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Abstract

The assessment of children’s narrative ability is001
crucial for diagnosing language disorders and002
planning interventions. Distinct from the typi-003
cal automated essay scoring, this task focuses004
primarily on evaluating the completeness of nar-005
rative content and the coherence of expression,006
as well as the interpretability of assessment007
results. To address these issues, we propose008
a novel computational assessing framework009
NarGINA, under which the narrative graph is010
introduced to provide a concise and structured011
summary representation of narrative text, allow-012
ing for explicit narrative measurement. To this013
end, we construct the first Chinese children’s014
narrative assessment corpus based on real chil-015
dren’s narrative samples, and we then design a016
narrative graph construction model and a narra-017
tive graph-assisted scoring model to yield accu-018
rate narrative ability assessment. Particularly,019
to enable the scoring model to understand narra-020
tive graphs, we propose a multi-view graph con-021
trastive learning strategy to pre-train the graph022
encoder and apply instruction-tuned large lan-023
guage models to generate scores. The extensive024
experimental results show that NarGINA can025
achieve significant performance improvement026
over the baselines, simultaneously possessing027
good interpretability. Our findings reveal that028
the utilization of structured narrative graphs be-029
yond flat text is well suited for narrative ability030
assessment.031

1 Introduction032

A narrative can take several forms: recounting past033

experiences, retelling a previously heard or read034

story, or creating a composition (McCabe et al.,035

2008). Assessing narrative ability not only pro-036

vides an objective measure of children’s language037

development, but also plays a crucial role in the038

early diagnosis and intervention of language disor-039

ders (Pesco and Bird, 2016; Pico et al., 2021).040

In the field of clinical linguistics, assessing nar-041

rative ability has been a major focus of research.042

并列
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woke up(boy,puppy;;;)

Child’s Narrative Text
<Chinese> 男孩和小狗醒了。然后男孩和小狗发现青蛙不见了。男孩找青蛙。男孩把鞋子倒下来。
小狗也在找青蛙。小狗把身子探出窗台。然后小狗就从窗台掉下去了。小狗也把瓶子摔碎了…
<English> The boy and the puppy woke up. Then the boy and the puppy found that the frog was 
gone. The boy looked for the frog. The boy turned over his shoes. The puppy also looked for the 
frog. The puppy leaned out of the window sill. Then the puppy fell off the window sill. The puppy 
also smashed the bottle…
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Figure 1: An example of narrative graph.

Studies typically analyze narratives from two per- 043

spectives: macrostructure (Blom and Boerma, 044

2016) and microstructure (Justice et al., 2006). 045

As microstructural features are relatively easy to 046

quantify, research has increasingly emphasized 047

macrostructural coherence (Reese et al., 2011) and 048

completeness (Kellas and Manusov, 2003). Causal 049

networks (Trabasso and Sperry, 1985) are an im- 050

portant tool for assessing these aspects (Diehl et al., 051

2006; Torng and Sah, 2020), providing an intuitive 052

representation of narrative macrostructure. How- 053

ever, researchers in this field generally rely purely 054

on manual analyses of children’s narrative samples, 055

which poses a practical dilemma of being time- 056

consuming and laborious; therefore, it is difficult 057

to promote and apply in broader practices. 058

This paper focuses on automated assessment 059

of children’s narrative ability by exploring the 060

forefront natural language processing (NLP) tech- 061

niques. Outwardly, this task shares similarities 062

with the multi-trait automated essay scoring (AES), 063

which evaluates various essay genres across traits 064

like content and language use. Some recent stud- 065

ies have applied autoregressive multi-trait score 066

generation framework to leverage token generation 067

probabilities (Do et al., 2024a,b). Nevertheless, 068

compared to multi-trait AES, the automated assess- 069

ment of children’s narrative ability presents unique 070

challenges in the following aspects: (1) the narra- 071
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tive assessment task focuses primarily on evaluat-072

