

SEEING THROUGH LANGUAGE: HOW TEXT REVEALS OBJECT AND STATE BIAS IN VLMS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Vision-Language models (VLMs) have demonstrated strong performance across a variety of multimodal benchmarks though not without internal biases. Little is known about how VLMs balance sensitivity to object identity versus object state. In this work, we systematically investigate object-state bias in VLMs by evaluating a broad set of models spanning diverse architectures and sizes. To enable controlled analysis, we introduce the Benchmark for Biases in Objects and States (BBiOS) dataset containing objects in both their original and transformed states. Across a variety of experiments, we examine model performance on recognizing objects, states, and their interactions. Our results reveal a consistent object bias, where models reliably recognize object categories but struggle to accurately capture states. Furthermore, attempts to steer models toward greater state sensitivity through prompting or injecting oracle information yield only marginal improvements. These findings highlight a fundamental limitation in current VLMs, suggesting that different training strategies or architectural innovations are required to reduce object-state bias in multimodal reasoning.

1 INTRODUCTION

Vision-Language models (VLMs) have achieved remarkable performance across a range of multimodal tasks (Dai et al., 2023; Li et al., 2024b), including image captioning(Alayrac et al., 2022; Mokady et al., 2021) and visual question answering(Li et al., 2023; Liu et al., 2023). These models leverage large-scale paired image-text datasets to learn a joint representation of visual and linguistic concepts. However, despite their success, a growing body of work shows that VLMs inherit and often amplify biases embedded in their training data(Huang et al., 2025; Zhou et al., 2022; Hirota et al., 2022; Hazirbas et al., 2024; Srinivasan & Bisk, 2022).

Biases in VLMs manifest in different ways. On the one hand, models tend to reinforce social and cultural stereotypes in their generated captions, for example, by associating certain roles or activities with specific genders or cultures (Hamidieh et al., 2024; Hirota et al., 2023). On the other hand, VLMs display a tendency to prioritize frequent categories while neglecting rare or nuanced occurrences (Parashar et al., 2024; Wang et al., 2024b; Shi et al., 2024a). Text attribution plays an important role in this problem, because captions or textual labels in training datasets are used as the primary signal for linking images and language. The way objects, actions, or states are described affects the model’s semantic understanding (Zhao et al., 2024; Li et al., 2025). Captions may oversimplify complex visual phenomena or omit important context resulting in different model behaviours (Ye et al., 2025; Dong et al., 2024). These limitations not only affect the model’s perfor-

Which of one of these options describes the primary **object** in the image correctly ?

Apple Banana Onion Sliced Peeled Raw

Which of one of these options describes the primary **state** in the image correctly ?

Apple Banana Onion Sliced Peeled Raw

Which of one of these options describes the image correctly?

- This is an image of raw onion
- This is an image of sliced banana
- This is an image of raw apple
- This is an image of peeled onion
- This is an image of raw banana
- This is an image of peeled apple
- **This is an image of sliced onion**
- This is an image of peeled banana
- This is an image of sliced apple

Figure 1: We investigate how VLMs are biased towards objects across different experimental setups using a new dataset benchmark. VLMs consistently achieve higher object accuracies than state accuracies.

054 mance but also limit generalization which can have detrimental effects on downstream tasks (Segalis
 055 et al., 2023; Shi et al., 2024b).

056 Object State Change (OSC), which is vital for a wide range of applications such as activity recogni-
 057 tion and robotic manipulation is becoming a more common task. Traditionally, models focused
 058 on a limited set of known state changes within a predefined vocabulary, which constrains their ef-
 059 fectiveness in real-world scenarios (Alayrac et al., 2017; Aboubakr et al., 2019). Recent efforts aim
 060 to develop more flexible and generalized approaches capable of identifying object state changes in
 061 open and unconstrained environments in order to increase robustness of such systems (Xue et al.,
 062 2024; Pan et al., 2025).

063 Despite these advances, VLMs’ ability to handle object states remains limited. In a recent
 064 study Newman et al. (2024) introduce the ChangeIt-Frames dataset to test whether open-source
 065 VLMs encode the state of an object (e.g. a whole apple vs sliced apple). The results show that
 066 while these models perform reliably for object recognition, they consistently fail to identify ob-
 067 jects’ states. Another recent study, Kawaharazuka et al. (2024) further illustrates the challenge in
 068 real-world applications. Instead of treating states as discrete categories, this study investigates con-
 069 tinuous changes such as butter melting and onions frying. The authors show that without additional
 070 optimization, VLMs often misinterpret these states.

071 This paper explores object and state bias in VLMs to understand how different models are effected.
 072 Figure 1 summarizes the framework used to examine object and state bias. A new benchmark is
 073 created to investigate this phenomenon consisting of images of kitchen ingredients in different states.
 074 We specifically focus on kitchen ingredients because their states are often visually distinct allowing
 075 for objective evaluation of the object-state bias in addition to having a many-to-many relationship
 076 between objects and states, i.e. potatoes and carrots can both be peeled and sliced. By systematically
 077 examining how models predict ingredients and their states, we highlight the gap in current VLMs
 078 and investigate how these biases may limit the performance for downstream tasks which require
 079 fine-grained reasoning.

080 Our contributions are as follows: (i) We introduce the Benchmarking Bias in Object State (BBiOS)
 081 dataset for evaluating object and state bias, the first of its kind. (ii) We present a framework for
 082 measuring the object and state biases across various VLM architectures. (iii) We evaluate the im-
 083 pact of these biases on the downstream task of visual reasoning across **24 VLMs**. (iv) We show
 084 that steering and injected oracle knowledge does not solve the object bias, demonstrating inherent
 085 representation/training data issue.

087 2 RELATED WORK

089 2.1 SOCIAL BIASES

091 Recent studies show that Vision-Language Models (VLMs) trained on large web data inherit and
 092 amplify social biases. Ruggeri et al. (2023) provide a multi-dimensional bias analysis (gender, eth-
 093 nicity, age) of VLMs and find that pre-trained models frequently produce stereotypical outputs. For
 094 example, when prompted with neutral image-based templates, VLMs produced derogatory contin-
 095 uations approximately 5% of the time, with a disproportionate focus on images depicting women
 096 and young people. Similarly Baherwani & Vincent (2024) shows that CLIP’s embeddings of face
 097 images encode gender and racial stereotype: e.g., CLIP more often predicts the trait “smart” for
 098 images of Indian men than for others. Hausladen et al. (2025) reports that CLIP’s social perception
 099 scores for faces are strongly affected by a person’s age, gender, and race, with especially extreme
 100 values for images of black women. Girrbach et al. (2025) finds that VLMs such as LLaVA and
 101 InternVL display gender and occupational associations where, depending on the occupation, more
 102 positive skills and traits are attributed to women and more negative traits to men. The VisoGender
 103 benchmark (Hall et al. (2023) similarly finds that state-of-the-art VLMs show significant gender bias
 104 when resolving pronouns or occupations from images.

