
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GEOMETRIC EMBEDDING ALIGNMENT VIA
CURVATURE MATCHING IN TRANSFER LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Geometrical interpretations of deep learning models offer insightful perspectives
into their underlying mathematical structures. In this work, we introduce a novel ap-
proach that leverages differential geometry, particularly concepts from Riemannian
geometry, to integrate multiple models into a unified transfer learning framework.
By aligning the Ricci curvature of latent space of individual models, we construct an
interrelated architecture, namely Geometric Embedding Alignment via cuRvature
matching in transfer learning (GEAR), which ensures comprehensive geometric
representation across datapoints. This framework enables the effective aggregation
of knowledge from diverse sources, thereby improving performance on target tasks.
We evaluate our model on 23 molecular task pairs and demonstrate significant
performance gains over existing benchmark models—achieving improvements of
at least 14.4% under random splits and 8.3% under scaffold splits.

1 INTRODUCTION

Interest in the practical applications of deep learning has grown drastically over the years. Numerous
examples have been announced recently, including applications in scientific domains such as biomed-
ical, physical, and chemical sciences (Wang et al., 2019; Peng et al., 2021; Scarselli et al., 2009;
Bruna et al., 2013; Duvenaud et al., 2015; Defferrard et al., 2016; Jin et al., 2018; Coley et al., 2019;
Ko et al., 2023a;b; 2024; Yim et al., 2024; Lee et al., 2024). However, in most real-world application
cases—regardless of the domain—the lack of data consistently poses a major obstacle. Considerable
efforts have been devoted to overcoming this challenge. One promising approach involves leveraging
transfer learning (TL) and multitask learning (MTL) to make use of information across different
datasets, modalities, and tasks. (Zhuang et al., 2011; Long et al.; Zhuang et al., 2013; 2014; Pan et al.,
2020; Quattoni et al., 2008; Kulis et al., 2011; Raghu et al., 2019; Yu et al., 2022)

TL, our primary focus, is a learning strategy that leverages information across different tasks to
improve performance on a target task. Molecular property prediction tasks provide an excellent
testbed for TL, as they typically involve relatively small datasets but a large number of prediction
tasks per input molecule.

Most existing research has concentrated on classification tasks (Radhakrishnan et al., 2023; Basu
et al., 2023; Wenzel et al., 2022), while relatively few approaches have been developed to support
regression tasks—despite the fact that many practical applications in molecular sciences involve
regression (Scarselli et al., 2009; Bruna et al., 2013; Duvenaud et al., 2015; Defferrard et al., 2016;
Jin et al., 2018; Coley et al., 2019; Ko et al., 2023a;b; 2024; Yim et al., 2024; Lee et al., 2024). Given
the real-world importance of regression problems, this underrepresentation is notable. Therefore, in
this work, we focus on the regression-based TL setting applied to molecular property prediction and
propose a novel method specifically tailored to this context.

By analyzing the general structure of TL, one can observe that there is always a ‘bridging’ component
that connects different tasks to facilitate the flow of information. Our method redefines and enhances
this bridging mechanism by reinterpreting the latent space as a smooth, curved geometry. Since a key
aspect of TL is designing effective methods to couple tasks, this geometric viewpoint allows us to
align tasks by directly matching the geometric properties of their latent spaces.

The fundamental approach of our novel method is based on Riemannian differential geometry. This
is a reasonable hypothesis, as most deep learning models are constructed using smooth functions

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Encoder s

Head s

Embedding s

Head t

Encoder t
Transfer s

Inv. Transfer s

Transfer t

Inv. Transfer t

!! !"

"! ""

ℳ

Embedding t

$

Task s Task t

Curvature Matching

!! !"

Curvature matching

ℳ

#!

#!#$ #"

#"#$

Figure 1: (Left) The framework consists of a common manifoldM, task-specific latent spaces zs and
zt, transfer functions ϕs and ϕt. Their inverses, ϕ−1

s and ϕ−1
s , map zs and zt toM. (Right) Each

task comprises five modules: embedding, encoder, transfer, inverse transfer, and head. Transfer and
inverse transfer modules enable information exchange across tasks by curvature matching.

to ensure the feasibility of backpropagation. Consequently, the latent spaces produced by these
models can also be considered smooth, being composed through the application of these smooth
functions. Several studies in this field (Ko et al., 2023a;b; 2024; Yim et al., 2024; Lee et al., 2024)
leverage the diffeomorphism invariance property of Riemannian geometry. These approaches have
demonstrated effectiveness across multiple regression tasks in the molecular domain. However,
despite their strengths, they also exhibit three major limitations inherent to their core algorithms.

One key limitation lies in the geometrical coverage of these algorithms. Because they operate by
aligning infinitesimal distances between local perturbations, their effectiveness is inherently confined
to local regions of the latent space. As a result, they struggle to capture the global geometric structure
of the latent manifold. Furthermore, improving coverage typically requires increasing the number of
perturbation points, which in turn leads to significant computational overhead.

Another important limitation is the potentially improper definition of ‘infinitesimal.’ In cases where
the latent space of a task exhibits high curvature or warping, some perturbation points may no longer
be validly considered infinitesimal. This undermines the core assumption of local linearity and can
lead to inaccurate geometric alignment.

The final limitation lies in the necessity of a shared embedding layer across all tasks. To align
infinitesimal distances between tasks, the perturbation points must be consistently defined within a
shared latent space, which in turn requires a shared embedding layer. However, such a mechanism is
often inadequate for handling inputs associated with different levels of complexity.

Hence, we propose a new model—Geometric Embedding Alignment via cuRvature matching
(GEAR)—which extends the geometric foundations of GATE (Ko et al., 2023b) and broadens
the scope of its geometric interpretation in TL. Unlike previous approaches that rely on the local
boundary, our algorithm is built upon direct curvature matching, which, in turn, relaxes constraints
on the input embedding structure. This allows for greater flexibility in customizing the model for in-
dividual tasks. We conducted regression experiments comparing GEAR to conventional TL methods
using 23 pairs of molecular properties, and demonstrated that GEAR significantly outperforms them
in most test cases. Furthermore, we validated the model’s robustness through a series of ablation
studies.

Our main contribution of the article is as follows.

• We design a novel TL algorithm GEAR based on Ricci curvature matching of latent spaces.

• GEAR significantly outperforms benchmark models in various molecular property regression
tasks.

• GEAR exhibits stable geometry and robust behavior in extrapolation tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

2.1 RIEMANNIAN GEOMETRY IN DEEP LEARNING

Geometric deep learning is a field that extends deep learning to non-Euclidean domains such as graphs
and manifolds, gaining prominence for its ability to capture complex relational and structural patterns
inherent in scientific, biological and real-world data(Bronstein et al., 2017). Riemannian differential
geometry is a branch of mathematics that studies smooth manifolds equipped with a metric that
allows the measurement of lengths and angles on the manifold. In the context of deep learning, this
framework is instrumental in understanding and modeling the geometric structure of data, particularly
in high-dimensional spaces. By treating data as lying on a manifold, Riemannian geometry facilitates
the development of algorithms that respect the intrinsic geometry of the data, leading to more
meaningful representations and improved performance in tasks such as classification(Pegios et al.,
2024; Lee et al., 2022), clustering(Hu et al., 2024; Yang et al., 2018), and generative modeling(Park
et al., 2023; Grattarola et al., 2019). Riemannian metric learning enhances deep learning by enabling
models to operate in geometrically meaningful ways, improving interpretability and performance
beyond Euclidean limits(Li et al., 2023; Sun et al., 2024).

2.2 TRANSFER LEARNING FOR MOLECULAR PROPERTY PREDICTION

TL has shown significant promise in molecular property prediction, particularly in data-scarce
settings. (Falk et al., 2023) combine graph neural networks (GNNs) with kernel mean embeddings to
enable knowledge transfer across atomistic simulations, capturing both local and global chemical
features. (Buterez et al., 2024; Hoffmann et al., 2023) further extend this by leveraging multi-fidelity
datasets, demonstrating that pretraining on low-fidelity data and fine-tuning on high-fidelity targets
significantly improves molecular property prediction. (Yao et al., 2024) quantify task relatedness
between molecular property prediction datasets, providing guidance for effective TL to enhance
prediction performance.

In addition, recent studies have begun incorporating Riemannian differential geometry into TL
frameworks for molecular property prediction. In (Ko et al., 2023b), source and target tasks are
aligned by matching distances in infinitesimal regions of the latent space. The method is later
generalized to a multi-task setup involving more than two tasks in (Ko et al., 2024). However, due to
the computational burden of scaling this approach to many tasks, (Yim et al., 2024) introduce a task
addition strategy to accelerate training.

3 METHODS

A geometric interpretation of latent space requires some mathematical preliminaries. The appropriate
mathematical framework for describing curved spaces is differential geometry. Therefore, we briefly
introduce the fundamental definitions and expressions that will be used in the following sections,
along with the core ideas underlying our proposed method. (Check Appendix B for more details)

Since deep learning models always have a smooth underlying structure due to the backpropagation
algorithm, it is very natural to assume that the latent space forged by a model is also smooth. Hence,
it is plausible to assume the space is Riemannian. Detailed logical justifications for this assumption
are provided in Appendix B.1.

Let us consider the space in which the input dataset resides. This space contains all the information
that can be utilized to perform any kind of downstream task. When a specific downstream task is
fixed, the latent space formed by the downstream model effectively retracts the original space into a
smaller, task-specific subspace to enhance performance. However, since the latent vectors originate
from the same universal input space, the latent vector corresponding to a different downstream task
should also represent the same point in that universal space. To reconcile latent representations from
different downstream models, we leverage diffeomorphism invariance to construct an intermediate
space with a locally flat frame, allowing us to align latent vectors from distinct downstream tasks.

Now, the real question is: how? In previously published methods (Ko et al., 2023b; 2024; Yim et al.,
2024), a perturbation strategy is used to align task-specific spaces. However, this approach has several
notable drawbacks such as limited coverage of geometries and the requirement of a shared embedding

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

layer. To address these issues, we extend the underlying idea by aligning the geometries of latent
spaces through the matching of Ricci curvatures computed from each space. Since the computation of
the Ricci scalar is highly intricate, we first introduce the basic forms of its constituent elements here,
and provide a more detailed theoretical and mathematical walkthrough in the Appendix B and C.

3.1 PRELIMINARY

To maintain abstract notation, we will use the Einstein summation convention with index contraction
representation. A fundamental introduction to these concepts is provided in the Appendix A.

Riemannian geometry is often characterized by the Ricci scalar curvature. To understand how
curvature is induced, one must carefully follow a step-by-step calculation process.

Everything begins with the metric. A metric is a rank-2 tensor with a symmetric property, which
is crucial for computing distances between two points on a curved space. However, there is no
systematic method to derive the explicit form of the metric for a given space directly. Instead, one
must rely on a key mathematical property of Riemannian manifolds.

A Riemannian manifold always guarantees diffeomorphism invariance—in other words, freedom in
the choice of coordinates on the manifold. This allows for the existence of a locally flat coordinate
system under any circumstance. In such a system, the metric can be induced from the flat metric ηij
by applying the Jacobian of the coordinate transformation at a given point. Here, x′i and xi are points
on curved and locally flat frame respectively, and then, the Jacobian of the transformation between
these coordinates then takes the following form.

J i
j =

dx′i

dxj
(1)

From the Jacobian J i
j , one can compute the induced metric in a straightforward manner.

gij =
dx′m

dxi
ηmn

dx′n

dxj
=

dx′m

dxi

dx′
m

dxj
(2)

By obtaining the curved metric gij , one can define the Christoffel symbols Γi
jk, which are used to

construct the covariant derivative ∇i —replacing the ordinary derivative in Riemannian geometry.

Γi
jk =

1

2
gim(∂jgmk + ∂kgmj − ∂mgkj) (3)

And the covariant derivative takes the following form.

∇jT
i = ∂jT

i + Γi
jlT

l (4)

The curvature of a manifold Ri
ljk can be defined by the difference between tangent vectors that are

parallel transported along different paths from the same initial point to the same final point. This can
be expressed using the commutation relation of two covariant derivatives acting on a tangent vector.

Ri
ljkT

l = [∇j ,∇k]T
i (5)

Finally, by contracting i and j, and l and k respectively, the Ricci scalar curvature R can be obtained.

R = gijglkRiljk (6)

The scalar curvature is invariant under diffeomorphisms, as is evident from the fact that it has no free
indices. Consequently, this quantity is often used to characterize the curvature of a given manifold.
Since we are working with curved latent spaces and aiming to connect two different curved coordinate
representations originating from a universal curved manifold, we directly compute this scalar property
and align it to match the shapes of the task-specific spaces.

3.2 ANALYTIC COMPUTATION STRATEGY

A deep learning model is composed of multiple smooth layers. Therefore, if differentiable activation
functions are used, it becomes possible to compute the curvature tensor of the curved space induced
by the model. However, when the model consists of many layers, it becomes convenient to define

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

building blocks that allow the full Jacobian to be computed by simply multiplying them. These
building blocks can be expressed in terms of the weights and biases of each layer. Starting from the
full Jacobian, and by applying the chain rule, the Jacobian can be decomposed into the Jacobians of
individual layers.

J i
j =

dx
′i

dxj
=

dx
′i

dx(n−1)kn−1

dx(n−1)kn−1

dx(n−2)kn−2
· · · dx

(1)k1

dxj
(7)

Here, n denotes the layer index of the transfer module in the model, as illustrated in Figure 1.
Therefore, when similar mathematical structures appear across layers—as is often the case—it
becomes possible to define a fundamental building block of the full Jacobian using the Jacobian of a
single representative layer. In our setup, each layer follows a linear MLP structure with the SiLU
activation function. The fundamental Jacobian block can then be expressed in the following form:

dx(n+1)i

dx(n)j = W
(n+1)i

k(((x
(n)k)e−x(n)k × LS(x(n)k) + 1)LS(x(n)k))kj

= (W
(n+1)i

jσ
i + (W (n+1)x(n) + b(n+1))iW

(n+1)a3

jE
i
a3
(σ2)i)

(8)

Here, W (n)i
j and b(n)i are weights and biases of n-th layer in the transfer module. The new notations

introduced in the equation above are defined as follows. First, LS(x) denotes the logistic function
and σi and Ei

l are expressed as follows:

σi =
1

1 + e
−(W

(n)i

j
xj+b(n)i)

, Ei
l ≡ (e−(W l

jx
j+bj))il =

{
e−(W l

jx
j+bl) if l = i

0 if l ̸= i
(9)

(σ2)i denotes the element-wise square of σi. By utilizing Eq. 8, it is now possible to compute the full
Jacobian of the transfer module. The induced metric can then also be specified by Eq. 2.