ing the completeness of narrative content and the073

coherence of expression; (2) the assessment result074

of this task requires not only high accuracy, as well075

as the intuitiveness and interpretability, which are076

essential to provide actionable feedback for subse-077

quent interventions. There has also been some spo-078

radic research on this task. Hassanali et al. (2013)079

employed topic modeling to predict language disor-080

ders and coherence. Jones et al. (2019) simply used081

machine learning methods to score macrostructure.082

Obviously, these works have not presented effec-083

tive solutions to the aforementioned challenges.084

To address these issues, we propose the085

Narrative Graph-based Interpretable Children’s086

Narrative Ability Assessment (NarGINA) frame-087

work. To this end, we first introduce a narrative088

graph as a structured representation of narrative089

text, inspired by the causal networks in clinical lin-090

guistics (Torng and Sah, 2020). Though the causal091

network gives an intuitive representation of the in-092

put text, that structure simply considers clauses as093

nodes, which makes it difficult to clearly express094

the complex narrative content. Contrastively, in095

our narrative graph, nodes represent specific events,096

and edges capture event relations, such as various097

causal and synchronous connections (see an exam-098

ple in Figure 1). Compared to flat and unstruc-099

tured narrative text, the narrative graph provides100

a concise summary representation, thus helping101

to explicitly measure and calculate the key nar-102

rative indicators such as completeness and coher-103

ence; meanwhile, the interpretability can also be104

naturally facilitated through the comparative anal-105

ysis between the evaluation results and the gold-106

standard narrative graph 1.107

Further, we design the computational framework108

NarGINA, based on the narrative graph, for assess-109

ing narrative ability. Unlike most existing AES110

systems that rely solely on feature learning from111

raw text, NarGINA evaluates the narrative qual-112

ity mainly by examining the narrative graphs con-113

structed from the input text, while also consider-114

ing the raw text, as illustrated in Figure 2. To115

achieve this, we first establish a narrative graph an-116

notation specification and then construct a Chinese117

narrative ability assessment corpus, incorporating118

macrostructure, microstructure, and psychological119

states. Next, we propose an automated narrative120

graph construction model and a narrative graph-121

1See the definition in Section 3.3.
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Figure 2: Overview of NarGINA framework.

assisted scoring model to yield accurate and inter- 122

pretable narrative ability assessment. Particularly, 123

to enable the scoring model to understand narrative 124

graphs, we introduce a multi-view contrastive learn- 125

ing strategy to pre-train a graph encoder and apply 126

instruction-tuned large language models (LLMs) 127

to generate scores. Experimental results show that 128

our approach significantly outperforms baselines in 129

both performance and interpretability. The source 130

code and corpus will be publicly available. 131

In a nutshell, our contributions are as follows: 132

• We propose a novel method for automated 133

children’s narrative ability assessment, under 134

which the narrative graph is innovatively in- 135

troduced to explicitly measure the narrative 136

quality, and then the narrative graph construc- 137

tion and scoring models are well designed. 138

• We introduce the first Chinese children’s nar- 139

rative corpus, by establishing a narrative graph 140

specification, collecting real children’s narra- 141

tive samples and constructing a high-quality 142

annotated dataset. 143

• Experimental results show impressive perfor- 144

mance improvements along with interpretable 145

scoring results. 146

2 Related Work 147

Narrative Ability Assessment Frameworks 148

The story grammar model (Stein, 1979) and high- 149

point analysis (Labov and Waletzky, 1967) provide 150

the theoretical foundation for assessing macrostruc- 151

ture. The causal network (Trabasso and Sperry, 152

1985) has been used to assess narrative coherence 153

by statistical features (Sah and Torng, 2015; Sah, 154

2013) and has also been applied in interventions 155
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for reading difficulties (McMaster et al., 2014).156

