first (1) establishing the expressiveness of a simplified variant of GPM and (2) extending this result
to the general case.

The learning process of GPM consists of three key steps: (1) Extracting n patterns using l-length random walks, where each
pattern is uniquely defined by its semantic path w and anonymous path ϕ. (2) Encoding the semantic and anonymous paths
separately using neural networks and combining their representations. (3) Passing the encoded graph patterns through a
transformer for final predictions.

To analyze expressiveness, we consider a simplified variant of GPM with the following modifications: (1) Setting n = 1. (2)
Replacing neural networks with universal and injective mappings ρs and ρa. (3) Using a mean aggregator over encoded
patterns instead of a transformer.

Under this setting, the model is essentially trained on a single l-length path w. Additionally, we impose the following mild
assumptions:
Assumption C.2. The graphs are connected, unweighted, and undirected.
Assumption C.3. The walk length l is sufficiently large.

Given these assumptions, the simplified GPM can distinguish non-isomorphic graphs, as stated in the following theorem.
Theorem C.4 (Theorem 4 of Wang & Cho (2024)). Up to the Reconstruction Conjecture, encoding the l-length random
walks (combining semantic path and anonymous path) produces distinct embeddings for non-isomorphic graphs.

The key insight is that for any two non-isomorphic graphs, the distributions of infinite-length random walks over these
graphs are distinct, regardless of the starting points. Moreover, universal and injective mappings ensure that each unique
random walk is projected into a unique point in the embedding space. Wang & Cho (2024) establishes this theorem by
(1) proving it for the simplest case where the graph size is 3, and (2) using induction to extend the proof to graphs of
size n − 1 and n. Based on this theorem, it is straightforward to demonstrate that the simplified GPM can distinguish
any non-isomorphic graphs, provided the reconstruction conjecture holds. Next, we generalize the simplified case to the
proposed GPM framework.

(1) The simplified case assumes n = 1 with a sufficiently large walk length l, whereas GPM operates with n > 1. Since
random walks can start from any node in the graph, an l-length random walk can be split into k segments (k is large
enough), each of length l/k. Each sub-walk can be encoded individually and later combined to approximately form the final
embedding. Note that We did not mean to suggest that long walks can be fully reconstructed from shorter ones, especially
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since anonymous walks cannot preserve node identity across segments. Rather, we intended to describe an approximate
strategy, where long walks are segmented into shorter sub-walks, each encoded independently. This design allows the
transformer to aggregate distributed long-range information across these sub-patterns. (2) GPM employs neural networks
as encoders, which are inherently universal and injective, satisfying the requirements of the mappings ρs and ρa used in
the simplified case. (3) Finally, while the simplified case uses a mean aggregator over encoded patterns, GPM adopts a
transformer architecture for aggregation. The self-attention mechanism in transformers generalizes the mean aggregator,
which can be seen as a special case of the transformer.

By these generalizations, we establish that GPM can distinguish any connected, unweighted, and undirected non-isomorphic
graphs, given a sufficient number of graph patterns.

C.4. Proof of Theorem 3.5

The proof follows the same structure as Theorem 3.4: (1) Defining a simplified variant of GPM, (2) Proving the theorem on
this simplified model, and (3) Extending the results to the general case.

To ensure the proof is self-contained, we reintroduce the design of the simplified variant and its extension to the full model.

The simplified variant of GPM includes the following modifications: (1) Replacing neural networks with universal and
injective mappings ρs and ρa. (2) Using a mean aggregator over encoded patterns instead of a transformer.

Under the same assumptions as in Theorem 3.4, namely: (1) The graphs are connected, unweighted, and undirected, and (2)
The number of sampled patterns is sufficiently large, we apply the following corollary to directly prove Theorem 3.5 for the
simplified case.

Theorem C.5 (Corollary 4.1 of Wang & Cho (2024)). Up to the Reconstruction Conjecture, two graphs G1,G2 labeled as
non-isomorphic by the k-WL test is the necessary, but not sufficient condition that encoding the k-length random walks
sampled from these two graphs produces the same embedding.

In other words, if the k-WL test distinguishes two graphs, then the simplified GPM variant can also distinguish them.
However, the converse does not necessarily hold—if the simplified GPM distinguishes two graphs, the k-WL test may fail
to do so.

To generalize from the simplified case to the full GPM model, we follow the same strategy as in the proof of Theorem 3.4:
(1) Replacing the universal and injective mappings with neural network encoders, and (2) Substituting the mean aggregator
with a transformer architecture.