However, this is not sufficient to compute the curvature. To express curvature explicitly in terms of
the metric, two additional components are required: the first derivative of the metric tensor—since the
Christoffel symbols are defined using both the metric and its derivatives—and the second derivative
of the metric tensor, as curvature depends on the derivatives of the Christoffel symbols. Therefore, we
need to identify two additional fundamental building blocks to compute the curvature tensor. The first
derivative of the metric tensor can be expressed as a combination of the Jacobian and the derivative
of the Jacobian. Thus, the next step is to derive the explicit form of the Jacobian’s derivative.

∂2x(n+1)i

∂x(n)k∂x(n)j = W
(n+1)i

jW
(n+1)a2

kE
i
a2
(σ2)i +W

(n+1)i
kW

(n+1)a3

jE
i
a3
(σ2)i

−(W (n+1)x(n) + b(n+1))iW
(n+1)a3

jW
(n+1)i

kE
i
a3
(σ2)i

+2(W (n+1)x(n) + b(n+1))iW
(n+1)a3

jE
i
a3
W

(n+1)a6

kE
i
a6
(σ3)i

(10)

Finally, the derivative of the Christoffel symbols can be induced with the second derivative of the
Jacobian.

∂3x(n+1)i

∂x(n)l∂x(n)k∂x(n)j =

−2W (n+1)i
lW

(n+1)a2

kW
(n+1)i

jE
i
a2
(σ2)i −W

(n+1)i
jW

(n+1)a3

lW
(n+1)i

kE
i
a3
(σ2)i

+4W
(n+1)i

lW
(n+1)a2

kW
(n+1)a9

jE
i
a2
Ei

a9
(σ3)i

+(W (n+1)x(n) + b(n+1))iW
(n+1)a3

lW
(n+1)i

kW
(n+1)i

jE
i
a3
(σ2)i

−2(W (n+1)x(n) + b(n+1))iW
(n+1)a3

lW
(n+1)i

kW
(n+1)a9

jE
i
a3
Ei

a9
(σ3)i

+2W
(n+1)i

jW
(n+1)a3

lW
(n+1)a6

kE
i
a3
Ei

a6
(σ3)i

−4(W (n+1)x(n) + b(n+1))iW
(n+1)a3

lW
(n+1)a6

kW
(n+1)i

jE
i
(a3

Ei
a6)

(σ3)i

+6(W (n+1)x(n) + b(n+1))iW
(n+1)a3

lW
(n+1)a6

kW
(n+1)a9

jE
i
a9
Ei

a3
Ei

a6
(σ4)i

(11)
By gathering and utilizing the three building blocks described above and imposing them into Eq. 2, 3,
5 and 6 , the scalar curvature of the given curved space can be explicitly calculated.

3.3 MODEL ARCHITECTURE

Our model is designed to perform effectively in a two-task setting, regardless of whether the data
distributions between tasks are balanced or unbalanced. Therefore, the basic architecture consists of

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

two distinct task-specific models connected by a transfer module, as shown in Figure 1. These task-
specific models are connected only through the curvature matching section; thus, their architectures
are fully flexible, with the sole constraint that the dimensions of the latent vectors fed into the transfer
module must match. This allows each task-specific model to be independently designed, taking into
account the complexity of the task and its corresponding data distribution.

When an input data point is fed into the model, the first step is to construct an embedding vector from
the input information. We denote the embedding vector as zt for the target task and zs for the source
task. These embedding vectors follow two distinct paths in the architecture: one path leads to the
transfer module, and the other proceeds to the head module in the model. The transfer module maps
each embedding to a vector of the same dimension in a locally flat coordinate frame.

z′ = Tran(z), ẑ = Tran−1(z′) (12)

However, for the inverse transfer, direct computation of the inverse matrix during backpropagation
can be unstable. To address this, we designed an autoencoder architecture to map the embedding
vector from the locally flat frame back to the original space. Accordingly, we define an autoencoder
loss to guide this reconstruction process.

lauto = MSE(z, ẑ) (13)

Since the transferred vectors z′s and z′t originate from the same input, they should match—assuming
the coordinate systems are aligned, i.e., expressed in a common locally flat frame.

z′s = Trans→LF (zs), ẑs = Tran−1
LF→s(z

′
s), z′t = Trant→LF (zt), ẑt = Tran−1

LF→t(z
′
t)

(14)

Here, Models→LF denotes the transfer module that maps the embedding vector from the source space
to the locally flat (LF) frame, and vice versa. To encourage alignment, we introduce a consistency
loss by matching the embedding vectors from both the source and target task models within the
shared locally flat frame.

lcons = MSE(z′s, z
′
t) (15)

To further reinforce the connection between the source and target tasks, we introduce an additional
loss—the mapping loss—which aligns the downstream prediction of the original target label with the
prediction obtained from an embedding vector transferred from the source model.

lmap = MSE(yt, ŷs→t) (16)

Here, yt denotes the target label and ŷs→t represents the predicted value obtained from the embedding
vector transferred from the source model. And the ordinary regression loss is also important.

lreg = MSE(yt, ŷt) (17)

Finally, we define the curvature and metric losses. The metric loss plays a crucial role, as the space
formed by the transfer module lacks any form of direct supervision. Without proper regularization,
the space is not guaranteed to be locally flat, since there are infinitely many ways to define a basis
that still satisfy the previously introduced constraints. The metric loss guides the transfer module
toward preserving local flatness. It is defined as the discrepancy between the induced flat metric and
the Euclidean metric, which in this case is represented by the identity matrix ηij .

lmetric = MSE(ηij , η(s)ij) +MSE(ηij , η(t)ij)

η(s)ij =
(

∂ẑm
s

∂ẑ′
s
i

)(
∂z′

s
k

∂ẑsm

)
ηkl

(
∂z′

s
l

∂ẑsn

)(
∂ẑs

n

∂ẑ′
s
j

)
, η(t)ij =

(
∂ẑm

t

∂ẑ′
t
i

)(
∂z′

t
k

∂ẑtm

)
ηkl

(
∂z′

t
l

∂ẑtn

)(
∂ẑt

n

∂ẑ′
t
j

)
(18)

η(s)ij and η(t)ij denote the induced flat metrics obtained through iterative K loop computations using
the inverse transfer mappings from the source and target, respectively, into the transfer module. This
back-and-forth mapping between the task coordinate and the locally flat coordinate can be repeated K
times. As the loop proceeds, the metric is repeatedly transformed under the diffeomorphism, and error
accumulates. Increasing K therefore imposes a stronger constraint on the metric but also amplifies
its sensitivity. For this reason, we keep K small in the setup. (see Algorithm 1 and Appendix E)

The final loss term is the curvature matching loss. Since we have already introduced the fundamental
building blocks for computing scalar curvature in Sections 3.1 and 3.2, the scalar curvature can now

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

be computed analytically. Given that the curvatures of the target and source spaces should align, we
define this curvature matching loss as the most critical and final component of our architecture.

lcurv = MSE(Rs, Rt) (19)
Where Rt and Rs are the Ricci scalar curvatures from the target and the source respectively. Finally,
by combining all with appropriate hyperparameters, the main loss of the model can be defined.

ltot = lreg + αlauto + βlcons + γlmap + δlmetric + ϵlcurv (20)
Each hyperparameter can be tuned individually to improve the model’s predictive performance.
In particular, the weight of the metric loss often needs to be increased, as its raw magnitude is
substantially smaller than that of the other loss terms. The specific configurations of these loss
components and the associated model parameters are described in Appendix E, with an ablation study
on hyperparameter tuning provided in Appendix H.2. In addition, detailed schematics of our model
are shown in Appendix Figure 6.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

The experiments are conducted using open datasets from three distinct databases (OCHEM (Sushko
et al., 2011), PubChem (Kim et al., 2022), and CCCB (III, 2022)) forming 23 task pairs across
14 different tasks using two distinct data splitting schemes: the conventional random split and the
scaffold-based split, the latter of which simulates OOD scenarios. We used directional message
passing network (DMPNN) (Yang et al., 2019) for encoding molecular structures. A detailed
explanation of these datasets and their corresponding prediction tasks is provided in the Appendix F.
To ensure the robustness of the results, all experiments are performed using 4-fold cross-validation.
Each experiment is run on a single NVIDIA A40 GPU.

To evaluate our method, we compare it against several benchmark models, including single-task
learning (STL), MTL, global structure preserving loss-based knowledge distillation (GSP-KD) (Joshi
et al., 2022), two variants of TL (retraining all layers vs. retraining the head only), and GATE
(Ko et al., 2023b). We ensure fairness by maintaining the same encoder and head architectures
across all benchmark models and our method. Detailed backbone architecture and hyperparameter
configurations are in the Appendix D and E.

0

0.3

0.6

0.9

1.2

hv ← ds
as ← bp

ds ← kri

hv ← vs

vs ← hv

st ← as

ds ← lp

pol ← ds

vs ← bp

dk ← ef

as ← ccs
ct ← bpst ← ccs

ccs ← kri

hv ← bp

vs ← ccs

st ← hv

hv ← ct

ip ← bp

hv ← ef

hv ← kri

ct ← kri

ip ← dk

Random Split Test Normalized RMSE

GEAR_RMSE

GATE_RMSE

STL_RMSE

MTL_RMSE

KD_RMSE

GSP-KD_RMSE

RetrainAll_RMSE

RetrainHead_RMSE

0

0.3

0.6

0.9

1.2

hv ← ds
as ← bp

ds ← kri

hv ← vs

vs ← hv

st ← as

ds ← lp

pol ← ds

vs ← bp

dk ← ef

as ← ccs
ct ← bpst ← ccs

ccs ← kri

hv ← bp

vs ← ccs

st ← hv

hv ← ct

ip ← bp

hv ← ef

hv ← kri

ct ← kri

ip ← dk

Scaffold Split Test Normalized RMSE

Figure 2: The results are illustrated in the form of a radar chart. Each axis plots the GEAR
RMSE divided by the benchmark model RMSE. The baseline in the chart corresponds to the RMSE
performance of GEAR, which is normalized to 1. (higher is better). Due to space constraints, the
detailed experimental results are provided in Table [5, 6, 7, 8] in the Appendix G

4.2 MAIN RESULTS

Figure 2 demonstrates the superior performance of our algorithm compared to other benchmark
models. In both data split schemes, our model consistently outperforms the baseline models by

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

considerable margins. Notably, when counting the number of best-performing tasks, GEAR achieves
the lowest RMSE in 18 out of 23 task pairs under the random split and in 17 out of 23 under the
scaffold split. Furthermore, when including second-best performances, GEAR ranks within the top
two in 22 out of 23 for both split schemes.

From a performance standpoint, GEAR improves the average RMSE over GATE by 14.4% in the
random split and by 8.3% in the scaffold split. Compared to the third-best model, GEAR achieves an
improvement of 22.8% (MTL) under the random split and 21.4% (GSP-KD) under the scaffold split.

5 ABLATION STUDIES

5.1 ROLE OF CURVATURE LOSS

Since GEAR is constructed under a TL scheme, it is crucial to verify that the loss terms connecting the
source and target tasks effectively facilitate information transfer. To support this claim, we conducted
three different experiments and plotted training and validation accuracy curves.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

A
cc
u
ra
cy

Epoch

(c) Mapping and Curvature

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

A
cc
u
ra
cy

Epoch

(a) W/O Mapping and Curvature

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

A
cc
u
ra
cy

Epoch

(b) Mapping Only

Validation

Train

GATE Lowest Val Accuracy

GEAR Lowest Val Accuracy

Figure 3: These plots illustrate the primary role of the curvature loss tested on dk→ hv task pair. In
figure (a), both the mapping loss and the curvature loss are turned off. In figure (b), only the mapping
loss is enabled. In figure (c), both the mapping and curvature losses are activated.

As shown in Figure 9, when both the mapping and curvature matching losses are turned off, the
loss curve exhibits a severe overfitting issue. Enabling the mapping loss alone helps to stabilize
this overfitting to some extent. However, when both losses are activated, overfitting is significantly
suppressed, and the validation accuracy reaches the lowest value overall.

For comparison, we included the minimum validation value of GATE as a green dotted line, alongside
that of GEAR (in brown dotted line) under the same experimental setting. The comparison reveals
that GEAR achieves a lower minimum validation than GATE, with an improvement margin of 17.5%.

1.3825

1.8080

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n 
R
M

SE

(a) HV ß CT Corruption Test
©

1.3825

1.8080

(a) HV ß CT Corruption Test

GEAR GATE

0.8515 0.9015

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

(b) CT ß HV Corruption Test

0.8515 0.9015

(b) CT ß HV Corruption Test

GEAR GATE

0.5656 

1.3553 

0.4

0.6

0.8

1.0

1.2

1.4

(c) HV ß CCS Corruption Test

i-GATE GATE

0.5656 

1.3553 

(c) HV ß CCS Corruption Test

GEAR GATE

2.6811 

2.7430 

2.5

2.6

2.7

2.8

orruption Test

2.6811 

2.7430 

(d) CCS ß HV Corruption Test

GATEGEAR

Figure 4: This figure highlights the performance of GEAR on corrupted data, demonstrating that it
either outperforms or performs comparably to GATE. The values represent the average RMSE across
four folds, with the STD error bars. Specifically, Figure (a) shows HV prediction results using CT as
the source, (b) shows CT prediction results using HV as the source, (c) shows HV prediction results
using CCS as the source, and (d) shows CCS prediction results using HV as the source.

5.2 ROBUSTNESS UNDER CORRUPTED DATASET

In this subsection, we demonstrate the robustness of GEAR under targeted corruption stress on dataset
to assess its regularization effect. We corrupted data points with values at least twice the standard
deviation of each dataset. Specifically, we selected 10% of the test set containing values greater than

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the dataset’s standard deviation. These selected labels were corrupted by multiplying them by -1
and then injected into the training dataset. This setup reflects common scientific data errors, such as
missing minus signs or inconsistent units. After training, we evaluated the model by feeding these
corrupted samples and comparing the predictions against their original, uncorrupted labels. This
procedure was repeated under a 4-fold cross-validation scheme to ensure the reliability.