MAIN (Gagarina et al., 2019) analyzed the por-157

trayal of children’s psychological states by internal158

state terms. Research on automated assessment re-159

mains relatively underexplored, with most methods160

focusing on detecting language disorders (Gabani161

et al., 2011) or classifying specific narrative traits,162

such as coherence (Hassanali et al., 2013). Re-163

cently, some studies have attempted to apply NLP164

techniques within manual assessment frameworks.165

Baumann et al. (2024) achieved the automated an-166

notation of the story grammar structures in MAIN.167

However, these earlier studies have not provided168

a fully automated approach for comprehensively169

assessing narrative completeness and coherence,170

nor have they offered quantitative and interpretable171

results needed to inform subsequent interventions.172

Graph-based Approaches for Text Assessment173

Graph-based methods have been applied to various174

tasks such as modeling mental states (Lee et al.,175

2021), event evolution (Yan and Tang, 2023), ex-176

plainable causal reasoning (Du et al., 2021), and177

AES. In particular, Somasundaran et al. (2016)178

showed that graph properties (e.g., PageRank) de-179

rived from content words in essays can effectively180

model essay scores related to the quality of develop-181

ment. Another line of work constructed sentence-182

prompt graphs, where semantic similarity served as183

edge weights, to evaluate how well each sentence184

addresses the prompt (Bhatt et al., 2020). Yet, the185

graph structures in these prior studies were not186

designed for children’s narrative assessment and187

therefore struggle to model the completeness and188

coherence of narratives.189

3 Corpus Construction190

The Chinese children’s narrative assessment cor-191

pus comprises 543 annotated narrative texts, each192

paired with a narrative graph and scores for overall193

ability and three key traits: macrostructure, mi-194

crostructure, and psychological states.195

3.1 Data Collection196

Instead of using the typical story-retelling task, we197

adopted a more challenging narrative generation198

task (Pearce et al., 2010) under the guidance of clin-199

ical linguistics experts. To collect narrative data,200

we used the book Frog, Where Are You? (Mercer,201

1969), a wordless picture book widely used for as-202

sessing children’s narrative ability (Reilly et al.,203

2004; Torng and Sah, 2020). Participants, aged 3204

to 13, were independently asked to read the book 205

and verbally narrate the story’s events without any 206

scripted guidance, ensuring that the narratives were 207

based on their own interpretations and recollections 208

of the visual cues. To establish a gold-standard 209

narrative graph, we also collected 40 narrative sam- 210

ples from adults of normal intelligence, bringing 211

the total corpus size to 543. All oral narratives 212

were manually transcribed following CHILDES 213

(MacWhinney, 2000) data procedures, and format- 214

ted in accordance with the CHAT (MacWhinney, 215

2017) guidelines (Appendix A.1). 216

3.2 Annotation Specification Design 217

Each transcribed narrative text is annotated with a 218

narrative graph and scores for narrative ability. 219

Narrative Graph Annotation Figure 1 shows 220

that a narrative graph consists of event nodes and 221

event relation edges. 222

• Event: Unlike the predefined event types in 223

corpora such as ACE 2005 (Walker et al., 224

2006), children’s narrative expressions exhibit 225

significant variability and diversity. Thus, we 226

do not impose rigid event type constraints. An 227

event is defined as a narrative element describ- 228

ing the story background, actions, or activities 229

involving characters. We refer to the guide- 230

lines (LDC, 2005) and design a structured 231

event representation for narrative text in the 232

format: Trigger (Subject; Object; Adverbial 233

of Time; Adverbial of Place). If multiple ar- 234

guments exist in the same slot, they should 235

be separated by commas (,). Examples are 236

provided in Appendix A.2. 237

• Event Relation: We adopt the causal rela- 238

tion classifications (motivation, psychological 239

causation, physical causation, enablement) 240

proposed in causal networks (Trabasso and 241

Sperry, 1985) and further refine the relation 242

definitions. Since the book Frog, Where Are 243

You? contains several synchronous events, we 244

incorporate synchronous relations, as defined 245

in the Penn Discourse Treebank 3.0 (Webber 246

et al., 2019). The Appendix A.3 provides de- 247

tailed definitions and examples. 248

Narrative Ability Scoring Rubric We primarily 249

focus on assessing the completeness and coher- 250

ence of the narrative’s macrostructure. A complete 251

narrative should be clearly segmented in chronolog- 252

ical or episodic order, demonstrate causal relations, 253
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Dataset #Documents #Events #Event Relations
ACE 2005 599 4090 -
Causal-TB 183 6811 5436
Event StoryLine 258 4732 12695
MAVEN-ERE 4480 103193 1290050
our corpus 546 20244 16390

Table 1: Comparison between our corpus and relevant
corpora that contain events and event relations.

develop characters with emotional depth, express254

emotions and derive meaning, ensure coherence,255

and attribute responsibility to the characters in the256

story (Kellas and Manusov, 2003). Coherence is257

defined as the temporal and causal structure of a258

story (Karmiloff-Smith, 1985). For a more com-259

prehensive assessment, the microstructure and psy-260

chological states are included in the scoring rubric.261

Each expert assigns scores ranging from 0 to 10 to262

each trait and the overall narrative ability.263

3.3 Annotation Process264

The annotation process consists of two stages: (1)265

in the narrative graph annotation stage, 14 trained266

annotators, divided into 7 pairs, independently an-267

notated identical transcribed texts. The annotations268

were then compared and refined through consis-269

tency checks. (2) the narrative ability scoring stage270

requires expertise in children’s language develop-271

ment and narrative ability. Hence, two experts with272

clinical or educational experience independently273

scored each sample. This dual annotation process274

helped to reduce subjective bias and improve relia-275

bility.276

A gold-standard narrative graph was estab-277

lished through discussions among linguistic ex-278

perts, based on adult narrative samples, and served279

as the benchmark for assessing children’s narrative280

abilities. To improve efficiency, an annotation tool281

was developed (Appendix A.6).282

3.4 Statistical Analysis283

As shown in Table 1, we compare our corpus284

with existing relevant corpora, including ACE285

2005, Causal-TB (Mirza et al., 2014), Event Sto-286

ryLine (Caselli and Vossen, 2017), and MAVEN-287

ERE (Wang et al., 2022). In contrast, our corpus288

provides more comprehensive annotations, cover-289

ing event triggers, arguments, and relations. Addi-290

tionally, Table 2 presents our narrative graph statis-291

tics. The variation in edge counts across different292

types is due to the limited occurrences of phys-293

ical causality and synchronous relations in Frog,294

Statistics
event node 17815

event relation edge

Synchronous 653
Motivation 3356
Psychological causation 1213
Physical causation 384
Enablement 10518

maximum graph
node 138
edge 164

minimum graph
node 3
edge 0

Table 2: Statistics of narrative graph features.

