

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEOMETRIC EMBEDDING ALIGNMENT VIA CURVATURE MATCHING IN TRANSFER LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Geometrical interpretations of deep learning models offer insightful perspectives into their underlying mathematical structures. In this work, we introduce a novel approach that leverages differential geometry, particularly concepts from Riemannian geometry, to integrate multiple models into a unified transfer learning framework. By aligning the Ricci curvature of latent space of individual models, we construct an interrelated architecture, namely Geometric Embedding Alignment via cuRvature matching in transfer learning (GEAR), which ensures comprehensive geometric representation across datapoints. This framework enables the effective aggregation of knowledge from diverse sources, thereby improving performance on target tasks. We evaluate our model on 23 molecular task pairs and demonstrate significant performance gains over existing benchmark models—achieving improvements of at least 14.4% under random splits and 8.3% under scaffold splits.

1 INTRODUCTION

Interest in the practical applications of deep learning has grown drastically over the years. Numerous examples have been announced recently, including applications in scientific domains such as biomedical, physical, and chemical sciences (Wang et al., 2019; Peng et al., 2021; Scarselli et al., 2009; Bruna et al., 2013; Duvenaud et al., 2015; Defferrard et al., 2016; Jin et al., 2018; Coley et al., 2019; Ko et al., 2023a;b; 2024; Yim et al., 2024; Lee et al., 2024). However, in most real-world application cases—regardless of the domain—the lack of data consistently poses a major obstacle. Considerable efforts have been devoted to overcoming this challenge. One promising approach involves leveraging transfer learning (TL) and multitask learning (MTL) to make use of information across different datasets, modalities, and tasks. (Zhuang et al., 2011; Long et al.; Zhuang et al., 2013; 2014; Pan et al., 2020; Quattoni et al., 2008; Kulis et al., 2011; Raghu et al., 2019; Yu et al., 2022)

TL, our primary focus, is a learning strategy that leverages information across different tasks to improve performance on a target task. Molecular property prediction tasks provide an excellent testbed for TL, as they typically involve relatively small datasets but a large number of prediction tasks per input molecule.

Most existing research has concentrated on classification tasks (Radhakrishnan et al., 2023; Basu et al., 2023; Wenzel et al., 2022), while relatively few approaches have been developed to support regression tasks—despite the fact that many practical applications in molecular sciences involve regression (Scarselli et al., 2009; Bruna et al., 2013; Duvenaud et al., 2015; Defferrard et al., 2016; Jin et al., 2018; Coley et al., 2019; Ko et al., 2023a;b; 2024; Yim et al., 2024; Lee et al., 2024). Given the real-world importance of regression problems, this underrepresentation is notable. Therefore, in this work, we focus on the regression-based TL setting applied to molecular property prediction and propose a novel method specifically tailored to this context.

By analyzing the general structure of TL, one can observe that there is always a ‘bridging’ component that connects different tasks to facilitate the flow of information. Our method redefines and enhances this bridging mechanism by reinterpreting the latent space as a smooth, curved geometry. Since a key aspect of TL is designing effective methods to couple tasks, this geometric viewpoint allows us to align tasks by directly matching the geometric properties of their latent spaces.

The fundamental approach of our novel method is based on Riemannian differential geometry. This is a reasonable hypothesis, as most deep learning models are constructed using smooth functions

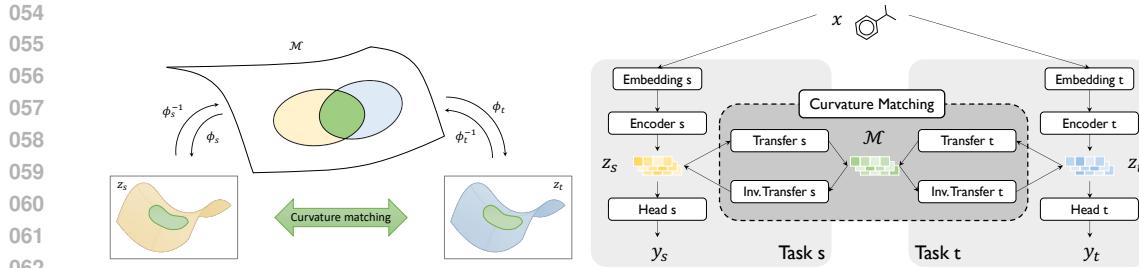


Figure 1: (Left) The framework consists of a common manifold \mathcal{M} , task-specific latent spaces z_s and z_t , transfer functions ϕ_s and ϕ_t . Their inverses, ϕ_s^{-1} and ϕ_t^{-1} , map z_s and z_t to \mathcal{M} . (Right) Each task comprises five modules: embedding, encoder, transfer, inverse transfer, and head. Transfer and inverse transfer modules enable information exchange across tasks by curvature matching.

to ensure the feasibility of backpropagation. Consequently, the latent spaces produced by these models can also be considered smooth, being composed through the application of these smooth functions. Several studies in this field (Ko et al., 2023a;b; 2024; Yim et al., 2024; Lee et al., 2024) leverage the diffeomorphism invariance property of Riemannian geometry. These approaches have demonstrated effectiveness across multiple regression tasks in the molecular domain. However, despite their strengths, they also exhibit three major limitations inherent to their core algorithms.

One key limitation lies in the geometrical coverage of these algorithms. Because they operate by aligning infinitesimal distances between local perturbations, their effectiveness is inherently confined to local regions of the latent space. As a result, they struggle to capture the global geometric structure of the latent manifold. Furthermore, improving coverage typically requires increasing the number of perturbation points, which in turn leads to significant computational overhead.

Another important limitation is the potentially improper definition of ‘infinitesimal.’ In cases where the latent space of a task exhibits high curvature or warping, some perturbation points may no longer be validly considered infinitesimal. This undermines the core assumption of local linearity and can lead to inaccurate geometric alignment.

The final limitation lies in the necessity of a shared embedding layer across all tasks. To align infinitesimal distances between tasks, the perturbation points must be consistently defined within a shared latent space, which in turn requires a shared embedding layer. However, such a mechanism is often inadequate for handling inputs associated with different levels of complexity.

Hence, we propose a new model—Geometric Embedding Alignment via cuRvature matching (GEAR)—which extends the geometric foundations of GATE (Ko et al., 2023b) and broadens the scope of its geometric interpretation in TL. Unlike previous approaches that rely on the local boundary, our algorithm is built upon direct curvature matching, which, in turn, relaxes constraints on the input embedding structure. This allows for greater flexibility in customizing the model for individual tasks. We conducted regression experiments comparing GEAR to conventional TL methods using 23 pairs of molecular properties, and demonstrated that GEAR significantly outperforms them in most test cases. Furthermore, we validated the model’s robustness through a series of ablation studies.

Our main contribution of the article is as follows.

- We design a novel TL algorithm GEAR based on Ricci curvature matching of latent spaces.
- GEAR significantly outperforms benchmark models in various molecular property regression tasks.
- GEAR exhibits stable geometry and robust behavior in extrapolation tasks.

108 **2 RELATED WORKS**
109110 **2.1 RIEMANNIAN GEOMETRY IN DEEP LEARNING**
111112 Geometric deep learning is a field that extends deep learning to non-Euclidean domains such as graphs
113 and manifolds, gaining prominence for its ability to capture complex relational and structural patterns
114 inherent in scientific, biological and real-world data(Bronstein et al., 2017). Riemannian differential
115 geometry is a branch of mathematics that studies smooth manifolds equipped with a metric that
116 allows the measurement of lengths and angles on the manifold. In the context of deep learning, this
117 framework is instrumental in understanding and modeling the geometric structure of data, particularly
118 in high-dimensional spaces. By treating data as lying on a manifold, Riemannian geometry facilitates
119 the development of algorithms that respect the intrinsic geometry of the data, leading to more
120 meaningful representations and improved performance in tasks such as classification(Pegios et al.,
121 2024; Lee et al., 2022), clustering(Hu et al., 2024; Yang et al., 2018), and generative modeling(Park
122 et al., 2023; Grattarola et al., 2019). Riemannian metric learning enhances deep learning by enabling
123 models to operate in geometrically meaningful ways, improving interpretability and performance
124 beyond Euclidean limits(Li et al., 2023; Sun et al., 2024).
125126 **2.2 TRANSFER LEARNING FOR MOLECULAR PROPERTY PREDICTION**
127128 TL has shown significant promise in molecular property prediction, particularly in data-scarce
129 settings. (Falk et al., 2023) combine graph neural networks (GNNs) with kernel mean embeddings to
130 enable knowledge transfer across atomistic simulations, capturing both local and global chemical
131 features. (Buterez et al., 2024; Hoffmann et al., 2023) further extend this by leveraging multi-fidelity
132 datasets, demonstrating that pretraining on low-fidelity data and fine-tuning on high-fidelity targets
133 significantly improves molecular property prediction. (Yao et al., 2024) quantify task relatedness
134 between molecular property prediction datasets, providing guidance for effective TL to enhance
135 prediction performance.
136137 In addition, recent studies have begun incorporating Riemannian differential geometry into TL
138 frameworks for molecular property prediction. In (Ko et al., 2023b), source and target tasks are
139 aligned by matching distances in infinitesimal regions of the latent space. The method is later
140 generalized to a multi-task setup involving more than two tasks in (Ko et al., 2024). However, due to
141 the computational burden of scaling this approach to many tasks, (Yim et al., 2024) introduce a task
142 addition strategy to accelerate training.
143144 **3 METHODS**
145146 A geometric interpretation of latent space requires some mathematical preliminaries. The appropriate
147 mathematical framework for describing curved spaces is differential geometry. Therefore, we briefly
148 introduce the fundamental definitions and expressions that will be used in the following sections,
149 along with the core ideas underlying our proposed method. (Check Appendix B for more details)
150151 Since deep learning models always have a smooth underlying structure due to the backpropagation
152 algorithm, it is very natural to assume that the latent space forged by a model is also smooth. Hence,
153 it is plausible to assume the space is Riemannian. Detailed logical justifications for this assumption
154 are provided in Appendix B.1.
155156 Let us consider the space in which the input dataset resides. This space contains all the information
157 that can be utilized to perform any kind of downstream task. When a specific downstream task is
158 fixed, the latent space formed by the downstream model effectively retracts the original space into a
159 smaller, task-specific subspace to enhance performance. However, since the latent vectors originate
160 from the same universal input space, the latent vector corresponding to a different downstream task
161 should also represent the same point in that universal space. To reconcile latent representations from
162 different downstream models, we leverage diffeomorphism invariance to construct an intermediate
163 space with a locally flat frame, allowing us to align latent vectors from distinct downstream tasks.
164165 Now, the real question is: how? In previously published methods (Ko et al., 2023b; 2024; Yim et al.,
166 2024), a perturbation strategy is used to align task-specific spaces. However, this approach has several
167 notable drawbacks such as limited coverage of geometries and the requirement of a shared embedding
168

layer. To address these issues, we extend the underlying idea by aligning the geometries of latent spaces through the matching of Ricci curvatures computed from each space. Since the computation of the Ricci scalar is highly intricate, we first introduce the basic forms of its constituent elements here, and provide a more detailed theoretical and mathematical walkthrough in the Appendix B and C.

3.1 PRELIMINARY

To maintain abstract notation, we will use the Einstein summation convention with index contraction representation. A fundamental introduction to these concepts is provided in the Appendix A.

Riemannian geometry is often characterized by the Ricci scalar curvature. To understand how curvature is induced, one must carefully follow a step-by-step calculation process.

Everything begins with the metric. A metric is a rank-2 tensor with a symmetric property, which is crucial for computing distances between two points on a curved space. However, there is no systematic method to derive the explicit form of the metric for a given space directly. Instead, one must rely on a key mathematical property of Riemannian manifolds.

A Riemannian manifold always guarantees diffeomorphism invariance—in other words, freedom in the choice of coordinates on the manifold. This allows for the existence of a locally flat coordinate system under any circumstance. In such a system, the metric can be induced from the flat metric η_{ij} by applying the Jacobian of the coordinate transformation at a given point. Here, x'^i and x^i are points on curved and locally flat frame respectively, and then, the Jacobian of the transformation between these coordinates then takes the following form.

$$J_j^i = \frac{dx'^i}{dx^j} \quad (1)$$

From the Jacobian J_j^i , one can compute the induced metric in a straightforward manner.

$$g_{ij} = \frac{dx'^m}{dx^i} \eta_{mn} \frac{dx'^n}{dx^j} = \frac{dx'^m}{dx^i} \frac{dx'_m}{dx^j} \quad (2)$$

By obtaining the curved metric g_{ij} , one can define the Christoffel symbols Γ^i_{jk} , which are used to construct the covariant derivative ∇_i —replacing the ordinary derivative in Riemannian geometry.

$$\Gamma^i_{jk} = \frac{1}{2} g^{im} (\partial_j g_{mk} + \partial_k g_{mj} - \partial_m g_{kj}) \quad (3)$$

And the covariant derivative takes the following form.

$$\nabla_j T^i = \partial_j T^i + \Gamma^i_{jl} T^l \quad (4)$$

The curvature of a manifold R^i_{ljk} can be defined by the difference between tangent vectors that are parallel transported along different paths from the same initial point to the same final point. This can be expressed using the commutation relation of two covariant derivatives acting on a tangent vector.

$$R^i_{ljk} T^l = [\nabla_j, \nabla_k] T^i \quad (5)$$

Finally, by contracting i and j , and l and k respectively, the Ricci scalar curvature R can be obtained.

$$R = g^{ij} g^{lk} R_{iljk} \quad (6)$$

The scalar curvature is invariant under diffeomorphisms, as is evident from the fact that it has no free indices. Consequently, this quantity is often used to characterize the curvature of a given manifold. Since we are working with curved latent spaces and aiming to connect two different curved coordinate representations originating from a universal curved manifold, we directly compute this scalar property and align it to match the shapes of the task-specific spaces.

3.2 ANALYTIC COMPUTATION STRATEGY

A deep learning model is composed of multiple smooth layers. Therefore, if differentiable activation functions are used, it becomes possible to compute the curvature tensor of the curved space induced by the model. However, when the model consists of many layers, it becomes convenient to define

building blocks that allow the full Jacobian to be computed by simply multiplying them. These building blocks can be expressed in terms of the weights and biases of each layer. Starting from the full Jacobian, and by applying the chain rule, the Jacobian can be decomposed into the Jacobians of individual layers.

$$J^i_j = \frac{dx'^i}{dx^j} = \frac{dx'^i}{dx^{(n-1)k_{n-1}}} \frac{dx^{(n-1)k_{n-1}}}{dx^{(n-2)k_{n-2}}} \cdots \frac{dx^{(1)k_1}}{dx^j} \quad (7)$$

Here, n denotes the layer index of the transfer module in the model, as illustrated in Figure 1. Therefore, when similar mathematical structures appear across layers—as is often the case—it becomes possible to define a fundamental building block of the full Jacobian using the Jacobian of a single representative layer. In our setup, each layer follows a linear MLP structure with the SiLU activation function. The fundamental Jacobian block can then be expressed in the following form:

$$\begin{aligned} \frac{dx^{(n+1)i}}{dx^{(n)j}} &= W^{(n+1)i}{}_k (((x^{(n)k}) e^{-x^{(n)k}} \times \text{LS}(x^{(n)k}) + 1) \text{LS}(x^{(n)k}))^k{}_j \\ &= (W^{(n+1)i}{}_j \sigma^i + (W^{(n+1)} x^{(n)} + b^{(n+1)})^i W^{(n+1)a_3}{}_j E^i{}_{a_3} (\sigma^2)^i) \end{aligned} \quad (8)$$

Here, $W^{(n)i}{}_j$ and $b^{(n)i}$ are weights and biases of n -th layer in the transfer module. The new notations introduced in the equation above are defined as follows. First, $\text{LS}(x)$ denotes the logistic function and σ^i and $E^i{}_l$ are expressed as follows:

$$\sigma^i = \frac{1}{1 + e^{-(W^{(n)i}{}_j x^j + b^{(n)i})}}, \quad E^i{}_l \equiv (e^{-(W^l{}_j x^j + b^l)})^i{}_l = \begin{cases} e^{-(W^l{}_j x^j + b^l)} & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases} \quad (9)$$

$(\sigma^2)^i$ denotes the element-wise square of σ^i . By utilizing Eq. 8, it is now possible to compute the full Jacobian of the transfer module. The induced metric can then also be specified by Eq. 2.

However, this is not sufficient to compute the curvature. To express curvature explicitly in terms of the metric, two additional components are required: the first derivative of the metric tensor—since the Christoffel symbols are defined using both the metric and its derivatives—and the second derivative of the metric tensor, as curvature depends on the derivatives of the Christoffel symbols. Therefore, we need to identify two additional fundamental building blocks to compute the curvature tensor. The first derivative of the metric tensor can be expressed as a combination of the Jacobian and the derivative of the Jacobian. Thus, the next step is to derive the explicit form of the Jacobian’s derivative.

$$\begin{aligned} \frac{\partial^2 x^{(n+1)i}}{\partial x^{(n)k} \partial x^{(n)j}} &= W^{(n+1)i}{}_j W^{(n+1)a_2}{}_k E^i{}_{a_2} (\sigma^2)^i + W^{(n+1)i}{}_k W^{(n+1)a_3}{}_j E^i{}_{a_3} (\sigma^2)^i \\ &\quad - (W^{(n+1)} x^{(n)} + b^{(n+1)})^i W^{(n+1)a_3}{}_j W^{(n+1)i}{}_k E^i{}_{a_3} (\sigma^2)^i \\ &\quad + 2(W^{(n+1)} x^{(n)} + b^{(n+1)})^i W^{(n+1)a_3}{}_j E^i{}_{a_3} W^{(n+1)a_6}{}_k E^i{}_{a_6} (\sigma^3)^i \end{aligned} \quad (10)$$

Finally, the derivative of the Christoffel symbols can be induced with the second derivative of the Jacobian.

$$\begin{aligned} \frac{\partial^3 x^{(n+1)i}}{\partial x^{(n)l} \partial x^{(n)k} \partial x^{(n)j}} &= -2W^{(n+1)i}{}_l W^{(n+1)a_2}{}_k W^{(n+1)i}{}_j E^i{}_{a_2} (\sigma^2)^i - W^{(n+1)i}{}_j W^{(n+1)a_3}{}_l W^{(n+1)i}{}_k E^i{}_{a_3} (\sigma^2)^i \\ &\quad + 4W^{(n+1)i}{}_l W^{(n+1)a_2}{}_k W^{(n+1)a_9}{}_j E^i{}_{a_2} E^i{}_{a_9} (\sigma^3)^i \\ &\quad + (W^{(n+1)} x^{(n)} + b^{(n+1)})^i W^{(n+1)a_3}{}_l W^{(n+1)i}{}_k W^{(n+1)i}{}_j E^i{}_{a_3} (\sigma^2)^i \\ &\quad - 2(W^{(n+1)} x^{(n)} + b^{(n+1)})^i W^{(n+1)a_3}{}_l W^{(n+1)i}{}_k W^{(n+1)a_9}{}_j E^i{}_{a_3} E^i{}_{a_9} (\sigma^3)^i \\ &\quad + 2W^{(n+1)i}{}_j W^{(n+1)a_3}{}_l W^{(n+1)a_6}{}_k E^i{}_{a_3} E^i{}_{a_6} (\sigma^3)^i \\ &\quad - 4(W^{(n+1)} x^{(n)} + b^{(n+1)})^i W^{(n+1)a_3}{}_l W^{(n+1)a_6}{}_k W^{(n+1)i}{}_j E^i{}_{(a_3} E^i{}_{a_6)} (\sigma^3)^i \\ &\quad + 6(W^{(n+1)} x^{(n)} + b^{(n+1)})^i W^{(n+1)a_3}{}_l W^{(n+1)a_6}{}_k W^{(n+1)a_9}{}_j E^i{}_{a_9} E^i{}_{a_3} E^i{}_{a_6} (\sigma^4)^i \end{aligned} \quad (11)$$

By gathering and utilizing the three building blocks described above and imposing them into Eq. 2, 3, 5 and 6, the scalar curvature of the given curved space can be explicitly calculated.