As shown in Figure 4, GEAR consistently outperforms conventional models across all cases.

5.3 COMPUTATIONAL COSTS

Figure 5: Memory usage was visualized in the form of bar charts in log scale. The charts compare
the memory consumption of the analytic and autograd-based methods when computing the metric
and the derivative of the metric, evaluated at data sizes of 1, 10, and 30. The corresponding bars are
labeled as Analytic and Autograd, respectively.

In this subsection, we demonstrate the necessity of computing the curvature analytically. Although
metric and its derivatives can be calculated by autograd, autograd requires substantial computational
cost compared to analytic computation. We compared memory consumption between the analytical
and autograd-based methods when computing the metric and its derivatives across varying data sizes.

As shown in Figure 5, both methods exhibited similar memory usage for metric computation, which
involves first-order derivatives. However, for computing metric derivatives (i.e., second-order), the
autograd approach consumed approximately 85.5× more memory at data size 1. Due to this overhead,
autograd-based training was infeasible under our GPU constraints. In contrast, the analytical method
enabled fast and memory-efficient training, requiring only 0.5 seconds per iteration at batch size 512.

6 DISCUSSION

We introduced a novel TL algorithm, GEAR, based on Riemannian differential geometry. Since deep
learning models are inherently smooth and differentiable, the Jacobian of the transfer module can
be computed analytically. From the Jacobian, the induced curved metric can be derived and used
for curvature computation. The Ricci scalar curvature encapsulates the full geometric characteristics
of the latent space; by matching the curvature between the target and source tasks, the latent spaces
can be accurately aligned. Experimental results on 23 pairs of molecular property prediction tasks
demonstrate the superior performance of GEAR compared to benchmark models.

Simplifying or relaxing the curvature matching process—without sacrificing generality—helps reduce
the implementation complexity and computational overhead typically associated with curvature
computation. GEAR also introduces structural flexibility by connecting source and target tasks
through transfer modules, without imposing restrictions on the downstream architecture. This allows
the encoder modules to remain fully unconstrained, enabling seamless adaptation to multi-modal
learning scenarios. Moreover, the framework is inherently extensible to settings involving more than
two interrelated tasks, opening opportunities for broader applications in multi-task transfer learning.
Importantly, these extensions are not limited to the chemical domain, and can be applied to other
areas such as natural language processing (NLP) and computer vision.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

Due to patent considerations, we cannot release source code in the supplementary materials. However,
we provide comprehensive descriptions of the model architecture (Figures 1, 6), the full set of
equations (Sections 3, C), and pseudo-code (Algorithm 1). Hyperparameters and dataset details are
given in Section F, while background material on differential geometry is summarized in Sections A
and B to support readers who are less familiar with this area. Together, these resources should enable
reproducibility of our results.

REFERENCES

Sourya Basu, Pulkit Katdare, Prasanna Sattigeri, Vijil Chenthamarakshan, Katherine Driggs-
Campbell, Payel Das, and Lav R. Varshney. Efficient equivariant transfer learning from pretrained
models, 2023. URL https://arxiv.org/abs/2305.09900.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally
connected networks on graphs. 12 2013.

David Buterez, Jon Paul Janet, Steven J Kiddle, Dino Oglic, and Pietro Lió. Transfer learning with
graph neural networks for improved molecular property prediction in the multi-fidelity setting.
Nature communications, 15(1):1517, 2024.

Sean M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley,
San Francisco, 2004.

Connor W. Coley, Wengong Jin, Luke Rogers, Timothy F. Jamison, Tommi S. Jaakkola, William H.
Green, Regina Barzilay, and Klavs F. Jensen. A graph-convolutional neural network model for
the prediction of chemical reactivity. Chem. Sci., 10:370–377, 2019. doi: 10.1039/C8SC04228D.
URL http://dx.doi.org/10.1039/C8SC04228D.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. 06 2016.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timo-
thy Hirzel, Alán Aspuru-Guzik, and Ryan Adams. Convolutional networks on graphs for learning
molecular fingerprints. Advances in Neural Information Processing Systems (NIPS), 13, 09 2015.

John Falk, Luigi Bonati, Pietro Novelli, Michele Parrinello, and Massimiliano Pontil. Transfer
learning for atomistic simulations using gnns and kernel mean embeddings. Advances in Neural
Information Processing Systems, 36:29783–29797, 2023.

Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Adversarial autoencoders with constant-
curvature latent manifolds. Applied Soft Computing, 81:105511, 2019.

Noah Hoffmann, Jonathan Schmidt, Silvana Botti, and Miguel AL Marques. Transfer learning on
large datasets for the accurate prediction of material properties. Digital Discovery, 2(5):1368–1379,
2023.

Wenbo Hu, Hongjian Zhan, Yinghong Tian, Yujie Xiong, and Yue Lu. Enhanced video clustering
using multiple riemannian manifold-valued descriptors and audio-visual information. Expert
Systems with Applications, 246:123099, 2024.

Russell D. Johnson III. Nist computational chemistry comparison and benchmark database. NIST
Standard Reference Database, 101, 2022. URL http://cccbdb.nist.gov/.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization, 12 2018.

10

https://arxiv.org/abs/2305.09900
http://dx.doi.org/10.1039/C8SC04228D
http://cccbdb.nist.gov/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation knowledge
distillation for graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A
Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E Bolton. PubChem
2023 update. Nucleic Acids Research, 51(D1):D1373–D1380, 10 2022. ISSN 0305-1048. doi:
10.1093/nar/gkac956. URL https://doi.org/10.1093/nar/gkac956.

Sung Moon Ko, Sungjun Cho, Dae-Woong Jeong, Sehui Han, Moontae Lee, and Honglak Lee.
Grouping matrix based graph pooling with adaptive number of clusters. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(7):8334–8342, June 2023a. ISSN 2159-5399. doi:
10.1609/aaai.v37i7.26005. URL http://dx.doi.org/10.1609/aaai.v37i7.26005.

Sung Moon Ko, Sumin Lee, Dae-Woong Jeong, Woohyung Lim, and Sehui Han. Geometrically
aligned transfer encoder for inductive transfer in regression tasks, 2023b. URL https://arxiv.
org/abs/2310.06369.

Sung Moon Ko, Sumin Lee, Dae-Woong Jeong, Hyunseung Kim, Chanhui Lee, Soorin Yim, and
Sehui Han. Multitask extension of geometrically aligned transfer encoder, 2024. URL https:
//arxiv.org/abs/2405.01974.

Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain adaptation
using asymmetric kernel transforms. CVPR 2011, pp. 1785–1792, 2011. URL https://api.
semanticscholar.org/CorpusID:7419723.

Chanhui Lee, Dae-Woong Jeong, Sung Moon Ko, Sumin Lee, Hyunseung Kim, Soorin Yim, Sehui
Han, Sungwoong Kim, and Sungbin Lim. Scalable multi-task transfer learning for molecular
property prediction, 2024. URL https://arxiv.org/abs/2410.00432.

John M. Lee. Introduction to Riemannian Manifolds. Springer, 2nd edition, 2018.

Yonghyeon Lee, Seungyeon Kim, Jinwon Choi, and Frank Park. A statistical manifold framework
for point cloud data. In International Conference on Machine Learning, pp. 12378–12402. PMLR,
2022.

Yangyang Li, Chaoqun Fei, Chuanqing Wang, Hongming Shan, and Ruqian Lu. Geometry flow-based
deep riemannian metric learning. IEEE/CAA Journal of Automatica Sinica, 10(9):1882–1892,
2023.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Wei Cheng, Xiang Zhang, and Wei Wang. Dual
Transfer Learning, pp. 540–551. doi: 10.1137/1.9781611972825.47. URL https://epubs.
siam.org/doi/abs/10.1137/1.9781611972825.47.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jianhan Pan, Teng Cui, Thuc Duy Le, Xiaomei Li, and Jing Zhang. Multi-group transfer learning on
multiple latent spaces for text classification. IEEE Access, 8:64120–64130, 2020. doi: 10.1109/
ACCESS.2020.2984571.

Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the
latent space of diffusion models through the lens of riemannian geometry. Advances in Neural
Information Processing Systems, 36:24129–24142, 2023.

Paraskevas Pegios, Aasa Feragen, Andreas Abildtrup Hansen, and Georgios Arvanitidis. Counterfac-
tual explanations via riemannian latent space traversal. CoRR, 2024.

Minshi Peng, Yue Li, Brie Wamsley, Yuting Wei, and Kathryn Roeder. Integration and transfer
learning of single-cell transcriptomes via cfit. Proceedings of the National Academy of Sciences,
118(10):e2024383118, 2021. doi: 10.1073/pnas.2024383118. URL https://www.pnas.
org/doi/abs/10.1073/pnas.2024383118.

11

https://doi.org/10.1093/nar/gkac956
http://dx.doi.org/10.1609/aaai.v37i7.26005
https://arxiv.org/abs/2310.06369
https://arxiv.org/abs/2310.06369
https://arxiv.org/abs/2405.01974
https://arxiv.org/abs/2405.01974
https://api.semanticscholar.org/CorpusID:7419723
https://api.semanticscholar.org/CorpusID:7419723
https://arxiv.org/abs/2410.00432
https://epubs.siam.org/doi/abs/10.1137/1.9781611972825.47
https://epubs.siam.org/doi/abs/10.1137/1.9781611972825.47
https://www.pnas.org/doi/abs/10.1073/pnas.2024383118
https://www.pnas.org/doi/abs/10.1073/pnas.2024383118


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ariadna Quattoni, Michael Collins, and Trevor Darrell. Transfer learning for image classification
with sparse prototype representations. Proceedings / CVPR, IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2, 03 2008. doi: 10.1109/CVPR.2008.4587637.

Adityanarayanan Radhakrishnan, Max Ruiz Luyten, Neha Prasad, and Caroline Uhler. Transfer
learning with kernel methods. Nature Communications, 14(1):5570, September 2023.

Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning with applications to medical imaging. CoRR, abs/1902.07208, 2019. URL
http://arxiv.org/abs/1902.07208.

Franco Scarselli, Marco Gori, Ah Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 20:61–80, 01 2009. doi: 10.1109/TNN.2008.2005605.

Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Chen Liu, Guillaume Huguet, Guy
Wolf, Ian Adelstein, Tim GJ Rudner, and Smita Krishnaswamy. Geometry-aware generative
autoencoders for warped riemannian metric learning and generative modeling on data manifolds.
CoRR, 2024.

Iurii Sushko, Sergii Novotarskyi, Robert Körner, Anil Kumar Pandey, Matthias Rupp, Wolfram
Teetz, Stefan Brandmaier, Ahmed Abdelaziz, Volodymyr V Prokopenko, Vsevolod Y Tanchuk,
et al. Online chemical modeling environment (ochem): web platform for data storage, model
development and publishing of chemical information. Journal of computer-aided molecular design,
25:533–554, 2011.

Robert M. Wald. General Relativity. University of Chicago Press, Chicago, 1984.

Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong Ye, and Nancy
Zhang. Data denoising with transfer learning in single-cell transcriptomics. Nature Methods, 16:
875–878, 09 2019. doi: 10.1038/s41592-019-0537-1.

Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity. John Wiley & Sons, New York, 1972.

Florian Wenzel, Andrea Dittadi, Peter Vincent Gehler, Carl-Johann Simon-Gabriel, Max Horn,
Dominik Zietlow, David Kernert, Chris Russell, Thomas Brox, Bernt Schiele, Bernhard Schölkopf,
and Francesco Locatello. Assaying out-of-distribution generalization in transfer learning, 2022.
URL https://arxiv.org/abs/2207.09239.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Tim Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi Jaakkola,
Klavs Jensen, and Regina Barzilay. Analyzing learned molecular representations for property
prediction. Journal of Chemical Information and Modeling, 59, 07 2019. doi: 10.1021/acs.jcim.
9b00237.

Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg. Geodesic clustering
in deep generative models. arXiv preprint arXiv:1809.04747, 2018.

Shaolun Yao, Jie Song, Lingxiang Jia, Lechao Cheng, Zipeng Zhong, Mingli Song, and Zunlei
Feng. Fast and effective molecular property prediction with transferability map. Communications
Chemistry, 7(1):85, 2024.

Soorin Yim, Dae-Woong Jeong, Sung Moon Ko, Sumin Lee, Hyunseung Kim, Chanhui Lee, and
Sehui Han. Task addition in multi-task learning by geometrical alignment, 2024. URL https:
//arxiv.org/abs/2409.16645.

Xiang Yu, Jian Wang, Qing-Qi Hong, Raja Teku, Shui-Hua Wang, and Yu-Dong Zhang. Transfer learn-
ing for medical images analyses: A survey. Neurocomputing, 489:230–254, 2022. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2021.08.159. URL https://www.sciencedirect.
com/science/article/pii/S0925231222003174.

12

http://arxiv.org/abs/1902.07208
https://arxiv.org/abs/2207.09239
https://arxiv.org/abs/2409.16645
https://arxiv.org/abs/2409.16645
https://www.sciencedirect.com/science/article/pii/S0925231222003174
https://www.sciencedirect.com/science/article/pii/S0925231222003174


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Fuzhen Zhuang, Ping Luo, Hui Xiong, Qing He, Yuhong Xiong, and Zhongzhi Shi. Exploiting
associations between word clusters and document classes for cross-domain text categorization†.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(1):100–114, 2011. doi:
https://doi.org/10.1002/sam.10099. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/sam.10099.

Fuzhen Zhuang, Ping Luo, Changying Du, Qing He, and Zhongzhi Shi. Triplex transfer learning:
Exploiting both shared and distinct concepts for text classification. In Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining, WSDM ’13, pp. 425–434, New
York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450318693. doi:
10.1145/2433396.2433449. URL https://doi.org/10.1145/2433396.2433449.

Fuzhen Zhuang, Ping Luo, Changying Du, Qing He, Zhongzhi Shi, and Hui Xiong. Triplex transfer
learning: Exploiting both shared and distinct concepts for text classification. IEEE Transactions
on Cybernetics, 44(7):1191–1203, 2014. doi: 10.1109/TCYB.2013.2281451.