Where Are You?. Differences in graph size reflect 295

age-related differences in narrative completeness or 296

potential language disorders. The score distribution 297

is presented in Appendix A.7. 298

4 NarGINA 299

4.1 Overview 300

In the domain of automated narrative ability assess- 301

ment, one of the main challenges is capturing both 302

the structure and semantics of narrative texts, while 303

also providing interpretability of the assessment 304

results. For this reason, we introduce NarGINA. 305

As illustrated in Figure 3, it consists of two stages: 306

narrative graph construction and narrative ability 307

scoring. First, NarGINA transforms narrative text 308

into a structured graph, offering a concise summary 309

representation that tackles key challenges in nar- 310

rative modeling. Next, NarGINA integrates the 311

narrative graph and the original text into the LLM, 312

enabling scoring across multiple traits and provid- 313

ing interpretability analysis. 314

4.2 Narrative Graph Construction Model 315

In this section, we present the details of narrative 316

graph construction, which consists of node and 317

edge construction. The task mainly faces the fol- 318

lowing challenges: (1) children’s oral narratives 319

exhibit irregularities (e.g., missing grammatical 320

components, repeated sentences, and scrambled 321

word order) during node construction, requiring 322

richer information supplementation; (2) data spar- 323

sity, due to the structural characteristics of narra- 324

tive graphs, and missing information (e.g., missing 325

nodes, missing triggers or arguments) caused by 326

the irregularities, require fine-grained data and data 327

augmentation during edge construction. 328

Narrative Nodes Construction To address these 329

irregularities, we use the Universal Information 330
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Figure 3: Illustration of the entire process for the proposed framework NarGINA.

Extraction (UIE) model to construct nodes and ex-331

ploit its generalization ability (Lu et al., 2022) to332

extract richer information. Furthermore, we pro-333

pose a retrieval-augmented strategy based on the334

gold-standard narrative graph Ggold and apply it to335

the our model to augment the data, illustrated as:336

R = f(text,Ggold) (1)337

where R is the retrieved information, text denotes338

the text of an event and f(·) denotes the text sim-339

ilarity matching function, which retrieves the text340

for the most relevant event in Ggold using a thresh-341

old of 0.9. Specifically, based on rexUIE (Liu et al.,342

2023a), we concatenate R with the input of rexUIE343

Q to generate an augmented input. Next, the aug-344

mented input is encoded by DeBERTa (He et al.,345

2021), generating the augmented embedding ha:346

ha = DeBERTa(Q;R) (2)347

The final set of narrative nodes is denoted as348

Vnarrative={event1, . . . , events}, where event is349

a structured representation consisting of a trigger350

and its arguments, s denotes the node count.351

Narrative Edges Construction To address the352

issues of missing information and data sparsity, we353

encode narrative nodes using LLMs as GNN en-354

hancers, extend the internal knowledge of LLMs355

to events, and construct superior graphs to enhance356

the input data. Besides, we construct subgraphs to357

supplement fine-grained dependency information.358

Specifically, based on OFA (Liu et al., 2024), we359

use the Llama2_13b (Touvron et al., 2023), with-360

out fine-tuning, to encode the superior graph, de-361

noted as Gsup = (Vsup, Esup), where the node362

set is denoted as Vsup ⊆ {(eventi; eventj)|i, j ∈ 363

Z+, i ̸= j}. Similarly, the edge set is denoted 364

as Esup ⊆ {(vi, vj)|vi, vj ∈ Vsup,∃eventk ∈ 365

(vi ∩ vj), i, j, k ∈ Z+}. Due to the complexity 366

of Gsup, we retain only the 10 nearest neighbor 367

edges for each node. Furthermore, we use the multi- 368

modal model G2P2 (Wen and Fang, 2024) to en- 369

code the subgraph, denoted as Gsub= (Vsub, Esub), 370

where the node set Vsub consists of all event trig- 371

gers and arguments, and the edge set Esub consists 372

of edges between the trigger and arguments in each 373

event. The embeddings from the superior graph and 374

the subgraph are then concatenated and ultimately 375

fed into R-GCN (Schlichtkrull et al., 2018) for nar- 376

rative edge classification. The set of narrative edges 377

is denoted as Enarrative ⊆ {(eventi, re, eventj) 378

|eventi, eventj ∈ Vnarrative, re ∈ Re, i, j ∈ Z+}, 379

where Re includes all edge types (Section 3.2). 380

Eventually, we get the narrative graph 381

Gnarrative = (Vnarrative, Enarrative, Re). 382

4.3 Narrative Graph-Assisted Scoring Model 383

There exist two main challenges: (1) narrative 384

ability encompasses multiple traits, requiring the 385

model to possess strong reasoning capabilities to 386

capture cross-event logic; and (2) due to modality 387

gaps, narrative graphs cannot be directly utilized in 388

existing language model-based scoring methods. 389

Piper and Bagga (2024) demonstrated that fine- 390

tuning LLMs can match the performance of GPT-4 391

on narrative understanding tasks, motivating us to 392

integrate LLMs for narrative ability assessment and 393

enhance their macrostructural modeling ability us- 394

ing narrative graphs. Although researchers have ex- 395
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plored translating graph structures into natural lan-396