3.3 MODEL ARCHITECTURE

Our model is designed to perform effectively in a two-task setting, regardless of whether the data distributions between tasks are balanced or unbalanced. Therefore, the basic architecture consists of

270 two distinct task-specific models connected by a transfer module, as shown in Figure 1. These task-
 271 specific models are connected only through the curvature matching section; thus, their architectures
 272 are fully flexible, with the sole constraint that the dimensions of the latent vectors fed into the transfer
 273 module must match. This allows each task-specific model to be independently designed, taking into
 274 account the complexity of the task and its corresponding data distribution.

275 When an input data point is fed into the model, the first step is to construct an embedding vector from
 276 the input information. We denote the embedding vector as z_t for the target task and z_s for the source
 277 task. These embedding vectors follow two distinct paths in the architecture: one path leads to the
 278 transfer module, and the other proceeds to the head module in the model. The transfer module maps
 279 each embedding to a vector of the same dimension in a locally flat coordinate frame.

$$280 \quad z' = \text{Tran}(z), \quad \hat{z} = \text{Tran}^{-1}(z') \quad (12)$$

282 However, for the inverse transfer, direct computation of the inverse matrix during backpropagation
 283 can be unstable. To address this, we designed an autoencoder architecture to map the embedding
 284 vector from the locally flat frame back to the original space. Accordingly, we define an autoencoder
 285 loss to guide this reconstruction process.

$$286 \quad l_{\text{auto}} = \text{MSE}(z, \hat{z}) \quad (13)$$

288 Since the transferred vectors z'_s and z'_t originate from the same input, they should match—assuming
 289 the coordinate systems are aligned, i.e., expressed in a common locally flat frame.

$$290 \quad z'_s = \text{Tran}_{s \rightarrow LF}(z_s), \quad \hat{z}_s = \text{Tran}^{-1}_{LF \rightarrow s}(z'_s), \quad z'_t = \text{Tran}_{t \rightarrow LF}(z_t), \quad \hat{z}_t = \text{Tran}^{-1}_{LF \rightarrow t}(z'_t) \quad (14)$$

292 Here, $\text{Model}_{s \rightarrow LF}$ denotes the transfer module that maps the embedding vector from the source space
 293 to the locally flat (LF) frame, and vice versa. To encourage alignment, we introduce a consistency
 294 loss by matching the embedding vectors from both the source and target task models within the
 295 shared locally flat frame.

$$296 \quad l_{\text{cons}} = \text{MSE}(z'_s, z'_t) \quad (15)$$

298 To further reinforce the connection between the source and target tasks, we introduce an additional
 299 loss—the mapping loss—which aligns the downstream prediction of the original target label with the
 300 prediction obtained from an embedding vector transferred from the source model.

$$301 \quad l_{\text{map}} = \text{MSE}(y_t, \hat{y}_{s \rightarrow t}) \quad (16)$$

302 Here, y_t denotes the target label and $\hat{y}_{s \rightarrow t}$ represents the predicted value obtained from the embedding
 303 vector transferred from the source model. And the ordinary regression loss is also important.

$$305 \quad l_{\text{reg}} = \text{MSE}(y_t, \hat{y}_t) \quad (17)$$

306 Finally, we define the curvature and metric losses. The metric loss plays a crucial role, as the space
 307 formed by the transfer module lacks any form of direct supervision. Without proper regularization,
 308 the space is not guaranteed to be locally flat, since there are infinitely many ways to define a basis
 309 that still satisfy the previously introduced constraints. The metric loss guides the transfer module
 310 toward preserving local flatness. It is defined as the discrepancy between the induced flat metric and
 311 the Euclidean metric, which in this case is represented by the identity matrix η_{ij} .

$$313 \quad l_{\text{metric}} = \text{MSE}(\eta_{ij}, \eta_{(s)ij}) + \text{MSE}(\eta_{ij}, \eta_{(t)ij})$$

$$314 \quad \eta_{(s)ij} = \left(\frac{\partial z_s^m}{\partial \hat{z}_s^i} \right) \left(\frac{\partial z_s'^k}{\partial \hat{z}_s^m} \right) \eta_{kl} \left(\frac{\partial \hat{z}_s'^l}{\partial \hat{z}_s^n} \right), \quad \eta_{(t)ij} = \left(\frac{\partial z_t^m}{\partial \hat{z}_t^i} \right) \left(\frac{\partial z_t'^k}{\partial \hat{z}_t^m} \right) \eta_{kl} \left(\frac{\partial \hat{z}_t'^l}{\partial \hat{z}_t^n} \right) \left(\frac{\partial \hat{z}_t^n}{\partial \hat{z}_t^j} \right) \quad (18)$$

315 $\eta_{(s)ij}$ and $\eta_{(t)ij}$ denote the induced flat metrics obtained through iterative K loop computations using
 316 the inverse transfer mappings from the source and target, respectively, into the transfer module. This
 317 back-and-forth mapping between the task coordinate and the locally flat coordinate can be repeated K
 318 times. As the loop proceeds, the metric is repeatedly transformed under the diffeomorphism, and error
 319 accumulates. Increasing K therefore imposes a stronger constraint on the metric but also amplifies
 320 its sensitivity. For this reason, we keep K small in the setup. (see Algorithm 1 and Appendix E)

323 The final loss term is the *curvature matching loss*. Since we have already introduced the fundamental
 324 building blocks for computing scalar curvature in Sections 3.1 and 3.2, the scalar curvature can now

324 be computed analytically. Given that the curvatures of the target and source spaces should align, we
 325 define this curvature matching loss as the most critical and final component of our architecture.
 326

$$l_{curv} = \text{MSE}(R_s, R_t) \quad (19)$$

327 Where R_t and R_s are the Ricci scalar curvatures from the target and the source respectively. Finally,
 328 by combining all with appropriate hyperparameters, the main loss of the model can be defined.
 329

$$l_{tot} = l_{reg} + \alpha l_{auto} + \beta l_{cons} + \gamma l_{map} + \delta l_{metric} + \epsilon l_{curv} \quad (20)$$

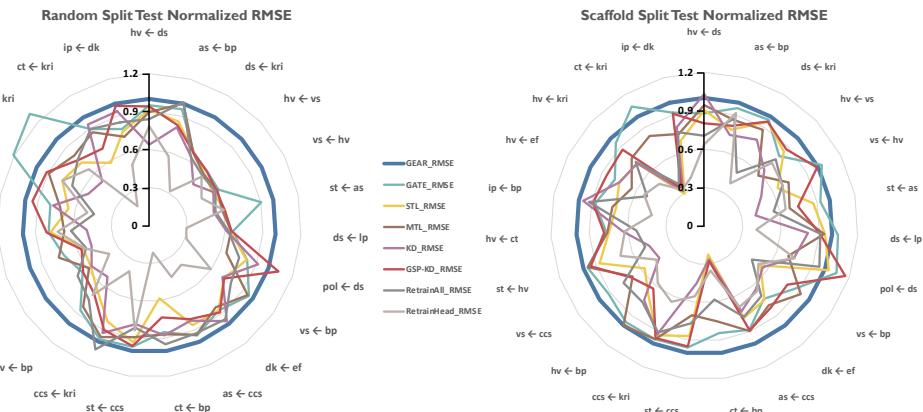
330 Each hyperparameter can be tuned individually to improve the model’s predictive performance.
 331 In particular, the weight of the metric loss often needs to be increased, as its raw magnitude is
 332 substantially smaller than that of the other loss terms. The specific configurations of these loss
 333 components and the associated model parameters are described in Appendix E, with an ablation study
 334 on hyperparameter tuning provided in Appendix H.2. In addition, detailed schematics of our model
 335 are shown in Appendix Figure 6.
 336

337 4 EXPERIMENTS

339 4.1 EXPERIMENTAL SETTINGS

341 The experiments are conducted using open datasets from three distinct databases (OCHEM (Sushko
 342 et al., 2011), PubChem (Kim et al., 2022), and CCCB (III, 2022)) forming 23 task pairs across
 343 14 different tasks using two distinct data splitting schemes: the conventional random split and the
 344 scaffold-based split, the latter of which simulates OOD scenarios. We used directional message
 345 passing network (DMPNN) (Yang et al., 2019) for encoding molecular structures. A detailed
 346 explanation of these datasets and their corresponding prediction tasks is provided in the Appendix F.
 347 To ensure the robustness of the results, all experiments are performed using 4-fold cross-validation.
 348 Each experiment is run on a single NVIDIA A40 GPU.
 349

350 To evaluate our method, we compare it against several benchmark models, including single-task
 351 learning (STL), MTL, global structure preserving loss-based knowledge distillation (GSP-KD) (Joshi
 352 et al., 2022), two variants of TL (retraining all layers vs. retraining the head only), and GATE
 353 (Ko et al., 2023b). We ensure fairness by maintaining the same encoder and head architectures
 354 across all benchmark models and our method. Detailed backbone architecture and hyperparameter
 355 configurations are in the Appendix D and E.



370 Figure 2: The results are illustrated in the form of a radar chart. Each axis plots the GEAR
 371 RMSE divided by the benchmark model RMSE. The baseline in the chart corresponds to the RMSE
 372 performance of GEAR, which is normalized to 1. (higher is better). Due to space constraints, the
 373 detailed experimental results are provided in Table [5, 6, 7, 8] in the Appendix G

375 4.2 MAIN RESULTS

376 Figure 2 demonstrates the superior performance of our algorithm compared to other benchmark
 377 models. In both data split schemes, our model consistently outperforms the baseline models by

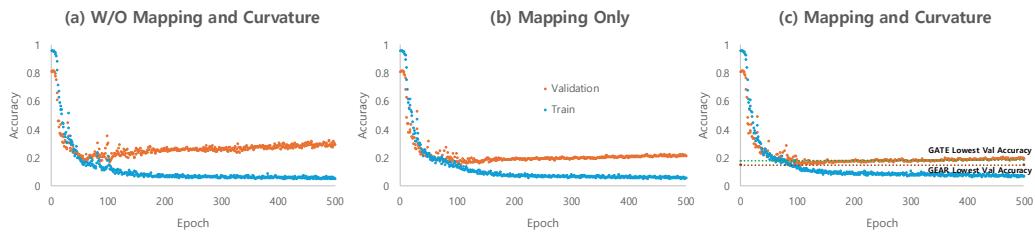
378 considerable margins. Notably, when counting the number of best-performing tasks, GEAR achieves
 379 the lowest RMSE in 18 out of 23 task pairs under the random split and in 17 out of 23 under the
 380 scaffold split. Furthermore, when including second-best performances, GEAR ranks within the top
 381 two in 22 out of 23 for both split schemes.

382 From a performance standpoint, GEAR improves the average RMSE over GATE by 14.4% in the
 383 random split and by 8.3% in the scaffold split. Compared to the third-best model, GEAR achieves an
 384 improvement of 22.8% (MTL) under the random split and 21.4% (GSP-KD) under the scaffold split.
 385

386 5 ABLATION STUDIES

387 5.1 ROLE OF CURVATURE LOSS

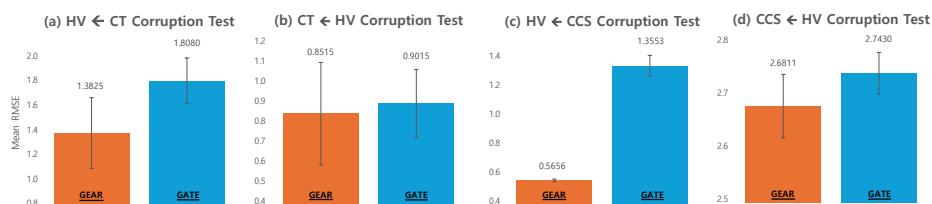
390 Since GEAR is constructed under a TL scheme, it is crucial to verify that the loss terms connecting the
 391 source and target tasks effectively facilitate information transfer. To support this claim, we conducted
 392 three different experiments and plotted training and validation accuracy curves.
 393



402 Figure 3: These plots illustrate the primary role of the curvature loss tested on dk \rightarrow hv task pair. In
 403 figure (a), both the mapping loss and the curvature loss are turned off. In figure (b), only the mapping
 404 loss is enabled. In figure (c), both the mapping and curvature losses are activated.
 405

406 As shown in Figure 9, when both the mapping and curvature matching losses are turned off, the
 407 loss curve exhibits a severe overfitting issue. Enabling the mapping loss alone helps to stabilize
 408 this overfitting to some extent. However, when both losses are activated, overfitting is significantly
 409 suppressed, and the validation accuracy reaches the lowest value overall.

410 For comparison, we included the minimum validation value of GATE as a green dotted line, alongside
 411 that of GEAR (in brown dotted line) under the same experimental setting. The comparison reveals
 412 that GEAR achieves a lower minimum validation than GATE, with an improvement margin of 17.5%.
 413



422 Figure 4: This figure highlights the performance of GEAR on corrupted data, demonstrating that it
 423 either outperforms or performs comparably to GATE. The values represent the average RMSE across
 424 four folds, with the STD error bars. Specifically, Figure (a) shows HV prediction results using CT as
 425 the source, (b) shows CT prediction results using HV as the source, (c) shows HV prediction results
 426 using CCS as the source, and (d) shows CCS prediction results using HV as the source.
 427

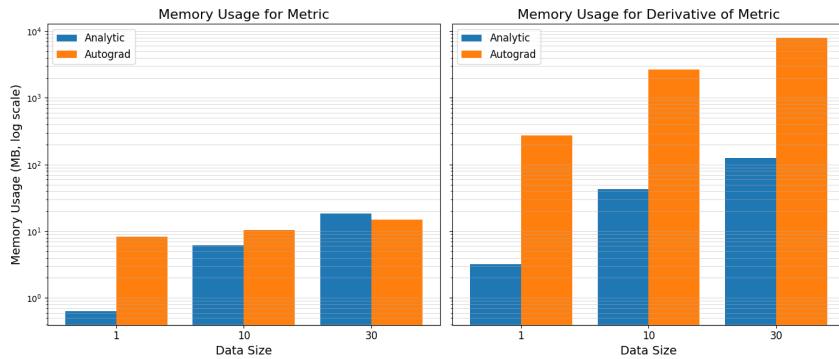
428 5.2 ROBUSTNESS UNDER CORRUPTED DATASET

430 In this subsection, we demonstrate the robustness of GEAR under targeted corruption stress on dataset
 431 to assess its regularization effect. We corrupted data points with values at least twice the standard
 deviation of each dataset. Specifically, we selected 10% of the test set containing values greater than

432 the dataset’s standard deviation. These selected labels were corrupted by multiplying them by -1
 433 and then injected into the training dataset. This setup reflects common scientific data errors, such as
 434 missing minus signs or inconsistent units. After training, we evaluated the model by feeding these
 435 corrupted samples and comparing the predictions against their original, uncorrupted labels. This
 436 procedure was repeated under a 4-fold cross-validation scheme to ensure the reliability.

437 As shown in Figure 4, GEAR consistently outperforms conventional models across all cases.
 438

439 **5.3 COMPUTATIONAL COSTS**



442
 443 Figure 5: Memory usage was visualized in the form of bar charts in log scale. The charts compare
 444 the memory consumption of the analytic and autograd-based methods when computing the metric
 445 and the derivative of the metric, evaluated at data sizes of 1, 10, and 30. The corresponding bars are
 446 labeled as Analytic and Autograd, respectively.
 447

448 In this subsection, we demonstrate the necessity of computing the curvature analytically. Although
 449 metric and its derivatives can be calculated by autograd, autograd requires substantial computational
 450 cost compared to analytic computation. We compared memory consumption between the analytical
 451 and autograd-based methods when computing the metric and its derivatives across varying data sizes.
 452

453 As shown in Figure 5, both methods exhibited similar memory usage for metric computation, which
 454 involves first-order derivatives. However, for computing metric derivatives (i.e., second-order), the
 455 autograd approach consumed approximately 85.5 \times more memory at data size 1. Due to this overhead,
 456 autograd-based training was infeasible under our GPU constraints. In contrast, the analytical method
 457 enabled fast and memory-efficient training, requiring only 0.5 seconds per iteration at batch size 512.
 458

469 **6 DISCUSSION**

471 We introduced a novel TL algorithm, GEAR, based on Riemannian differential geometry. Since deep
 472 learning models are inherently smooth and differentiable, the Jacobian of the transfer module can
 473 be computed analytically. From the Jacobian, the induced curved metric can be derived and used
 474 for curvature computation. The Ricci scalar curvature encapsulates the full geometric characteristics
 475 of the latent space; by matching the curvature between the target and source tasks, the latent spaces
 476 can be accurately aligned. Experimental results on 23 pairs of molecular property prediction tasks
 477 demonstrate the superior performance of GEAR compared to benchmark models.