D. Complexity
We analyze the time complexity of three key components: pattern sampling, pattern encoding, and transformer encoding.
For a single instance, k random walks of length l are sampled, resulting in a sampling complexity of O(k · l), where l2 ≈ k
empirically. Pattern encoding involves three alternative encoders: the mean encoder with complexity 2×O(k), the GRU
encoder with complexity 2 × O(k · l), and the transformer encoder with complexity 2 × O(k · l2) (note both semantic
and anonymous paths should be encoded). The tranformer encoder over encoded graph patterns introduces an additional
complexity of O(k2). Thus, the maximum total complexity per instance is

O(k · l) + 2×O(k · l2) +O(k2) ≈ O(k2).

We compare this complexity to that of existing graph transformers for both node-level and graph-level tasks. For node
classification, GPM’s time complexity for encoding all nodes in a graph is O(n · k2), where n is the number of nodes, and
k2 ≪ n. In contrast, existing graph transformers incur O(n2) complexity, which scales quadratically with the number of
nodes. For graph classification, GPM’s complexity for encoding all graphs is O(m · k2), where m is the number of graphs.
In comparison, existing graph transformers require O(m · n2), where n is the average number of nodes per graph.
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E. How Does GPM Surpass Message Passing?
E.1. Empirical Effectiveness

Beyond theoretical analysis, we provide an empirical evaluation on three benchmark datasets specifically designed to
challenge graph isomorphism tests. The CSL dataset (Murphy et al., 2019) comprises 150 4-regular graphs that are
indistinguishable using the 1-WL test. The EXP dataset (Abboud et al., 2021) includes 600 pairs of non-isomorphic graphs
that cannot be distinguished by either the 1-WL or 2-WL tests. Lastly, the SR25 dataset (Balcilar et al., 2021) contains 15
strongly regular graphs with 25 nodes each, which remain indistinguishable even under the 3-WL test. The experimental
results, summarized in Table 8, demonstrate that GPM successfully distinguishes all graphs across these datasets, empirically
surpassing the 3-WL test. In contrast, many existing models fail on these tasks.

Table 8. Empirical expressiveness analysis.

CSL EXP SR25

GCN (Kipf & Welling, 2017) 10 51.9 6.7
GatedGCN (Bresson & Laurent, 2017) 10 51.7 6.7
GraphTrans (Dwivedi & Bresson, 2020) 10 52.4 6.7

3-GNN (Morris et al., 2019) 95.7 99.7 6.7
GIN-AK+ (Zhao et al., 2022) - 100 6.7
GraphViT (He et al., 2023) 100 100 100
ESC-GNN (Yan et al., 2024) 100 100 100

GPM 100 100 100

E.2. Tackling Over-Squashing

Another limitation of message passing is their focus on localized information, which prevents them from effectively
capturing long-range dependencies within graphs. In contrast, GPM demonstrates superior capability in modeling long-range
interactions. Following He et al. (2023), we evaluate this capability using the TREENEIGHBORSMATCHING benchmark
introduced by Alon & Yahav (2021). This dataset comprises binary trees, with the objective being to classify the root node
based on its degree. The degree information is maintained within the leaf nodes, and successful classification of the root
node requires the model to capture r-radius information, where r is the depth of the tree.

As shown in Figure 7, we report the training accuracy following Alon & Yahav (2021) to evaluate the model’s fitting ability.
Notably, message passing GNNs and RUM (Wang & Cho, 2024) fail to perfectly fit the data, exhibiting over-squashing
effects as early as r = 4. In other words, these models fail to distinguish between different training examples, even when
these examples are observed multiple times. In contrast, GPM achieves perfect data fitting across all problem radiuses. This
is attributed to its ability to directly learn long-range patterns sampled via random walks.

To provide a clearer understanding, we present a brief example illustrating how GPM mitigates over-squashing in such
scenarios. Recall that the correlation between node labels and degrees is encoded within the leaf nodes, where the features
of the leaf nodes are a combination of their degrees and labels (for simplicity). Even the simplest variant of GPM (without
anonymous path encoding or node positional embeddings) has the potential to solve this problem. Specifically, given a tree
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Figure 7. Over-squashing analysis.
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with radius r, we randomly sample k random walks of length r and encode these walks using transformer. In the optimal
(and empirically observed) case, the encoded pattern embeddings accurately capture the features of the leaf nodes, i.e., the
combination of node features and labels. At this stage, the model effectively reduces the task to a basic matching problem:
given multiple sets of (node degree, label) pairs, it predicts the label of the root node based on its degree. This matching task
is straightforwardly handled by neural networks, such as the transformer architecture employed in our work.