guage (Fatemi et al., 2024), such inputs tend to be397

verbose, potentially reducing LLMs’ performance398

on downstream tasks (Chen et al., 2023). Graph-399

level tokenization (Chai et al., 2023) and node-level400

tokenization (Chen et al., 2024) address this issue401

but struggle to capture the complex logic of chil-402

dren’s narratives and remain incompatible with the403

heterogeneity of narrative graphs. Hence, we in-404

tegrate narrative graphs into LLMs using GNN, a405

graph projector, and instruction-tuning.406

Multi-View Graph Contrastive Learning Un-407

like knowledge graphs, which represent entity re-408

lations, narrative graphs capture key storylines,409

causal dependencies, and shifts in psychological410

states. Moreover, the limited availability of la-411

beled data hampers the generalization of supervised412

methods. Thus, we propose a multi-view graph413

contrastive learning strategy to learn unsupervised414

node representations. As shown in Figure 3, we415

generate multi-view graphs using strategies such416

as Node Drop and Edge Add, simulating issues417

like missing events and redundant causal relations.418

For graph encoding, we use the Graph Attention419

Network (GAT) (Veličković et al., 2017). By apply-420

ing contrastive learning across these views, GAT421

enhances robustness against incompleteness, inco-422

herence, and noise in graphs, while also improving423

its ability to capture event causality. To derive tex-424

tual embeddings from the event and relation text,425

we apply Sentence Transformers (Reimers, 2019).426

Given a narrative graph Gnarrative, transformed427

from original text t, we apply random augmenta-428

tion strategies to generate two augmented graphs429

G1 and G2, which are then encoded to generate430

node features hv, h(1)v and h
(2)
v . By optimizing the431

InfoNCE loss (Oord et al., 2018), we ensure that432

features of the same node in h
(1)
v and h

(2)
v are simi-433

lar, while those of different nodes are distinct. After434

training, the final node features are represented as:435

hv = GAT (Gnarrative) (3)436

Graph-Text Alignment To align data from text437

and graphs, we use MLP as the graph projector that438

maps node features hv to the LLM’s input dimen-439

sions, generating event tokens ev = MLP (hv).440

Similar alignment methods are widely used in mul-441

timodal models (Liu et al., 2023b; Chen et al.,442

2024). The event tokens ev are reordered based443

on the sequence of event occurrences.444

Instruction Turning We fine-tune LLMs with 445

specific instructions to effectively integrate narra- 446

tive graph features for multi-trait scoring. Autore- 447

gressive score generation has been successfully ap- 448

plied to T5 (Raffel et al., 2020) for efficient multi- 449

trait AES (Do et al., 2024a,b). Nevertheless, T5 450

adopts short prefix-tuning, which may pose chal- 451

lenges for directly integrating narrative graphs into 452

the input. In contrast, LLMs support longer in- 453

put sequences. Therefore, we define the scoring 454

task as a question-answering (QA) task (Figure 3). 455

Details of the QA instructions can be found in Ap- 456

pendix B.1. During preprocessing, the <Graph> 457

tag in the prompt is replaced with ev as input. The 458

model then generates the scores as: 459

scores = LLM(prompt(ev, t)) (4) 460

For training, we fine-tune Vicuna_v1.5_7B (Chi- 461

ang et al., 2023), keeping the graph projector train- 462

able while freezing the graph encoder, which en- 463

sures robust graph features. 464

5 Experiments 465

5.1 Experimental Settings 466

We base our experiments on the Chinese children’s 467

narrative assessment corpus. The dataset is strati- 468

fied across different total scores and divided into 469

training (70%), validation (10%), and test (20%) 470

sets. The detailed dataset split and key statistics are 471

presented in Appendix A.8. For the narrative ability 472

scoring task, we adopt Quadratic Weighted Kappa 473

(QWK) (Cohen, 1968) to measure agreement be- 474

tween human annotations and model predictions. 475

We train on four NVIDIA A40 GPUs. The narrative 476

graph construction model employs full-parameter 477

fine-tuning, while the scoring model uses LoRA 478

(Hu et al., 2021) for parameter-efficient fine-tuning 479

of Vicuna_v1.5_7B. These models are trained sep- 480

arately in a pipeline approach. Further implemen- 481

tation details are provided in Appendix B.2. All 482

results are reported as averages. 483

5.2 Baselines 484

In the domain of automated assessment of chil- 485

dren’s narrative ability, to the best of our knowl- 486

edge, there are almost no graph-based methods 487

available for direct comparison. Therefore, we 488

evaluate the following baseline models: 489

BERT Jones et al. (2019) applied BERT (Devlin, 490

2018) to score narrative macrostructure, focusing 491

on story grammar components. 492
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Model Overall Macro Micro Psych Avg
Content words-based graph 0.537 0.494 0.605 0.439 0.519
Sentence similarity-based graph 0.651 0.600 0.670 0.522 0.611
BERT 0.680 0.635 0.664 0.539 0.629
ArTS-Vicuna_7B 0.745 0.734 0.707 0.550 0.684
NarGINA 0.787 0.767 0.717 0.636 0.727
NarGINA -w/o FT 0.688 0.685 0.673 0.488 0.634

Table 3: The QWK evaluation scores on our corpus. Macro: Macrostructure, Micro: Microstructure, Psych:
Psychological States, Avg: Average, FT: Fine-turning.