478 Simplifying or relaxing the curvature matching process—without sacrificing generality—helps reduce
 479 the implementation complexity and computational overhead typically associated with curvature
 480 computation. GEAR also introduces structural flexibility by connecting source and target tasks
 481 through transfer modules, without imposing restrictions on the downstream architecture. This allows
 482 the encoder modules to remain fully unconstrained, enabling seamless adaptation to multi-modal
 483 learning scenarios. Moreover, the framework is inherently extensible to settings involving more than
 484 two interrelated tasks, opening opportunities for broader applications in multi-task transfer learning.
 485 Importantly, these extensions are not limited to the chemical domain, and can be applied to other
 486 areas such as natural language processing (NLP) and computer vision.

486 7 REPRODUCIBILITY STATEMENT
487488 Due to patent considerations, we cannot release source code in the supplementary materials. However,
489 we provide comprehensive descriptions of the model architecture (Figures 1, 6), the full set of
490 equations (Sections 3, C), and pseudo-code (Algorithm 1). Hyperparameters and dataset details are
491 given in Section F, while background material on differential geometry is summarized in Sections A
492 and B to support readers who are less familiar with this area. Together, these resources should enable
493 reproducibility of our results.
494495 REFERENCES
496497 Sourya Basu, Pulkit Katdare, Prasanna Sattigeri, Vijil Chenthamarakshan, Katherine Driggs-
498 Campbell, Payel Das, and Lav R. Varshney. Efficient equivariant transfer learning from pretrained
499 models, 2023. URL <https://arxiv.org/abs/2305.09900>.
500 Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
501 deep learning: going beyond euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42,
502 2017.
503 Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally
504 connected networks on graphs. 12 2013.
505 David Buterez, Jon Paul Janet, Steven J Kiddle, Dino Oglie, and Pietro Lió. Transfer learning with
506 graph neural networks for improved molecular property prediction in the multi-fidelity setting.
507 *Nature communications*, 15(1):1517, 2024.
508
509 Sean M. Carroll. *Spacetime and Geometry: An Introduction to General Relativity*. Addison-Wesley,
510 San Francisco, 2004.
511 Connor W. Coley, Wengong Jin, Luke Rogers, Timothy F. Jamison, Tommi S. Jaakkola, William H.
512 Green, Regina Barzilay, and Klavs F. Jensen. A graph-convolutional neural network model for
513 the prediction of chemical reactivity. *Chem. Sci.*, 10:370–377, 2019. doi: 10.1039/C8SC04228D.
514 URL <http://dx.doi.org/10.1039/C8SC04228D>.
515
516 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
517 graphs with fast localized spectral filtering. 06 2016.
518
519 David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timo-
520 thy Hirzel, Alán Aspuru-Guzik, and Ryan Adams. Convolutional networks on graphs for learning
521 molecular fingerprints. *Advances in Neural Information Processing Systems (NIPS)*, 13, 09 2015.
522
523 John Falk, Luigi Bonati, Pietro Novelli, Michele Parrinello, and Massimiliano Pontil. Transfer
524 learning for atomistic simulations using gnns and kernel mean embeddings. *Advances in Neural
525 Information Processing Systems*, 36:29783–29797, 2023.
526
527 Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Adversarial autoencoders with constant-
528 curvature latent manifolds. *Applied Soft Computing*, 81:105511, 2019.
529
530 Noah Hoffmann, Jonathan Schmidt, Silvana Botti, and Miguel AL Marques. Transfer learning on
531 large datasets for the accurate prediction of material properties. *Digital Discovery*, 2(5):1368–1379,
532 2023.
533
534 Wenbo Hu, Hongjian Zhan, Yinghong Tian, Yujie Xiong, and Yue Lu. Enhanced video clustering
535 using multiple riemannian manifold-valued descriptors and audio-visual information. *Expert
Systems with Applications*, 246:123099, 2024.
536
537 Russell D. Johnson III. Nist computational chemistry comparison and benchmark database. *NIST
Standard Reference Database*, 101, 2022. URL <http://cccbdb.nist.gov/>.
538
539 Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization, 12 2018.

540 Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation knowledge
 541 distillation for graph neural networks. *IEEE Transactions on Neural Networks and Learning*
 542 *Systems*, 2022.

543

544 Sungewan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A
 545 Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E Bolton. PubChem
 546 2023 update. *Nucleic Acids Research*, 51(D1):D1373–D1380, 10 2022. ISSN 0305-1048. doi:
 547 10.1093/nar/gkac956. URL <https://doi.org/10.1093/nar/gkac956>.

548 Sung Moon Ko, Sungjun Cho, Dae-Woong Jeong, Sehui Han, Moontae Lee, and Honglak Lee.
 549 Grouping matrix based graph pooling with adaptive number of clusters. *Proceedings of the*
 550 *AAAI Conference on Artificial Intelligence*, 37(7):8334–8342, June 2023a. ISSN 2159-5399. doi:
 551 10.1609/aaai.v37i7.26005. URL <https://dx.doi.org/10.1609/aaai.v37i7.26005>.

552 Sung Moon Ko, Sumin Lee, Dae-Woong Jeong, Woohyung Lim, and Sehui Han. Geometrically
 553 aligned transfer encoder for inductive transfer in regression tasks, 2023b. URL <https://arxiv.org/abs/2310.06369>.

554 Sung Moon Ko, Sumin Lee, Dae-Woong Jeong, Hyunseung Kim, Chanhui Lee, Soorin Yim, and
 555 Sehui Han. Multitask extension of geometrically aligned transfer encoder, 2024. URL <https://arxiv.org/abs/2405.01974>.

556 Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain adaptation
 557 using asymmetric kernel transforms. *CVPR 2011*, pp. 1785–1792, 2011. URL <https://api.semanticscholar.org/CorpusID:7419723>.

558 Chanhui Lee, Dae-Woong Jeong, Sung Moon Ko, Sumin Lee, Hyunseung Kim, Soorin Yim, Sehui
 559 Han, Sungwoong Kim, and Sungbin Lim. Scalable multi-task transfer learning for molecular
 560 property prediction, 2024. URL <https://arxiv.org/abs/2410.00432>.

561 John M. Lee. *Introduction to Riemannian Manifolds*. Springer, 2nd edition, 2018.

562 Yonghyeon Lee, Seungyeon Kim, Jinwon Choi, and Frank Park. A statistical manifold framework
 563 for point cloud data. In *International Conference on Machine Learning*, pp. 12378–12402. PMLR,
 564 2022.

565 Yangyang Li, Chaoqun Fei, Chuanqing Wang, Hongming Shan, and Ruqian Lu. Geometry flow-based
 566 deep riemannian metric learning. *IEEE/CAA Journal of Automatica Sinica*, 10(9):1882–1892,
 567 2023.

568 Mingsheng Long, Jianmin Wang, Guiguang Ding, Wei Cheng, Xiang Zhang, and Wei Wang. *Dual*
 569 *Transfer Learning*, pp. 540–551. doi: 10.1137/1.9781611972825.47. URL <https://epubs.siam.org/doi/10.1137/1.9781611972825.47>.

570 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 571 *arXiv:1711.05101*, 2017.

572 Jianhan Pan, Teng Cui, Thuc Duy Le, Xiaomei Li, and Jing Zhang. Multi-group transfer learning on
 573 multiple latent spaces for text classification. *IEEE Access*, 8:64120–64130, 2020. doi: 10.1109/ACCESS.2020.2984571.

574

575 Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the
 576 latent space of diffusion models through the lens of riemannian geometry. *Advances in Neural*
 577 *Information Processing Systems*, 36:24129–24142, 2023.

578

579 Paraskervas Pegios, Aasa Feragen, Andreas Abildtrup Hansen, and Georgios Arvanitidis. Counterfac-
 580 tual explanations via riemannian latent space traversal. *CoRR*, 2024.

581

582 Minshi Peng, Yue Li, Brie Wamsley, Yuting Wei, and Kathryn Roeder. Integration and transfer
 583 learning of single-cell transcriptomes via cfit. *Proceedings of the National Academy of Sciences*,
 584 118(10):e2024383118, 2021. doi: 10.1073/pnas.2024383118. URL <https://www.pnas.org/doi/10.1073/pnas.2024383118>.

594 Ariadna Quattoni, Michael Collins, and Trevor Darrell. Transfer learning for image classification
 595 with sparse prototype representations. *Proceedings / CVPR, IEEE Computer Society Conference*
 596 *on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer*
 597 *Vision and Pattern Recognition*, 2, 03 2008. doi: 10.1109/CVPR.2008.4587637.

598 Adityanarayanan Radhakrishnan, Max Ruiz Luyten, Neha Prasad, and Caroline Uhler. Transfer
 599 learning with kernel methods. *Nature Communications*, 14(1):5570, September 2023.

601 Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, and Samy Bengio. Transfusion: Understanding
 602 transfer learning with applications to medical imaging. *CoRR*, abs/1902.07208, 2019. URL
 603 <http://arxiv.org/abs/1902.07208>.

605 Franco Scarselli, Marco Gori, Ah Tsai, Markus Hagenbuchner, and Gabriele Monfardini. The graph
 606 neural network model. *IEEE transactions on neural networks / a publication of the IEEE Neural*
 607 *Networks Council*, 20:61–80, 01 2009. doi: 10.1109/TNN.2008.2005605.

608 Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Chen Liu, Guillaume Huguet, Guy
 609 Wolf, Ian Adelstein, Tim GJ Rudner, and Smita Krishnaswamy. Geometry-aware generative
 610 autoencoders for warped riemannian metric learning and generative modeling on data manifolds.
 611 *CoRR*, 2024.

612 Iurii Sushko, Sergii Novotarskyi, Robert Körner, Anil Kumar Pandey, Matthias Rupp, Wolfram
 613 Teetz, Stefan Brandmaier, Ahmed Abdelaziz, Volodymyr V Prokopenko, Vsevolod Y Tanchuk,
 614 et al. Online chemical modeling environment (ochem): web platform for data storage, model
 615 development and publishing of chemical information. *Journal of computer-aided molecular design*,
 616 25:533–554, 2011.

618 Robert M. Wald. *General Relativity*. University of Chicago Press, Chicago, 1984.

620 Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong Ye, and Nancy
 621 Zhang. Data denoising with transfer learning in single-cell transcriptomics. *Nature Methods*, 16:
 622 875–878, 09 2019. doi: 10.1038/s41592-019-0537-1.

623 Steven Weinberg. *Gravitation and Cosmology: Principles and Applications of the General Theory of*
 624 *Relativity*. John Wiley & Sons, New York, 1972.

626 Florian Wenzel, Andrea Dittadi, Peter Vincent Gehler, Carl-Johann Simon-Gabriel, Max Horn,
 627 Dominik Zietlow, David Kernert, Chris Russell, Thomas Brox, Bernt Schiele, Bernhard Schölkopf,
 628 and Francesco Locatello. Assaying out-of-distribution generalization in transfer learning, 2022.
 629 URL <https://arxiv.org/abs/2207.09239>.

630 Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
 631 Perez, Tim Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi Jaakkola,
 632 Klavs Jensen, and Regina Barzilay. Analyzing learned molecular representations for property
 633 prediction. *Journal of Chemical Information and Modeling*, 59, 07 2019. doi: 10.1021/acs.jcim.
 634 9b00237.

635 Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg. Geodesic clustering
 636 in deep generative models. *arXiv preprint arXiv:1809.04747*, 2018.

638 Shaolun Yao, Jie Song, Lingxiang Jia, Lechao Cheng, Zipeng Zhong, Mingli Song, and Zunlei
 639 Feng. Fast and effective molecular property prediction with transferability map. *Communications*
 640 *Chemistry*, 7(1):85, 2024.

641 Soorin Yim, Dae-Woong Jeong, Sung Moon Ko, Sumin Lee, Hyunseung Kim, Chanhui Lee, and
 642 Sehui Han. Task addition in multi-task learning by geometrical alignment, 2024. URL <https://arxiv.org/abs/2409.16645>.

645 Xiang Yu, Jian Wang, Qing-Qi Hong, Raja Teku, Shui-Hua Wang, and Yu-Dong Zhang. Transfer learn-
 646 ing for medical images analyses: A survey. *Neurocomputing*, 489:230–254, 2022. ISSN 0925-2312.
 647 doi: <https://doi.org/10.1016/j.neucom.2021.08.159>. URL <https://www.sciencedirect.com/science/article/pii/S0925231222003174>.

648 Fuzhen Zhuang, Ping Luo, Hui Xiong, Qing He, Yuhong Xiong, and Zhongzhi Shi. Exploiting
649 associations between word clusters and document classes for cross-domain text categorization†.
650 *Statistical Analysis and Data Mining: The ASA Data Science Journal*, 4(1):100–114, 2011. doi:
651 <https://doi.org/10.1002/sam.10099>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10099>.

652 Fuzhen Zhuang, Ping Luo, Changying Du, Qing He, and Zhongzhi Shi. Triplex transfer learning:
653 Exploiting both shared and distinct concepts for text classification. In *Proceedings of the Sixth
654 ACM International Conference on Web Search and Data Mining*, WSDM ’13, pp. 425–434, New
655 York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450318693. doi:
656 <https://doi.org/10.1145/2433396.2433449>. URL <https://doi.org/10.1145/2433396.2433449>.

657 Fuzhen Zhuang, Ping Luo, Changying Du, Qing He, Zhongzhi Shi, and Hui Xiong. Triplex transfer
658 learning: Exploiting both shared and distinct concepts for text classification. *IEEE Transactions
659 on Cybernetics*, 44(7):1191–1203, 2014. doi: 10.1109/TCYB.2013.2281451.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702

A NOTATIONS

704 Our notation follows index notation and the Einstein summation convention. The functions and
 705 matrices used in our algorithm are defined as follows.

706
$$X : \text{Vector} \quad (21)$$

708
$$X^\mu : \text{Vector Field} \quad (22)$$

709
$$dx_\mu : \text{Basis} \quad (23)$$

710
$$X_\mu : \text{Dual Vector Field} \quad (24)$$

711
$$dx^\mu : \text{Dual Basis} \quad (25)$$

712
$$T : \text{Tensor} \quad (26)$$

713
$$T^{\nu_1 \dots \nu_p}_{\mu_1 \dots \mu_q} : (p, q) \text{ Tensor Field} \quad (27)$$

714
$$g_{\mu\nu} : \text{Metric Tensor} \quad (28)$$

715
$$\delta_{\mu\nu} : \text{Kronecker Delta} \quad (29)$$

716
$$\nabla_\mu : \text{Covariant Derivative} \quad (30)$$

717
$$\mathcal{L}_X : \text{Lie Derivative} \quad (31)$$

718
$$\Gamma^\rho_{\mu\nu} : \text{Christoffel Symbol} \quad (32)$$

721 All indices are raised and lowered by the metric $g_{\mu\nu}$. For instances,

723
$$g^\mu_\nu = g^{\mu\rho} g_{\rho\nu} \quad (33)$$

725 where

727
$$g^{\mu\nu} g_{\mu\nu} = \delta^\mu_\nu = D \quad (34)$$

729 Here D is the number of dimensions.

731

B MOTIVATIONS AND THEORETICAL BACKGROUNDS

733 We prepared this section to assist readers who may not be familiar with the mathematical foundations
 734 of differential geometry. The content is essentially a summarized compilation of well-established
 735 textbook materials, including (Weinberg, 1972; Carroll, 2004; Wald, 1984). In addition, the material
 736 in subsections B.3, B.5, and B.6 is also covered in the original GATE paper (Ko et al., 2023b).

738

B.1 JUSTIFICATION FOR THE RIEMANNIAN GEOMETRY ASSUMPTION

740 In this subsection, we clarify the motivations and the rationale behind this assumption and why
 741 it is both theoretically sound and practically justified in the context of deep learning. While this
 742 was briefly mentioned in Section 3 of our manuscript and supported by citations in Section 2, we
 743 acknowledge that a more explicit theoretical justification is warranted. Below, we provide a detailed
 744 rationale to clarify why this assumption is both mathematically valid and practically appropriate in
 745 the context of our method.

746 The assumption that latent spaces in deep learning models can be treated as Riemannian manifolds
 747 rests on the following logical reasoning:

- 749 1. A **Riemannian manifold** is formally defined as a *smooth manifold* equipped with a *Riemannian metric*—a smoothly varying inner product on each tangent space.
- 750 2. A classical result in differential geometry establishes that **any smooth manifold admits a Riemannian metric**. This is a well-known theorem found in standard references such as (Lee, 2018)
- 751 3. The critical question, then, is whether the latent space of a deep learning model qualifies as
 752 a smooth manifold. This can be affirmed based on the construction of modern deep neural
 753 networks:

756 • *Linear transformations* are inherently smooth mappings.
 757 • *Nonlinear activation functions* (e.g., Tanh, Sigmoid, SiLU) are continuously differen-
 758 tiable and thus smooth.

759 4. Therefore, when smooth activation functions are used, the entire model becomes a composi-
 760 tion of smooth functions. The resulting latent space—formed by mappings from the input
 761 through the network—is itself smooth and hence forms a smooth manifold.

763 Based on the above, it follows directly that the latent space **can be equipped with a Riemannian**
 764 **metric**, rendering it a Riemannian manifold.

765 This assumption not only holds mathematically but is also aligned with practices in prior literature,
 766 including GATE and other geometric learning frameworks. Modeling latent spaces as Riemannian
 767 manifolds enables the use of powerful geometric tools—such as curvature—to capture structural
 768 properties that are otherwise inaccessible through Euclidean assumptions. In our case, this moti-
 769 vates the introduction of Ricci curvature alignment as a principled approach to improving transfer
 770 performance.

772 B.2 MOTIVATION FOR RICCI CURVATURE MATCHING

774 Our work builds on the GATE architecture (Ko et al., 2023b) and thus inherits foundational assump-
 775 tions from that framework. As described in the GATE paper, each data point within a task lies
 776 on a manifold, and the set of such points forms a coordinate patch, interpretable as a task-specific
 777 coordinate system. This is reasonable because many downstream tasks originate from a univer-
 778 sal molecular representation (e.g., SMILES), with task-specific latent representations viewed as
 779 coordinate transformations of the same underlying structure.

780 Given the latent space’s smoothness, it can be modeled as a Riemannian manifold (as argued in
 781 the previous section). Accordingly, task-specific latent spaces can be connected via diffeomor-
 782 phisms—smooth, invertible mappings between manifolds.

783 We require the following assumptions to hold for the dataset:

785 • The source and target tasks are correlated.
 786 • Their distributions share overlapping regions.