105 2.2 SHAPE AND TEXTURE BIAS

106 Bias in visual representations is not limited to social or cultural biases, but also appears in how
 107 models weigh different visual cues. A useful analogy for understanding object-state bias is the

108 longstanding study of shape vs texture bias in vision models. Just as object-state bias reflects the
 109 tendency of models to overemphasize object identity while under-representing object state, shape-
 110 texture bias reflects a preference of one visual cue over another. (Geirhos et al. (2018)) showed
 111 that standard CNNs trained on ImageNet are strongly texture biased, whereas human vision is shape
 112 biased. For instance, CNNs often classify an image of a “cat” with elephant skin texture as “ele-
 113 phant”, showing reliance on local patterns rather than global shape. More recent studies extend this
 114 question to VLMs. (Gavrikov et al. (2025)) demonstrate that contrastive multimodal models like
 115 CLIP display a higher shape bias than the vision only CNNs, suggesting that pairing images with
 116 language directs model’s attention to the global object shape. However, VLMs still underperform
 117 humans, achieving shape recognition at only 50 - 70% compared to 96% in humans. Critically, they
 118 also find that the bias is steerable through language. By modifying prompts the shape recognition
 119 shifts from 49% to 72%, underscoring the influence of the text modality on visual biases. Contrary
 120 to this, in our experiments, we find that steering does not solve the object bias issue.

121 2.3 OBJECT STATE CHANGE

123 Early works such as Isola et al. (2015)) introduced the idea of pairing objects with state descriptors
 124 (e.g., ripe apple, broken glass) but its coverage was limited and imbalanced. Newman et al. (2024)
 125 introduced the ChangeIt-Frames dataset which consists of 25,735 images from instructional videos
 126 covering 96 object states. While the dataset covers a wide range of objects, most of these objects are
 127 only presented in two states with some of these states being visually very similar. Evaluating nine
 128 open source VLMs, they found a consistent drop from object recognition 90-95% to state recognition
 129 60 - 65% in zero-shot setting.

130 More recent datasets have moved toward video-based settings and finer-grained tasks yet significant
 131 gaps remain. Manousaki et al. (2024)) builds on the Ego4D dataset by proposing the OSCA bench-
 132 mark for anticipating future state changes in egocentric video. While it offers large-scale, real-world
 133 data, many of the object categories are represented in only a handful of states. Similarly, Yu et al.
 134 (2023) poses state change as a segmentation problem, requiring models to segment objects before
 135 and after a transformation. Although it introduces a challenging video segmentation task, the range
 136 of objects and states is again limited. Another line of work, Tateno et al. (2025)) tackles multiple
 137 object states and their transitions by introducing multi-label annotations for six object categories
 138 across 60 state types. This increases state diversity, but at the cost of object coverage, leaving most
 139 objects and their transformation unrepresented. Xue et al. (2024)) aims for broader generalization
 140 by localizing open-world object state changes in instructional videos. Recent work has also tar-
 141 geted segmentation and manipulation-centric tasks. Tokmakov et al. (2023)) explores how objects
 142 undergoing physical transformation challenge standard video object segmentation. Most recently
 143 Mandikal et al. (2025)) introduces a new benchmark consolidating prior ideas into a large-scale
 144 resource, yet even here the object-state distribution is far from complete.

145 A common limitation across these datasets is their restricted coverage of object-state combination.
 146 Many focus on a small set of objects or a narrow group of states. This creates distributional biases
 147 that encourage models to rely on frequent states rather than generalize to unseen transformation.
 148 Importantly in the kitchen domain where state changes are both frequent and highly varied diverse
 149 object-state transformations annotations remain underrepresented. While datasets contain cooking
 150 scenes, annotated coverage of diverse objects and rare cooking transformations is sparse.

151 In summary, existing benchmarks provide valuable testbeds for evaluating aspects of state change
 152 understanding, but none yet achieve broad and balanced coverage across diverse objects and states.
 153 This limitation constraints our ability to measure object-state bias in VLMs.

154 3 BBIOS DATASET AND BENCHMARK DESIGN

155 3.1 COLLECTION PROCESS

156 To ensure a comprehensive evaluation we develop and collect a new dataset allowing us to isolate
 157 specific objects/states and curate multiple states per object. As mentioned previously, we focus on
 158 objects and states from a single domain, i.e. cooking, so that there is a many-to-many relationship
 159 between objects and states. We choose the VidOSC dataset Xue et al. (2024) as a starting point
 160 for two reasons: Firstly, frames containing objects and states represent an in-the-wild setting where

162
163

	Fried	Grated	Mashed	Melted	Peeled	Raw	Shredded	Sliced
164 Apple		✓			✓	✓		✓
165 Avocado			✓		✓	✓		✓
166 Banana	✓		✓		✓	✓		✓
167 Carrot		✓			✓	✓		✓
168 Chicken	✓					✓	✓	✓
169 Chocolate		✓		✓		✓		✓
170 Cucumber		✓			✓	✓		✓
171 Egg	✓				✓	✓		✓
172 Eggplant	✓				✓	✓		✓
173 Garlic	✓	✓			✓	✓		✓
174 Ginger	✓	✓			✓	✓		✓
175 Lemon	✓				✓	✓		✓
176 Onion	✓	✓			✓	✓		✓
177 Potato	✓	✓	✓		✓	✓		✓
178 Tomato	✓		✓		✓	✓		✓
		✓			✓	✓		✓

179 **Table 1:** Overview of Objects and States within BBiOS. Each ✓ refers to 10 image samples per object-state
180 pair
181182
183
184 objects may not be centered, have a cluttered background, etc. Secondly, videos of state change
185 datasets contain both the initial, ‘raw’ state of an object and the state after the transition. For exam-
186 ple, in a video of an apple being peeled, with the initial state, which we label as ‘raw’, as well as the
187 other state (e.g. ‘peel’), representing the object state change, we can collect two separate states for
188 our benchmark dataset from a single video.189 We utilised a multi-stage, semi-automated process for speed and accuracy in creation of the dataset.
190 Firstly, we curated a list of objects and their states from the list of object and states available in the
191 VidOSC, ensuring a many-to-many relationship between objects and states and that for each object
192 the states are visually distinct and can be easily distinguished by a human. Next, we used a Large
193 Language Model (LLM), Llama3.1-70B, to recommend potential frames based on how well they
194 match to the object state(s) within the video. We started by extracting all the frames from the video
195 and then pass each frame to the model, the prompt can be found in Appendix B of the Appendix.
196 The top three frames were then reviewed by a human annotator to select the single frame that best
197 represents the object in the ‘raw’ state and in the other state. If no suitable frames were found, we
198 discard the video to ensure a high quality overall. In the case where timestamps were not available
199 for the object state changes (i.e. in the VidOSC training set), we adapt the process slightly. The
200 LLM is prompted to instead return the top 10 relevant frames, then CLIP is used to choose the three
201 frames used for manual selection. The combination of LLM and CLIP proved more effective at
202 finding clean frames which showcase the object in the correct state in comparison to solely utilising
203 the LLM across an entire video.204
205
206 3.2 BBiOS STATISTICS
207208 The collection process resulted in a curated dataset comprising of 16 distinct objects, with each
209 object having between four and six states from a total of eight states resulting in 710 overall images.
210 Importantly, we see BBiOS as a zero-shot evaluation only benchmark for object/state bias. Table 1
211 shows the combinations of objects and states within BBiOS and Fig. 2 shows examples of images
212 from the dataset. On average, each object contains roughly 45 images, whereas each state contains
213 around 90 images. A full distribution of objects and states within the dataset can be seen in Fig. 7 in
214 the Appendix. We note the non-uniform nature of the dataset due to the differing number of states
215 chosen per object even with the consistent 10 images per object-state combination. This matches
similar real-world distributions of classes, e.g. in Damen et al. (2020).