13

https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10099
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10099
https://doi.org/10.1145/2433396.2433449


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATIONS

Our notation follows index notation and the Einstein summation convention. The functions and
matrices used in our algorithm are defined as follows.

X : Vector (21)
Xµ : Vector Field (22)

dxµ : Basis (23)
Xµ : Dual Vector Field (24)

dxµ : Dual Basis (25)
T : Tensor (26)

T
ν1···νp

µ1···µq : (p, q) Tensor Field (27)
gµν : Metric Tensor (28)

δµν : Kronecker Delta (29)
∇µ : Covariant Derivative (30)

LX : Lie Derivative (31)
Γρ

µν : Christoffel Symbol (32)

All indices are raised and lowered by the metric gµν . For instances,

gµν = gµρgρν (33)

where

gµνgµν = δµν = D (34)

Here D is the number of dimensions.

B MOTIVATIONS AND THEORETICAL BACKGROUNDS

We prepared this section to assist readers who may not be familiar with the mathematical foundations
of differential geometry. The content is essentially a summarized compilation of well-established
textbook materials, including (Weinberg, 1972; Carroll, 2004; Wald, 1984). In addition, the material
in subsections B.3, B.5, and B.6 is also covered in the original GATE paper (Ko et al., 2023b).

B.1 JUSTIFICATION FOR THE RIEMANNIAN GEOMETRY ASSUMPTION

In this subsection, we clarify the motivations and the rationale behind this assumption and why
it is both theoretically sound and practically justified in the context of deep learning. While this
was briefly mentioned in Section 3 of our manuscript and supported by citations in Section 2, we
acknowledge that a more explicit theoretical justification is warranted. Below, we provide a detailed
rationale to clarify why this assumption is both mathematically valid and practically appropriate in
the context of our method.

The assumption that latent spaces in deep learning models can be treated as Riemannian manifolds
rests on the following logical reasoning:

1. A Riemannian manifold is formally defined as a smooth manifold equipped with a Rieman-
nian metric—a smoothly varying inner product on each tangent space.

2. A classical result in differential geometry establishes that any smooth manifold admits
a Riemannian metric. This is a well-known theorem found in standard references such
as (Lee, 2018)

3. The critical question, then, is whether the latent space of a deep learning model qualifies as
a smooth manifold. This can be affirmed based on the construction of modern deep neural
networks:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Linear transformations are inherently smooth mappings.
• Nonlinear activation functions (e.g., Tanh, Sigmoid, SiLU) are continuously differen-

tiable and thus smooth.
4. Therefore, when smooth activation functions are used, the entire model becomes a composi-

tion of smooth functions. The resulting latent space—formed by mappings from the input
through the network—is itself smooth and hence forms a smooth manifold.

Based on the above, it follows directly that the latent space can be equipped with a Riemannian
metric, rendering it a Riemannian manifold.

This assumption not only holds mathematically but is also aligned with practices in prior literature,
including GATE and other geometric learning frameworks. Modeling latent spaces as Riemannian
manifolds enables the use of powerful geometric tools—such as curvature—to capture structural
properties that are otherwise inaccessible through Euclidean assumptions. In our case, this moti-
vates the introduction of Ricci curvature alignment as a principled approach to improving transfer
performance.

B.2 MOTIVATION FOR RICCI CURVATURE MATCHING

Our work builds on the GATE architecture (Ko et al., 2023b) and thus inherits foundational assump-
tions from that framework. As described in the GATE paper, each data point within a task lies
on a manifold, and the set of such points forms a coordinate patch, interpretable as a task-specific
coordinate system. This is reasonable because many downstream tasks originate from a univer-
sal molecular representation (e.g., SMILES), with task-specific latent representations viewed as
coordinate transformations of the same underlying structure.

Given the latent space’s smoothness, it can be modeled as a Riemannian manifold (as argued in
the previous section). Accordingly, task-specific latent spaces can be connected via diffeomor-
phisms—smooth, invertible mappings between manifolds.

We require the following assumptions to hold for the dataset:

• The source and target tasks are correlated.
• Their distributions share overlapping regions.

These assumptions are realistic, as our dataset includes many scientifically correlated task pairs, and
most molecules have multiple annotated properties.

The fundamental strategy in both GATE and GEAR is to use source-task data to compensate for
underrepresented regions in the target task. Given a Riemannian latent space, we can transfer
knowledge across tasks by learning diffeomorphic mappings between latent representations.

To make this concrete, consider the following example: Suppose we have two molecules—water and
oil. We know the melting point of water but not its boiling point; for oil, we have both values. If
boiling point prediction is the target task and melting point is the source task, then we can train the
model to learn a mapping from oil’s melting-point representation to its boiling-point representation.
Once trained, the model can infer water’s boiling-point representation from its melting-point latent
vector, transferring knowledge via the learned transformation. This enables improved performance
on the target task.

Understanding the geometry of latent spaces is essential for meaningful transfer. Riemannian
manifolds are inherently curved, and standard derivatives are insufficient for accurately describing
vector displacement. Instead, one must use the covariant derivative, which accounts for curvature
through the Christoffel symbol. This term varies across coordinate systems, making it equivariant
rather than invariant.

The second derivative of the metric leads to the curvature tensor, which characterizes the mani-
fold’s intrinsic geometry. Among its contractions, the Ricci scalar is of particular interest: it is
diffeomorphism-invariant and summarizes the manifold’s curvature using a single scalar value.

Since all Riemannian manifolds enjoy diffeomorphism invariance, this property provides freedom in
coordinate choice. Formally, a diffeomorphism is a smooth bijective map with differentiable inverse.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Practically, it means that a vector’s intrinsic properties remain unchanged even when expressed in a
new coordinate basis. Consequently, one can always find a coordinate frame in which the manifold
appears locally flat.

To uncover the latent manifold’s geometry, one could:

• Solve the Einstein field equations to obtain the metric tensor.
• Propose a suitable Ansatz and verify that it satisfies the Einstein equations.
• Define a mapping function and derive the curved metric from a flat one using the Jacobian.

The third method is the most practical in deep learning. General solutions to Einstein’s equations are
unknown for arbitrary settings, and crafting a good Ansatz is difficult and task-dependent. However,
the Jacobian-based approach is well-established: the curved metric is computed from the Jacobian
and its inverse, composed with a flat metric.

Using this method, we analytically compute curvature for task-specific manifolds and compare their
geometry through Ricci scalars.

We chose to extend GATE by replacing local perturbation alignment with Ricci curvature matching.
As discussed in our Introduction, this provides several key benefits:

• It captures global geometric structure, rather than relying on limited local perturbations.
• It removes ambiguity in choosing “infinitesimal” scales—especially relevant when latent

vector magnitudes vary or curvature is large.
• It eliminates the need for perturbation-based sampling and supports a universal embedding

space that enables non-linear mappings and potential multi-modal extensions.

In summary, Ricci curvature offers a mathematically principled, empirically effective, and computa-
tionally viable means of aligning task-specific latent spaces in transfer learning.

B.3 THE DEFINITION OF RIEMANNIAN MANIFOLD

A curved space is complicated to comprehend in general. Since the late 19th century, there has
been immense development in differential geometry to formally interpret curved spaces. One of the
best-known intuitive geometries is Riemannian geometry. Riemannian geometry possesses a handful
of useful mathematical properties that can be utilized in the real world. The formal definition of
Riemannian geometry is as follows:
Definition B.1 (Riemannian Manifold). A Riemannian metric on a smooth manifold M is a choice at
each point x ∈M of a positive definite inner product gp : TpM × TpM → R on TxM . The smooth
manifold endowed with the metric g is a Riemannian manifold, denoted (M, g).

As stated above, a Riemannian manifold is smooth and differentiable everywhere on the manifold,
along with its derivatives. Moreover, a Riemannian manifold enjoys diffeomorphism invariance,
induced by the Lie derivative LX . It can be readily observed that the composition of two different
Lie derivatives forms a group, known as the diffeomorphism group. This isometry guarantees that
coordinate choices can be made without altering the global geometry of the space.

X ′ = X ′µdX ′
µ = X ′µ ∂Xν

∂X ′µ dXν = XνdXν = X (35)

As shown in Eq. 35, the transformed vector remains unchanged. Moreover, it is always possible to fix
the transformed coordinates in a locally flat space.

ξµ =
∂ξµ

∂Xν
Xν (36)

Where ξµ is a vector on a locally flat frame. To ensure the vector is on a flat frame, one must impose
the following condition:

∂2

∂t2
ξµ(t) ≡ 0 (37)

Since a vector is on a flat frame, it should be in free-falling motion, and thus its acceleration should
be trivial. On a locally flat frame, the metric also reduces to the flat Euclidean metric.

gµν = 1µν (38)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.4 COVARIANCE

A vector should transform consistently across any coordinate frame. However, if the space is no
longer flat, the ordinary derivative no longer preserves this property. To address this, let us consider
the derivative of a vector in a general curved space.

∂µ → ∂′
µ =

∂xµ

∂x′ν ∂ν (39)

Where ∂µ = ∂
∂xµ , the vector transformation can be written as follows:

∂νX
µ → ∂′

νX
′µ =

∂xλ

∂x′ν
∂

∂xλ
(
∂x′µ

∂xρ
V ρ) (40)

=
∂x′ν

∂xλ

(∂x′ρ

∂xν
∂λV ρ +

∂2x′µ

∂xλ∂xρ
V ρ

)
(41)

As shown above, the transformation of a vector on a curved space using an ordinary derivative is
no longer covariant. Therefore, it is necessary to introduce an additional term to restore covariance,
namely the affine connection. With this addition, one can define the covariant derivative, which
replaces the ordinary derivative.

∇µ = ∂µ + Γλ
µν (42)

By imposing the covariance condition on the covariant derivative,

∇λ → ∇′
λV

′µ =
∂xρ

∂x′ν
∂x′µ

∂xν
∇ρV

ν (43)

one can derive the explicit form of the connection.

∇µV
ν = ∂µV

ν + Γν
µλV

λ (44)

Under coordinate transformation,

∂

∂x′µ (
∂x′ν

∂xλ
V λ) + Γ′ν

µσV
′σ =

∂xρ

∂x′µ
∂x′ν

∂xλ
∂ρV

λ +
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ + Γ′ν

µσV
′σ (45)

Here, to make the derivative of a vector covariant, the following condition must be satisfied:

∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ + Γ′ν

µσV
′σ =

∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρσV
σ (46)

Which is

Γ′ν
µσ(

∂x′σ

∂xτ
V τ ) =

∂xρ

∂x′µ
∂′ν

∂xλ
Γλ

ρσV
σ − ∂xρ

∂x′µ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ (47)

Γ′ν
µκV

τ =
∂xρ

∂x′κ
∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρσV
σ − ∂xτ

∂x′κ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xλ
V λ (48)

This leads to the explicit form of how the Christoffel symbols transform under coordinate changes.

Γ′ν
µκ =

∂xτ

∂x′κ
∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρτ −
∂xτ

∂x′κ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xτ
(49)

Since the Kronecker delta is a constant matrix, it is clear that its derivative must vanish. By applying
the chain rule to the delta, one can derive the following relation, which simplifies the transformation
rule described above.

∂

∂x′µ δ
ν
κ =

∂

∂x′µ
∂x′ν

∂x′κ =
∂

∂x′µ (
∂xτ

∂x′κ
∂x′ν

∂xτ
) = 0 =

∂xτ

∂x′κ
∂xρ

∂x′µ
∂2x′ν

∂xρ∂xτ
+

∂x′ν

∂xτ

∂x′ν

∂xτ

∂2xτ

∂x′µ∂x′ρ
(50)

Finally, the transformation rule for the Christoffel symbols is given by:

Γ′ν
µκ =

∂xτ

∂x′κ
∂xρ

∂x′µ
∂x′ν

∂xλ
Γλ

ρτ +
∂x′ν

∂xτ

∂2xτ

∂x′µ∂x′ρ (51)

By the same reasoning, one can easily determine how covariant derivatives act on differential forms.

∇µVν = ∂µVν − Γλ
µνVλ (52)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.5 EXPLICIT FORM OF CHRISTOFFEL SYMBOL

The metric serves as the ruler of a given geometry; therefore, it should remain invariant with respect
to position in a coordinate system. In the case of Euclidean space, this invariance is trivial to observe,
as the metric is simply δµν , a constant matrix.

∂

∂xλ
δµν = 0 (53)

However, in the curved case, the above principle must still hold to interpret the metric as a ruler.
Nevertheless, this condition does not hold when using an ordinary derivative. Here, the covariant
derivative comes into play, replacing the ordinary derivative. When taking the covariant derivative of
the curved metric, the resulting term vanishes.

∇λgµν = 0 (54)

One can express this condition in terms of a flat metric combined with a diffeomorphism transforma-
tion factor.

gµν(x) =
∂ξλ

∂xµ

∂ξρ

∂xν
δλρ(ξ) (55)

Taking the derivative with respect to x on both sides, the equation becomes:

∂

∂xσ
gµν(x) =

∂2xλ

∂xσ∂xµ

ξρ

∂xν
δλρ +

∂2ξρ

∂xσ∂xν

∂ξλ

∂xµ
δλρ (56)

=
∂2ξρ

∂xσ∂xν

∂xτ

∂ξρ
∂ξρ

∂xτ

∂ξλ

∂xµ
δλρ +

∂2ξλ

∂xσ∂xµ

∂xτ

∂ξλ
∂ξλ

∂xτ

∂ξρ

∂xν
δλρ (57)

=
∂2ξρ

∂xσ∂xν

∂xτ

∂ξρ
gµτ +

∂2ξλ

∂xσ∂xµ

∂xτ

∂ξλ
gτν (58)

From Eq. 54, one can easily derive the explicit form of the Christoffel symbol in terms of the
derivatives of the curved and flat coordinates.

∂

∂xσ
gµν = Γτ

σµgτν + Γτ
νσgµσ (59)

Γτ
σµ =

∂2ξλ

∂xσ∂xµ

∂xτ

∂ξλ
(x) (60)

Since the metric should always be symmetric, the lower indices of the Christoffel symbol should also
be symmetric. It is called a torsion-free condition. Furthermore, by utilizing a simple mathematical
trick, one can obtain the Christoffel symbol in terms of the metric gµν .