788 These assumptions are realistic, as our dataset includes many scientifically correlated task pairs, and
 789 most molecules have multiple annotated properties.

790 The fundamental strategy in both GATE and GEAR is to use source-task data to compensate for
 791 underrepresented regions in the target task. Given a Riemannian latent space, we can transfer
 792 knowledge across tasks by learning diffeomorphic mappings between latent representations.

793 To make this concrete, consider the following example: Suppose we have two molecules—water and
 794 oil. We know the melting point of water but not its boiling point; for oil, we have both values. If
 795 boiling point prediction is the target task and melting point is the source task, then we can train the
 796 model to learn a mapping from oil’s melting-point representation to its boiling-point representation.
 797 Once trained, the model can infer water’s boiling-point representation from its melting-point latent
 798 vector, transferring knowledge via the learned transformation. This enables improved performance
 799 on the target task.

800 Understanding the geometry of latent spaces is essential for meaningful transfer. Riemannian
 801 manifolds are inherently curved, and standard derivatives are insufficient for accurately describing
 802 vector displacement. Instead, one must use the *covariant derivative*, which accounts for curvature
 803 through the Christoffel symbol. This term varies across coordinate systems, making it equivariant
 804 rather than invariant.

805 The second derivative of the metric leads to the *curvature tensor*, which characterizes the mani-
 806 fold’s intrinsic geometry. Among its contractions, the *Ricci scalar* is of particular interest: it is
 807 diffeomorphism-invariant and summarizes the manifold’s curvature using a single scalar value.

809 Since all Riemannian manifolds enjoy diffeomorphism invariance, this property provides freedom in
 coordinate choice. Formally, a diffeomorphism is a smooth bijective map with differentiable inverse.

Practically, it means that a vector's intrinsic properties remain unchanged even when expressed in a new coordinate basis. Consequently, one can always find a coordinate frame in which the manifold appears locally flat.

To uncover the latent manifold's geometry, one could:

- Solve the Einstein field equations to obtain the metric tensor.
- Propose a suitable *Ansatz* and verify that it satisfies the Einstein equations.
- Define a mapping function and derive the curved metric from a flat one using the Jacobian.

The third method is the most practical in deep learning. General solutions to Einstein's equations are unknown for arbitrary settings, and crafting a good *Ansatz* is difficult and task-dependent. However, the Jacobian-based approach is well-established: the curved metric is computed from the Jacobian and its inverse, composed with a flat metric.

Using this method, we analytically compute curvature for task-specific manifolds and compare their geometry through Ricci scalars.

We chose to extend GATE by replacing local perturbation alignment with Ricci curvature matching. As discussed in our Introduction, this provides several key benefits:

- It captures **global geometric structure**, rather than relying on limited local perturbations.
- It removes ambiguity in choosing “infinitesimal” scales—especially relevant when latent vector magnitudes vary or curvature is large.
- It eliminates the need for perturbation-based sampling and supports a **universal embedding space** that enables non-linear mappings and potential multi-modal extensions.

In summary, Ricci curvature offers a mathematically principled, empirically effective, and computationally viable means of aligning task-specific latent spaces in transfer learning.

B.3 THE DEFINITION OF RIEMANNIAN MANIFOLD

A curved space is complicated to comprehend in general. Since the late 19th century, there has been immense development in differential geometry to formally interpret curved spaces. One of the best-known intuitive geometries is Riemannian geometry. Riemannian geometry possesses a handful of useful mathematical properties that can be utilized in the real world. The formal definition of Riemannian geometry is as follows:

Definition B.1 (Riemannian Manifold). A Riemannian metric on a smooth manifold M is a choice at each point $x \in M$ of a positive definite inner product $g_p : T_p M \times T_p M \rightarrow \mathbb{R}$ on $T_x M$. The smooth manifold endowed with the metric g is a Riemannian manifold, denoted (M, g) .

As stated above, a Riemannian manifold is smooth and differentiable everywhere on the manifold, along with its derivatives. Moreover, a Riemannian manifold enjoys diffeomorphism invariance, induced by the Lie derivative \mathcal{L}_X . It can be readily observed that the composition of two different Lie derivatives forms a group, known as the diffeomorphism group. This isometry guarantees that coordinate choices can be made without altering the global geometry of the space.

$$X' = X'^\mu dX'_\mu = X'^\mu \frac{\partial X^\nu}{\partial X'^\mu} dX_\nu = X^\nu dX_\nu = X \quad (35)$$

As shown in Eq. 35, the transformed vector remains unchanged. Moreover, it is always possible to fix the transformed coordinates in a locally flat space.

$$\xi^\mu = \frac{\partial \xi^\mu}{\partial X^\nu} X^\nu \quad (36)$$

Where ξ^μ is a vector on a locally flat frame. To ensure the vector is on a flat frame, one must impose the following condition:

$$\frac{\partial^2}{\partial t^2} \xi^\mu(t) \equiv 0 \quad (37)$$

Since a vector is on a flat frame, it should be in free-falling motion, and thus its acceleration should be trivial. On a locally flat frame, the metric also reduces to the flat Euclidean metric.

$$g_{\mu\nu} = 1_{\mu\nu} \quad (38)$$

864 B.4 COVARIANCE
865

866 A vector should transform consistently across any coordinate frame. However, if the space is no
867 longer flat, the ordinary derivative no longer preserves this property. To address this, let us consider
868 the derivative of a vector in a general curved space.

$$869 \partial_\mu \rightarrow \partial'_\mu = \frac{\partial x^\mu}{\partial x'^\nu} \partial_\nu \quad (39)$$

870 Where $\partial_\mu = \frac{\partial}{\partial x^\mu}$, the vector transformation can be written as follows:

$$871 \partial_\nu X^\mu \rightarrow \partial'_\nu X'^\mu = \frac{\partial x^\lambda}{\partial x'^\nu} \frac{\partial}{\partial x^\lambda} \left(\frac{\partial x'^\mu}{\partial x^\rho} V^\rho \right) \quad (40)$$

$$872 = \frac{\partial x'^\nu}{\partial x^\lambda} \left(\frac{\partial x'^\rho}{\partial x^\nu} \partial^\lambda V^\rho + \frac{\partial^2 x'^\mu}{\partial x^\lambda \partial x^\rho} V^\rho \right) \quad (41)$$

873 As shown above, the transformation of a vector on a curved space using an ordinary derivative is
874 no longer covariant. Therefore, it is necessary to introduce an additional term to restore covariance,
875 namely the affine connection. With this addition, one can define the covariant derivative, which
876 replaces the ordinary derivative.

$$877 \nabla_\mu = \partial_\mu + \Gamma^\lambda_{\mu\nu} \quad (42)$$

878 By imposing the covariance condition on the covariant derivative,

$$879 \nabla_\lambda \rightarrow \nabla'_\lambda V'^\mu = \frac{\partial x^\rho}{\partial x'^\lambda} \frac{\partial x'^\mu}{\partial x^\nu} \nabla_\rho V^\nu \quad (43)$$

880 one can derive the explicit form of the connection.

$$881 \nabla_\mu V^\nu = \partial_\mu V^\nu + \Gamma^\nu_{\mu\lambda} V^\lambda \quad (44)$$

882 Under coordinate transformation,

$$883 \frac{\partial}{\partial x'^\mu} \left(\frac{\partial x'^\nu}{\partial x^\lambda} V^\lambda \right) + \Gamma'^\nu_{\mu\sigma} V'^\sigma = \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial x'^\nu}{\partial x^\lambda} \partial_\rho V^\lambda + \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial^2 x'^\nu}{\partial x^\rho \partial x^\lambda} V^\lambda + \Gamma'^\nu_{\mu\sigma} V'^\sigma \quad (45)$$

884 Here, to make the derivative of a vector covariant, the following condition must be satisfied:

$$885 \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial^2 x'^\nu}{\partial x^\rho \partial x^\lambda} V^\lambda + \Gamma'^\nu_{\mu\sigma} V'^\sigma = \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial x'^\nu}{\partial x^\lambda} \Gamma^\lambda_{\rho\sigma} V^\sigma \quad (46)$$

886 Which is

$$887 \Gamma'^\nu_{\mu\sigma} \left(\frac{\partial x'^\sigma}{\partial x^\tau} V^\tau \right) = \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial'^\nu}{\partial x^\lambda} \Gamma^\lambda_{\rho\sigma} V^\sigma - \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial^2 x'^\nu}{\partial x^\rho \partial x^\lambda} V^\lambda \quad (47)$$

$$888 \Gamma'^\nu_{\mu\kappa} V^\tau = \frac{\partial x^\rho}{\partial x'^\kappa} \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial x'^\nu}{\partial x^\lambda} \Gamma^\lambda_{\rho\sigma} V^\sigma - \frac{\partial x^\tau}{\partial x'^\kappa} \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial^2 x'^\nu}{\partial x^\rho \partial x^\lambda} V^\lambda \quad (48)$$

889 This leads to the explicit form of how the Christoffel symbols transform under coordinate changes.

$$890 \Gamma'^\nu_{\mu\kappa} = \frac{\partial x^\tau}{\partial x'^\kappa} \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial x'^\nu}{\partial x^\lambda} \Gamma^\lambda_{\rho\tau} - \frac{\partial x^\tau}{\partial x'^\kappa} \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial^2 x'^\nu}{\partial x^\rho \partial x^\tau} \quad (49)$$

891 Since the Kronecker delta is a constant matrix, it is clear that its derivative must vanish. By applying
892 the chain rule to the delta, one can derive the following relation, which simplifies the transformation
893 rule described above.

$$894 \frac{\partial}{\partial x'^\mu} \delta^\nu_\kappa = \frac{\partial}{\partial x'^\mu} \frac{\partial x'^\nu}{\partial x'^\kappa} = \frac{\partial}{\partial x'^\mu} \left(\frac{\partial x^\tau}{\partial x'^\kappa} \frac{\partial x'^\nu}{\partial x^\tau} \right) = 0 = \frac{\partial x^\tau}{\partial x'^\kappa} \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial^2 x'^\nu}{\partial x^\rho \partial x^\tau} + \frac{\partial x'^\nu}{\partial x^\tau} \frac{\partial x'^\nu}{\partial x'^\mu} \frac{\partial^2 x^\tau}{\partial x'^\mu \partial x'^\rho} \quad (50)$$

895 Finally, the transformation rule for the Christoffel symbols is given by:

$$896 \Gamma'^\nu_{\mu\kappa} = \frac{\partial x^\tau}{\partial x'^\kappa} \frac{\partial x^\rho}{\partial x'^\mu} \frac{\partial x'^\nu}{\partial x^\lambda} \Gamma^\lambda_{\rho\tau} + \frac{\partial x'^\nu}{\partial x^\tau} \frac{\partial^2 x^\tau}{\partial x'^\mu \partial x'^\rho} \quad (51)$$

900 By the same reasoning, one can easily determine how covariant derivatives act on differential forms.

$$901 \nabla_\mu V_\nu = \partial_\mu V_\nu - \Gamma^\lambda_{\mu\nu} V_\lambda \quad (52)$$

918 B.5 EXPLICIT FORM OF CHRISTOFFEL SYMBOL
919

920 The metric serves as the ruler of a given geometry; therefore, it should remain invariant with respect
921 to position in a coordinate system. In the case of Euclidean space, this invariance is trivial to observe,
922 as the metric is simply $\delta_{\mu\nu}$, a constant matrix.

$$923 \quad 924 \quad \frac{\partial}{\partial x^\lambda} \delta_{\mu\nu} = 0 \quad (53)$$

926 However, in the curved case, the above principle must still hold to interpret the metric as a ruler.
927 Nevertheless, this condition does not hold when using an ordinary derivative. Here, the covariant
928 derivative comes into play, replacing the ordinary derivative. When taking the covariant derivative of
929 the curved metric, the resulting term vanishes.

$$930 \quad \nabla_\lambda g_{\mu\nu} = 0 \quad (54)$$

932 One can express this condition in terms of a flat metric combined with a diffeomorphism transfor-
933 mation factor.

$$934 \quad g_{\mu\nu}(x) = \frac{\partial \xi^\lambda}{\partial x^\mu} \frac{\partial \xi^\rho}{\partial x^\nu} \delta_{\lambda\rho}(\xi) \quad (55)$$

936 Taking the derivative with respect to x on both sides, the equation becomes:

$$937 \quad \frac{\partial}{\partial x^\sigma} g_{\mu\nu}(x) = \frac{\partial^2 x^\lambda}{\partial x^\sigma \partial x^\mu} \frac{\xi^\rho}{\partial x^\nu} \delta_{\lambda\rho} + \frac{\partial^2 \xi^\rho}{\partial x^\sigma \partial x^\nu} \frac{\partial \xi^\lambda}{\partial x^\mu} \delta_{\lambda\rho} \quad (56)$$

$$939 \quad = \frac{\partial^2 \xi^\rho}{\partial x^\sigma \partial x^\nu} \frac{\partial x^\tau}{\partial \xi^\rho} \frac{\partial \xi^\mu}{\partial x^\tau} \frac{\partial \xi^\lambda}{\partial x^\mu} \delta_{\lambda\rho} + \frac{\partial^2 \xi^\lambda}{\partial x^\sigma \partial x^\mu} \frac{\partial x^\tau}{\partial \xi^\lambda} \frac{\partial \xi^\mu}{\partial x^\tau} \frac{\partial \xi^\rho}{\partial x^\nu} \delta_{\lambda\rho} \quad (57)$$

$$940 \quad = \frac{\partial^2 \xi^\rho}{\partial x^\sigma \partial x^\nu} \frac{\partial x^\tau}{\partial \xi^\rho} g_{\mu\tau} + \frac{\partial^2 \xi^\lambda}{\partial x^\sigma \partial x^\mu} \frac{\partial x^\tau}{\partial \xi^\lambda} g_{\tau\nu} \quad (58)$$

944 From Eq. 54, one can easily derive the explicit form of the Christoffel symbol in terms of the
945 derivatives of the curved and flat coordinates.

$$947 \quad \frac{\partial}{\partial x^\sigma} g_{\mu\nu} = \Gamma^\tau_{\sigma\mu} g_{\tau\nu} + \Gamma^\tau_{\nu\sigma} g_{\mu\tau} \quad (59)$$

$$949 \quad \Gamma^\tau_{\sigma\mu} = \frac{\partial^2 \xi^\lambda}{\partial x^\sigma \partial x^\mu} \frac{\partial x^\tau}{\partial \xi^\lambda}(x) \quad (60)$$

951 Since the metric should always be symmetric, the lower indices of the Christoffel symbol should also
952 be symmetric. It is called a torsion-free condition. Furthermore, by utilizing a simple mathematical
953 trick, one can obtain the Christoffel symbol in terms of the metric $g_{\mu\nu}$.

$$955 \quad \frac{\partial}{\partial x^\sigma} g_{\mu\nu} = \Gamma^\tau_{\sigma\mu} g_{\tau\nu} + \Gamma^\tau_{\sigma\nu} g_{\mu\tau} \quad (61)$$

$$957 \quad \frac{\partial}{\partial x^\mu} g_{\nu\sigma} = \Gamma^\tau_{\mu\nu} g_{\tau\sigma} + \Gamma^\tau_{\mu\sigma} g_{\nu\tau} \quad (62)$$

$$959 \quad \frac{\partial}{\partial x^\nu} g_{\sigma\mu} = \Gamma^\tau_{\nu\sigma} g_{\tau\mu} + \Gamma^\tau_{\nu\mu} g_{\sigma\tau} \quad (63)$$

961 Adding the first two equations and subtracting the last one leads to:

$$963 \quad \Gamma^\lambda_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} \left(\frac{\partial}{\partial x^\mu} g_{\nu\rho} + \frac{\partial}{\partial x^\nu} g_{\rho\mu} - \frac{\partial}{\partial x^\rho} g_{\mu\nu} \right) \quad (64)$$

965 B.6 GEODESIC EQUATIONS
966

967 The shortest path between two points is simple to define in flat space. However, in curved space,
968 this notion becomes more complicated. The shortest path in a curved space is defined as a geodesic.
969 There are several ways to derive the geodesic equation, one of which is by imposing the free-fall
970 condition.

$$971 \quad \frac{\partial^2 \xi^\mu(\tau)}{\partial \tau^2} = 0 \quad (65)$$

972 By a diffeomorphism, one can transform a coordinate into an arbitrary coordinate x .
 973

$$974 \quad 0 = \frac{\partial}{\partial \tau} \left(\frac{\partial \xi^\mu}{\partial x^\nu} \frac{\partial x^\nu}{\partial \tau} \right) = \frac{\partial \xi^\mu}{\partial x^\nu} \frac{\partial^2 x^\nu}{\partial \tau^2} + \frac{\partial^2 \xi^\mu}{\partial x^\lambda \partial x^\nu} \frac{\partial x^\lambda}{\partial \tau} \frac{\partial x^\nu}{\partial \tau} \quad (66)$$

$$975 \quad \frac{\partial^2 x^\rho}{\partial \tau^2} + \frac{\partial^2 \xi^\mu}{\partial x^\lambda \partial x^\nu} \frac{\partial x^\rho}{\partial \xi^\mu} \frac{\partial x^\lambda}{\partial \tau} \frac{\partial x^\nu}{\partial \tau} = \frac{\partial^2 x^\rho}{\partial \tau^2} + \Gamma^\rho_{\lambda\nu} \frac{\partial x^\lambda}{\partial \tau} \frac{\partial x^\nu}{\partial \tau} = 0 \quad (67)$$

978 Another way to derive the equation is by minimizing the distance in curved space.
 979

$$980 \quad S = \int \sqrt{g_{\mu\nu} \frac{dx^\mu}{d\tau} \frac{dx^\nu}{d\tau}} d\tau \quad (68)$$

982 By varying the above equation and requiring the variation to vanish, one can compute its minimum
 983 value, and after some tedious calculations, the geodesic equation can be obtained.
 984