230 **Figure 2:** Examples of objects and states from the BBiOS dataset (raw, peeled, sliced).
 231
 232
 233

3.3 EXPERIMENTAL DESIGN AND METRICS

234 We formulate the experiments as a classification task in which models select the appropriate answer
 235 from a set of classes. With dual-encoder (i.e. CLIP) methods, we utilise the zero-shot prediction
 236 paradigm from Radford et al. (2021), whereas for LLM-based models we use a closed-answer VQA-
 237 style set up as shown in Fig. 1. **All LLM generations utilized greedy decoding with a temperature**
 238 **of 0 to maximize determinism and remove stochastic noise.** Additionally, we conducted inferences
 239 on images as independent instances, avoiding batch processing to prevent potential cross-sample
 240 context leakage or parallelization errors. We design six experiments to evaluate how models may
 241 be biased towards objects or states. These can be divided into two categories based on whether the
 242 model focuses on both the object and state recognition task or is given a forced choice to predict
 243 either an object or state. We label these as Multi-Task and Forced-Choice experiments, respectively.

3.4 HUMAN BASELINE

246 To establish a baseline and validate the clarity of our dataset, we conducted a human performance
 247 study on a representative subset of images. Participants were tasked with identifying both the object
 248 and its state, achieving a consistent 87% accuracy across both Object and State Accuracy. This
 249 consistent performance demonstrates that object and state recognition are present at an equivalent
 250 level of difficulty for human observers. Furthermore, the high baseline confirms that our dataset is
 251 not inherently difficult and the the visual features required for classification of both the object and
 252 state are distinct and recognizable.

3.4.1 METRICS

253 We evaluate the models using object accuracy and state accuracy, i.e. the accuracy of model at
 254 predicting objects or states respectively. To compare the bias of the models, we plot the object
 255 accuracy and the state accuracy for a particular model – the distance from the $y = x$ line represents
 256 the bias towards either objects or states.

3.4.2 MULTI-TASK EXPERIMENTS

257 In this setting, the models are evaluated on a multi-task setup for both object and state recognition,
 258 predicting either an object and or a state or a combination of both. More formally, a model, f , will
 259 predict both an Object o , from a set of objects O , and a state s , from a set of objects S for a given
 260 input image x and text y , given as: $(o, s) = f(x, y)$. We further sub-divide these experiments based
 261 on the level of conditioning the model is given.

262 **Unconditioned State/Object:** This experiment focuses on evaluating how well the model identifies
 263 either the object or the state in isolation, without being influenced by the other. By separating the
 264 prediction, we aimed to determine whether the model exhibited any inherent bias towards recognizing
 265 objects versus states. Thus, we used one prompt for objects and one for states:

270 **Objects:** “This is an image of {object}” **States:** “This is a {state} object”
 271 where {object}/{state} refers to the different options given to the model via substitution.
 272
 273 **Conditioned State/Object:** In this experiment, we inject oracle information of the class not being
 274 predicted to see how the models may be influenced – and whether this could be used to debias model
 275 predictions. For example, when predicting the object of an image, we give the model the information
 276 of the state of the object it is trying to predict. We similarly evaluated two types of prompts:
 277
 278 **Objects:** “This is an image of [GT state] {object}” **States:** “This is an image of {state} [GT
 279 object]”
 280 where [GT object]/[GT state] refers to the GT object/state given to the model.
 281
 282 **Unconditioned Joint Prediction:** Finally, we asked the model to jointly predict the object and state
 283 for an image by predicting the tuple (o, s) out of all combinations, i.e. $(o_i, s_j) \in O \times S$. This
 284 approach determined whether models were biased towards certain combinations of objects/states
 285 and we used the following prompt: “This is an image of {state} {object}”

286 3.4.3 FORCED-CHOICE EXPERIMENTS

287 In these experiments, we force the models to choose how it classifies an image as an object or a state
 288 by giving it all possible options. More specifically, the model f predicts a single class c from the set
 289 of all objects and states, i.e. $f(x, y) = (o \vee s) \in \{O \cup S\}$. We can thus determine whether models
 290 have a preference for predicting objects or states and can attempt to steer the model via prompting
 291 towards predicting a specific class.

292 **Forced-Choice Control** This experiment acts as the control and highlights the models’ preferences
 293 on predicting either an object or a state. We use the following prompt: “Which one of these options
 294 describes the image correctly.”

295 **Forced-Choice Object Steering:** We next steered the models towards predicting the object within
 296 the image under the *forced choice setting* utilising the following prompt: “Which one of these op-
 297 tions describes the **primary object** in the image correctly.”

298 **Forced-Choice State Steering:** Finally, we steered the models to predict the state within an image
 299 using the following prompt: “Which one of these options describes the **primary state** in the image
 300 correctly.”

301 3.5 MODEL SELECTION

302 We conducted our experiments on a diverse set of **23 open source models and 1 commercial model**.
 303 These models were chosen to represent a wide spectrum of architectures, training paradigms and
 304 parameter scale, ranging from small models such as CLIP to large models with up to 90 billion
 305 parameters, e.g., Llama3.1. The **23 open source** VLMs were selected according to these criteria:
 306 **Architecture Diversity:** Covering transformer-based encoders/decoders, dual-encoder and unified
 307 multimodal architectures **Parameter Scale:** Spanning small models (<1B parameters), mid-size
 308 models (1-20B) and large models (>20B parameters) **Accessibility:** Focusing on models that are
 309 publicly available, widely cited and represent different approaches to multimodal learning. This
 310 strategy enables comparison not only across models of similar size but also across different design
 311 trends, allowing us to isolate the contributions of scale, age, and architecture on the performance.
 312 We also included **Google Gemini 2.5 Flash-Lite** (Google (2025)) to establish a baseline for com-
 313 mercial capabilities. As a representative of state-of-the-art propriety LLMs, Gemini serves as a
 314 high-performance benchmark allowing us to contextualize the results of the other selected models
 315 against current industry standards.