∂

∂xσ
gµν = Γτ

σµgτν + Γτ
σνgµτ (61)

∂

∂xµ
gνσ = Γτ

µνgτσ + Γτ
µσgντ (62)

∂

∂xν
gσµ = Γτ

νσgτµ + Γτ
νµgστ (63)

Adding the first two equations and subtracting the last one leads to:

Γλ
µν =

1

2
gλρ(

∂

∂xµ
gνρ +

∂

∂xν
gρµ −

∂

∂xρ
gµν) (64)

B.6 GEODESIC EQUATIONS

The shortest path between two points is simple to define in flat space. However, in curved space,
this notion becomes more complicated. The shortest path in a curved space is defined as a geodesic.
There are several ways to derive the geodesic equation, one of which is by imposing the free-fall
condition.

∂2ξµ(τ)

∂τ2
= 0 (65)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By a diffeomorphism, one can transform a coordinate into an arbitrary coordinate x.

0 =
∂

∂τ
(
∂ξµ

∂xν

∂xν

∂τ
) =

∂ξµ

∂xν

∂2xν

∂τ2
+

∂2ξµ

∂xλ∂xν

∂xλ

∂τ

∂xν

∂τ
(66)

∂2xρ

∂τ2
+

∂2ξµ

∂xλ∂xν

∂xρ

∂ξµ
∂xλ

∂τ

∂xν

∂τ
=

∂2xρ

∂τ2
+ Γρ

λν

∂xλ

∂τ

∂xν

∂τ
= 0 (67)

Another way to derive the equation is by minimizing the distance in curved space.

S =

∫ √
gµν

dxµ

dτ

dxν

dτ
dτ (68)

By varying the above equation and requiring the variation to vanish, one can compute its minimum
value, and after some tedious calculations, the geodesic equation can be obtained.

B.7 RIEMANN CURVATURE

The Riemann curvature can be defined through the concept of parallel transport of a vector. In flat
space, a vector remains unchanged under parallel transport along any path. However, in curved space,
the vector’s outcome depends on the path taken. This leads to the idea of curvature as the difference
between the results of transporting a vector along two different paths from the same starting point to
the same endpoint. This difference quantitatively characterizes the curvature of the space.

[∇µ,∇ν ]V
λ (69)

Here, the bracket denotes the commutation relation between the entities. Since the covariant derivative
acts as the generator of parallel transport, the equation can be interpreted as the vector V λ being
transported along two different paths: one generated by applying ∇µ followed by ∇ν , and the other
by reversing the order. The resulting computation takes the form:

∇µ∇νV
λ = ∂µ(∇νV

λ) + Γλ
µρ∇νV

ρ − Γρ
µν∇ρV

λ

= ∂µ∂νV
λ + ∂µΓ

λ
νρV

ρ + Γλ
νρ∂µV

ρ + Γλ
µρ
∂νV

ρ

+Γλ
µρΓ

ρ
νσV

σ − Γρ
µν∂ρV

λ − Γρ
µνΓ

λ
ρσV

σ

(70)

Where,

[∇µ,∇ν ]V
λ = (∂µΓ

λ
νρ − ∂νΓ

λ
µρ + Γλ

µσΓ
σ
νρ − Γλ

νσΓ
σ
µρ)V

ρ − 2Γρ
[µν]∇ρV

λ (71)

Since the connection is symmetric under the permutation of its lower indices, the last term in the
above equation can be eliminated. We can then finally define the Riemann tensor.

Rλ
ρµν := ∂µΓ

λ
νρ − ∂νΓ

λ
µρ + Γλ

µσΓ
σ
νρ − Γλ

νσΓ
σ
µρ (72)

The Riemann curvature tensor possesses several useful properties.

Rλρµν = −Rλρνµ

Rλρµν = −Rρλνµ

Rλρµν = −Rνµλρ

Rλρµν +Rλµνρ +Rλνρµ = 0
∇σRλρµν +∇µRλρνσ +∇νRλρσµ = 0
∇σRλρµν +∇λRρσνµ +∇ρRσλµν = 0
Rλρµν +Rρµλν +Rµλρν = 0

(73)

With the curved metric gµν , one can construct the Ricci curvature tensor and the Ricci scalar by
contracting the first and third, and the second and fourth indices of the Riemann tensor, respectively.

Rρν = gλµRλρµν

R = gρνRρν = gρνgλµRλρµν
(74)

C CURVATURE COMPUTATION FOR TWO LAYERED MLP

Before we proceed, it is convenient to define some symbols that will frequently appear in the
following calculations. Since we will use the SiLU activation function, the logistic function will

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

appear repeatedly in derivative computations. Therefore, we introduce the following symbol to
represent the logistic function:

LS(x) ≡ 1

1 + e−x
(75)

The derivative of the logistic function is well known. It consists of the square of the logistic function
multiplied by an xe−x term.

d

dx
LS(x) = e−x × LS(x)2 =

e−x

(1 + e−x)2
(76)

The coordinate transformation function in the model is based on an MLP with the SiLU activa-
tion function. To obtain the Jacobian of the transformation function, one must differentiate the
transformation function with respect to the transformed coordinate x′.

J i
j =

dx′i

dxj
(77)

Here, x′i can be expressed in the following form.

x′i = W
(2)i

kf(W
(1)k

jx
j + b(1)k) + b(2)i (78)

W
(n)i

j
, b(n)i, and f(x) denote the weight matrix, bias for each distinct hidden layer, and activation

function, respectively. The activation function is, in this case, SiLU. Thus, the derivative of the
function becomes straightforward.

dx′i

dxj
= W

(2)i
mW

(1)m
kf(W

k
lx

l + bk),j (79)

The derivative of the activation term is tedious but manageable. First, we will show how the derivative
of the SiLU function appears.

SiLU(x) ≡ x× LS(x) (80)

Hence, the derivative can be expressed as follows:

d

dx
Silu(x) = x× LS(x)′ + LS(x) =

xe−x

(1 + e−x)2
+

1

1 + e−x
(81)

For computational convenience, we first derive the derivative of the exponential term with respect to
the weight and bias.

∂ke
−(W i

jx
j+bi) = −W l

k(e
W l

jx
j+bl)il = −W l

kE
i
l (82)

Where (e−(W l
jx

j+bl))il is a diagonal form as follows.

Ei
l ≡ (e−(W l

jx
j+bj))il =

{
e−(W l

jx
j+bl) if l = i

0 if l ̸= i
(83)

By plugging Eq.81 into Eq.79, one can obtain the final form of the Jacobian. To express the equation
in a simpler form, it is convenient to introduce the following symbols before proceeding with the
main computation.

σi =
1

1 + e
−(W

(1)i

j
xj+b(1)i)

(84)

∂jσ
i = W

(1)l
jE

i
l(σ

2)i (85)

x′i = W
(1)i

jx
j + b(1)i = (W (1)x+ b(1))i (86)

Then, the Jacobian can be expressed in terms of the symbols introduced above.

dx′i

dxj = W
(2)i

mW
(1)m

k(((x
(1)k)e−x(1)k × LS(x(1)k) + 1)LS(x(1)k))kj

=
∑

a1
W

(2)i
a1
(W

(1)a1

jσ
a1 + (W (1)x+ b(1))a1W

(1)a3

jE
a1

a3
(σ2)a1)

(87)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Due to the diffeomorphism invariance of a Riemannian manifold, the metric tensor can be decomposed
into the square of the Jacobian of the given coordinate transformation, coupled with vectors and the
flat Euclidean metric.

gij =
dx′m

dxi

dx′n

dxj
ηmn =

dx′m

dxi

dx′
m

dxj
(88)

where the metric can be explicitly expressed using Eq. 79.

gij =
∑

a1a6
W

(2)a4

a1
(W

(1)a1

iσ
a1 + (W (1)x+ b(1))a1W

(1)a3

iE
a1

a3
(σ2)a1)

W
(2)

a4a6
(W

(1)a6

jσ
a6 + (W (1)x+ b(1))a6W

(1)a7

jE
a6

a7
(σ2)a6)

(89)

As shown above, the curved metric gij can be expressed in terms of the weight, bias, and input vector
x. By taking derivatives and appropriately contracting the metric, the curvature tensor can also be
expressed in terms of these components. The curvature tensor consists of combinations of derivatives
of the Christoffel symbols. To compute a Christoffel symbol, one must first obtain the derivative of
the metric tensor. The derivative of the metric tensor can be expressed as follows:

∂kgij =
( ∂2x′m

∂xk∂xi

∂x′n

∂xj
+

∂2x′n

∂xk∂xj

∂x′m

∂xi

)
ηmn (90)

Here, the key term is the second derivative of a vector. To compute this second derivative, one must
consider the derivative of the Eij term.

∂kEi
j = −W l

kδ
i
lpEp

j (91)

By utilizing the relation above, one can compute the second derivative of an arbitrary vector x′i,
which is a crucial component for deriving the affine connection.

∂2x′i

∂xk∂xj =
∑

a1
W

(2)i
a1
(W

(1)a1

jW
(1)a2

kE
a1

a2
(σ2)a1 +W

(1)a1

kW
(1)a3

jE
a1

a3
(σ2)a1

−(W (1)x+ b(1))a1W
(1)a3

jW
(1)a4

kδ
a1

a4a5
Ea5

a3
(σ2)a1

+2(W (1)x+ b(1))a1W
(1)a3

jE
a1

a3
W

(1)a6

kE
a1

a6
(σ3)a1)

(92)

Now, with the second derivative, we can construct the derivative of the metric.

∂kgij =
∑

a1a7
(W

(2)m
a1
(W

(1)a1

iW
(1)a2

kE
a1

a2
(σ2)a1 +W

(1)a1

kW
(1)a3

iE
a1

a3
(σ2)a1

−(W (1)x+ b(1))a1W
(1)a3

iW
(1)a4

kδ
a1

a4a5
Ea5

a3
(σ2)a1

+2(W (1)x+ b(1))a1W
(1)a3

iE
a1

a3
W

(1)a6

kE
a1

a6
(σ3)a1)

W
(2)n

a7
(W

(1)a7

jσ
a7 + (W (1)x+ b(1))a7W

(1)a8

jE
a7

a8
(σ2)a7)

+W
(2)n

a1
(W

(1)a1

jW
(1)a2

kE
a1

a2
(σ2)a1 +W

(1)a1

kW
(1)a3

jE
a1

a3
(σ2)a1

−(W (1)x+ b(1))a1W
(1)a3

jW
(1)a4

kδ
a1

a4a5
Ea5

a3
(σ2)a1

+2(W (1)x+ b(1))a1W
(1)a3

jE
a1

a3
W

(1)a6

kE
a1

a6
(σ3)a1)

W
(2)m

a7
(W

(1)a7

iσ
a7 + (W (1)x+ b(1))a7W

(1)a8

iE
a7

a8
(σ2)a7))ηmn

(93)

Since the Christoffel symbol can be written in terms of the derivative of the given metric, one can
now express the complete form of the symbol using Eq. 93.

Γi
jk =

1

2
gim(∂jgmk + ∂kgmj − ∂mgkj) (94)

Here, gim is the inverse of the metric tensor, which satisfies the following relation:

gijgjk = δik (95)

gijgji = D (96)

where D is the number of spatial dimensions. The inverse of the metric can be explicitly written
using the inverse Jacobian.

gij =
dxi

dx′m
dxj

dx′n η
mn (97)

Although the explicit form of the inverse metric is written in terms of combinations of inverse
Jacobians, we design two distinct models to encapsulate the Jacobian and the inverse Jacobian

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

separately for each case. Thus, the inverse Jacobian is not the actual matrix inverse of the Jacobian,
but instead follows the same computational process as the Jacobian, with the model replaced by the
inverse transfer model. Using this setup, one can then express the explicit form of the inverse metric
tensor in terms of weights and biases.

gij =
∑

a1a6
W

′(2)a4

a1
(W ′(1)a1iσa1 + (W ′(1)x+ b(1))a1W ′(1)a3iEa1

a3
(σ2)a1)

W
′(2)

a4a6
(W ′(1)a6jσa6 + (W ′(1)x+ b(1))a6W ′(1)a7jEa6

a7
(σ2)a6)

(98)

The primed weights and biases indicate the weights and biases from the inverse transfer model.
Finally, all individual components are now prepared to complete the expression for the Christoffel
symbol. We now recall Eq. 94.