985 B.7 RIEMANN CURVATURE

987 The Riemann curvature can be defined through the concept of parallel transport of a vector. In flat
 988 space, a vector remains unchanged under parallel transport along any path. However, in curved space,
 989 the vector's outcome depends on the path taken. This leads to the idea of curvature as the difference
 990 between the results of transporting a vector along two different paths from the same starting point to
 991 the same endpoint. This difference quantitatively characterizes the curvature of the space.
 992

$$993 \quad [\nabla_\mu, \nabla_\nu] V^\lambda \quad (69)$$

994 Here, the bracket denotes the commutation relation between the entities. Since the covariant derivative
 995 acts as the generator of parallel transport, the equation can be interpreted as the vector V^λ being
 996 transported along two different paths: one generated by applying ∇_μ followed by ∇_ν , and the other
 997 by reversing the order. The resulting computation takes the form:
 998

$$999 \quad \begin{aligned} \nabla_\mu \nabla_\nu V^\lambda &= \partial_\mu (\nabla_\nu V^\lambda) + \Gamma^\lambda_{\mu\rho} \nabla_\nu V^\rho - \Gamma^\rho_{\mu\nu} \nabla_\rho V^\lambda \\ &= \partial_\mu \partial_\nu V^\lambda + \partial_\mu \Gamma^\lambda_{\nu\rho} V^\rho + \Gamma^\lambda_{\nu\rho} \partial_\mu V^\rho + \Gamma^\lambda_{\mu\rho} \partial_\nu V^\rho \\ &\quad + \Gamma^\lambda_{\mu\rho} \Gamma^\rho_{\nu\sigma} V^\sigma - \Gamma^\rho_{\mu\nu} \partial_\rho V^\lambda - \Gamma^\rho_{\mu\nu} \Gamma^\lambda_{\rho\sigma} V^\sigma \end{aligned} \quad (70)$$

1000 Where,

$$1003 \quad [\nabla_\mu, \nabla_\nu] V^\lambda = (\partial_\mu \Gamma^\lambda_{\nu\rho} - \partial_\nu \Gamma^\lambda_{\mu\rho} + \Gamma^\lambda_{\mu\sigma} \Gamma^\sigma_{\nu\rho} - \Gamma^\lambda_{\nu\sigma} \Gamma^\sigma_{\mu\rho}) V^\rho - 2\Gamma^\rho_{[\mu\nu]} \nabla_\rho V^\lambda \quad (71)$$

1005 Since the connection is symmetric under the permutation of its lower indices, the last term in the
 1006 above equation can be eliminated. We can then finally define the Riemann tensor.
 1007

$$1008 \quad R^\lambda_{\rho\mu\nu} := \partial_\mu \Gamma^\lambda_{\nu\rho} - \partial_\nu \Gamma^\lambda_{\mu\rho} + \Gamma^\lambda_{\mu\sigma} \Gamma^\sigma_{\nu\rho} - \Gamma^\lambda_{\nu\sigma} \Gamma^\sigma_{\mu\rho} \quad (72)$$

1009 The Riemann curvature tensor possesses several useful properties.

$$1010 \quad \begin{aligned} R_{\lambda\rho\mu\nu} &= -R_{\lambda\rho\nu\mu} \\ R_{\lambda\rho\mu\nu} &= -R_{\rho\lambda\nu\mu} \\ R_{\lambda\rho\mu\nu} &= -R_{\nu\mu\lambda\rho} \\ R_{\lambda\rho\mu\nu} + R_{\lambda\mu\nu\rho} + R_{\lambda\nu\rho\mu} &= 0 \\ \nabla_\sigma R_{\lambda\rho\mu\nu} + \nabla_\mu R_{\lambda\rho\nu\sigma} + \nabla_\nu R_{\lambda\rho\sigma\mu} &= 0 \\ \nabla_\sigma R_{\lambda\rho\mu\nu} + \nabla_\lambda R_{\rho\sigma\nu\mu} + \nabla_\rho R_{\sigma\lambda\nu\mu} &= 0 \\ R_{\lambda\rho\mu\nu} + R_{\rho\mu\lambda\nu} + R_{\mu\lambda\rho\nu} &= 0 \end{aligned} \quad (73)$$

1017 With the curved metric $g_{\mu\nu}$, one can construct the Ricci curvature tensor and the Ricci scalar by
 1018 contracting the first and third, and the second and fourth indices of the Riemann tensor, respectively.
 1019

$$1020 \quad \begin{aligned} R_{\rho\nu} &= g^{\lambda\mu} R_{\lambda\rho\mu\nu} \\ R &= g^{\rho\nu} R_{\rho\nu} = g^{\rho\nu} g^{\lambda\mu} R_{\lambda\rho\mu\nu} \end{aligned} \quad (74)$$

1022 C CURVATURE COMPUTATION FOR TWO LAYERED MLP

1023 Before we proceed, it is convenient to define some symbols that will frequently appear in the
 1024 following calculations. Since we will use the SiLU activation function, the logistic function will
 1025

1026 appear repeatedly in derivative computations. Therefore, we introduce the following symbol to
 1027 represent the logistic function:

$$1028 \quad 1029 \quad \text{LS}(x) \equiv \frac{1}{1 + e^{-x}} \quad (75)$$

1030 The derivative of the logistic function is well known. It consists of the square of the logistic function
 1031 multiplied by an xe^{-x} term.

$$1033 \quad 1034 \quad \frac{d}{dx} \text{LS}(x) = e^{-x} \times \text{LS}(x)^2 = \frac{e^{-x}}{(1 + e^{-x})^2} \quad (76)$$

1035 The coordinate transformation function in the model is based on an MLP with the SiLU activation
 1036 function. To obtain the Jacobian of the transformation function, one must differentiate the
 1037 transformation function with respect to the transformed coordinate x' .

$$1039 \quad 1040 \quad J_j^i = \frac{dx'^i}{dx^j} \quad (77)$$

1041 Here, x'^i can be expressed in the following form.

$$1043 \quad x'^i = W^{(2)i}_k f(W^{(1)k}_j x^j + b^{(1)k}) + b^{(2)i} \quad (78)$$

1044 $W^{(n)i}_j$, $b^{(n)i}$, and $f(x)$ denote the weight matrix, bias for each distinct hidden layer, and activation
 1045 function, respectively. The activation function is, in this case, SiLU. Thus, the derivative of the
 1046 function becomes straightforward.

$$1049 \quad \frac{dx'^i}{dx^j} = W^{(2)i}_m W^{(1)m}_k f(W^k_l x^l + b^k)_{,j} \quad (79)$$

1050 The derivative of the activation term is tedious but manageable. First, we will show how the derivative
 1051 of the SiLU function appears.

$$1053 \quad \text{SiLU}(x) \equiv x \times \text{LS}(x) \quad (80)$$

1054 Hence, the derivative can be expressed as follows:

$$1056 \quad \frac{d}{dx} \text{SiLU}(x) = x \times \text{LS}(x)' + \text{LS}(x) = \frac{xe^{-x}}{(1 + e^{-x})^2} + \frac{1}{1 + e^{-x}} \quad (81)$$

1058 For computational convenience, we first derive the derivative of the exponential term with respect to
 1059 the weight and bias.

$$1061 \quad \partial_k e^{-(W^l_j x^j + b^l)} = -W^l_k (e^{W^l_j x^j + b^l})^i_l = -W^l_k E^i_l \quad (82)$$

1062 Where $(e^{-(W^l_j x^j + b^l)})^i_l$ is a diagonal form as follows.

$$1064 \quad 1065 \quad E^i_l \equiv (e^{-(W^l_j x^j + b^l)})^i_l = \begin{cases} e^{-(W^l_j x^j + b^l)} & \text{if } l = i \\ 0 & \text{if } l \neq i \end{cases} \quad (83)$$

1067 By plugging Eq.81 into Eq.79, one can obtain the final form of the Jacobian. To express the equation
 1068 in a simpler form, it is convenient to introduce the following symbols before proceeding with the
 1069 main computation.

$$1071 \quad 1072 \quad \sigma^i = \frac{1}{1 + e^{-(W^{(1)i}_j x^j + b^{(1)i})}} \quad (84)$$

$$1073 \quad 1074 \quad \partial_j \sigma^i = W^{(1)i}_j E^i_l (\sigma^2)^i \quad (85)$$

$$1075 \quad x'^i = W^{(1)i}_j x^j + b^{(1)i} = (W^{(1)} x + b^{(1)})^i \quad (86)$$

1076 Then, the Jacobian can be expressed in terms of the symbols introduced above.

$$1078 \quad 1079 \quad \frac{dx'^i}{dx^j} = \begin{aligned} & W^{(2)i}_m W^{(1)m}_k ((x^{(1)k}) e^{-x^{(1)k}} \times \text{LS}(x^{(1)k}) + 1) \text{LS}(x^{(1)k})^k_j \\ & = \sum_{a_1} W^{(2)i}_{a_1} (W^{(1)a_1}_j \sigma^{a_1} + (W^{(1)} x + b^{(1)})^{a_1} W^{(1)a_3}_j E^{a_1 a_3} (\sigma^2)^{a_1}) \end{aligned} \quad (87)$$

1080 Due to the diffeomorphism invariance of a Riemannian manifold, the metric tensor can be decomposed
 1081 into the square of the Jacobian of the given coordinate transformation, coupled with vectors and the
 1082 flat Euclidean metric.

$$1083 \quad g_{ij} = \frac{dx'^m}{dx^i} \frac{dx'^n}{dx^j} \eta_{mn} = \frac{dx'^m}{dx^i} \frac{dx'_m}{dx^j} \quad (88)$$

1085 where the metric can be explicitly expressed using Eq. 79.

$$1086 \quad g_{ij} = \sum_{a_1 a_6} W^{(2)a_4}_{a_1} (W^{(1)a_1}_i \sigma^{a_1} + (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_i E^{a_1}_{a_3} (\sigma^2)^{a_1}) \\ 1087 \quad W^{(2)}_{a_4 a_6} (W^{(1)a_6}_j \sigma^{a_6} + (W^{(1)}x + b^{(1)})^{a_6} W^{(1)a_7}_j E^{a_6}_{a_7} (\sigma^2)^{a_6}) \quad (89)$$

1089 As shown above, the curved metric g_{ij} can be expressed in terms of the weight, bias, and input vector
 1090 x . By taking derivatives and appropriately contracting the metric, the curvature tensor can also be
 1091 expressed in terms of these components. The curvature tensor consists of combinations of derivatives
 1092 of the Christoffel symbols. To compute a Christoffel symbol, one must first obtain the derivative of
 1093 the metric tensor. The derivative of the metric tensor can be expressed as follows:

$$1094 \quad \partial_k g_{ij} = \left(\frac{\partial^2 x'^m}{\partial x^k \partial x^i} \frac{\partial x'^n}{\partial x^j} + \frac{\partial^2 x'^n}{\partial x^k \partial x^j} \frac{\partial x'^m}{\partial x^i} \right) \eta_{mn} \quad (90)$$

1097 Here, the key term is the second derivative of a vector. To compute this second derivative, one must
 1098 consider the derivative of the E^{ij} term.

$$1099 \quad \partial_k E^i_j = -W^l_k \delta^i_{lp} E^p_j \quad (91)$$

1101 By utilizing the relation above, one can compute the second derivative of an arbitrary vector x'^i ,
 1102 which is a crucial component for deriving the affine connection.

$$1103 \quad \frac{\partial^2 x'^i}{\partial x^k \partial x^j} = \sum_{a_1} W^{(2)i}_{a_1} (W^{(1)a_1}_j W^{(1)a_2}_k E^{a_1}_{a_2} (\sigma^2)^{a_1} + W^{(1)a_1}_k W^{(1)a_3}_j E^{a_1}_{a_3} (\sigma^2)^{a_1} \\ 1104 \quad - (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_j W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} (\sigma^2)^{a_1} \\ 1105 \quad + 2(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_j E^{a_1}_{a_3} W^{(1)a_6}_k E^{a_1}_{a_6} (\sigma^3)^{a_1}) \quad (92)$$

1107 Now, with the second derivative, we can construct the derivative of the metric.

$$1109 \quad \partial_k g_{ij} = \sum_{a_1 a_7} (W^{(2)m}_{a_1} (W^{(1)a_1}_i W^{(1)a_2}_k E^{a_1}_{a_2} (\sigma^2)^{a_1} + W^{(1)a_1}_k W^{(1)a_3}_i E^{a_1}_{a_3} (\sigma^2)^{a_1} \\ 1110 \quad - (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_i W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} (\sigma^2)^{a_1} \\ 1111 \quad + 2(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_i E^{a_1}_{a_3} W^{(1)a_6}_k E^{a_1}_{a_6} (\sigma^3)^{a_1}) \\ 1112 \quad W^{(2)n}_{a_7} (W^{(1)a_7}_j \sigma^{a_7} + (W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_j E^{a_7}_{a_8} (\sigma^2)^{a_7}) \\ 1113 \quad + W^{(2)n}_{a_1} (W^{(1)a_1}_j W^{(1)a_2}_k E^{a_1}_{a_2} (\sigma^2)^{a_1} + W^{(1)a_1}_k W^{(1)a_3}_j E^{a_1}_{a_3} (\sigma^2)^{a_1} \\ 1114 \quad - (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_j W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} (\sigma^2)^{a_1} \\ 1115 \quad + 2(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_j E^{a_1}_{a_3} W^{(1)a_6}_k E^{a_1}_{a_6} (\sigma^3)^{a_1}) \\ 1116 \quad W^{(2)m}_{a_7} (W^{(1)a_7}_i \sigma^{a_7} + (W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_i E^{a_7}_{a_8} (\sigma^2)^{a_7})) \eta_{mn} \quad (93)$$

1120 Since the Christoffel symbol can be written in terms of the derivative of the given metric, one can
 1121 now express the complete form of the symbol using Eq. 93.

$$1122 \quad \Gamma^i_{jk} = \frac{1}{2} g^{im} (\partial_j g_{mk} + \partial_k g_{mj} - \partial_m g_{kj}) \quad (94)$$

1124 Here, g^{im} is the inverse of the metric tensor, which satisfies the following relation:

$$1126 \quad g^{ij} g_{jk} = \delta^i_k \quad (95)$$

$$1127 \quad g^{ij} g_{ji} = D \quad (96)$$

1128 where D is the number of spatial dimensions. The inverse of the metric can be explicitly written
 1129 using the inverse Jacobian.

$$1131 \quad g^{ij} = \frac{dx^i}{dx'^m} \frac{dx^j}{dx'^n} \eta^{mn} \quad (97)$$

1133 Although the explicit form of the inverse metric is written in terms of combinations of inverse
 1134 Jacobians, we design two distinct models to encapsulate the Jacobian and the inverse Jacobian

separately for each case. Thus, the inverse Jacobian is not the actual matrix inverse of the Jacobian, but instead follows the same computational process as the Jacobian, with the model replaced by the inverse transfer model. Using this setup, one can then express the explicit form of the inverse metric tensor in terms of weights and biases.

$$g^{ij} = \sum_{a_1 a_6} W'^{(2)a_4}_{a_1} (W'^{(1)a_1 i} \sigma^{a_1} + (W'^{(1)} x + b^{(1)})^{a_1} W'^{(1)a_3 i} E^{a_1}_{a_3} (\sigma^2)^{a_1}) \\ W'^{(2)}_{a_4 a_6} (W'^{(1)a_6 j} \sigma^{a_6} + (W'^{(1)} x + b^{(1)})^{a_6} W'^{(1)a_7 j} E^{a_6}_{a_7} (\sigma^2)^{a_6}) \quad (98)$$

The primed weights and biases indicate the weights and biases from the inverse transfer model. Finally, all individual components are now prepared to complete the expression for the Christoffel symbol. We now recall Eq. 94.