316 4 RESULTS

317 4.1 MULTI-TASK EXPERIMENTS

318 The Multi-Task experiments investigate how vision language models handle object and state recog-
 319 nition without explicit guidance. Results of all three sub-experiments can be found in Figure 3.

324
325
326
327
328
329
330
331
332
333
334
335
336
337

338
339 **Figure 3:** Multi-Task Object vs State Accuracy for (left) Unconditioned State/Object, (Middle) Conditioned
340 State/Object, (Right) Unconditioned Joint Prediction.

341
342 **Unconditioned State/Object** When asked to identify objects or states independently, object
343 recognition is seen to outperform state recognition. The majority of models achieve high object
344 accuracies between 60% and 80% while their corresponding state accuracies are substantially lower
345 (40%–70%). Only a small subset of models approached the $y = x$ line with most models falling
346 below it, confirming a strong object bias when only a single piece of information is provided. **When**
347 **compared to the established human baseline, a distinct gap can be observed between human and**
348 **model performance which suggests that the bias is due to inherit model behaviour rather than ambi-**
349 **guity within the data.**

350
351 **Conditioned State or Object** Introducing oracle knowledge for either the object or the state im-
352 proved overall performance. Most notably, state accuracies increased, sometimes even approaching
353 the object accuracy, suggesting that the knowledge can reduce the ambiguity of the classification. A
354 potential reasoning is that for example when the object is fixed, the model can utilise possible valid
355 states for a given object. For example, if the given ground-truth object is ‘chicken’, it is (highly)
356 unlikely that the state will be ‘melted’. This finding confirms the importance of contextual informa-
357 tion and that part of the object bias could be attributed to the way these models resolve ambiguity.
358 However, almost all models still exhibit object bias showcasing that this doesn’t solve the problem
359 entirely if the oracle knowledge could indeed be injected.

360
361 **Unconditioned Joint Prediction** When both the object and state are predicted simultaneously,
362 the task becomes significantly harder. The object and state accuracy both drop compared to the
363 conditioned case apart from PerceptionEncoder. Models show difficulty in reasoning about two
364 attributes together and the object bias becomes more evident as the object accuracy consistently
365 outperforms the state accuracy despite the overall reduction. This suggests that when predicting
366 objects and states jointly, models will revert to their stronger representation, i.e., objects, and state
367 predictions become unreliable.

368 In summary, the Multi-Task experiments show that while conditioning improves the balance between
369 object and state recognition, the bias towards objects remain consistent across these models. State
370 accuracies are consistently underperforming in comparison to object accuracies and this becomes
371 more challenging when varied alongside the object. Whilst injecting oracle information can help
372 overall performance, the object bias across almost all models still exists.

373 374 4.1.1 TOP-3 INCORRECT PREDICTIONS

375
376 In this section, we explore incorrect predictions of models in the *Multi-Task Setting*. We aim to dis-
377 cover whether models’ mistakes are biased towards certain classes; whether this is common across
378 different models; and whether this is interconnected across object and state predictions.

(a) Distribution of top 3 incorrect object predictions

Figure 4: Top 3 Incorrect predictions of all 24 VLMs across objects (left) and states (right). Results show that models are inconsistent both in their incorrect predictions and the uniformity of these incorrect predictions.

Figure 5: Object vs State Accuracy for Forced-Choice Experiments

Incorrect Object Predictions Figure 4a presents the top-3 most frequent incorrect object predictions across models. Early models like Align tend to fallback to common objects such as ‘potato’ and ‘tomato’. Clip and Gemma incorrectly predict ‘garlic’ likely due to ‘garlic’ being one of the most common cooking ingredients. Qwen defaults to ‘lemon’ while OpenClip, PerceptionEncoder and PerceptionLM and Gemini 2.5 Flash-Lite are more uniform in their mispredictions.

Incorrect State Predictions Figure 4b shows the top-3 most frequent incorrect state predictions across models. We see a similar trend in Align and Blip choosing common states such as ‘sliced’ and ‘fried’. Other models like Gemma favour ‘sliced’ and ‘shredded’, reflecting texture preference. Larger, LLM-based models like Qwen mainly default to ‘grated’ suggesting overfitting. **Similar to the incorrect object predictions, Gemini 2.5 Flash-Lite shows a uniform distribution of the mis-predictions.** Preparation states dominate, indicating data bias, while states like ‘melted’ are under-represented suggesting reasoning gaps.

Overall, the results reveal that methods are not consistent in their mis-classifications, i.e., there is not one or two objects/states that are consistently predicted across all models. Additionally, whilst some models tend to over-predict certain classes, others are more uniform. These trends can be seen across older/newer models and dual encoder/LLM-based models suggesting that these biases are still active issues to solve. These highlight poor training data diversity and weak feature extraction across models. Improving these aspects could reduce errors, particularly in the joint prediction task where compounding biases can amplify the misclassifications.