Content words-based graph Somasundaran493

et al. (2016) constructed graphs where content494

words serve as nodes and sentence adjacency forms495

the edges, then extracted features to evaluate essays496

across multiple traits.497

Sentence similarity-based graph Bhatt et al.498

(2020) constructed sentence-prompt graphs with499

semantic similarity as edge weights to derive fea-500

tures for overall essay scoring. We train separate501

models for each trait and discard features that were502

not applicable to Chinese.503

ArTS-Vicuna_7B We extend the autoregressive504

score generation model ArTS (Do et al., 2024a)505

to Vicuna_v1.5_7B. We show the effectiveness of506

narrative graphs through comparative analysis.507

5.3 Overall Performance508

Table 3 reports the average QWK scores for509

NarGINA and the baseline approaches. We observe510

that our method outperforms the strongest base-511

line, ArTS-Vicuna_7B, by 4.3% in average QWK.512

It also exceeds all the other baselines on every513

trait, demonstrating the superiority of the proposed514

framework. Focusing on macrostructure, NarGINA515

achieves a 3.3% gain over ArTS-Vicuna_7B, sug-516

gesting that explicitly modeling key events and517

their relations via a narrative graph offers a richer518

representation of story structure and logic. For psy-519

chological states, the margin increases to 8.6%,520

showing the model’s ability to capture more nu-521

anced character portrayals. The improvement in522

overall further demonstrates NarGINA’s ability to523

weigh all traits, providing a holistic assessment.524

Notably, even without fine-tuning the LLM, nar-525

rative graph features generated by the pre-trained526

graph encoder and the lightweight graph projector527

can still effectively enhance narrative ability assess-528

ment, allowing the framework to perform well even529

in resource-constrained environments.530

Model
ETE EAE

P R F1 P R F1
Instruct-UIE 50.0 31.6 38.7 50.0 28.1 35.7
T5-UIE 61.9 68.0 64.8 62.7 69.0 65.7
rexUIE-Ggold 72.4 73.3 72.8 76.5 76.4 76.4

Table 4: Performances of narrative node construction.
ETE denotes the event trigger extraction, EAE denotes
the event argument extraction, and rexUIE-Ggold is our
method to construct the narrative nodes.

Model P R F1
RoBERTa-large 24.1 80.3 36.2
Vicuna_7B-FT 28.9 69.2 32.7
OFA-Gsub-Gsup 73.3 79.2 75.3

Table 5: Performances of narrative edge construction.
OFA-Gsub-Gsup is our method for edge construction.

5.4 Narrative Graph Construction Analysis 531

In this section, we assess the quality of the narrative 532

graphs generated by our framework, using Preci- 533

sion (P), Recall (R), and F1-score (F1) as evalua- 534

tion metrics. We use T5-UIE (Lu et al., 2022) and 535

Instruct-UIE (Wang et al., 2023) as baselines for 536

narrative node construction, while using RoBERTa 537

(Liu et al., 2019) and Vicuna_7B as baselines for 538

narrative edge construction. Table 4 shows that 539

our model rexUIE-Ggold outperforms the baselines 540

across all metrics. Table 5 further demonstrates that 541

our model OFA-Gsub-Gsup yields notable gains in 542

precision and F1, while maintaining a recall compa- 543

rable to the best result. Thus, the narrative graphs 544

constructed by our framework capture events and 545

their relations more accurately. 546

5.5 Ablation Study 547

Effect of LLM To evaluate NarGINA’s effective- 548

ness on different LLMs , we use Llama2_7b as the 549

foundation model. As shown in Table 6, NarGINA- 550

Llama2_7B, augmented by the narrative graphs, 551

outperforms ArTS-Llama2_7B by 1.5% in average 552
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Model Overall Macro Micro Psych Avg
ArTS-Llama2_7B 0.736 0.725 0.708 0.527 0.674
NarGINA-Llama2_7B 0.750 0.759 0.690 0.555 0.689
NarGINA 0.787 0.767 0.717 0.636 0.727
-w/o graph encoder 0.709 0.724 0.689 0.556 0.669
-NG_TV 0.738 0.734 0.700 0.550 0.681

Table 6: Ablation study on key components for QWK
performance.

QWK. It remains below the Vicuna-based model,553

presumably because Vicuna benefits from addi-554

tional fine-tuning on Llama2, leading to stronger555

language modeling capacity. Overall, our frame-556

work improves performance across different LLMs557

and holds the potential for even greater improve-558

ments in larger models with more parameters.559

Effect of Narrative Graph Construction Model560

To investigate our narrative graph construction561

model’s contribution to scoring, we replace it with562

T5-UIE for node construction and Vicuna_7B-FT563

for edge construction, then feed the resulting graph564

into the scoring model (referred to as NG_TV). Ta-565

ble 6 shows that this approach results in a 4.6%566

decrease in average QWK scores, indicating that567

our approach can capture narrative events and re-568

lations, thus enhancing scoring performance more569

effectively.570

Effect of Graph Encoder To verify the effec-571

tiveness of the graph encoder trained with multi-572

view graph contrastive learning, we adopt Sentence573

Transformers to derive node features directly from574

raw text, bypassing the structural modeling. As575

shown in Table 6, removal of the graph encoder576

leads to an average decrease of 5.8% in QWK577

scores across all traits. This is because the graph en-578

coder effectively captures semantic and structural579

information in narrative graphs, thereby generating580

higher-quality node features.581

5.6 Interpretability Analysis582

Figure 4 illustrates a case study about an inter-583

pretable result, which helps intuitively identify de-584

ficiencies in the test sample’s macrostructural com-585

pleteness and coherence.586

Missing Key Event The absence of events like587

“woke up (boy,puppy;;;)” and “leaned out (puppy;;;588

window sill)” makes the narrative less complete589

and also weakens the logical setup for subsequent590

events, reducing overall coherence.591

Relation Errors and Redundancies Misrepre-592

senting looked for (boy; frog;;) → turned over (boy;593

Gold Narrative Graph

looked for(boy; frog;;)