$$\Gamma^i_{jk} = \frac{1}{2} g^{im} (\partial_j g_{mk} + \partial_k g_{mj} - \partial_m g_{kj}) \\ = \frac{1}{2} \sum_{a_1 a_4} W'^{(2)a_3}_{a_1} (W'^{(1)a_1 i} \sigma^{a_1} + (W'^{(1)} x + b^{(1)})^{a_1} W'^{(1)a_2 i} E^{a_1}_{a_2} (\sigma^2)^{a_1}) \\ W'^{(2)}_{a_3 a_4} (W'^{(1)a_4 m} \sigma^{a_4} + (W'^{(1)} x + b^{(1)})^{a_4} W'^{(1)a_5 m} E^{a_4}_{a_5} (\sigma^2)^{a_4}) \\ (\sum_{a_5 a_{11}} W'^{(2)o}_{a_5} ((W'^{(1)a_5}_m W'^{(1)a_6}_j E^{a_5}_{a_6} (\sigma^2)^{a_5} + W'^{(1)a_5}_m W'^{(1)a_7}_j E^{a_5}_{a_7} (\sigma^2)^{a_5}) \\ - (W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_m W'^{(1)a_8}_j \delta^{a_5}_{a_8 a_9} E^{a_9}_{a_7} (\sigma^2)^{a_5} \\ + 2(W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_m E^{a_5}_{a_7} W'^{(1)a_{10}}_j E^{a_5}_{a_{10}} (\sigma^3)^{a_5}) \\ W'^{(2)p}_{a_{11}} (W'^{(1)a_{11}}_k \sigma^{a_{11}} + (W^{(1)} x + b^{(1)})^{a_{11}} W'^{(1)a_{12}}_k E^{a_{11}}_{a_{12}} (\sigma^2)^{a_{11}}) \\ + W'^{(2)p}_{a_5} (W'^{(1)a_5}_k W'^{(1)a_6}_j E^{a_5}_{a_6} (\sigma^2)^{a_5} + W'^{(1)a_5}_j W'^{(1)a_7}_k E^{a_5}_{a_7} (\sigma^2)^{a_5}) \\ - (W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_k W'^{(1)a_8}_j \delta^{a_5}_{a_8 a_9} E^{a_9}_{a_7} (\sigma^2)^{a_5} \\ + 2(W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_k E^{a_5}_{a_7} W'^{(1)a_{10}}_j E^{a_5}_{a_{10}} (\sigma^3)^{a_5}) \\ W'^{(2)o}_{a_{11}} (W'^{(1)a_{11}}_m \sigma^{a_{11}} + (W^{(1)} x + b^{(1)})^{a_{11}} W'^{(1)a_{12}}_m E^{a_{11}}_{a_{12}} (\sigma^2)^{a_{11}}) \eta_{op} \\ + W'^{(2)o}_{a_5} ((W'^{(1)a_5}_m W'^{(1)a_6}_k E^{a_5}_{a_6} (\sigma^2)^{a_5} + W'^{(1)a_5}_k W'^{(1)a_7}_m E^{a_5}_{a_7} (\sigma^2)^{a_5}) \\ - (W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_m W'^{(1)a_8}_k \delta^{a_5}_{a_8 a_9} E^{a_9}_{a_7} (\sigma^2)^{a_5} \\ + 2(W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_m E^{a_5}_{a_7} W'^{(1)a_{10}}_k E^{a_5}_{a_{10}} (\sigma^3)^{a_5}) \\ W'^{(2)p}_{a_{11}} (W'^{(1)a_{11}}_j \sigma^{a_{11}} + (W^{(1)} x + b^{(1)})^{a_{11}} W'^{(1)a_{12}}_j E^{a_{11}}_{a_{12}} (\sigma^2)^{a_{11}}) \\ + W'^{(2)p}_{a_5} (W'^{(1)a_5}_j W'^{(1)a_6}_k E^{a_5}_{a_6} (\sigma^2)^{a_5} + W'^{(1)a_5}_m W'^{(1)a_7}_j E^{a_5}_{a_7} (\sigma^2)^{a_5}) \\ - (W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_j W'^{(1)a_8}_k \delta^{a_5}_{a_8 a_9} E^{a_9}_{a_7} (\sigma^2)^{a_5} \\ + 2(W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_j E^{a_5}_{a_7} W'^{(1)a_{10}}_k E^{a_5}_{a_{10}} (\sigma^3)^{a_5}) \\ W'^{(2)o}_{a_{11}} (W'^{(1)a_{11}}_k \sigma^{a_{11}} + (W^{(1)} x + b^{(1)})^{a_{11}} W'^{(1)a_{12}}_k E^{a_{11}}_{a_{12}} (\sigma^2)^{a_{11}}) \eta_{op} \\ - W'^{(2)o}_{a_5} ((W'^{(1)a_5}_k W'^{(1)a_6}_m E^{a_5}_{a_6} (\sigma^2)^{a_5} + W'^{(1)a_5}_m W'^{(1)a_7}_k E^{a_5}_{a_7} (\sigma^2)^{a_5}) \\ - (W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_k W'^{(1)a_8}_m \delta^{a_5}_{a_8 a_9} E^{a_9}_{a_7} (\sigma^2)^{a_5} \\ + 2(W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_k E^{a_5}_{a_7} W'^{(1)a_{10}}_m E^{a_5}_{a_{10}} (\sigma^3)^{a_5}) \\ W'^{(2)p}_{a_{11}} (W'^{(1)a_{11}}_j \sigma^{a_{11}} + (W^{(1)} x + b^{(1)})^{a_{11}} W'^{(1)a_{12}}_j E^{a_{11}}_{a_{12}} (\sigma^2)^{a_{11}}) \\ + W'^{(2)p}_{a_5} (W'^{(1)a_5}_j W'^{(1)a_6}_m E^{a_5}_{a_6} (\sigma^2)^{a_5} + W'^{(1)a_5}_m W'^{(1)a_7}_j E^{a_5}_{a_7} (\sigma^2)^{a_5}) \\ - (W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_j W'^{(1)a_8}_m \delta^{a_5}_{a_8 a_9} E^{a_9}_{a_7} (\sigma^2)^{a_5} \\ + 2(W^{(1)} x + b^{(1)})^{a_5} W'^{(1)a_7}_j E^{a_5}_{a_7} W'^{(1)a_{10}}_m E^{a_5}_{a_{10}} (\sigma^3)^{a_5}) \\ W'^{(2)o}_{a_{11}} (W'^{(1)a_{11}}_k \sigma^{a_{11}} + (W^{(1)} x + b^{(1)})^{a_{11}} W'^{(1)a_{12}}_k E^{a_{11}}_{a_{12}} (\sigma^2)^{a_{11}}) \eta_{op}) \quad (99)$$

To compute the Riemann curvature of the given manifold, one must calculate the second derivative of the metric, as required by its definition.

$$R^i_{ljk} T^l = [\nabla_j, \nabla_k] T^i \quad (100)$$

where ∇_j is the covariant derivative, which includes the affine connection.

$$\nabla_j T^i = \partial_j T^i + \Gamma^i_{jl} T^l \quad (101)$$

Furthermore, the bracket indicates the commutation relation between the elements; hence, the curvature can be expressed in the following way:

$$\begin{aligned} R^i_{ljk} T^l &= \nabla_j \nabla_k T^i - \nabla_k \nabla_j T^i \\ &= (\partial_j \Gamma^i_{kl} - \partial_k \Gamma^i_{jl} + \Gamma^i_{jm} \Gamma^m_{kl} - \Gamma^i_{km} \Gamma^m_{jl}) T^l \end{aligned} \quad (102)$$

Here, the derivative of the affine connection consists of combinations of second derivatives of the metric tensor.

$$\begin{aligned} \partial_j \Gamma^i_{kl} &= \frac{1}{2} \partial_j (g^{im} (\partial_k g_{ml} + \partial_l g_{mk} - \partial_m g_{lk})) \\ &= \frac{1}{2} (\partial_j g^{im} (\partial_k g_{ml} + \partial_l g_{mk} - \partial_m g_{lk}) \\ &\quad + g^{im} (\partial_j \partial_k g_{ml} + \partial_j \partial_l g_{mk} - \partial_j \partial_m g_{lk})) \end{aligned} \quad (103)$$

Therefore, by obtaining the specific form of the second derivative of the metric, one can express the explicit form of the Riemann curvature. To begin the computation, it is convenient to recall Eq.93 for taking the derivative, as well as Eq.82 and Eq. 91 for computing the elements involving the activation function.

$$\begin{aligned} \partial_j \partial_k g_{ml} &= \sum_{a_1 a_7} (W^{(2)o}_{a_1} (-2W^{(1)a_1}_m W^{(1)a_2}_k W^{(1)a_9}_j \delta^{a_1}_{a_9 a_{10}} E^{a_{10}}_{a_2} (\sigma^2)^{a_1} \\ &\quad + 4W^{(1)a_1}_m W^{(1)a_2}_k W^{(1)a_9}_j E^{a_1}_{a_2} E^{a_1}_{a_9} (\sigma^3)^{a_1} \\ &\quad - W^{(1)a_1}_j W^{(1)a_3}_m W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} (\sigma^2)^{a_1} \\ &\quad + (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_m W^{(1)a_4}_k W^{(1)a_9}_j \delta^{a_1}_{a_4 a_5} \delta^{a_5}_{a_9 a_{10}} E^{a_{10}}_{a_3} (\sigma^2)^{a_1} \\ &\quad - 2(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_m W^{(1)a_4}_k W^{(1)a_9}_j \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} E^{a_1}_{a_9} (\sigma^3)^{a_1} \\ &\quad + 2W^{(1)a_1}_j W^{(1)a_3}_m W^{(1)a_6}_k E^{a_1}_{a_3} E^{a_1}_{a_6} (\sigma^3)^{a_1} \\ &\quad - 4(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_m W^{(1)a_6}_k W^{(1)a_9}_j \delta^{a_1}_{a_9 a_{10}} E^{a_1}_{a_3} E^{a_{10}}_{a_6} (\sigma^3)^{a_1} \\ &\quad + 6(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_m W^{(1)a_6}_k W^{(1)a_9}_j E^{a_1}_{a_9} E^{a_1}_{a_3} E^{a_1}_{a_6} (\sigma^4)^{a_1}) \\ &\quad W^{(2)p}_{a_7} (W^{(1)a_7}_l \sigma^{a_7} + (W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_l E^{a_7}_{a_8} (\sigma^2)^{a_7}) \\ &\quad + W^{(2)o}_{a_1} (W^{(1)a_1}_m W^{(1)a_2}_k E^{a_1}_{a_2} (\sigma^2)^{a_1} + W^{(1)a_1}_k W^{(1)a_3}_m E^{a_1}_{a_3} (\sigma^2)^{a_1} \\ &\quad - (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_m W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} (\sigma^2)^{a_1} \\ &\quad + 2(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_m W^{(1)a_6}_k E^{a_1}_{a_3} E^{a_1}_{a_6} (\sigma^3)^{a_1}) \\ &\quad W^{(2)p}_{a_7} (W^{(1)a_7}_l W^{(1)a_7}_{a_{11}} E^{a_{11}}_{a_7} (\sigma^2)^{a_7} + W^{(1)a_7}_j W^{(1)a_8}_l E^{a_7}_{a_8} (\sigma^2)^{a_7}) \\ &\quad - (W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_l W^{(1)a_{11}}_j \delta^{a_7}_{a_{11} a_{12}} E^{a_{12}}_{a_8} (\sigma^2)^{a_7} \\ &\quad + 2(W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_l W^{(1)a_7}_{a_{11}} E^{a_7}_{a_8} E^{a_{11}}_{a_7} (\sigma^3)^{a_7}) \\ &\quad + W^{(2)p}_{a_1} (-2W^{(1)a_1}_l W^{(1)a_2}_k W^{(1)a_{11}}_j \delta^{a_1}_{a_{11} a_{12}} E^{a_{12}}_{a_2} (\sigma^2)^{a_1} \\ &\quad + 4W^{(1)a_1}_{(l} W^{(1)a_2}_{k)} W^{(1)a_{11}}_j E^{a_1}_{a_2} E^{a_1}_{a_{11}} (\sigma^3)^{a_1} \\ &\quad - W^{(1)a_1}_j W^{(1)a_3}_l W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} (\sigma^2)^{a_1} \\ &\quad + (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_l W^{(1)a_4}_k W^{(1)a_{11}}_j \delta^{a_1}_{a_4 a_5} \delta^{a_5}_{a_{11} a_{12}} E^{a_{12}}_{a_3} (\sigma^2)^{a_1} \\ &\quad - 2(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_l W^{(1)a_{11}}_j W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} E^{a_1}_{a_{11}} (\sigma^3)^{a_1} \\ &\quad + 2W^{(1)a_1}_j W^{(1)a_3}_l W^{(1)a_6}_k E^{a_1}_{a_3} E^{a_1}_{a_6} (\sigma^3)^{a_1} \\ &\quad - 4(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_l W^{(1)a_6}_k W^{(1)a_{11}}_j \delta^{a_1}_{a_{11} a_{12}} E^{a_{12}}_{(a_3} E^{a_1}_{a_6)} (\sigma^3)^{a_1} \\ &\quad + 6(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_l W^{(1)a_6}_k W^{(1)a_{11}}_j E^{a_1}_{a_3} E^{a_1}_{a_6} E^{a_1}_{a_{11}} (\sigma^4)^{a_1}) \\ &\quad W^{(2)o}_{a_7} (W^{(1)a_7}_m \sigma^{a_7} + (W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_m E^{a_7}_{a_8} (\sigma^2)^{a_7}) \\ &\quad + W^{(2)p}_{a_1} (W^{(1)a_1}_l W^{(1)a_2}_k E^{a_1}_{a_2} (\sigma^2)^{a_1} + W^{(1)a_1}_k W^{(1)a_3}_l E^{a_1}_{a_3} (\sigma^2)^{a_1} \\ &\quad - (W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_l W^{(1)a_4}_k \delta^{a_1}_{a_4 a_5} E^{a_5}_{a_3} (\sigma^2)^{a_1} \\ &\quad + 2(W^{(1)}x + b^{(1)})^{a_1} W^{(1)a_3}_l W^{(1)a_6}_k E^{a_1}_{a_3} E^{a_1}_{a_6} (\sigma^3)^{a_1}) \\ &\quad W^{(2)o}_{a_7} (2W^{(1)a_7}_{(m} W^{(1)a_{11}}_{j)} E^{a_7}_{a_{11}} (\sigma^2)^{a_7} \\ &\quad - (W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_m W^{(1)a_{11}}_j \delta^{a_7}_{a_{11} a_{12}} E^{a_{12}}_{a_8} (\sigma^2)^{a_7} \\ &\quad + 2(W^{(1)}x + b^{(1)})^{a_7} W^{(1)a_8}_m W^{(1)a_{11}}_j E^{a_7}_{a_8} (\sigma^3)^{a_7} E^{a_7}_{a_{11}}) \eta_{op} \end{aligned} \quad (104)$$

Now, we have collected all the fundamental components needed to compute the Ricci scalar. Although the computation is quite tedious, it can be carried out through brute-force calculation by referring to Eqs. 72, 74, 93, 98, 99, 103, and 104.

C.1 QUADRATIC CASE FOR COMPUTATION CHECK

This entire sequence is indeed both tedious and complex. Therefore, we introduce the simplest case for each process to verify the validity of the code and the formulas. Here, we set the activation function to the quadratic of the input signal and maintain the number of layers at two. Under these conditions, the transformed vector becomes:

$$x'^i = W^{(2)i}_j (W^{(1)}x + b^{(1)})^{2j} + b^{(2)i} \quad (105)$$

Now, the Jacobian can be easily derived from the above equation.

$$J^i_j = W^{(2)i}_k 2(W^{(1)}x + b^{(1)})^k_m W^{(1)m} \quad (106)$$

Here, $(W^{(1)}x + b^{(1)})^i_j$ has a diagonal matrix form as follows:

$$(W^{(1)}x + b^{(1)})^i_j = \begin{cases} W^{(1)i}_k x^k + b^{(1)i} & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \quad (107)$$

Then, the metric can be written in the following form:

$$g_{ij} = W^{(2)i}_k 2(W^{(1)}x + b^{(1)})^k_m W^{(1)m} W^{(2)o}_n 2(W^{(1)}x + b^{(1)})^n_o W^{(1)o}_j \quad (108)$$

Finally, one can compute the derivative of the metric.

$$\begin{aligned} \partial_k g_{ij} = & 4|W^{(2)o}_q|^2 (W^{(1)})^{2q}_p \delta^p_{ik} W^{(1)n}_o (W^{(1)}x + b^{(1)})^o_j \\ & + 4|W^{(2)}_{nq}|^2 W^{(1)q}_m (W^{(1)}x + b^{(1)})^m_i (W^{(1)})^{2n}_p \delta^p_{jk} \end{aligned} \quad (109)$$

where $|W|^2 = W^T W$ and $W^2 = W^i_k W^k_j$.

C.1.1 2-DIM SIMPLEST EXAMPLE FOR SQUARE ACTIVATION

To cross-check the computation results, we hereby introduce the simplest example for metric computation in 2D. The weights and biases for each layer are defined as follows:

$$W^{(1)i}_j = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad (110)$$

$$W^{(2)i}_j = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \quad (111)$$

$$b^{(1)i} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \quad (112)$$

$$x = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad (113)$$

Then, the Jacobian can be computed as expressed in Eq. 106. We will break down the Jacobian piece by piece and verify the validity of the equation.

$$2(W^{(1)}x + b^{(1)})^m_j = \begin{pmatrix} 16 & 0 \\ 0 & 30 \end{pmatrix} \quad (114)$$

By multiplying the weights from both layers, the equation becomes:

$$J^i_j = \begin{pmatrix} 620 & 880 \\ 832 & 1184 \end{pmatrix} \quad (115)$$

Finally, the metric can be expressed as the square of the Jacobian.

$$g_{ij} = (J^T)_{ik} J^k_j = \begin{pmatrix} 1076624 & 1530688 \\ 1530688 & 2176256 \end{pmatrix} \quad (116)$$

As shown above, the metric is symmetric.

1296 C.1.2 2-DIM SIMPLEST EXAMPLE FOR SiLU ACTIVATION
1297

1298 In practice, a simple square activation is insufficient to capture the complex structure of curved space.
1299 Therefore, we adopt the SiLU activation function to better express the model’s geometric structure.
1300 The SiLU function behaves similarly to the ReLU activation but enjoys smoothness across the entire
1301 domain.

$$1302 \text{SiLU}(x) = x \times \text{LS}(x) = \frac{x}{1 + e^{-x}} \quad (117)$$

1303 Since the SiLU activation contains the inverse of the exponential function in its expression, the input
1304 values should be kept smaller than 1 to prevent the activation from converging to a trivial value.
1305

$$1306 W^{(1)i} = \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix} \quad (118)$$

$$1308 W^{(2)i} = \begin{pmatrix} 0.5 & 0.6 \\ 0.7 & 0.8 \end{pmatrix} \quad (119)$$

$$1311 b^{(1)i} = \begin{pmatrix} 0.3 \\ 0.4 \end{pmatrix} \quad (120)$$

$$1313 x = \begin{pmatrix} 0.1 \\ 0.2 \end{pmatrix} \quad (121)$$

1315 Using the input example set described above, one can compute the explicit equations, with the results
1316 as follows. We will first introduce the main components used in the calculation. One key component
1317 is the sigmoid function, which is utilized in the SiLU computation.
1318

$$1319 \sigma^i = \begin{pmatrix} 0.5866 \\ 0.6248 \end{pmatrix} \quad (122)$$

1321 Another component is the diagonalized exponential term, which appears in the derivative of the vector
1322 exponential.

$$1324 E^i = \begin{pmatrix} 0.7047 & 0 \\ 0 & 0.6005 \end{pmatrix} \quad (123)$$

1325 By combining the two expressions above with the weights and biases, it is possible to obtain the full
1326 Jacobian.

$$1328 J^i = \begin{pmatrix} 0.1676 & 0.2458 \\ 0.2257 & 0.3322 \end{pmatrix} \quad (124)$$

1329 Finally, by squaring the Jacobian, the induced metric g_{ij} can be defined.
1330

$$1332 g_{ij} = (J^T)_{ik} J^k = \begin{pmatrix} 0.0790 & 0.1161 \\ 0.1161 & 0.1708 \end{pmatrix} \quad (125)$$

1333 As shown above, the metric is well-defined and forms a symmetric structure in this setup as well.
1334

1336 D BASE GRAPH NEURAL NETWORK MODEL
1337

1338 In general, molecule is represented in a graph form. Therefore, in order to handle molecule dataset,
1339 it is inevitable to utilize graph neural networks. We chose directional message passing network
1340 (DMPNN) (Yang et al., 2019) for our backbone, since it outperforms other GNN architectures in
1341 molecular domain. Given a graph, DMPNN initializes the hidden state of each edge (i, j) based on
1342 its edge feature E_{ij} with node feature X_i . At each step t , directional edge summarizes incident edges
1343 as a message m_{ij}^{t+1} and updates its hidden state to h_{ij}^{t+1} .

$$1344 m_{ij}^{t+1} = \sum_{k \in \mathcal{N}(i) \setminus j} h_{ki}^t \quad (126)$$

$$1347 h_{ij}^{t+1} = \text{ReLU}(h_{ij}^0 + W_e m_{ij}^{t+1}) \quad (127)$$

1348 Where $\mathcal{N}(i)$ denotes the set of neighboring nodes and W_e a learnable weight. The hidden states of
1349 nodes are updated by aggregating the hidden states of incident edges into message m_i^{t+1} , and passing