432 4.2 FORCED-CHOICE EXPERIMENTS
433434 The Forced-Choice experiments in Figure 5 extend the analysis by introducing model preference for
435 object and states in addition to performance by forcing the models to choose only an object or state
436 class for each image.437 **Forced-Choice Control** We see that the object accuracy results are largely similar to the multi-task
438 experiments, yet the state accuracy suffers a huge drop due to the forced choice. Only PerceptionLM
439 is able to achieve similar object and state accuracies, yet its object accuracy falls behind many of the
440 other models by over 40%. Additionally, we find that models overwhelmingly default to predicting
441 objects over states, on average models predict objects for 75% of images.
442443 **Forced-Choice Object** When explicitly directed to prioritize the object, models maintained high
444 performance in object classification and slightly increase their preferences for predicting objects to
445 78%. In fact, the steering prompt reinforces the models’ behaviour, pushing them to focus more on
446 objects and in many cases the state accuracy drops even if the object accuracy does not improve by
447 much. Overall, the object bias largely either remains the same, or increases dramatically, in the case
448 of PerceptionLM, Align, and InternVL3.
449450 **Forced-Choice State** When models are steered towards providing a state description for the im-
451 age, state accuracies tend to increase slightly. However, the state accuracy is again much lower than
452 the object accuracies across all but two models: InternVL3 and PerceptionLM. Interestingly, both
453 of these models showcase strong steering capabilities, yet still predict objects with the state steering
454 prompt and showcase a large drop in object performance when doing so. Otherwise, the remaining
455 models have a preference towards predicting the object 68% of the time – showcasing that the mod-
456 els are still heavily object biased and not directly answering the question of the primary state of the
457 object in the image. These findings suggest that steering can partially improve the gap, but that the
458 root of the bias lies in the models’ underlying representation of states and the training data utilised.
459460 4.2.1 CHANGE IN PERCENTAGE OF STATE PREDICTIONS
461462 We showcase in Figure 6 the percentage change in number of state predictions within the Forced-
463 Choice experiments, comparing the object and state steering to the control experiment. The results
464 demonstrate substantial variability in model behaviour when steering prompts are used to emphasize
465 either object or state with some patterns emerging from the data.
466467 The biggest increase was SigLip, which showed more than 60% increase in state predictions com-
468 pared to the control, suggesting that object and state representations are more inter-connected in its
469 representation space. Otherwise, most models saw an increase in state predictions when steered,
470 **including** InternVL, Qwen2.5-72B and PerceptionLM. Across most models, state-focused steering
471 produced the expected positive increase in state predictions, ranging from approximately 8% to
472 35%. Models such as Qwen2.5-72B, InternVL, and PerceptionLM showed robust positive increase
473 indicating successful steering toward state-based predictions, for the latter two models, this matches
474 their ability to become state biased models. Object-focused steering generally produced smaller
475 magnitude changes compared to state focused steering, with most models showcasing a slight in-
476 crease in predicting objects. However, as noted above, whilst the preference changed, the biases
477 did not across 21 out of the 24 models. This furthers our finding that object bias is inherently a
478 representation and training data issue.
479480 4.2.2 ABLATION STUDY: PROMPT TUNING
481482 To distinguish between limitations inherent to the model representations and potential artifacts
483 of prompt engineering, we conducted a series of ablations targeting the semantic framing of our
484 prompts. Specifically, we evaluated the robustness of our approach by substituting key terminology
485 with semantically related alternatives. We focused on the two primary components of our baseline
486 prompts:
487488 **State Terminology:** We replaced the term “State” with “State Change”, “Transition”, “Condition”
489 and “Transformation”.
490491 **Object Terminology:** We replaced the term “Object” with “Ingredient”.
492

Figure 6: Percentage change in number of state predictions for Forced-Choice experiments

The substitution of object with ingredient yielded negligible changes in performance. Altering the terminology for state resulted in noticeable performance fluctuation. While certain synonyms improved steering capabilities for specific architectures, they degraded performance in others. Notably, no single prompt variation consistently outperformed the original baseline across all the evaluated architectures. The lack of a universally superior prompt suggests that the observed performance is likely intrinsic to the models’ internal representation rather than a result of suboptimal prompt tuning. Detailed results of these ablations are provided in the Supplementary Material C.

5 CONCLUSION

In this work, we introduced the Benchmark for Biases in Objects and States (BBiOS) and used it to systematically examine how Vision-Language Models attempt to balance object and state recognition. Across the multi-task and forced-choice experiments, our analyses reveal a clear and consistent object-state bias: models consistently recognize object categories but are noticeably less reliable with state recognition, even when explicitly steered through prompting or injected with oracle knowledge. While conditioning and steering strategies can nudge model behaviour, their effects are limited and inconsistent, reinforcing the idea that object bias is inherent to the models overall.

These findings suggest that the challenge lies on deeper aspects of model training and architecture. Addressing object-state bias may require novel multimodal objectives, richer datasets that emphasize state variability, or architectural changes that disentangle reasoning between objects and their states. More broadly, our results highlight a critical gap in multimodal reasoning: the ability to integrate object identity with dynamic states in a robust and generalizable manner. We hope that (BBiOS) serves as a foundation for future work aimed at designing models that holistically understand objects and their states.

540 REFERENCES
541

542 Nachwa Aboubakr, James L Crowley, and Rémi Ronfard. Recognizing manipulation actions from
543 state-transformations. *arXiv preprint arXiv:1906.05147*, 2019.

544 Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, and Simon Lacoste-Julien. Joint discovery of ob-
545 ject states and manipulation actions. In *Proceedings of the IEEE International Conference on*
546 *Computer Vision*, pp. 2127–2136, 2017.

547

548 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
549 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
550 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
551 23736, 2022.

552

553 Vatsal Baherwani and Joseph James Vincent. Racial and gender stereotypes encoded into clip rep-
554 resentations. In *The Second Tiny Papers Track at ICLR 2024*, 2024.

555

556 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
557 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
558 *arXiv preprint arXiv:2308.12966*, 2023.

559

560 Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma,
561 Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, et al. Perception encoder: The best visual
562 embeddings are not at the output of the network. *arXiv preprint arXiv:2504.13181*, 2025.

563

564 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
565 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
566 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
567 2024a.

568

569 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
570 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
571 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
572 *Vision and Pattern Recognition*, pp. 24185–24198, 2024b.

573

574 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
575 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
576 contrastive language-image learning. In *Proceedings of the IEEE/CVF conference on computer*
577 *vision and pattern recognition*, pp. 2818–2829, 2023.

578

579 Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan,
580 Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Hanoona Rasheed, Peize Sun, Po-Yao
581 Huang, Daniel Bolya, Suyog Jain, Miguel Martin, Huiyu Wang, Nikhila Ravi, Shashank Jain,
582 Temmy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan,
583 Philipp Krähenbühl, Piotr Dollár, Lorenzo Torresani, Kristen Grauman, and Christoph Feicht-
584 enhofer. Perceptionlm: Open-access data and models for detailed visual understanding. *arXiv*,
585 2025.

586

587 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
588 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
589 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
590 2023.

591

592 Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evange-
593 los Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray.
594 The epic-kitchens dataset: Collection, challenges and baselines. *IEEE Transactions on Pattern*
595 *Analysis and Machine Intelligence*, 43(11):4125–4141, 2020. URL <https://ieeexplore.ieee.org/abstract/document/9084270/>. Publisher: IEEE.

596

597 Hongyuan Dong, Jiawen Li, Bohong Wu, Jiacong Wang, Yuan Zhang, and Haoyuan Guo. Bench-
598 marking and improving detail image caption. *arXiv preprint arXiv:2405.19092*, 2024.

594 Paul Gavrikov, Jovita Lukasik, Steffen Jung, Robert Geirhos, Muhammad Jehanzeb Mirza, Margret
 595 Keuper, and Janis Keuper. Can we talk models into seeing the world differently? In *The Thirteenth*
 596 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=iVMcYxTiVM>.

598 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
 599 Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
 600 proves accuracy and robustness. In *International conference on learning representations*, 2018.

602 Leander Girrbach, Yiran Huang, Stephan Alaniz, Trevor Darrell, and Zeynep Akata. Revealing and
 603 reducing gender biases in vision and language assistants (VLAs). In *The Thirteenth International*
 604 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=oStNAMWELS>.