F. Additional Experimental Results and Discussions
F.1. Additional Discussion on Distribution Training

We use GraphSAGE as the GNN baseline, fixing the batch size to 256 and the number of training epochs to 10. Distributed
GNN training follows the graph partitioning without replication strategy (Cai et al., 2021), where the graph is divided
into non-overlapping partitions using the METIS library (Karypis, 1997). Each GPU processes a single partition, and
peer-to-peer communication is used to exchange learned node embeddings among GPUs.

Due to resource limitations, our experiments are conducted on a single machine equipped with four Nvidia A40 GPUs,
which does not reflect acceleration performance in multi-machine distributed settings. However, Shoeybi et al. (2019)
demonstrated that the scalability of transformer architectures improves consistently with an increasing number of compu-
tational devices. In contrast, Cai et al. (2021) showed that the graph partitioning without replication strategy introduces
substantial communication overhead in GNNs as the number of GPUs increases. Specifically, Cai et al. (2021) (Figure 2)
reports that when scaling to 16 GPUs, the training becomes slower than with just 2 GPUs due to communication overhead
dominating time consumption.

These findings highlight the advantages of GPM, which using tranformer as backbone, over message passing GNNs for
distributed training, particularly in scenarios with a large number of devices.

F.2. Model Component Ablation

To verify the contribution of key components in GPM, we conduct several ablation studies, as summarized in Table 9.

Impact of Positional Embeddings and Anonymous Paths. We investigate the role of positional embeddings and
anonymous paths in GPM. While both provide topological insights, positional embeddings primarily capture node-level
structural information (i.e., the relative position of a node within the graph), whereas anonymous paths encode structural
characteristics of patterns (i.e., the identity and structure of the pattern itself). As shown in Table 9, incorporating positional
embeddings and anonymous paths improves model performance. However, the effect of positional embeddings is relatively

Table 9. Full results on model component ablation.
PRODUCTS COMPUTER ARXIV WIKICS CORAFULL DEEZER BLOG

Task Node Node Node Node Node Node Node

C
om

p.

GPM 82.62 ± 0.39 92.28 ± 0.39 72.89 ± 0.68 80.19 ± 0.41 71.23 ± 0.51 67.26 ± 0.22 96.71 ± 0.59
w/o PE 82.47 ± 0.21 91.89 ± 0.64 72.59 ± 0.23 80.02 ± 0.43 70.71 ± 0.50 67.82 ± 0.39 96.38 ± 0.60
w/o AP 81.99 ± 0.68 91.83 ± 0.55 72.47 ± 0.40 79.56 ± 0.43 70.42 ± 0.36 66.90 ± 0.17 92.10 ± 1.72
w/o PE & AP 80.74 ± 0.65 91.14 ± 0.30 71.40 ± 0.76 79.89 ± 0.41 70.69 ± 0.48 66.24 ± 0.62 90.74 ± 1.06

SP
E

nc Mean 80.42 ± 0.48 91.11 ± 0.49 72.08 ± 0.66 79.82 ± 0.42 71.25 ± 0.54 64.62 ± 0.21 90.58 ± 0.48
GRU 80.91 ± 0.33 90.05 ± 0.71 72.23 ± 0.41 79.54 ± 0.41 70.92 ± 0.56 65.88 ± 0.11 91.88 ± 2.93
Transformer 82.62 ± 0.39 92.28 ± 0.39 72.89 ± 0.68 80.19 ± 0.41 71.23 ± 0.51 67.26 ± 0.22 96.71 ± 0.59

FLICKR FLICKR-S OGBL-COLLAB IMDB-B COLLAB REDDIT-M5K REDDIT-M12K
Task Node Node Link Graph Graph Graph Graph

C
om

p.