looked for(puppy; frog;;)

turned over(boy; shoes;;)

leaned out(puppy;;; window sill)

fell off(puppy;;; window sill)
E

Test Sample Graph

Missing Event
Missing Relation

Relation Error
Redundant
Relation

similarity score=0.77

woke up(boy,puppy;;;)

found(boy, puppy; 
the frog was gone;;)

looked for(boy; frog;;)

looked for(puppy; frog;;)

turned over(boy; shoes;;)

leaned out(puppy;;; window sill)

fell off(puppy;;; window sill)
Psy

Psy

Syn
E

M

M

E

woke up(boy,puppy;;;)

found(boy, puppy; 
the frog was gone;;)

Enablement
Psy-causation
Phy-causation
Motivation
Synchronous

Figure 4: Example of Interpretability. We select a key
segment due to the narrative graph’s large scale.

shoes;;) as psychological causation rather than mo- 594

tivation reveals the child’s difficulties in establish- 595

ing accurate causal relations during oral narrative. 596

Missing events may lead to redundant causal re- 597

lations, such as incorrectly associating looked for 598

(puppy; frog;;) with fell off (puppy;;; window sill). 599

These issues suggest that the child, when narrating 600

complex events, struggles to effectively structure 601

causal relations, further impairing coherence. 602

Furthermore, the cosine similarity between the 603

test sample and the gold-standard narrative graph, 604

computed via global average pooling, serves as a 605

quantitative indicator of the child’s narrative ability. 606

6 Conclusion 607

In this paper, we focus on the automated as- 608

sessment of children’s narrative ability. We pro- 609

pose a novel computational assessing framework 610

NarGINA that introduces the narrative graph to ex- 611

plicitly measure and calculate the key narrative 612

indicators such as completeness and coherence. 613

We construct the first Chinese children’s narra- 614

tive assessment corpus, and then propose the nar- 615

rative graph construction model and a narrative 616

graph-assisted scoring model. Experimental results 617

demonstrate that NarGINA substantially outper- 618

forms the baselines, along with good interpretabil- 619

ity. In particular, our findings reveal that the utiliza- 620

tion of structured narrative graphs beyond flat text 621

is well suited for narrative ability assessment. In fu- 622

ture work, we will explore more effective narrative 623

graph construction and scoring models to achieve 624

better performance. 625
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7 Limitations626

Limited Materials and Forms Our data collec-627

tion relies solely on the wordless picture book Frog,628

Where Are You?. While this material has been629

widely used in children’s narrative research, the630

generalizability of our study to other forms (e.g.,631

written stories, audiovisual content) remains un-632

examined. Future studies will expand to multiple633

materials and diverse genres to enhance the model’s634

applicability across different narrative contexts.635

Applicability in Resource-Constrained Environ-636

ments Experimental results show that NarGINA637

performs well even without fine-tuning LLMs.638

Nevertheless, for clinicians and educators who lack639

stable access or sufficient computational resources,640

deploying and maintaining the framework may still641

pose significant challenges. Future research could642

explore models with fewer parameters or adaptive643

frameworks to reduce reliance on LLMs.644

Need for Broader Real-World Validation Al-645

though we have conducted quantitative analyses646

and provided interpretable assessment results, there647

is still a lack of broader empirical research—such648

as large-scale user testing in real-world teaching or649

clinical settings.650

8 Ethics Statement651

Our work strictly follows the the ACL Code of652

Ethics.653

For data collection (Section 3.1), we sampled654

data from children aged 3 to 13 and some un-655

dergraduate students. All child participants ob-656

tained parental consent, and all adult participants657

provided their own consent. Our corpus does not658

contain any protected information, and any poten-659

tially identifiable personal information has been660

anonymized. The anonymization method involves661

replacing personal names with identifiers in the662

format “Narrative-{index}”.663

For human annotation (Section 3.3), we recruited664

our annotators from the linguistics and computer665

science departments of our university to annotate666

graphs and invited two front-line teachers to anno-667

tate scores. Annotators were also paid above the668

minimum wage. The annotation does not involve669

any personally sensitive information. Additionally,670

we include comprehensive details about human an-671

notation in Section 3.3. We present the instructions672

and screenshots of the interface for the human an-673

notation in Appendix A.6. We inform the human674

annotators what the task is about and tell them that 675

their responses will be used to assess the narrative 676

ability using AI models. 677

We use the models and datasets when following 678

their intended usage. We try our best to follow the 679

ethical guidelines of ACL. 680
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A Additional Details of Corpus992