606 DeepMind Google. Gemini 2.5 flash-lite, 2025. URL <https://deepmind.google/models/gemini/flash-lite/>.

609 Siobhan Mackenzie Hall, Fernanda Gonçalves Abrantes, Hanwen Zhu, Grace Sodunke, Aleksandar
 610 Shtedritski, and Hannah Rose Kirk. Visogender: A dataset for benchmarking gender bias in
 611 image-text pronoun resolution. *Advances in Neural Information Processing Systems*, 36:63687–
 612 63723, 2023.

613 Kimia Hamidieh, Haoran Zhang, Walter Gerych, Thomas Hartvigsen, and Marzyeh Ghassemi. Iden-
 614 tifying implicit social biases in vision-language models. In *Proceedings of the AAAI/ACM Con-*
 615 *ference on AI, Ethics, and Society*, volume 7, pp. 547–561, 2024.

616 Carina I Hausladen, Manuel Knott, Colin F Camerer, and Pietro Perona. Social perception of faces
 617 in a vision-language model. In *Proceedings of the 2025 ACM Conference on Fairness, Account-*
 618 *ability, and Transparency*, pp. 639–659, 2025.

620 Caner Hazirbas, Alicia Yi Sun, Yonathan Efroni, and Mark Ibrahim. The bias of harmful label
 621 associations in vision-language models. In *ICLR 2024 Workshop on Reliable and Responsible*
 622 *Foundation Models*, 2024.

623 Yusuke Hirota, Yuta Nakashima, and Noa Garcia. Quantifying societal bias amplification in image
 624 captioning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 625 *tion*, pp. 13450–13459, 2022.

627 Yusuke Hirota, Yuta Nakashima, and Noa Garcia. Model-agnostic gender debiased image caption-
 628 *ing*. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 629 pp. 15191–15200, 2023.

630 Jen-tse Huang, Jiantong Qin, Jianping Zhang, Youliang Yuan, Wenxuan Wang, and Jieyu Zhao.
 631 Visbias: Measuring explicit and implicit social biases in vision language models. *arXiv preprint*
 632 *arXiv:2503.07575*, 2025.

634 Phillip Isola, Joseph J Lim, and Edward H Adelson. Discovering states and transformations in image
 635 collections. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 636 pp. 1383–1391, 2015.

637 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 638 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 639 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 640 PMLR, 2021.

641 Kento Kawaharazuka, Naoaki Kanazawa, Yoshiki Obinata, Kei Okada, and Masayuki Inaba. Con-
 642 tinuous object state recognition for cooking robots using pre-trained vision-language models and
 643 black-box optimization. *IEEE Robotics and Automation Letters*, 9(5):4059–4066, 2024.

645 Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang,
 646 Ziwei Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal ca-
 647 pabilities in the wild, May 2024a. URL <https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/>.

648 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 649 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv*
 650 *preprint arXiv:2407.07895*, 2024b.

651 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 652 training for unified vision-language understanding and generation. In *International conference on*
 653 *machine learning*, pp. 12888–12900. PMLR, 2022.

654 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
 655 training with frozen image encoders and large language models. In *International conference on*
 656 *machine learning*, pp. 19730–19742. PMLR, 2023.

657 Xianhang Li, Haoqin Tu, Mude Hui, Zeyu Wang, Bingchen Zhao, Junfei Xiao, Sucheng Ren, Jieru
 658 Mei, Qing Liu, Huangjie Zheng, Yuyin Zhou, and Cihang Xie. What if we recaption billions of
 659 web images with LLaMA-3? In *Forty-second International Conference on Machine Learning*,
 660 2025. URL <https://openreview.net/forum?id=Hntp7s2YFF>.

661 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 662 *in neural information processing systems*, 36:34892–34916, 2023.

663 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 664 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 665 (*CVPR*), pp. 26296–26306, June 2024a.

666 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 667 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

668 Priyanka Mandikal, Tushar Nagarajan, Alex Stoken, Zihui Xue, and Kristen Grauman.
 669 Spoc: Spatially-progressing object state change segmentation in video. *arXiv preprint*
 670 *arXiv:2503.11953*, 2025.

671 Victoria Manousaki, Konstantinos Bacharidis, Filippos Gouidis, Konstantinos E Papoutsakis, Dim-
 672 itris Plexousakis, and Antonis A Argyros. Anticipating object state changes. *CoRR*, 2024.

673 AI Meta, 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.

674 Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. *arXiv*
 675 *preprint arXiv:2111.09734*, 2021.

676 Kaleb Newman, Shijie Wang, Yuan Zang, David Heffren, and Chen Sun. Do pre-trained vision-
 677 language models encode object states? *arXiv preprint arXiv:2409.10488*, 2024.

678 Team OpenGVLab, 2024. URL <https://internvl.github.io/blog/2024-07-02-InternVL-2.0/>.

679 Mingjie Pan, Jiyao Zhang, Tianshu Wu, Yinghao Zhao, Wenlong Gao, and Hao Dong. Omni-
 680 manip: Towards general robotic manipulation via object-centric interaction primitives as spatial
 681 constraints. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 682 17359–17369, 2025.

683 Shubham Parashar, Zhiqiu Lin, Tian Liu, Xiangjue Dong, Yanan Li, Deva Ramanan, James Caver-
 684 lee, and Shu Kong. The neglected tails in vision-language models. In *Proceedings of the*
 685 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12988–12997, 2024.

686 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 687 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 688 models from natural language supervision. In *International conference on machine learning*, pp.
 689 8748–8763. PMLR, 2021.

690 Gabriele Ruggeri, Debora Nozza, et al. A multi-dimensional study on bias in vision-language mod-
 691 els. In *Findings of the Association for Computational Linguistics: ACL 2023*. Association for
 692 Computational Linguistics, 2023.

702 Eyal Segalis, Dani Valevski, Danny Lumen, Yossi Matias, and Yaniv Leviathan. A picture is
 703 worth a thousand words: Principled recaptioning improves image generation. *arXiv preprint*
 704 *arXiv:2310.16656*, 2023.

705 Jiang-Xin Shi, Tong Wei, Zhi Zhou, Jie-Jing Shao, Xin-Yan Han, and Yufeng Li. Long-tail learning
 706 with foundation model: Heavy fine-tuning hurts. In *ICML*, 2024a.

708 Jiang-Xin Shi, Chi Zhang, Tong Wei, and Yu-Feng Li. Efficient and long-tailed generalization for
 709 pre-trained vision-language model. In *proceedings of the 30th ACM SIGKDD conference on*
 710 *knowledge discovery and data mining*, pp. 2663–2673, 2024b.

712 Tejas Srinivasan and Yonatan Bisk. Worst of both worlds: Biases compound in pre-trained vision-
 713 and-language models. In *Proceedings of the 4th Workshop on Gender Bias in Natural Language*
 714 *Processing (GeBNLP)*, pp. 77–85, 2022.