GPM 52.22 ± 0.19 89.41 ± 0.47 49.70 ± 0.59 82.67 ± 0.47 80.70 ± 0.74 51.87 ± 1.04 43.07 ± 0.29
w/o PE 52.26 ± 0.20 88.45 ± 0.80 49.59 ± 0.65 79.00 ± 1.63 78.00 ± 1.07 50.88 ± 0.78 41.73 ± 0.83
w/o AP 51.52 ± 0.12 88.14 ± 0.53 48.43 ± 0.97 80.48 ± 2.18 78.33 ± 0.24 49.08 ± 1.51 39.73 ± 1.09
w/o PE & AP 51.39 ± 0.01 87.70 ± 0.40 48.24 ± 0.97 81.33 ± 3.30 75.40 ± 0.99 48.73 ± 0.25 39.50 ± 0.46

SP
E

nc Mean 51.43 ± 0.06 89.86 ± 0.26 47.83 ± 1.00 83.33 ± 0.94 76.27 ± 0.47 47.30 ± 2.39 40.78 ± 0.31
GRU 51.12 ± 0.06 90.13 ± 0.31 48.12 ± 0.55 82.00 ± 2.83 74.00 ± 1.57 47.12 ± 1.44 42.44 ± 0.83
Transformer 52.22 ± 0.19 89.41 ± 0.47 49.70 ± 0.59 82.67 ± 0.47 80.70 ± 0.74 51.87 ± 1.04 43.07 ± 0.29
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marginal, while the impact of anonymous paths is more pronounced. This discrepancy suggests that GPM, which learns
from graph patterns rather than individual nodes, benefits more from understanding the structural composition of patterns
than from knowing the specific locations of nodes within them. Notably, when both components are removed, model
performance deteriorates significantly, highlighting the necessity of topological information for effective learning.

Impact of Semantic Path Encoders. We analyze the effect of different semantic path encoders, including Mean, GRU, and
Transformer. The Transformer encoder achieves the best performance on 11 out of 14 datasets, owing to its inherent ability
to model both localized and long-range dependencies. Comparing Mean and GRU, we observe that GRU outperforms Mean
on heterophilous graphs (e.g., Deezer, Blog, Flickr-S), likely due to its recurrent structure, which better captures long-range
dependencies in the data.

F.3. Additional Discussion on Learning Strategies

Multi-Scale Learning. Table 10 presents the model performance with and without multi-scale training. The results demon-
strate that multi-scale training generally enhances performance across various tasks, with the exception of heterophilous
graphs (Blog, Flickr, Flickr-S). This suggests that sampling graph patterns of varying sizes effectively captures different
levels of information dependencies. However, in heterophilous graphs, which inherently favor long-range dependencies,
sampling smaller patterns may overemphasize localized structures, leading to performance degradation.

Table 10. Impact of multi-scaling training.
PRODUCTS COMPUTER ARXIV WIKICS CORAFULL DEEZER BLOG

Task Node Node Node Node Node Node Node

GPM 82.62 ± 0.39 92.28 ± 0.39 72.89 ± 0.68 80.19 ± 0.41 71.23 ± 0.51 67.26 ± 0.22 96.71 ± 0.59
w/o multi-scale 82.44 ± 0.20 91.00 ± 0.42 71.79 ± 0.40 80.05 ± 0.32 62.55 ± 0.52 64.56 ± 0.16 97.02 ± 0.47

FLICKR FLICKR-S OGBL-COLLAB IMDB-B COLLAB REDDIT-M5K REDDIT-M12K
Task Node Node Link Graph Graph Graph Graph

GPM 52.22 ± 0.19 89.41 ± 0.47 49.70 ± 0.59 82.67 ± 0.47 80.70 ± 0.74 51.87 ± 1.04 43.07 ± 0.29
w/o multi-scale 52.26 ± 0.14 90.68 ± 0.79 48.30 ± 0.39 82.33 ± 1.89 77.73 ± 0.90 47.87 ± 0.98 41.46 ± 0.40

Test-Time Augmentation. Table 11 presents the impact of test-time augmentation in GPM. We evaluate three variants: (1)
# Train=16, # Infer=128, where 16 patterns are used during training and 128 during inference (the default setting); (2) #
Train=16, # Infer=16, which uses 16 patterns for both training and inference, serving as the lower bound of GPM; and (3) #
Train=128, # Infer=128, where 128 patterns are used in both training and inference, representing the upper bound of GPM.

Comparing # Train=16, # Infer=16 with # Train=128, # Infer=128, we observe that increasing the number of patterns
significantly improves performance but also incurs substantial computational overhead (Table 12). To balance high
performance with computational efficiency in training, we adopt # Train=16, # Infer=128, where fewer patterns are
used during training while maintaining a larger number during inference. Interestingly, in some cases, this variant even
outperforms # Train=128, # Infer=128, possibly due to the reduced risk of overfitting of fewer patterns in training.