Γi
jk = 1

2g
im(∂jgmk + ∂kgmj − ∂mgkj)

= 1
2

∑
a1a4

W
′(2)a3

a1
(W ′(1)a1iσa1 + (W ′(1)x+ b(1))a1W ′(1)a2iEa1

a2
(σ2)a1)

W
′(2)

a3a4
(W ′(1)a4mσa4 + (W ′(1)x+ b(1))a4W ′(1)a5mEa4

a5
(σ2)a4)(∑

a5a11
W

(2)o
a5
((W

(1)a5

mW
(1)a6

jE
a5

a6
(σ2)a5 +W

(1)a5

jW
(1)a7

mEa5
a7
(σ2)a5

−(W (1)x+ b(1))a5W
(1)a7

mW
(1)a8

jδ
a5

a8a9
Ea9

a7
(σ2)a5

+2(W (1)x+ b(1))a5W
(1)a7

mEa5
a7
W

(1)a10

jE
a5

a10
(σ3)a5)

W
(2)p

a11
(W

(1)a11

kσ
a11 + (W (1)x+ b(1))a11W

(1)a12

kE
a11

a12
(σ2)a11)

+W
(2)p

a5
(W

(1)a5

kW
(1)a6

jE
a5

a6
(σ2)a5 +W

(1)a5

jW
(1)a7

kE
a5

a7
(σ2)a5

−(W (1)x+ b(1))a5W
(1)a7

kW
(1)a8

jδ
a5

a8a9
Ea9

a7
(σ2)a5

+2(W (1)x+ b(1))a5W
(1)a7

kE
a5

a7
W

(1)a10

jE
a5

a10
(σ3)a5)

W
(2)o

a11
(W

(1)a11

mσa11 + (W (1)x+ b(1))a11W
(1)a12

mEa11
a12

(σ2)a11))ηop

+W
(2)o

a5
((W

(1)a5

mW
(1)a6

kE
a5

a6
(σ2)a5 +W

(1)a5

kW
(1)a7

mEa5
a7
(σ2)a5

−(W (1)x+ b(1))a5W
(1)a7

mW
(1)a8

kδ
a5

a8a9
Ea9

a7
(σ2)a5

+2(W (1)x+ b(1))a5W
(1)a7

mEa5
a7
W

(1)a10

kE
a5

a10
(σ3)a5)

W
(2)p

a11
(W

(1)a11

jσ
a11 + (W (1)x+ b(1))a11W

(1)a12

jE
a11

a12
(σ2)a11)

+W
(2)p

a5
(W

(1)a5

jW
(1)a6

kE
a5

a6
(σ2)a5 +W

(1)a5

kW
(1)a7

jE
a5

a7
(σ2)a5

−(W (1)x+ b(1))a5W
(1)a7

jW
(1)a8

kδ
a5

a8a9
Ea9

a7
(σ2)a5

+2(W (1)x+ b(1))a5W
(1)a7

jE
a5

a7
W

(1)a10

kE
a5

a10
(σ3)a5)

W
(2)o

a11
(W

(1)a11

mσa11 + (W (1)x+ b(1))a11W
(1)a12

mEa11
a12

(σ2)a11))ηop

−W (2)o
a5
((W

(1)a5

kW
(1)a6

mEa5
a6
(σ2)a5 +W

(1)a5

mW
(1)a7

kE
a5

a7
(σ2)a5

−(W (1)x+ b(1))a5W
(1)a7

kW
(1)a8

mδa5
a8a9

Ea9
a7
(σ2)a5

+2(W (1)x+ b(1))a5W
(1)a7

kE
a5

a7
W

(1)a10

mEa5
a10

(σ3)a5)

W
(2)p

a11
(W

(1)a11

jσ
a11 + (W (1)x+ b(1))a11W

(1)a12

jE
a11

a12
(σ2)a11)

+W
(2)p

a5
(W

(1)a5

jW
(1)a6

mEa5
a6
(σ2)a5 +W

(1)a5

mW
(1)a7

jE
a5

a7
(σ2)a5

−(W (1)x+ b(1))a5W
(1)a7

jW
(1)a8

mδa5
a8a9

Ea9
a7
(σ2)a5

+2(W (1)x+ b(1))a5W
(1)a7

jE
a5

a7
W

(1)a10

mEa5
a10

(σ3)a5)

W
(2)o

a11
(W

(1)a11

kσ
a11 + (W (1)x+ b(1))a11W

(1)a12

kE
a11

a12
(σ2)a11))ηop

)
(99)

To compute the Riemann curvature of the given manifold, one must calculate the second derivative of
the metric, as required by its definition.

Ri
ljkT

l = [∇j ,∇k]T
i (100)

where ∇j is the covariant derivative, which includes the affine connection.

∇jT
i = ∂jT

i + Γi
jlT

l (101)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Furthermore, the bracket indicates the commutation relation between the elements; hence, the
curvature can be expressed in the following way:

Ri
ljkT

l = ∇j∇kT
i −∇k∇jT

i

= (∂jΓ
i
kl − ∂kΓ

i
jl + Γi

jmΓm
kl − Γi

kmΓm
jl)T

l (102)

Here, the derivative of the affine connection consists of combinations of second derivatives of the
metric tensor.

∂jΓ
i
kl =

1
2∂j(g

im(∂kgml + ∂lgmk − ∂mglk))
= 1

2 (∂jg
im(∂kgml + ∂lgmk − ∂mglk)

+gim(∂j∂kgml + ∂j∂lgmk − ∂j∂mglk))
(103)

Therefore, by obtaining the specific form of the second derivative of the metric, one can express the
explicit form of the Riemann curvature. To begin the computation, it is convenient to recall Eq.93 for
taking the derivative, as well as Eq.82 and Eq. 91 for computing the elements involving the activation
function.

∂j∂kgml =
∑

a1a7

(
W

(2)o
a1
(−2W (1)a1

mW
(1)a2

kW
(1)a9

jδ
a1

a9a10
Ea10

a2
(σ2)a1

+4W
(1)a1

mW
(1)a2

kW
(1)a9

jE
a1

a2
Ea1

a9
(σ3)a1

−W (1)a1

jW
(1)a3

mW
(1)a4

kδ
a1

a4a5
Ea5

a3
(σ2)a1

+(W (1)x+ b(1))a1W
(1)a3

mW
(1)a4

kW
(1)a9

jδ
a1

a4a5
δa5

a9a10
Ea10

a3
(σ2)a1

−2(W (1)x+ b(1))a1W
(1)a3

mW
(1)a4

kW
(1)a9

jδ
a1

a4a5
Ea5

a3
Ea1

a9
(σ3)a1

+2W
(1)a1

jW
(1)a3

mW
(1)a6

kE
a1

a3
Ea1

a6
(σ3)a1

−4(W (1)x+ b(1))a1W
(1)a3

mW
(1)a6

kW
(1)a9

jδ
a1

a9a10
Ea1

(a3
Ea10

a6)
(σ3)a1

+6(W (1)x+ b(1))a1W
(1)a3

mW
(1)a6

kW
(1)a9

jE
a1

a9
Ea1

a3
Ea1

a6
(σ4)a1)

W
(2)p

a7
(W

(1)a7

lσ
a7 + (W (1)x+ b(1))a7W

(1)a8

lE
a7

a8
(σ2)a7)

+W
(2)o

a1
(W

(1)a1

mW
(1)a2

kE
a1

a2
(σ2)a1 +W

(1)a1

kW
(1)a3

mEa1
a3
(σ2)a1

−(W (1)x+ b(1))a1W
(1)a3

mW
(1)a4

kδ
a1

a4a5
Ea5

a3
(σ2)a1

+2(W (1)x+ b(1))a1W
(1)a3

mW
(1)a6

kE
a1

a3
Ea1

a6
(σ3)a1)

W
(2)p

a7
(W

(1)a7

lW
(1)a7

a11
Ea11

j(σ
2)a7 +W

(1)a7

jW
(1)a8

lE
a7

a8
(σ2)a7

−(W (1)x+ b(1))a7W
(1)a8

lW
(1)a11

jδ
a7

a11a12
Ea12

a8
(σ2)a7

+2(W (1)x+ b(1))a7W
(1)a8

lW
(1)a7

a11
Ea7

a8
Ea11

j(σ
3)a7)

+W
(2)p

a1
(−2W (1)a1

(lW
(1)a2

k)W
(1)a11

jδ
a1

a11a12
Ea12

a2
(σ2)a1

+4W
(1)a1

(lW
(1)a2

k)W
(1)a11

jE
a1

a2
Ea1

a11
(σ3)a1

−W (1)a1

jW
(1)a3

lW
(1)a4

kδ
a1

a4a5
Ea5

a3
(σ2)a1

+(W (1)x+ b(1))a1W
(1)a3

lW
(1)a4

kW
(1)a11

jδ
a1

a4a5
δa5

a11a12
Ea12

a3
(σ2)a1

−2(W (1)x+ b(1))a1W
(1)a3

lW
(1)a11

jW
(1)a4

kδ
a1

a4a5
Ea5

a3
Ea1

a11
(σ3)a1

+2W
(1)a1

jW
(1)a3

lW
(1)a6

kE
a1

a3
Ea1

a6
(σ3)a1

−4(W (1)x+ b(1))a1W
(1)a3

lW
(1)a6

kW
(1)a11

jδ
a1

a11a12
Ea12

(a3
Ea1

a6)
(σ3)a1

+6(W (1)x+ b(1))a1W
(1)a3

lW
(1)a6

kW
(1)a11

jE
a1

a3
Ea1

a6
Ea1

a11
(σ4)a1)

W
(2)o

a7
(W

(1)a7

mσa7 + (W (1)x+ b(1))a7W
(1)a8

mEa7
a8
(σ2)a7)

+W
(2)p

a1
(W

(1)a1

lW
(1)a2

kE
a1

a2
(σ2)a1 +W

(1)a1

kW
(1)a3

lE
a1

a3
(σ2)a1

−(W (1)x+ b(1))a1W
(1)a3

lW
(1)a4

kδ
a1

a4a5
Ea5

a3
(σ2)a1

+2(W (1)x+ b(1))a1W
(1)a3

lW
(1)a6

kE
a1

a3
Ea1

a6
(σ3)a1)

W
(2)o

a7
(2W

(1)a7

(mW
(1)a11

j)E
a7

a11
(σ2)a7

−(W (1)x+ b(1))a7W
(1)a8

mW
(1)a11

jδ
a7

a11a12
Ea12

a8
(σ2)a7

+2(W (1)x+ b(1))a7W
(1)a8

mW
(1)a11

jE
a7

a8
(σ3)a7Ea7

a11

)
ηop

(104)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Now, we have collected all the fundamental components needed to compute the Ricci scalar. Although
the computation is quite tedious, it can be carried out through brute-force calculation by referring to
Eqs. 72, 74, 93, 98, 99, 103, and 104.

C.1 QUADRATIC CASE FOR COMPUTATION CHECK

This entire sequence is indeed both tedious and complex. Therefore, we introduce the simplest case
for each process to verify the validity of the code and the formulas. Here, we set the activation
function to the quadratic of the input signal and maintain the number of layers at two. Under these
conditions, the transformed vector becomes:

x′i = W
(2)i

j(W
(1)x+ b(1))2j + b(2)i (105)

Now, the Jacobian can be easily derived from the above equation.

J i
j = W

(2)i
k2(W

(1)x+ b(1))kmW
(1)m

j (106)

Here, (W (1)x+ b(1))ij has a diagonal matrix form as follows:

(W (1)x+ b(1))ij =

{
W

(1)i
kx

k + b(1)i if i = j

0 if i ̸= j
(107)

Then, the metric can be written in the following form:

gij = W
(2)l

k2(W
(1)x+ b(1))kmW

(1)m
iW

(2)
ln2(W

(1)x+ b(1))noW
(1)o

j (108)

Finally, one can compute the derivative of the metric.

∂kgij = 4|W (2)o
q|

2(W (1))2qpδ
p
ikW

(1)n
o(W

(1)x+ b(1))oj

+4|W (2)
nq|

2W
(1)q

m(W (1)x+ b(1))mi(W
(1))2npδ

p
jk

(109)

where |W |2 = WTW and W 2 = W i
kW

k
j .

C.1.1 2-DIM SIMPLEST EXAMPLE FOR SQUARE ACTIVATION

To cross-check the computation results, we hereby introduce the simplest example for metric compu-
tation in 2D. The weights and biases for each layer are defined as follows:

W
(1)i

j =

(
1 2
3 4

)
(110)

W
(2)i

j =

(
5 6
7 8

)
(111)

b(1)i =

(
3
4

)
(112)

x =

(
1
2

)
(113)

Then, the Jacobian can be computed as expressed in Eq. 106. We will break down the Jacobian piece
by piece and verify the validity of the equation.

2(W (1)x+ b(1))mj =

(
16 0
0 30

)
(114)

By multiplying the weights from both layers, the equation becomes:

J i
j =

(
620 880
832 1184

)
(115)

Finally, the metric can be expressed as the square of the Jacobian.

gij = (JT )ikJ
k
j =

(
1076624 1530688
1530688 2176256

)
(116)

As shown above, the metric is symmetric.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.1.2 2-DIM SIMPLEST EXAMPLE FOR SILU ACTIVATION

In practice, a simple square activation is insufficient to capture the complex structure of curved space.
Therefore, we adopt the SiLU activation function to better express the model’s geometric structure.
The SiLU function behaves similarly to the ReLU activation but enjoys smoothness across the entire
domain.

SiLU(x) = x× LS(x) =
x

1 + e−x
(117)

Since the SiLU activation contains the inverse of the exponential function in its expression, the input
values should be kept smaller than 1 to prevent the activation from converging to a trivial value.

W
(1)i

j =

(
0.1 0.2
0.3 0.4

)
(118)

W
(2)i

j =

(
0.5 0.6
0.7 0.8

)
(119)

b(1)i =

(
0.3
0.4

)
(120)

x =

(
0.1
0.2

)
(121)

Using the input example set described above, one can compute the explicit equations, with the results
as follows. We will first introduce the main components used in the calculation. One key component
is the sigmoid function, which is utilized in the SiLU computation.

σi =

(
0.5866
0.6248

)
(122)

Another component is the diagonalized exponential term, which appears in the derivative of the vector
exponential.

Ei
j =

(
0.7047 0

0 0.6005

)
(123)

By combining the two expressions above with the weights and biases, it is possible to obtain the full
Jacobian.

J i
j =

(
0.1676 0.2458
0.2257 0.3322

)
(124)

Finally, by squaring the Jacobian, the induced metric gij can be defined.

gij = (JT )ikJ
k
j =

(
0.0790 0.1161
0.1161 0.1708

)
(125)

As shown above, the metric is well-defined and forms a symmetric structure in this setup as well.

D BASE GRAPH NEURAL NETWORK MODEL

In general, molecule is represented in a graph form. Therefore, in order to handle molecule dataset,
it is inevitable to utilize graph neural networks. We chose directional message passing network
(DMPNN) (Yang et al., 2019) for our backbone, since it outperforms other GNN architectures in
molecular domain. Given a graph, DMPNN initializes the hidden state of each edge (i, j) based on
its edge feature Eij with node feature Xi. At each step t, directional edge summarizes incident edges
as a message mt+1

ij and updates its hidden state to ht+1
ij .

mt+1
ij =

∑
k∈N (i)\j

ht
ki (126)

ht+1
ij = ReLU(h0

ij +Wem
t+1
ij ) (127)

Where N (i) denotes the set of neighboring nodes and We a learnable weight.he hidden states of
nodes are updated by aggregating the hidden states of incident edges into message mt+1

i , and passing

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

its concatenation with the node feature Xi into a linear layer followed by ReLU non-linearity

mt+1
i =

∑
j∈N (i)

ht
ij (128)

ht+1
i = ReLU(Wnconcat(Xi,m

t+1
i )) (129)

Similarly, Wn denotes a learnable weight. Assuming DMPNN runs for T timesteps, we use
(Xout, Eout) = GNN(A,X,E) to denote the output representation matrices containing hidden
states of all nodes and edges, respectively (i.e., Xout,i = hT

i and Eout,ij = hT
ij).