715 Masatoshi Tateno, Takuma Yagi, Ryosuke Furuta, and Yoichi Sato. Learning multiple object states
 716 from actions via large language models. In *2025 IEEE/CVF Winter Conference on Applications*
 717 *of Computer Vision (WACV)*, pp. 9555–9565. IEEE, 2025.

719 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 720 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 721 report. *arXiv preprint arXiv:2503.19786*, 2025.

722 Qwen Team. Qwen2.5-vl, January 2025. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

725 Pavel Tokmakov, Jie Li, and Adrien Gaidon. Breaking the “object” in video object segmentation.
 726 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 727 22836–22845, 2023.

728 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 729 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 730 Multilingual vision-language encoders with improved semantic understanding, localization, and
 731 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

733 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 734 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 735 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 736 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

737 Yidong Wang, Zhuohao Yu, Jindong Wang, Qiang Heng, Hao Chen, Wei Ye, Rui Xie, Xing Xie, and
 738 Shikun Zhang. Exploring vision-language models for imbalanced learning. *International Journal*
 739 *of Computer Vision*, 132(1):224–237, 2024b.

741 Zihui Xue, Kumar Ashutosh, and Kristen Grauman. Learning object state changes in videos: An
 742 open-world perspective. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 743 *Pattern Recognition*, pp. 18493–18503, 2024.

744 Andre Ye, Sebastin Santy, Jena D Hwang, Amy X Zhang, and Ranjay Krishna. Semantic and
 745 expressive variations in image captions across languages. In *Proceedings of the Computer Vision*
 746 *and Pattern Recognition Conference*, pp. 29667–29679, 2025.

748 Jiangwei Yu, Xiang Li, Xinran Zhao, Hongming Zhang, and Yu-Xiong Wang. Video state-changing
 749 object segmentation. In *Proceedings of the IEEE/CVF International Conference on Computer*
 750 *Vision*, pp. 20439–20448, 2023.

751 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 752 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 753 pp. 11975–11986, 2023.

755 Fengzhi Zhao, Zhezhou Yu, Tao Wang, and Yi Lv. Image captioning based on semantic scenes.
Entropy, 26(10):876, 2024.

756 Kankan Zhou, Yibin LAI, and Jing Jiang. Vlstereoset: A study of stereotypical bias in pre-trained
757 vision-language models. Association for Computational Linguistics, 2022.
758

759 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
760 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
761 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

APPENDIX

A MODELS

We list below all the models used during our experiments. Experiments were carried out using two NVIDIA GH200.

Model Name	Checkpoint	Transformation
Clip Radford et al. (2021)	ViT-B/32	default transformations
OpenClip Cherti et al. (2023)	ViT-B-32	default transformations
ALIGN Jia et al. (2021)	kakaobrain/align-base	default transformations
BLIP Li et al. (2022)	Salesforce/blip-image-captioning-base	default transformations
BLIP-2 Li et al. (2023)	Salesforce/blip2-itm-vit-g	default transformations
SigLIP Zhai et al. (2023)	google/siglip-base-patch16-224	default transformations
SigLIP2 Tschannen et al. (2025)	google/siglip2-base-patch16-224	default transformations
Perception Encoder Bolya et al. (2025)	PE-Core-L14-336	default transformations
Qwen – 10B Bai et al. (2023)	Qwen/Qwen-VL-Chat	default transformations
Qwen2 – 8B Wang et al. (2024a)	Qwen/Qwen2-VL-7B-Instruct	default transformations
Qwen2.5 – 8B Team (2025)	Qwen/Qwen2.5-VL-7B-Instruct	default transformations
Qwen2.5 - 72B Team (2025)	Qwen/Qwen2.5-VL-72B-Instruct	default transformations
InternVL – 19B Chen et al. (2024b)	OpenGVLab/InternVL-Chat-V1-1	default transformations
InternVL2 – 8B OpenGVLab (2024)	OpenGVLab/InternVL2-8B	default transformations
InternVL2.5 – 8B Chen et al. (2024a)	OpenGVLab/InternVL2.5-8B	default transformations
InternVL3 – 38B Zhu et al. (2025)	OpenGVLab/InternVL3-38B-Instruct	default transformations
LLaVA NeXT – 8B Li et al. (2024a)	llava-hf/llama3-llava-next-8b-hf	default transformations
LLaVA1.5 – 7B Liu et al. (2024a)	llava-hf/llava-1.5-7b-hf	default transformations
LLaVA1.6 – 7B Liu et al. (2024b)	llava-hf/llava-vl1.6-vicuna-7b-hf	default transformations
PerceptionLM – 8B Cho et al. (2025)	facebook/Perception-LM-8B	default transformations
Gemma3 – 12B Team et al. (2025)	google/gemma-3-12b-it	default transformations
Llama3.2 - 11B Meta (2024)	meta-llama/Llama-3.2-11B-Vision-Instruct	default transformations
Llama3.2 - 90B Meta (2024)	meta-llama/Llama-3.2-90B-Vision-Instruct	default transformations
Google Gemini 2.5 Flash-Lite Google (2025)	gemini-2.5-flash-lite	default transformations

Table 2: List of Models used during experiments

B DATASET

We will release the dataset images and the accompanying benchmark code for evaluation once the reviewing process has concluded.

For the frame selection using an LLM, we used the below prompt to score each image on a scale from 1-10. We tested different prompts and were able to empirically validate that this prompt provides the least number of false positives and ensuring a high quality of images provided.

You are an expert image analyst. Your task is to determine how well this image represents the EXACT object and state:

``{object} {state}''

CRITICAL INSTRUCTIONS:

1. BE EXTREMELY PRECISE about the state - ``{state}'' is the EXACT state we need
2. If the image shows {object} in a DIFFERENT state, give a LOW score (0-3)
3. If the image has NO {object} at all, give score 0
4. Only give HIGH scores (7-10) if the state and object matches EXACTLY
5. Partial matches or similar states should get MEDIUM scores (3-6)

Analyze this image and provide response in this EXACT JSON format:

```
{
  'confidence_score': <number from 0-10>,
  'object_state_observed': '<describe the actual state of
  {object} if present>'
}
```

864

865 Remember: Be strict about the EXACT object and state match.

866 Only high scores for exact matches!

867 Only respond with valid JSON, no other text.

868

869 A more detailed plot of the distribution of the dataset for each object and state can be seen in Fig. 7.

870 As previously mentioned we note the non-uniform distribution of both the objects and states.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

Figure 7: Distribution of objects and states

892

893

894

895

896

897

898

C ABLATIONS

899

900

901

902

903

Forced-Choice Ingredient The Forced-Choice Ingredient plot mirrors the Control setting, with the vast majority of models remaining clustered in the lower-right quadrant. This implies that the concept of an ingredient is likely semantically coupled with the object’s identity rather than its state within the models’ latent space. Consequently this specific keyword fails to steer the models’ attention toward state-differentiation features, resulting in continued high performance on object recognition.