1350 its concatenation with the node feature X_i into a linear layer followed by ReLU non-linearity
 1351

$$1352 \quad m_i^{t+1} = \sum_{j \in \mathcal{N}(i)} h_{ij}^t \quad (128)$$

$$1354 \quad h_i^{t+1} = \text{ReLU}(W_n \text{concat}(X_i, m_i^{t+1})) \quad (129)$$

1355 Similarly, W_n denotes a learnable weight. Assuming DMPNN runs for T timesteps, we use
 1356 $(X_{out}, E_{out}) = \text{GNN}(A, X, E)$ to denote the output representation matrices containing hidden
 1357 states of all nodes and edges, respectively (i.e., $X_{out,i} = h_i^T$ and $E_{out,ij} = h_{ij}^T$).
 1358

1359 For graph-level prediction, the node representations after the final GNN layer are typically sum-
 1360 pooled to obtain a single graph representation $h_G = \sum_i h_i$, which is then passed to a FFN prediction
 1361 layer.
 1362

E ARCHITECTURE AND HYPERPARAMETERS

1363 The detailed steps of training GEAR are outlined in Algorithm 1. The model architecture consists of
 1364 five distinct neural networks, with their parameter sizes summarized in Table 1 and 2. As illustrated
 1365 in Figures 1 and 6, each task comprises an embedding network, encoder network, transfer network,
 1366 inverse transfer network, and head network.
 1367

1368 The embedding network, denoted as $f_m(x)$, adopts the DMPNN (Directed Message Passing Neural
 1369 Network) architecture with a depth of 3. It converts the input molecular representation x into a latent
 1370 representation a in the embedding space. The input vector to the embedding module is constructed as
 1371 follows, using the same featurization scheme as (Yang et al., 2019): atom features are represented
 1372 using a 134-dimensional one-hot encoded vector that captures atomic properties such as type, degree,
 1373 formal charge, hybridization, and aromaticity. Bond features are encoded as a 149-dimensional one-
 1374 hot vector reflecting bond type, conjugation, ring membership, stereochemistry, and atom-pair-derived
 1375 descriptors.
 1376

1377 The encoder network follows a bottleneck architecture implemented as an autoencoder with multilayer
 1378 perceptrons (MLPs). The output from the encoder, $f_e(a)$, is then passed to both the transfer network
 1379 and the head network for subsequent processing.
 1380

1381 The output of transfer network $f_t(z)$, denoted as m , is used to calculate consistency loss. The induced
 1382 flat metrics $\eta_{(s)ij}$ and $\eta_{(t)ij}$ from the source and target mappings are iterated K times, with $K = 2$ in
 1383 our setup. m is also fed into inverse transfer network, so that the output from inverse transfer network
 1384 $f_i(m)$ can be used to calculate autoencoder loss. Both modules are utilized to compute mapping,
 1385 metric and curvature losses. The output from head network, $f_h \circ f_i(m)$, is used to calculate regression
 1386 loss and mapping loss. We trained the model for 1000 epochs with batch size 512 while using
 1387

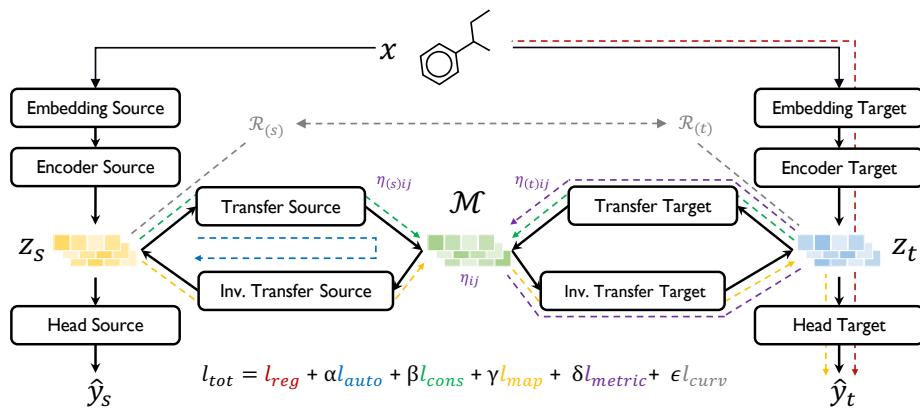


Figure 6: Detailed schematics of GEAR with specific loss function components.

AdamW (Loshchilov & Hutter, 2017) for optimization with learning rate 5e-5. The hyperparameters for $\alpha, \beta, \gamma, \delta, \epsilon$ are 0.1, 0.1, 0.2, 0.1, 0.2 respectively.

Table 1: Common Network Parameters

network	layer	input, output size	hidden size	dropout
embedding	DMPNN	[134, 149], 100	200	0
encoder	MLP layer	100, 50	50	0
transfer	MLP layer	50, 50	50,50,50	0.2
inverse transfer	MLP layer	50, 50	50,50,50	0.2
head	MLP layer	50, 1	25,12	0.2

Table 2: Task Specific Encoder Parameters

Tasks	Random Split Encoder Parameters	Scaffold Split Encoder Parameters
hv \leftarrow ds	[200, 200]	[200, 200, 200]
as \leftarrow bp	[200, 200]	[200, 200, 200]
ds \leftarrow kri	[200]	[200, 200]
hv \leftarrow vs	[200, 200]	[200]
vs \leftarrow hv	[200, 200, 200]	[200]
st \leftarrow as	[200, 200, 200]	[200, 200, 200]
ds \leftarrow lp	[200, 200, 200]	[200]
pol \leftarrow ds	[200, 200]	[200, 200, 200]
vs \leftarrow bp	[200, 200, 200]	[200, 200, 200]
dk \leftarrow ef	[200]	[200, 200]
as \leftarrow ccs	[200]	[200, 200, 200]
ct \leftarrow bp	[200, 200]	[200, 200]
st \leftarrow ccs	[200, 200, 200]	[200]
ccs \leftarrow kri	[200]	[200, 200, 200]
hv \leftarrow bp	[200, 200, 200]	[200, 200, 200]
vs \leftarrow ccs	[200, 200, 200]	[200]
st \leftarrow hv	[200, 200]	[200]
hv \leftarrow ct	[200, 200]	[200, 200]
ip \leftarrow bp	[200]	[200]
hv \leftarrow ef	[200, 200]	[200, 200]
hv \leftarrow kri	[100, 100, 100]	[200, 200]
ct \leftarrow kri	[200, 200]	[200, 200, 200]
ip \leftarrow dk	[200]	[200, 200, 200]

Table 3: Hyperparameters

learning rate	0.00005
optimizer	AdamW
batch size	512
epoch	1000
$\alpha, \beta, \gamma, \delta, \epsilon$	0.1, 0.1, 0.2, 0.1, 0.2

1458 **Algorithm 1** GEAR

1459 1: Initialize embedding network f_m , encoder network f_e , transfer network f_t , inverse transfer
 1460 network f_i , head network f_h with random parameters θ
 1461 2: Let $\mathcal{J}(\cdot)$, $\mathcal{G}(\cdot)$, and $\mathcal{R}(\cdot)$ be mathematical functions for jacobian, metric, and curvature computa-
 1462 tion
 1463 3:
 1464 4: **for** epoch $i = 1, 2, \dots, n$ **do**
 1465 5: **for** each $t \in Tasks$ **do**
 1466 6: Initialize L_{metric} , L_{reg} , L_{auto} to 0
 1467 7: **for** each batch $\mathbf{b} = (x^t, y^t) \in$ dataset D **do**
 1468 8: $a^t \leftarrow f_m^t(x^t)$
 1469 9: $z^t \leftarrow f_e^t(a^t)$
 1470 10: $m^t \leftarrow f_t^t(z^t)$
 1471 11: $g_{curved}^t \leftarrow \mathcal{G}(\mathcal{J}(m^t, f_i^t))$
 1472 12: $g_{flat}^t \leftarrow \mathcal{G}(\mathcal{J}(f_i^t(m^t, f_t^t), g_{curved}^t))$
 1473 13: $r^t \leftarrow \mathcal{R}(g_{curved}^t)$
 1474 14: **for** step $k = 1, \dots, K$ **do**
 1475 15: $g_{curved}^{t, (k)} \leftarrow \mathcal{G}(\mathcal{J}(m^t, f_i^t), g_{flat}^{t, (k-1)})$
 1476 16: $g_{flat}^{t, (k)} \leftarrow \mathcal{G}(\mathcal{J}(f_i^t(m^t, f_t^t)), g_{curved}^{t, (k-1)})$
 1477 17: **end for**
 1478 18: $L_{metric} \leftarrow \sum_{k=1}^K (\text{MSE Loss}(g_{flat}^{t, (k)}, I) + \text{MSE Loss}(g_{curved}^{t, (k)}, I))$
 1479 19: $L_{reg} \leftarrow \text{MSE Loss}(y^t, f_h^t(z^t))$
 1480 20: $L_{auto} \leftarrow \text{MSE Loss}(f_i^t(m^t), z^t)$
 1481 21:
 1482 22: **for** each $s \in Subtasks$ **do**
 1483 23: Initialize L_{map} , L_{cons} , L_{curv} to 0
 1484 24: $z^s \leftarrow f_e^s(a^t)$
 1485 25: $m^s \leftarrow f_t^s(z^s)$
 1486 26: $g_{curved}^s \leftarrow \mathcal{G}(\mathcal{J}(m^s, f_i^s))$
 1487 27: $g_{flat}^s \leftarrow \mathcal{G}(\mathcal{J}(f_i^s(m^s, f_t^s), g_{curved}^s))$
 1488 28: $r^s \leftarrow \mathcal{R}(g_{curved}^s)$
 1489 29: **for** step $k = 1, \dots, K$ **do**
 1490 30: $g_{curved}^{s, (k)} \leftarrow \mathcal{G}(\mathcal{J}(m^s, f_i^s), g_{flat}^{s, (k-1)})$
 1491 31: $g_{flat}^{s, (k)} \leftarrow \mathcal{G}(\mathcal{J}(f_i^s(m^s, f_t^s)), g_{curved}^{s, (k-1)})$
 1492 32: **end for**
 1493 33: $L_{metric} \leftarrow L_{metric} + \sum_{k=1}^K (\text{MSE Loss}(g_{flat}^{s, (k)}, I) + \text{MSE Loss}(g_{curved}^{s, (k)}, I))$
 1494 34: $L_{map} \leftarrow L_{map} + \text{MSE Loss}(y^t, f_h^t \circ f_i^s(m^s))$
 1495 35: $L_{cons} \leftarrow L_{cons} + \text{MSE Loss}(m^t, m^s)$
 1496 36: $L_{curv} \leftarrow L_{curv} + \text{MSE Loss}(r^t, r^s)$
 1497 37: **end for**
 1498 38:
 1499 39: **Compute** $L_{total} = L_{reg} + \alpha L_{auto} + \beta L_{map} + \gamma L_{cons} + \delta L_{metric} + \epsilon L_{curv}$
 1500 40: Update θ using L_{total}
 1501 41: **end for**
 1502 42: **end for**
 1503 43: **end for**

1504

1505 **F DETAILED EXPLANATION OF DATASETS AND EXPERIMENTAL SETUPS**

1506

1507 **F.1 DATASETS**

1508

1509 We utilized 14 different molecular property datasets sourced from three open-access databases, as
 1510 detailed in Table 4 and the descriptions below, for the evaluation of GEAR. Prior to training, the
 1511 datasets were carefully curated to remove entries with incorrectly specified units, typographical errors,

1512

1513

Table 4: Detailed information about the datasets.

1514

1515

1516

name	acronym	source	count	mean	std
Abraham Descriptor S	AS	Ochem	1925	1.05	0.68
Boiling Point	BP	Pubchem	7139	198.99	108.88
Collision Cross Section	CCS	Pubchem	4006	205.06	57.84
Critical Temperature	CT	Ochem	242	626.04	120.96
Dielectric Constant	DK	Ochem	1007	0.80	0.41
Density	DS	Pubchem	3079	1.07	0.29
Enthalpy of Fusion	EF	Ochem	2188	1.32	0.32
Ionization Potential	IP	Pubchem	272	10.00	1.63
Kovats Retention Index	KRI	Pubchem	73507	2071.20	719.34
Log P	LP	Pubchem	28268	11.17	9.89
Polarizability	POL	CCCB	241	0.84	0.26
Surface Tension	ST	Pubchem	379	29.01	10.36
Viscosity	VS	Pubchem	294	0.47	0.87
Heat of Vaporization	HV	Pubchem	525	43.77	18.08

1530

1531

or extreme measurement conditions. All datasets were normalized using their respective means and standard deviations to ensure consistency during training.

From these datasets, we selected 23 source–target task pairs, considering the number of data points available in each dataset to maintain balance. Additionally, to ensure a fair and unbiased evaluation, we deliberately selected task pairs exhibiting a wide range of correlations, as illustrated in Figure 7.

Finally, we provide an explicit description of the physical meaning associated with each dataset to facilitate better understanding and context.

1540

1541

Absolute Corr. Values Between Task Pairs

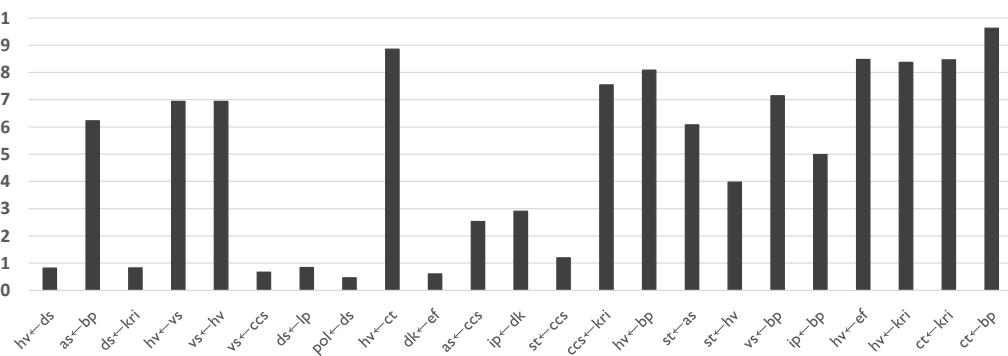


Figure 7: Pearson correlation between overlapping data points in target dataset and source dataset.

1555

1556

1557

1558

- **AS** : The solute dipolarity/polarizability.
- **BP** : The temperature at which this compound changes state from liquid to gas at a given atmospheric pressure.
- **CCS** : The effective area for the interaction between an individual ion and the neutral gas through which it is traveling.
- **CT** : The temperature when no gas can become liquid no matter how high the pressure is.
- **DK** : The ratio of the electric permeability of the material to the electric permeability of free space.

- **DS** : The mass of a unit volume of a compound.
- **EF** : The change in enthalpy resulting from the addition or removal of heat from 1 mole of a substance to change its state from a solid to a liquid.
- **IP** : The amount of energy required to remove an electron from an isolated atom or molecule.
- **KRI** : The rate at which a compound is processed through a gas chromatography column.
- **LP** : Logarithmic form of the ratio of concentrations of a compound in a mixture of octanol and water at equilibrium.
- **POL** : The tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field.
- **ST** : The property of the surface of a liquid that allows it to resist an external force
- **VS** : A measure of a fluid’s resistance to flow.
- **HV** : The quantity of heat that must be absorbed if a certain quantity of liquid is vaporized at a constant temperature.

1582 F.2 EXPERIMENTAL SETUPS

1584 For the evaluation of GEAR, we compared its performance against seven benchmark models: GATE,
 1585 STL, MTL, KD, global structure-preserving loss-based KD (GSP-KD), and transfer learning (either
 1586 retraining the entire model or only the head network). All baselines share the same base architecture,
 1587 with minor adjustments specific to each method.

1588 GATE shares nearly identical network parameters with GEAR for the encoder and head networks.
 1589 However, for the transfer module, GEAR requires maintaining the input and output vector dimensions
 1590 across each layer. Accordingly, the hidden dimensions were adjusted to [50, 50, 50], [50,50,50]
 1591 instead of [100, 100, 100], [100,100,100]. Other hyperparameters strictly follow those introduced in
 1592 the original paper (Ko et al., 2023b).

1593 In the MTL setup, the backbone and bottleneck layers are shared between the two tasks, while
 1594 separate head networks are maintained for each task. For the KD baseline, latent vectors from the
 1595 bottleneck are used as targets for knowledge distillation, with the distillation loss weighted at 0.1.

1596 Graph Contrastive Representation Distillation (G-CRD) originally incorporates both contrastive
 1597 and GSP losses (Joshi et al., 2022). However, since contrastive loss is unsuitable for regression
 1598 tasks, we adopt only the GSP loss component. In GSP-KD, node features from the final layer of the
 1599 backbone are used to compute pairwise distances, serving as the distillation targets. The loss ratio for
 1600 GSP-based distillation is similarly set to 0.1.

1601 Training is conducted for a maximum of 600 epochs, with the best model selected based on early
 1602 stopping criteria.

1604 G EXPERIMENTAL RESULTS

1606 We express explicit test results in this section. A total of 23 task pairs from 14 distinct datasets were
 1607 thoroughly evaluated across eight different models. The full experimental results are presented across
 1608 four tables. In each table, the best result for each task is highlighted with bold and underline, while
 1609 the second-best result is underlined.

1611 GEAR consistently outperforms other conventional methods by a significant margin. In both the
 1612 random split and scaffold split settings, GEAR achieves the best performance on 73.91% of the tasks.
 1613 Furthermore, when considering both first and second place rankings, GEAR ranks within the top two
 1614 for 95.65% of all tasks.