For graph-level prediction, the node representations after the final GNN layer are typically sum-
pooled to obtain a single graph representation hG =

∑
i hi, which is then passed to a FFN prediction

layer.

E ARCHITECTURE AND HYPERPARAMETERS

The detailed steps of training GEAR are outlined in Algorithm 1. The model architecture consists of
five distinct neural networks, with their parameter sizes summarized in Table 1 and 2. As illustrated
in Figures 1 and 6, each task comprises an embedding network, encoder network, transfer network,
inverse transfer network, and head network.

The embedding network, denoted as fm(x), adopts the DMPNN (Directed Message Passing Neural
Network) architecture with a depth of 3. It converts the input molecular representation x into a latent
representation a in the embedding space. The input vector to the embedding module is constructed as
follows, using the same featurization scheme as (Yang et al., 2019): atom features are represented
using a 134-dimensional one-hot encoded vector that captures atomic properties such as type, degree,
formal charge, hybridization, and aromaticity. Bond features are encoded as a 149-dimensional one-
hot vector reflecting bond type, conjugation, ring membership, stereochemistry, and atom-pair-derived
descriptors.

The encoder network follows a bottleneck architecture implemented as an autoencoder with multilayer
perceptrons (MLPs). The output from the encoder, fe(a), is then passed to both the transfer network
and the head network for subsequent processing.

The output of transfer network ft(z), denoted as m, is used to calculate consistency loss. The induced
flat metrics η(s)ij and η(t)ij from the source and target mappings are iterated K times, with K = 2 in
our setup. m is also fed into inverse transfer network, so that the output from inverse transfer network
fi(m) can be used to calculate autoencoder loss. Both modules are utilized to compute mapping,
metric and curvature losses. The output from head network, fh ◦fi(m), is used to calculate regression
loss and mapping loss. We trained the model for 1000 epochs with batch size 512 while using

Encoder Source

Head Source Head Target

Encoder Target

Transfer Source

Inv. Transfer Source

Transfer Target

Inv. Transfer Target

𝑥

𝑧! 𝑧"

!𝑦! !𝑦"

ℳ

𝑙!"! = 𝑙#$% + α𝑙&'!" + β𝑙(")* + γ𝑙+&, +  δ𝑙+$!#-(+  𝜖𝑙('#.

Embedding Source Embedding Target

𝜂 ! "#

𝜂"#

𝜂 $ "#

ℛ(") ℛ($)

Figure 6: Detailed schematics of GEAR with specific loss function components.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

AdamW (Loshchilov & Hutter, 2017) for optimization with learning rate 5e-5. The hyperparameters
for α, β, γ, δ, ϵ are 0.1, 0.1, 0.2, 0.1, 0.2 respectively.

Table 1: Common Network Parameters
network layer input, output size hidden size dropout

embedding DMPNN [134, 149], 100 200 0
encoder MLP layer 100, 50 50 0
transfer MLP layer 50, 50 50,50,50 0.2

inverse transfer MLP layer 50, 50 50,50,50 0.2
head MLP layer 50, 1 25,12 0.2

Table 2: Task Specific Encoder Parameters

Tasks Random Split Encoder Parameters Scaffold Split Encoder Parameters
hv← ds [200, 200] [200, 200, 200]
as← bp [200, 200] [200, 200, 200]
ds← kri [200] [200, 200]
hv← vs [200, 200] [200]
vs← hv [200, 200, 200] [200]
st← as [200, 200, 200] [200, 200, 200]
ds← lp [200, 200, 200] [200]
pol← ds [200, 200] [200, 200, 200]
vs← bp [200, 200, 200] [200, 200, 200]
dk← ef [200] [200, 200]
as← ccs [200] [200, 200, 200]
ct← bp [200, 200] [200, 200]
st← ccs [200, 200, 200] [200]

ccs← kri [200] [200, 200, 200]
hv← bp [200, 200, 200] [200, 200, 200]
vs← ccs [200, 200, 200] [200]
st← hv [200, 200] [200]
hv← ct [200, 200] [200, 200]
ip← bp [200] [200]
hv← ef [200, 200] [200, 200]

hv← kri [100, 100, 100] [200, 200]
ct← kri [200, 200] [200, 200, 200]
ip← dk [200] [200, 200, 200]

Table 3: Hyperparameters

learning rate 0.00005
optimizer AdamW
batch size 512

epoch 1000
α, β, γ, δ, ϵ 0.1, 0.1, 0.2, 0.1, 0.2

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 1 GEAR
1: Initialize embedding network fm, encoder network fe, transfer network ft, inverse transfer

network fi, head network fh with random parameters θ
2: Let J (·), G(·), andR(·) be mathematical functions for jacobian, metric, and curvature computa-

tion
3:
4: for epoch i = 1, 2, . . . n do
5: for each t ∈ Tasks do
6: Initialize Lmetric, Lreg, Lauto to 0
7: for each batch b = (xt, yt) ∈ dataset D do
8: at ← f t

m(xt)
9: zt ← f t

e(a
t)

10: mt ← f t
t (z

t)
11: gtcurved ← G(J (mt, f t

i ))
12: gtflat ← G(J (f t

i (m
t, f t

t ), g
t
curved))

13: rt ← R(gtcurved)
14: for step k = 1, . . . ,K do
15: g

t, (k)
curved ← G(J (mt, f t

i ), g
t, (k−1)
flat )

16: g
t, (k)
flat ← G(J (f t

i (m
t, f t

t )), g
t, (k−1)
curved )

17: end for
18: Lmetric ←

∑K
k=1

(
MSE Loss(gt, (k)flat , I) + MSE Loss(gt, (k)curved, I)

)
19: Lreg ← MSE Loss(yt, f t

h(z
t))

20: Lauto ← MSE Loss(f t
i (m

t), zt)
21:
22: for each s ∈ Subtasks do
23: Initialize Lmap, Lcons, Lcurv to 0
24: zs ← fs

e (a
t)

25: ms ← fs
t (z

s)
26: gscurved ← G(J (ms, fs

i ))
27: gsflat ← G(J (fs

i (m
s, f t

s), g
s
curved)

28: rs ← R(gscurved)
29: for step k = 1, . . . ,K do
30: g

s, (k)
curved ← G(J (ms, fs

i ), g
s, (k−1)
flat )

31: g
s, (k)
flat ← G(J (fs

i (m
s, fs

t )), g
s, (k−1)
curved )

32: end for
33: Lmetric ← Lmetric +

∑K
k=1

(
MSE Loss(gs, (k)flat , I) + MSE Loss(gs, (k)curved, I)

)
34: Lmap ← Lmap + MSE Loss(yt, f t

h ◦ f t
i (m

s))
35: Lcons ← Lcons + MSE Loss(mt,ms)
36: Lcurv ← Lcurv + MSE Loss(rt, rs)
37: end for
38:
39: Compute Ltotal = Lreg + αLauto + βLmap + γLcons + δLmetric + ϵLcurv

40: Update θ using Ltotal

41: end for
42: end for
43: end for

F DETAILED EXPLANATION OF DATASETS AND EXPERIMENTAL SETUPS

F.1 DATASETS

We utilized 14 different molecular property datasets sourced from three open-access databases, as
detailed in Table 4 and the descriptions below, for the evaluation of GEAR. Prior to training, the
datasets were carefully curated to remove entries with incorrectly specified units, typographical errors,

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 4: Detailed information about the datasets.
name acronym source count mean std

Abraham Descriptor S AS Ochem 1925 1.05 0.68
Boiling Point BP Pubchem 7139 198.99 108.88
Collision Cross Section CCS Pubchem 4006 205.06 57.84
Critical Temperature CT Ochem 242 626.04 120.96
Dielectric Constant DK Ochem 1007 0.80 0.41
Density DS Pubchem 3079 1.07 0.29
Enthalpy of Fusion EF Ochem 2188 1.32 0.32
Ionization Potential IP Pubchem 272 10.00 1.63
Kovats Retention Index KRI Pubchem 73507 2071.20 719.34
Log P LP Pubchem 28268 11.17 9.89
Polarizability POL CCCB 241 0.84 0.26
Surface Tension ST Pubchem 379 29.01 10.36
Viscosity VS Pubchem 294 0.47 0.87
Heat of Vaporization HV Pubchem 525 43.77 18.08

or extreme measurement conditions. All datasets were normalized using their respective means and
standard deviations to ensure consistency during training.

From these datasets, we selected 23 source–target task pairs, considering the number of data points
available in each dataset to maintain balance. Additionally, to ensure a fair and unbiased evaluation,
we deliberately selected task pairs exhibiting a wide range of correlations, as illustrated in Figure 7.

Finally, we provide an explicit description of the physical meaning associated with each dataset to
facilitate better understanding and context.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Corr.  Values Between Task Pairs

Figure 7: Pearson correlation between overlapping data points in target dataset and source dataset.

• AS : The solute dipolarity/polarizability.

• BP : The temperature at which this compound changes state from liquid to gas at a given
atmospheric pressure.

• CCS : The effective area for the interaction between an individual ion and the neutral gas
through which it is traveling.

• CT : The temparature when no gas can become liquid no matter how high the pressure is.

• DK : The ratio of the electric permeability of the material to the electric permeability of free
space.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

• DS : The mass of a unit volume of a compound.
• EF : The change in enthalpy resulting from the addition or removal of heat from 1 mole of a

substance to change its state from a solid to a liquid.
• IP : The amount of energy required to remove an electron from an isolated atom or molecule.
• KRI : The rate at which a compound is processed through a gas chromatography column.
• LP : Logarithmic form of the ratio of concentrations of a compound in a mixture of octanol

and water at equilibrium.
• POL : The tendency of matter, when subjected to an electric field, to acquire an electric

dipole moment in proportion to that applied field.
• ST : The property of the surface of a liquid that allows it to resist an external force
• VS : A measure of a fluid’s resistance to flow.
• HV : The quantity of heat that must be absorbed if a certain quantity of liquid is vaporized

at a constant temperature.

F.2 EXPERIMENTAL SETUPS

For the evaluation of GEAR, we compared its performance against seven benchmark models: GATE,
STL, MTL, KD, global structure-preserving loss-based KD (GSP-KD), and transfer learning (either
retraining the entire model or only the head network). All baselines share the same base architecture,
with minor adjustments specific to each method.

GATE shares nearly identical network parameters with GEAR for the encoder and head networks.
However, for the transfer module, GEAR requires maintaining the input and output vector dimensions
across each layer. Accordingly, the hidden dimensions were adjusted to [50, 50, 50], [50,50,50]
instead of [100, 100, 100], [100,100,100]. Other hyperparameters strictly follow those introduced in
the original paper (Ko et al., 2023b).

In the MTL setup, the backbone and bottleneck layers are shared between the two tasks, while
separate head networks are maintained for each task. For the KD baseline, latent vectors from the
bottleneck are used as targets for knowledge distillation, with the distillation loss weighted at 0.1.

Graph Contrastive Representation Distillation (G-CRD) originally incorporates both contrastive
and GSP losses (Joshi et al., 2022). However, since contrastive loss is unsuitable for regression
tasks, we adopt only the GSP loss component. In GSP-KD, node features from the final layer of the
backbone are used to compute pairwise distances, serving as the distillation targets. The loss ratio for
GSP-based distillation is similarly set to 0.1.

Training is conducted for a maximum of 600 epochs, with the best model selected based on early
stopping criteria.

G EXPERIMENTAL RESULTS

We express explicit test results in this section. A total of 23 task pairs from 14 distinct datasets were
thoroughly evaluated across eight different models. The full experimental results are presented across
four tables. In each table, the best result for each task is highlighted with bold and underline, while
the second-best result is underlined.

GEAR consistently outperforms other conventional methods by a significant margin. In both the
random split and scaffold split settings, GEAR achieves the best performance on 73.91% of the tasks.
Furthermore, when considering both first and second place rankings, GEAR ranks within the top two
for 95.65% of all tasks.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 5: Random Split Result (part 1)

GEAR GATE STL MTL
Tasks RMSE STD RMSE STD RMSE STD RMSE STD

hv← ds 0.8761 0.1145 0.9221 0.0612 0.9574 0.0519 0.9782 0.0782
as← bp 0.4375 0.0188 0.4583 0.0193 0.5125 0.0085 0.4370 0.0119
ds← kri 0.2796 0.0492 0.4145 0.0172 0.4154 0.0045 0.4172 0.0102
hv← vs 0.5711 0.0358 0.9116 0.0522 0.9574 0.0519 0.9700 0.1052
vs← hv 0.3364 0.0513 0.5471 0.0719 0.5947 0.0357 0.5535 0.0353
st← as 0.6045 0.0981 0.6689 0.0413 0.9902 0.0729 1.0272 0.0244
ds← lp 0.2677 0.0567 0.4046 0.0142 0.4154 0.0045 0.4133 0.0135

pol← ds 0.2820 0.0362 0.3431 0.0475 0.3460 0.0291 0.4367 0.1213
vs← bp 0.4299 0.0771 0.4457 0.0151 0.5947 0.0357 0.4516 0.0366
dk← ef 0.3748 0.0092 0.4331 0.0140 0.4331 0.0358 0.4498 0.0126
as← ccs 0.4400 0.0136 0.4648 0.0139 0.5125 0.0085 0.4677 0.0220
ct← bp 0.1481 0.0138 0.1742 0.0034 0.2549 0.1247 0.1707 0.0132
st← ccs 0.9222 0.0232 0.9546 0.0452 0.9902 0.0729 1.0361 0.0737

ccs← kri 0.2426 0.0108 0.2476 0.0034 0.2936 0.0110 0.2524 0.0042
hv← bp 0.6252 0.0320 0.7251 0.0581 0.9574 0.0519 0.7550 0.0432
vs← ccs 0.3364 0.0513 0.5233 0.0323 0.5947 0.0357 0.5792 0.0228
st← hv 0.5443 0.0841 0.7647 0.0622 0.9902 0.0729 0.7179 0.0259
hv← ct 0.7481 0.1196 0.9399 0.0896 0.9574 0.0519 1.1118 0.1633
ip← bp 0.4363 0.0307 0.5476 0.0642 0.6695 0.0660 0.6067 0.0345
hv← ef 0.7409 0.1171 0.6131 0.0966 0.9574 0.0519 0.8296 0.0999

hv← kri 0.6990 0.0888 0.5410 0.0732 0.9574 0.0519 0.8631 0.0354
ct← kri 0.1481 0.0138 0.1658 0.0136 0.2549 0.1247 0.1716 0.0090
ip← dk 0.5159 0.0362 0.6510 0.0381 0.6695 0.0660 0.7083 0.0226

mean 0.4785 0.0514 0.5592 0.0412 0.6642 0.0487 0.6263 0.0443
Count Ratio Count Ratio Count Ratio Count Ratio