904

905

906

907

908

909

910

911

Forced-Choice Transformation The introduction of the “Transformation” keyword causes a significant shift in the models’ performance with several models moving closer to or even crossing the object bias line. This suggests that the term “Transformation” acts as a successful cue, encouraging the model to focus on features related to change. Despite this positive trend, the steering in not universally effective; some models’ state accuracy performance decreases.

912

913

914

Forced-Choice Transition When the prompt is altered to use the word “Transition”, there is a clear shift toward better state recognition, with many models clustering near the diagonal. Despite this trend, a distinct subset of models performs worse. A cluster of models remains pinned to the bottom-right (high object/low state accuracy), indicating that these specific architectures are unaffected by the replacement of “State” with “Transformation”. Furthermore, some models that had moderate object accuracy in the Control setting see a drop in object accuracy without a significant gain in state accuracy, suggesting that the steering prompt likely confused the model rather than effectively redirect the models attention.

915

916

917

Forced-Choice Condition In the Forced-Choice Condition plot, results revert toward the baseline, implying that “Condition” is a weak steering term.

Forced-Choice State Change The Forced-Choice State Change plot demonstrates that while this phrase is generally an effective steering prompt, it induced high variance and negatively impact specific models. While many models rise to the top-left, a noticeable group remains trapped in the bottom-right corner, with some models performing even worse on state accuracy

918
919
920
921
922
923
924
925
926
927
928
929
930
931

Figure 8: Multi-Task Object vs State Accuracy for (left) Forced-Choice Control, (Middle) Forced-Choice Ingredient, (Right) Forced-Choice Transformation.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

Figure 9: Multi-Task Object vs State Accuracy for (left) Forced-Choice Transition, (Middle) Forced-Choice Condition, (Right) Forced-Choice State Change.

950
951
952

D PROMPTS

953
954

This section provides examples for all the prompts used during our study.

955
956

D.1 UNCONDITIONED STATE

957

Which one of these options describes the image correctly.

958

1. sliced
2. melted
3. shredded
4. grated
5. fried
6. raw
7. peeled
8. mashed

959
960
961
962
963
964
965
966

Answer ONLY with the exact text from one of the above choices.

967
968
969

Your response MUST be one of these options. DO NOT make up words that are not in the

970
971

D.2 UNCONDITIONED OBJECT

Which one of these options describes the image correctly.

972
973 1. This is an image of a onion.
974 2. This is an image of a apple.
975 3. This is an image of a cucumber.
976 4. This is an image of a egg.
977 5. This is an image of a lemon.
978 6. This is an image of a carrot.
979 7. This is an image of a avocado.
980 8. This is an image of a potato.
981 9. This is an image of a eggplant.
982 10. This is an image of a tomato.
983 11. This is an image of a garlic.
984 12. This is an image of a zucchini.
985 13. This is an image of a ginger.
986 14. This is an image of a chocolate.
987 15. This is an image of a banana.
988 16. This is an image of a chicken.

989 Answer ONLY with the exact text from one of the above choices.
990 Your response MUST be one of these options.
991 DO NOT make up words that are not in the answers"

992 D.3 CONDITIONED OBJECT

994 Which one of these options describes the image correctly.
995

996 1. This is an image of fried {object}.
997 2. This is an image of grated {object}.
998 3. This is an image of shredded {object}.
999 4. This is an image of raw {object}.
1000 5. This is an image of sliced {object}.
1001 6. This is an image of melted {object}.
1002 7. This is an image of mashed {object}.
1003 8. This is an image of peeled {object}.

1004 Answer ONLY with the exact text from one of the above choices.
1005 Your response MUST be one of these options.
1006 DO NOT make up words that are not in the answers

1008 D.4 CONDITIONED STATE

1010 Which one of these options describes the image correctly.
1011

1012 1. This is an image of {state} chocolate.
1013 2. This is an image of {state} eggplant.
1014 3. This is an image of {state} cucumber.
1015 4. This is an image of {state} garlic.
1016 5. This is an image of {state} tomato.
1017 6. This is an image of {state} lemon.
1018 7. This is an image of {state} avocado.
1019 8. This is an image of {state} ginger.
1020 9. This is an image of {state} banana.
1021 10. This is an image of {state} potato.
1022 11. This is an image of {state} egg.
1023 12. This is an image of {state} carrot.
1024 13. This is an image of {state} apple.
1025 14. This is an image of {state} zucchini.
1026 15. This is an image of {state} chicken.
1027 16. This is an image of {state} onion.

1026

1027 Answer ONLY with the exact text from one of the above choices.
1028 Your response MUST be one of these options.
1029 DO NOT make up words that are not in the answers
1030

1031 **D.5 UNCONDITIONED JOINT PREDICTION**

1032

1033 Which one of these options describes the image correctly.
1034

1035 1. This is an image of {state} {object}.

1036 .

1037 .

1038 .

1039 128. This is an image of {state} {object}.

1040 Answer ONLY with the exact text from one of the above choices.
1041 Your response MUST be one of these options.
1042 DO NOT make up words that are not in the answers
1043

1044 **D.6 FORCED-CHOICE CONTROL**

1045

1046 Which one of these options describes the image correctly.
1047

1048 1. egg
1049 2. garlic
1050 3. potato
1051 4. lemon
1052 5. avocado
1053 6. tomato
1054 7. zucchini
1055 8. chicken
1056 9. carrot
1057 10. chocolate
1058 11. cucumber
1059 12. ginger
1060 13. eggplant
1061 14. apple
1062 15. onion
1063 16. banana
1064 17. fried
1065 18. raw
1066 19. peeled
1067 20. sliced
1068 21. grated
1069 22. shredded
1070 23. melted
1071 24. mashed

1071 Answer ONLY with the exact text from one of the above choices.
1072 Your response MUST be one of these options.
1073 DO NOT make up words that are not in the answers.
1074

1075 **D.7 FORCED-CHOICE *Keyword***

1076

1077 Which one of these options describes the primary {keyword} in the image correctly.

1078 1. egg
1079 2. garlic
1079 3. potato

1080 4. lemon
1081 5. avocado
1082 6. tomato
1083 7. zucchini
1084 8. chicken
1085 9. carrot
1086 10. chocolate
1087 11. cucumber
1088 12. ginger
1089 13. eggplant
1090 14. apple
1091 15. onion
1092 16. banana
1093 17. fried
1094 18. raw
1095 19. peeled
1096 20. sliced
1097 21. grated
1098 22. shredded
1099 23. melted
1100 24. mashed
1101 Answer ONLY with the exact text from one of the above choices.
1102 Your response MUST be one of these options.
1103 DO NOT make up words that are not in the answers.
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133