Table 11. Impact of test-time augmentation.
PRODUCTS COMPUTER ARXIV WIKICS CORAFULL DEEZER BLOG

Task Node Node Node Node Node Node Node

# Train=16 # Infer=128 82.62 ± 0.39 92.28 ± 0.39 72.89 ± 0.68 80.19 ± 0.41 71.23 ± 0.51 67.26 ± 0.22 96.71 ± 0.59
# Train=16 # Infer=16 80.89 ± 0.23 90.10 ± 0.48 69.90 ± 0.00 78.45 ± 0.55 62.57 ± 0.35 64.54 ± 0.27 86.53 ± 0.57
# Train=128 # Infer=128 82.39 ± 0.50 92.54 ± 0.74 72.42 ± 0.00 80.83 ± 0.50 71.24 ± 0.06 67.71 ± 0.09 96.48 ± 0.24

FLICKR FLICKR-S OGBL-COLLAB IMDB-B COLLAB REDDIT-M5K REDDIT-M12K
Task Node Node Link Graph Graph Graph Graph

# Train=16 # Infer=128 52.22 ± 0.19 89.41 ± 0.47 49.70 ± 0.59 82.67 ± 0.47 80.70 ± 0.74 51.87 ± 1.04 43.07 ± 0.29
# Train=16 # Infer=16 50.07 ± 0.08 81.15 ± 1.42 47.30 ± 0.69 81.33 ± 1.25 76.27 ± 0.38 44.53 ± 0.81 39.12 ± 0.62
# Train=128 # Infer=128 52.85 ± 0.28 89.28 ± 0.42 49.92 ± 0.53 82.87 ± 3.05 80.93 ± 0.81 51.27 ± 0.93 43.27 ± 0.04
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Table 12. Training time (second per epoch) and acceleration of using less patterns.

PRODUCTS COMPUTER ARXIV WIKICS FLICKR

# Train = 128 682.07s 19.15s 179.78s 0.92s 83.36s
# Train = 16 44.58s 1.22s 12.84s 0.08s 5.54s

Acceleration ×15.30 ×15.70 ×14.00 ×11.50 ×15.05

G. GPM Automatically Learns Data Dependencies
Graph datasets often exhibit a mixture of localized and long-range dependencies. While social networks are commonly
assessed to preserve localized dependencies (Granovetter, 1973; Liben-Nowell & Kleinberg, 2003), certain tasks demand
an understanding of long-range dependencies. For instance, detecting rumor spreaders involves tracing information flow
across the network (Bian et al., 2020), as rumors can propagate through multiple intermediaries, with the origin potentially
disconnected from many affected nodes.

Leveraging the transformer architecture, GPM can automatically identify dominant patterns (no matter localized or long-
range) relevant to downstream tasks. This capability allows the model to learn the underlying data dependencies within the
graph. Such a property not only reduces the need for extensive hyperparameter tuning, where other models might require
different hyperparameter settings to capture varying dependencies, but also enhances overall performance.

We conduct experiments on the PRODUCTS dataset. By leveraging biased random walks for pattern sampling, we control
the sampling bias to generate mixed (p = 1, q = 1), localized (p = 0.1, q = 10), or long-range (p = 10, q = 0.1) patterns.
Figure 5 presents the training loss and testing accuracy under these settings. The results show that models using unbiased
random walks (p = 1, q = 1), which uniformly sample patterns with both localized and long-range dependencies, achieve
the best performance. This validates that the model can autonomously determine the importance of different patterns. In
contrast, when data dependencies are pre-determined (p = 0.1, q = 10 or p = 10, q = 0.1), the model may fail to capture
the most relevant patterns for each instance, leading to degraded performance.

An intriguing and counterintuitive observation is that models utilizing long-range patterns outperform those relying on
localized patterns, even on graphs with high homophily ratios. This phenomenon, consistently observed across other datasets,
can be attributed to the large degree of duplication in sampled localized patterns, which arises from the long-tail degree
distribution of nodes. Such duplications hinder the model to identify truly dominant patterns, impairing performance. In
contrast, long-range patterns, while containing more noise, are less redundant and have a higher probability of including the
dominant patterns. However, the noise inherent in long-range sampling still prevents optimal performance. Based on these
observations, we hypothesize that unbiased sampling achieves a balance between redundancy and noise, enabling the model
to learn more effectively.

H. Model Interpretation on COMPUTERS

See Figure 8.
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Figure 8. The top-10 important patterns associated to the certain nodes.
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