1st 18 78.26 % 2 8.70 % 0 0 % 0 0 %
2nd 22 95.65 % 13 56.52 % 0 0 % 2 8.70 %

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 6: Random Split Result (part 2)

KD GSP-KD Transfer All Transfer Head
Tasks RMSE STD RMSE STD RMSE STD RMSE STD

hv ← ds 1.3726 0.2930 0.9321 0.0487 1.0428 0.1165 1.1166 0.0024
as ← bp 0.5426 0.0335 0.5315 0.0151 0.4325 0.0104 0.7712 0.0105
ds ← kri 0.4403 0.0119 0.4147 0.0063 0.4414 0.0154 0.8842 0.0049
hv ← vs 1.1995 0.1419 0.9154 0.0130 0.9937 0.0821 1.0091 0.0181
vs ← hv 0.5878 0.0264 0.5619 0.0223 0.5712 0.0232 0.7215 0.0392
st ← as 1.1601 0.0396 0.9938 0.0141 1.1296 0.1302 1.0045 0.0220
ds ← lp 0.4378 0.0086 0.4106 0.0077 0.4280 0.0136 0.9111 0.0022
pol ← ds 0.3089 0.0270 0.2603 0.0270 0.3741 0.0303 0.9060 0.0141
vs ← bp 0.6076 0.0241 0.5932 0.0097 0.5445 0.0239 0.7220 0.0645
dk ← ef 0.3852 0.0238 0.4230 0.0133 0.3936 0.0164 0.9380 0.0026
as ← ccs 0.5364 0.0211 0.5457 0.0150 0.4741 0.0148 0.9935 0.0033
ct ← bp 0.1690 0.0079 0.2018 0.0093 0.1563 0.0044 0.6847 0.0186
st ← ccs 1.1731 0.0730 0.9595 0.0405 1.1334 0.0687 1.1039 0.0046

ccs ← kri 0.2622 0.0117 0.2698 0.0095 0.2273 0.0016 0.6166 0.0567
hv ← bp 1.1983 0.1815 0.9051 0.0571 0.8267 0.0417 0.8829 0.0499
vs ← ccs 0.6027 0.0127 0.5269 0.0167 0.4868 0.0119 0.8684 0.0116
st ← hv 1.1270 0.0184 0.9618 0.0086 1.0290 0.0945 1.0102 0.0138
hv ← ct 1.5114 0.1845 0.9207 0.0112 1.2072 0.0460 1.0302 0.0186
ip ← bp 0.5624 0.0273 0.4631 0.0037 0.9816 0.2334 0.8732 0.0293
hv ← ef 1.3659 0.2587 0.8112 0.0463 1.0818 0.1021 0.9616 0.0478

hv ← kri 1.3739 0.2487 0.9191 0.0676 0.9080 0.0510 1.0715 0.0145
ct ← kri 0.1586 0.0102 0.2080 0.0057 0.1661 0.0075 0.8349 0.0279
ip ← dk 0.5508 0.0100 0.5257 0.0192 0.6099 0.0273 1.0336 0.0085

mean 0.7667 0.0737 0.6198 0.0212 0.6800 0.0507 0.9108 0.0211
mean 0.7667 0.0737 0.6198 0.0212 0.6800 0.0507 0.9108 0.0211

Count Ratio Count Ratio Count Ratio Count Ratio
1st 0 0 % 1 4.35 % 2 8.70 % 0 0 %
2nd 1 4.35 % 4 17.39 % 4 17.39 % 0 0 %

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 7: Scaffold Split Result (part 1)

GEAR GATE STL MTL
Tasks RMSE STD RMSE STD RMSE STD RMSE STD

hv ← ds 0.6101 0.0210 0.6939 0.0996 0.6744 0.1079 0.6465 0.0776
as ← bp 1.0016 0.0073 1.0495 0.0256 1.2828 0.0724 1.1677 0.1068
ds ← kri 0.4261 0.0017 0.4395 0.0108 0.4477 0.0052 0.4849 0.0061
hv ← vs 0.5731 0.0470 0.7174 0.0796 0.6744 0.1079 0.9954 0.2059
vs ← hv 0.6323 0.0441 0.6120 0.0639 0.9816 0.1267 0.8535 0.0558
st ← as 0.6980 0.0832 0.7540 0.0660 0.8041 0.1062 1.0254 0.0251
ds ← lp 0.4236 0.0036 0.4049 0.0102 0.4477 0.0052 0.4517 0.0184

pol ← ds 0.9902 0.0697 0.9040 0.0852 0.9604 0.1056 1.4198 0.0796
vs ← bp 0.5242 0.0418 0.6121 0.0297 0.9816 0.1267 0.5686 0.0276
dk ← ef 0.5229 0.0166 0.7122 0.0545 0.7028 0.0391 0.6549 0.0210
as ← ccs 1.0016 0.0073 1.1313 0.0496 1.2828 0.0724 1.1197 0.0558
ct ← bp 0.3275 0.0329 0.3883 0.0203 1.4436 0.1150 0.4359 0.0126
st ← ccs 0.6975 0.0833 0.7281 0.0586 0.8041 0.1062 0.9905 0.0737

ccs ← kri 0.5111 0.0044 0.5292 0.0094 0.5489 0.0107 0.5297 0.0083
hv ← bp 0.4671 0.0136 0.4821 0.0132 0.6744 0.1079 0.4668 0.0169
vs ← ccs 0.5611 0.0676 0.6126 0.0671 0.9816 0.1267 0.8186 0.0790
st ← hv 0.6980 0.0832 0.7209 0.0412 0.8041 0.1062 0.7237 0.0276
hv ← ct 0.5038 0.0236 0.6579 0.0678 0.6744 0.1079 0.6633 0.0660
ip ← bp 0.4064 0.0300 0.4668 0.0179 0.5780 0.1475 0.5540 0.0587
hv ← ef 0.5038 0.0236 0.6406 0.0335 0.6744 0.1079 0.7879 0.0643

hv ← kri 0.4812 0.0150 0.5084 0.0264 0.6744 0.1079 0.6204 0.0269
ct ← kri 0.4256 0.0214 0.3902 0.0140 1.4436 0.1150 0.5173 0.0927
ip ← dk 0.3984 0.0232 0.4335 0.0119 0.5780 0.1475 0.5335 0.1016

mean 0.5820 0.0333 0.6343 0.0416 0.8313 0.0949 0.7404 0.0569
Count Ratio Count Ratio Count Ratio Count Ratio

1st 17 73.91 % 3 13.04 % 0 0 % 1 4.35 %
2nd 22 95.65 % 14 60.87 % 0 0 % 3 13.04 %

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 8: Scaffold Split Result (part 2)

KD GSP-KD Transfer All Transfer Head
Tasks RMSE STD RMSE STD RMSE STD RMSE STD

hv ← ds 0.5920 0.0466 0.7606 0.0810 0.8659 0.0788 0.9584 0.0339
as ← bp 1.3580 0.0136 1.2340 0.0294 1.1478 0.0264 1.0935 0.0079
ds ← kri 0.5409 0.0480 0.4467 0.0104 0.8753 0.1134 1.0928 0.0482
hv ← vs 0.8948 0.2294 0.6536 0.0345 0.7520 0.1666 0.7924 0.0595
vs ← hv 1.2597 0.3638 0.6377 0.0253 0.9217 0.1575 0.9179 0.0539
st ← as 1.7083 0.1608 0.9335 0.0954 1.2604 0.0946 1.0780 0.0613
ds ← lp 0.5221 0.0328 0.4685 0.0111 0.4664 0.0121 1.0410 0.0026
pol ← ds 1.3309 0.1998 0.8475 0.0627 1.0385 0.2146 1.3204 0.0491
vs ← bp 0.9371 0.2386 0.6599 0.0204 1.1532 0.1766 1.0135 0.0820
dk ← ef 0.8189 0.0462 0.6353 0.0171 0.7417 0.0384 0.7963 0.0071
as ← ccs 1.3773 0.0781 1.1272 0.0778 1.2925 0.0606 1.4530 0.0143
ct ← bp 1.2459 0.1199 1.1837 0.0586 0.5644 0.0530 0.9347 0.0316
st ← ccs 1.5402 0.1418 0.7344 0.0187 0.9075 0.0431 1.2596 0.0287

ccs ← kri 0.5534 0.0190 0.5356 0.0115 0.5640 0.0137 0.7904 0.0159
hv ← bp 0.6271 0.0868 0.7403 0.0889 0.6093 0.0422 0.8111 0.0251
vs ← ccs 1.3034 0.5354 0.8027 0.0159 0.7271 0.0828 1.2282 0.0243
st ← hv 1.5256 0.1906 0.7417 0.0206 1.4243 0.0627 1.0047 0.0813
hv ← ct 0.7925 0.2694 0.6428 0.0080 0.9499 0.2579 0.8089 0.0532
ip ← bp 0.4205 0.0240 0.4579 0.0207 0.4419 0.0371 0.9704 0.0399
hv ← ef 0.6773 0.1553 0.5862 0.0375 1.0003 0.1719 0.9503 0.0307

hv ← kri 0.6710 0.1524 0.5509 0.0252 0.6560 0.0408 0.9998 0.0311
ct ← kri 1.3392 0.1076 1.2358 0.0373 1.1124 0.1265 1.2769 0.0193
ip ← dk 0.4975 0.0769 0.4376 0.0255 0.5248 0.0471 1.0165 0.0521

mean 0.9797 0.1451 0.7415 0.0362 0.8694 0.0921 1.0265 0.0217
Count Ratio Count Ratio Count Ratio Count Ratio

1st 1 4.35 % 1 4.35 % 0 0 % 0 0 %
2nd 2 8.70 % 5 21.74 % 0 0 % 0 0 %

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

H ADDITIONAL ABLATION STUDY

H.1 SENSITIVITY TO LATENT SPACE DIMENSIONALITY

In this section, to further assess the robustness of our method, we conducted an ablation study
examining how the latent space dimensionality—determined by the transfer and inverse transfer
modules—affects performance. As shown in Figure 8, we varied the latent dimension across 5, 20,
50, and 200 on the HV prediction task using the EF task as the source(hv ← ef), and tracked the
corresponding validation loss trends. We observed that the validation loss consistently decreased
as the latent dimension increased up to 50, and then rose slightly beyond that point. Notably, the
differences in validation loss among dimensions 20, 50, and 200 were minimal, indicating that—as
long as the latent space is not excessively small—GEAR exhibits stable training behavior.

0.12

0.17

0.22

0.27

0.32

0.37

0 50 100 150 200 250 300 350 400 450 500

Validation Accuracy

w/o curv loss
5
20
50
200

Figure 8: This figure depicts validation accuracy of different latent space dimensions.

H.2 OPTIMIZATION OF LOSS WEIGHTS

We adopted a two-stage procedure for hyperparameter optimization. Firstly, we initialized all loss-
weight hyperparameters to comparable magnitudes (α = β = γ = 1, δ = ϵ = 0.1). This avoids early
imbalance among loss components.

Then, we performed grid search on validation set. A grid over 0.1, 0.2, 0.5, 1 was used for α, β, γ, δ,
and ϵ, total 1024 combinations. The optimal values were chosen based on average validation RMSE
across 23 task pairs. This same procedure was applied consistently to all tasks. The results are shown
in table 9.

Task Minimum RMSE Mean RMSE Std. Dev. Ours
AS→ Target 0.3957 0.4314 0.0136 0.4033
ST→ Target 0.1746 0.1972 0.0141 0.1764

Table 9: Hyperparameter sensitivity analysis for AS→Target and ST→Target validation tasks.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Although the precise optimum varies per task, the selected setting is highly stable: it is near-optimal for
AS and ST, and was empirically found to be the most robust across all 23 tasks. The variation across
the grid is modest, indicating that GEAR does not rely on fragile or highly tuned hyperparameters.

Finally, we emphasize that the complete ablation sweep for both target tasks required only approxi-
mately 1400 seconds (under 30 minutes) on 8 x A40 GPUs, demonstrating that the hyperparameter
analysis is computationally lightweight and practical. These results demonstrate that GEAR is stable
under reasonable hyperparameter variations.

H.3 REPLACEMENT OF CURVATURE LOSS TO HESSIAN-BASED LOSS

0.24

0.29

0.34

0.39

0.44

0.49

0.54

0.59

0.64

0.69

0 100 200 300 400 500 600 700

AS<-ST Hessian Test

gear hessisan

Figure 9: This plot shows the loss curve when curvature loss is replaced with a Hessian-based loss.
The validation RMSE curves clearly show that, unlike curvature, the Hessian loss fails to guide
learning: performance is inferior and exhibits severe overfitting.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models to refine the grammar and improve the clarity of the text.

36


	Introduction
	Related works
	Riemannian geometry in deep learning
	Transfer learning for molecular property prediction

	Methods
	Preliminary
	Analytic computation strategy
	Model architecture

	Experiments
	Experimental settings
	Main results

	Ablation studies
	Role of curvature loss
	Robustness under corrupted dataset
	Computational costs

	Discussion
	Reproducibility Statement
	Notations
	Motivations and Theoretical Backgrounds
	Justification for the Riemannian Geometry Assumption
	Motivation for Ricci Curvature Matching
	The Definition of Riemannian Manifold
	Covariance
	Explicit Form of Christoffel Symbol
	Geodesic Equations
	Riemann Curvature

	Curvature Computation for Two Layered MLP
	Quadratic Case for Computation Check
	2-Dim Simplest Example for Square Activation
	2-Dim Simplest Example for SiLU Activation


	Base Graph Neural Network Model
	Architecture and Hyperparameters
	Detailed Explanation of Datasets and Experimental Setups
	Datasets
	Experimental Setups

	Experimental Results
	Additional Ablation Study
	Sensitivity to latent space dimensionality
	Optimization of loss weights
	Replacement of curvature loss to Hessian-based loss

	The Use of Large Language Models (LLMs)