Table 5: Random Split Result (part 1)

		GEAR		GATE		STL		MTL	
1635	Tasks	RMSE	STD	RMSE	STD	RMSE	STD	RMSE	STD
1636	hv ← ds	0.8761	0.1145	0.9221	0.0612	0.9574	0.0519	0.9782	0.0782
1637	as ← bp	0.4375	0.0188	0.4583	0.0193	0.5125	0.0085	0.4370	0.0119
1638	ds ← kri	0.2796	0.0492	0.4145	0.0172	0.4154	0.0045	0.4172	0.0102
1639	hv ← vs	0.5711	0.0358	0.9116	0.0522	0.9574	0.0519	0.9700	0.1052
1640	vs ← hv	0.3364	0.0513	0.5471	0.0719	0.5947	0.0357	0.5535	0.0353
1641	st ← as	0.6045	0.0981	0.6689	0.0413	0.9902	0.0729	1.0272	0.0244
1642	ds ← lp	0.2677	0.0567	0.4046	0.0142	0.4154	0.0045	0.4133	0.0135
1643	pol ← ds	0.2820	0.0362	0.3431	0.0475	0.3460	0.0291	0.4367	0.1213
1644	vs ← bp	0.4299	0.0771	0.4457	0.0151	0.5947	0.0357	0.4516	0.0366
1645	dk ← ef	0.3748	0.0092	0.4331	0.0140	0.4331	0.0358	0.4498	0.0126
1646	as ← ccs	0.4400	0.0136	0.4648	0.0139	0.5125	0.0085	0.4677	0.0220
1647	ct ← bp	0.1481	0.0138	0.1742	0.0034	0.2549	0.1247	0.1707	0.0132
1648	st ← ccs	0.9222	0.0232	0.9546	0.0452	0.9902	0.0729	1.0361	0.0737
1649	ccs ← kri	0.2426	0.0108	0.2476	0.0034	0.2936	0.0110	0.2524	0.0042
1650	hv ← bp	0.6252	0.0320	0.7251	0.0581	0.9574	0.0519	0.7550	0.0432
1651	vs ← ccs	0.3364	0.0513	0.5233	0.0323	0.5947	0.0357	0.5792	0.0228
1652	st ← hv	0.5443	0.0841	0.7647	0.0622	0.9902	0.0729	0.7179	0.0259
1653	hv ← ct	0.7481	0.1196	0.9399	0.0896	0.9574	0.0519	1.1118	0.1633
1654	ip ← bp	0.4363	0.0307	0.5476	0.0642	0.6695	0.0660	0.6067	0.0345
1655	hv ← ef	0.7409	0.1171	0.6131	0.0966	0.9574	0.0519	0.8296	0.0999
1656	hv ← kri	0.6990	0.0888	0.5410	0.0732	0.9574	0.0519	0.8631	0.0354
1657	ct ← kri	0.1481	0.0138	0.1658	0.0136	0.2549	0.1247	0.1716	0.0090
	ip ← dk	0.5159	0.0362	0.6510	0.0381	0.6695	0.0660	0.7083	0.0226
1658	mean	0.4785	0.0514	0.5592	0.0412	0.6642	0.0487	0.6263	0.0443
1659		Count	Ratio	Count	Ratio	Count	Ratio	Count	Ratio
1660	1st	18	78.26 %	2	8.70 %	0	0 %	0	0 %
1661	2nd	22	95.65 %	13	56.52 %	0	0 %	2	8.70 %

1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

Table 6: Random Split Result (part 2)

Tasks	KD		GSP-KD		Transfer All		Transfer Head	
	RMSE	STD	RMSE	STD	RMSE	STD	RMSE	STD
hv ← ds	1.3726	0.2930	0.9321	0.0487	1.0428	0.1165	1.1166	0.0024
as ← bp	0.5426	0.0335	0.5315	0.0151	0.4325	0.0104	0.7712	0.0105
ds ← kri	0.4403	0.0119	0.4147	0.0063	0.4414	0.0154	0.8842	0.0049
hv ← vs	1.1995	0.1419	0.9154	0.0130	0.9937	0.0821	1.0091	0.0181
vs ← hv	0.5878	0.0264	0.5619	0.0223	0.5712	0.0232	0.7215	0.0392
st ← as	1.1601	0.0396	0.9938	0.0141	1.1296	0.1302	1.0045	0.0220
ds ← lp	0.4378	0.0086	0.4106	0.0077	0.4280	0.0136	0.9111	0.0022
pol ← ds	0.3089	0.0270	0.2603	0.0270	0.3741	0.0303	0.9060	0.0141
vs ← bp	0.6076	0.0241	0.5932	0.0097	0.5445	0.0239	0.7220	0.0645
dk ← ef	0.3852	0.0238	0.4230	0.0133	0.3936	0.0164	0.9380	0.0026
as ← ccs	0.5364	0.0211	0.5457	0.0150	0.4741	0.0148	0.9935	0.0033
ct ← bp	0.1690	0.0079	0.2018	0.0093	0.1563	0.0044	0.6847	0.0186
st ← ccs	1.1731	0.0730	0.9595	0.0405	1.1334	0.0687	1.1039	0.0046
ccs ← kri	0.2622	0.0117	0.2698	0.0095	0.2273	0.0016	0.6166	0.0567
hv ← bp	1.1983	0.1815	0.9051	0.0571	0.8267	0.0417	0.8829	0.0499
vs ← ccs	0.6027	0.0127	0.5269	0.0167	0.4868	0.0119	0.8684	0.0116
st ← hv	1.1270	0.0184	0.9618	0.0086	1.0290	0.0945	1.0102	0.0138
hv ← ct	1.5114	0.1845	0.9207	0.0112	1.2072	0.0460	1.0302	0.0186
ip ← bp	0.5624	0.0273	0.4631	0.0037	0.9816	0.2334	0.8732	0.0293
hv ← ef	1.3659	0.2587	0.8112	0.0463	1.0818	0.1021	0.9616	0.0478
hv ← kri	1.3739	0.2487	0.9191	0.0676	0.9080	0.0510	1.0715	0.0145
ct ← kri	0.1586	0.0102	0.2080	0.0057	0.1661	0.0075	0.8349	0.0279
ip ← dk	0.5508	0.0100	0.5257	0.0192	0.6099	0.0273	1.0336	0.0085
mean	0.7667	0.0737	0.6198	0.0212	0.6800	0.0507	0.9108	0.0211
mean	0.7667	0.0737	0.6198	0.0212	0.6800	0.0507	0.9108	0.0211
Count	Ratio	Count	Ratio	Count	Ratio	Count	Ratio	
1st	0	0 %	1	4.35 %	2	8.70 %	0	0 %
2nd	1	4.35 %	4	17.39 %	4	17.39 %	0	0 %

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

Table 7: Scaffold Split Result (part 1)

Tasks	GEAR		GATE		STL		MTL	
	RMSE	STD	RMSE	STD	RMSE	STD	RMSE	STD
hv ← ds	0.6101	0.0210	0.6939	0.0996	0.6744	0.1079	0.6465	0.0776
as ← bp	1.0016	0.0073	1.0495	0.0256	1.2828	0.0724	1.1677	0.1068
ds ← kri	0.4261	0.0017	0.4395	0.0108	0.4477	0.0052	0.4849	0.0061
hv ← vs	0.5731	0.0470	0.7174	0.0796	0.6744	0.1079	0.9954	0.2059
vs ← hv	0.6323	0.0441	0.6120	0.0639	0.9816	0.1267	0.8535	0.0558
st ← as	0.6980	0.0832	0.7540	0.0660	0.8041	0.1062	1.0254	0.0251
ds ← lp	0.4236	0.0036	0.4049	0.0102	0.4477	0.0052	0.4517	0.0184
pol ← ds	0.9902	0.0697	0.9040	0.0852	0.9604	0.1056	1.4198	0.0796
vs ← bp	0.5242	0.0418	0.6121	0.0297	0.9816	0.1267	0.5686	0.0276
dk ← ef	0.5229	0.0166	0.7122	0.0545	0.7028	0.0391	0.6549	0.0210
as ← ccs	1.0016	0.0073	1.1313	0.0496	1.2828	0.0724	1.1197	0.0558
ct ← bp	0.3275	0.0329	0.3883	0.0203	1.4436	0.1150	0.4359	0.0126
st ← ccs	0.6975	0.0833	0.7281	0.0586	0.8041	0.1062	0.9905	0.0737
ccs ← kri	0.5111	0.0044	0.5292	0.0094	0.5489	0.0107	0.5297	0.0083
hv ← bp	0.4671	0.0136	0.4821	0.0132	0.6744	0.1079	0.4668	0.0169
vs ← ccs	0.5611	0.0676	0.6126	0.0671	0.9816	0.1267	0.8186	0.0790
st ← hv	0.6980	0.0832	0.7209	0.0412	0.8041	0.1062	0.7237	0.0276
hv ← ct	0.5038	0.0236	0.6579	0.0678	0.6744	0.1079	0.6633	0.0660
ip ← bp	0.4064	0.0300	0.4668	0.0179	0.5780	0.1475	0.5540	0.0587
hv ← ef	0.5038	0.0236	0.6406	0.0335	0.6744	0.1079	0.7879	0.0643
hv ← kri	0.4812	0.0150	0.5084	0.0264	0.6744	0.1079	0.6204	0.0269
ct ← kri	0.4256	0.0214	0.3902	0.0140	1.4436	0.1150	0.5173	0.0927
ip ← dk	0.3984	0.0232	0.4335	0.0119	0.5780	0.1475	0.5335	0.1016
mean	0.5820	0.0333	0.6343	0.0416	0.8313	0.0949	0.7404	0.0569
	Count	Ratio	Count	Ratio	Count	Ratio	Count	Ratio
1st	17	73.91 %	3	13.04 %	0	0 %	1	4.35 %
2nd	22	95.65 %	14	60.87 %	0	0 %	3	13.04 %

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795

Table 8: Scaffold Split Result (part 2)

Tasks	KD		GSP-KD		Transfer All		Transfer Head	
	RMSE	STD	RMSE	STD	RMSE	STD	RMSE	STD
hv ← ds	0.5920	0.0466	0.7606	0.0810	0.8659	0.0788	0.9584	0.0339
as ← bp	1.3580	0.0136	1.2340	0.0294	1.1478	0.0264	1.0935	0.0079
ds ← kri	0.5409	0.0480	0.4467	0.0104	0.8753	0.1134	1.0928	0.0482
hv ← vs	0.8948	0.2294	0.6536	0.0345	0.7520	0.1666	0.7924	0.0595
vs ← hv	1.2597	0.3638	0.6377	0.0253	0.9217	0.1575	0.9179	0.0539
st ← as	1.7083	0.1608	0.9335	0.0954	1.2604	0.0946	1.0780	0.0613
ds ← lp	0.5221	0.0328	0.4685	0.0111	0.4664	0.0121	1.0410	0.0026
pol ← ds	1.3309	0.1998	0.8475	0.0627	1.0385	0.2146	1.3204	0.0491
vs ← bp	0.9371	0.2386	0.6599	0.0204	1.1532	0.1766	1.0135	0.0820
dk ← ef	0.8189	0.0462	0.6353	0.0171	0.7417	0.0384	0.7963	0.0071
as ← ccs	1.3773	0.0781	1.1272	0.0778	1.2925	0.0606	1.4530	0.0143
ct ← bp	1.2459	0.1199	1.1837	0.0586	0.5644	0.0530	0.9347	0.0316
st ← ccs	1.5402	0.1418	0.7344	0.0187	0.9075	0.0431	1.2596	0.0287
ccs ← kri	0.5534	0.0190	0.5356	0.0115	0.5640	0.0137	0.7904	0.0159
hv ← bp	0.6271	0.0868	0.7403	0.0889	0.6093	0.0422	0.8111	0.0251
vs ← ccs	1.3034	0.5354	0.8027	0.0159	0.7271	0.0828	1.2282	0.0243
st ← hv	1.5256	0.1906	0.7417	0.0206	1.4243	0.0627	1.0047	0.0813
hv ← ct	0.7925	0.2694	0.6428	0.0080	0.9499	0.2579	0.8089	0.0532
ip ← bp	0.4205	0.0240	0.4579	0.0207	0.4419	0.0371	0.9704	0.0399
hv ← ef	0.6773	0.1553	0.5862	0.0375	1.0003	0.1719	0.9503	0.0307
hv ← kri	0.6710	0.1524	0.5509	0.0252	0.6560	0.0408	0.9998	0.0311
ct ← kri	1.3392	0.1076	1.2358	0.0373	1.1124	0.1265	1.2769	0.0193
ip ← dk	0.4975	0.0769	0.4376	0.0255	0.5248	0.0471	1.0165	0.0521
mean	0.9797	0.1451	0.7415	0.0362	0.8694	0.0921	1.0265	0.0217
Count	Ratio	Count	Ratio	Count	Ratio	Count	Ratio	
1st	1	4.35 %	1	4.35 %	0	0 %	0	0 %
2nd	2	8.70 %	5	21.74 %	0	0 %	0	0 %

1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836

H ADDITIONAL ABLATION STUDY

1837

1838

H.1 SENSITIVITY TO LATENT SPACE DIMENSIONALITY

1839

1840

In this section, to further assess the robustness of our method, we conducted an ablation study examining how the latent space dimensionality—determined by the transfer and inverse transfer modules—affects performance. As shown in Figure 8, we varied the latent dimension across 5, 20, 50, and 200 on the HV prediction task using the EF task as the source($hv \leftarrow ef$), and tracked the corresponding validation loss trends. We observed that the validation loss consistently decreased as the latent dimension increased up to 50, and then rose slightly beyond that point. Notably, the differences in validation loss among dimensions 20, 50, and 200 were minimal, indicating that—as long as the latent space is not excessively small—GEAR exhibits stable training behavior.

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

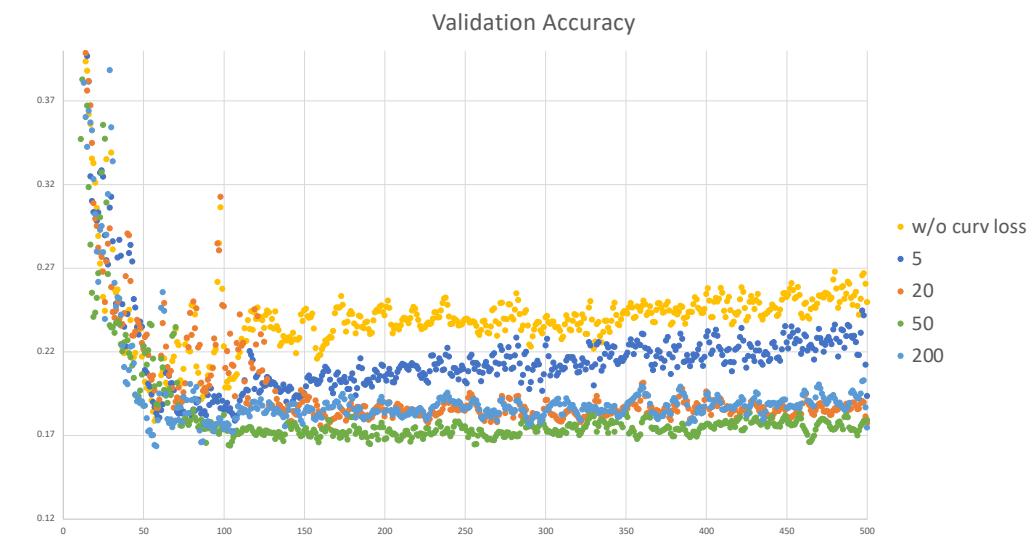


Figure 8: This figure depicts validation accuracy of different latent space dimensions.

1878

1879

1880

H.2 OPTIMIZATION OF LOSS WEIGHTS

1881

1882

1883

1884

We adopted a two-stage procedure for hyperparameter optimization. Firstly, we initialized all loss-weight hyperparameters to comparable magnitudes ($\alpha = \beta = \gamma = 1, \delta = \epsilon = 0.1$). This avoids early imbalance among loss components.

1885

1886

1887

1888

1889

Then, we performed grid search on validation set. A grid over 0.1, 0.2, 0.5, 1 was used for $\alpha, \beta, \gamma, \delta$, and ϵ , total 1024 combinations. The optimal values were chosen based on average validation RMSE across 23 task pairs. This same procedure was applied consistently to all tasks. The results are shown in table 9.

Task	Minimum RMSE	Mean RMSE	Std. Dev.	Ours
AS \rightarrow Target	0.3957	0.4314	0.0136	0.4033
ST \rightarrow Target	0.1746	0.1972	0.0141	0.1764

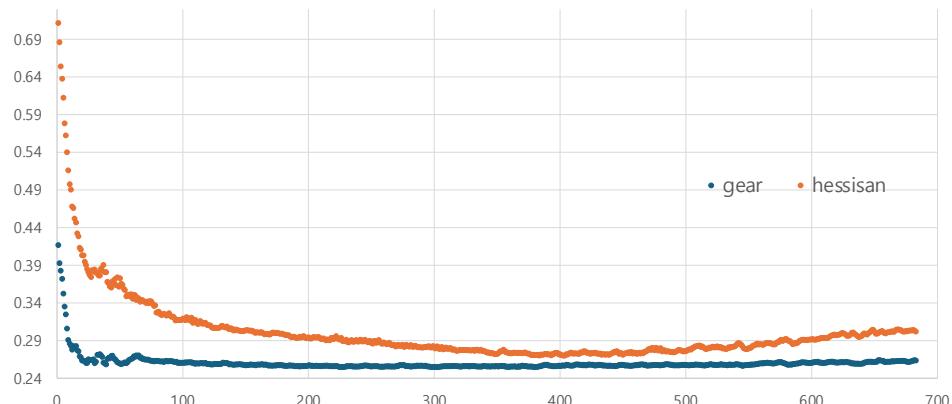
Table 9: Hyperparameter sensitivity analysis for AS \rightarrow Target and ST \rightarrow Target validation tasks.

1890 Although the precise optimum varies per task, the selected setting is highly stable: it is near-optimal for
 1891 AS and ST, and was empirically found to be the most robust across all 23 tasks. The variation across
 1892 the grid is modest, indicating that GEAR does not rely on fragile or highly tuned hyperparameters.
 1893

1894 Finally, we emphasize that the complete ablation sweep for both target tasks required only approxi-
 1895 mately 1400 seconds (under 30 minutes) on 8 x A40 GPUs, demonstrating that the hyperparameter
 1896 analysis is computationally lightweight and practical. These results demonstrate that GEAR is stable
 1897 under reasonable hyperparameter variations.

1898 **H.3 REPLACEMENT OF CURVATURE LOSS TO HESSIAN-BASED LOSS**
 1899

1900
 1901
 1902
 1903
 1904
 1905
 1906 **AS<-ST Hessian Test**
 1907



1917 Figure 9: This plot shows the loss curve when curvature loss is replaced with a Hessian-based loss.
 1918 The validation RMSE curves clearly show that, unlike curvature, the Hessian loss fails to guide
 1919 learning: performance is inferior and exhibits severe overfitting.
 1920
 1921
 1922
 1923
 1924

1925 **I THE USE OF LARGE LANGUAGE MODELS (LLMs)**
 1926

1927 We employed large language models to refine the grammar and improve the clarity of the text.
 1928