A.1 CHAT Format993

The CHAT format document includes the basic994

transcription of the subject’s speech, the header,995

and ancillary lines. The header records background996

information, such as the subject’s and transcriber’s997

personal details, testing date, transcription date,998

and other relevant data. The ancillary records docu-999

ment coding, evaluation, events, and other auxiliary1000

information of interest to researchers. The main1001

section marks phenomena such as word omissions,1002

speech repetitions, and sentence corrections with1003

special symbols. Hence, before starting the anno-1004

tation process, the transcribed narrative text in the1005

main section should be preserved, the header con-1006

tent in the CHAT format should be removed, and1007

special marks for speech repetitions, sentence cor-1008

rections, and other phenomena should be restored1009

and processed.1010

A.2 Event Annotation1011

In children’s narrative texts, children may describe1012

the process in which the protagonist (such as a little1013

boy or a puppy) searches for a frog, or the events1014

involving other animals (like an owl, a bee, or a1015

deer) that the protagonists encounter in the story.1016

These descriptions are all considered event descrip-1017

tions in the text during the annotation process. The1018

components of an event include: the event trigger1019

and the event arguments. The trigger is the predi-1020

cate in the sentence, while the arguments are words1021

such as the subject, object, and adverbial phrases.1022

As an example, consider the following sentence1023

from the corpus: “And my dog actually shook a1024

nearby small tree.” Ideally, the annotator should1025

label the event in this sentence as follows:1026

shook(dog;small tree;;)1027

In the case of the “shook” event, the “dog”1028

serves as the agent, acting as the subject of the1029

event, while the “small tree” functions as the pa-1030

tient, representing the object of the event.1031

A.3 Event Relation Annotation1032

The definitions of event relations are presented in1033

Table 7.1034

Motivation In Event1 and Event2, Event11035

provides a goal-oriented direction for Event2,1036

thereby prompting the occurrence of the Event21037

action. This type of causality is referred to as mo-1038

tivation. Typically, Event1 typically contains the1039

goal information.1040

Example: 1041

(1) The little boy is looking for the frog. The little 1042

boy turns the boots over. [Reference narrative] 1043

Event1: looking for (the little boy; the frog; ; ) 1044
M−→ Event2: turns over (the little boy; boots; ; ) 1045

Explanation: 1046

Event1 expresses the little boy’s goal of finding 1047

the frog, which motivates Event2, "turning the 1048

boots over." The little boy turns the boots over 1049

because he wants to look inside for the frog. 1050

Psychological causation In Event1 and 1051

Event2, the action in Event1 triggers an internal 1052

reaction in Event2. This type of causality is 1053

referred to as psychological causality. The internal 1054

reaction is understood as an internal state or 1055

psychological state, including various information 1056

related to desires, beliefs, thoughts, intentions, and 1057

emotions. 1058

Example: 1059

(2) The next morning, when the boy and the dog 1060

woke up, they found the jar was empty. The little 1061

boy looked for the frog everywhere. [Reference 1062

narrative] 1063

Event1: found (they; the jar was empty; the 1064

next morning; )
Psy−−→ Event2: looked for (the little 1065

boy; the frog; ; ) 1066

Explanation: 1067

Event1, “found (they; the jar was empty; the 1068

next morning; )”, triggers Event2, “looked for (the 1069

little boy; the frog; ; )”. Here, the desire " looked 1070

for the frog " is the boy’s internal psychological 1071

state, which motivates his action in Event2. 1072

Physical Causation Physical causation refers to 1073

the mechanical causal relation between objects 1074

and/or people in the real world. It indicates that 1075

Event1 is sufficient to cause the occurrence of 1076

Event2, without needing any background context. 1077

Example: 1078

(3) The little dog accidentally fell from the win- 1079

dowsill. The jar broke. [Reference narrative] 1080

Event1: fell (The dog; ; ; the windowsill)
Phy−−→ 1081

Event2: broke (The jar; ; ; ) 1082

Explanation: 1083

When the dog falls, the jar inevitably breaks. 1084

This is consistent with our understanding of the real 1085

world, where the fall of the dog directly leads to 1086

the jar breaking. This represents physical causality. 1087

Enablement A causality that satisfies the neces- 1088

sity criterion is called enablement. The necessity 1089
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relation definition
synchronous Event1 and Event2 have a certain degree of temporal overlap.
motivation Event1 provides a goal or motivation for Event2, prompting the occur-

rence of the action in Event2.
psychological causation The action in Event1 triggers an internal reaction in Event2.
physical causation Under the condition that all background story influences are excluded,

Event1 leads to Event2 in a way that satisfies the condition of suffi-
ciency, often governed by physical or natural laws.

enablement A relation is classified as enablement if, through counterfactual inference,
it does not meet the criteria for the other three types of causal relations

Table 7: Definitions of Event Relations. Detailed explanations of internal reactions and counterfactual inference can
be found in A.4.

criterion means that if Event1 does not occur, then1090

Event2 will not happen, which is a counterfactual1091

reasoning argument (Appendix A.4). In enable-1092

ment, the cause is necessary but not sufficient to1093

trigger the result; it is a condition, not a causal1094

reason in the strict sense.1095

Example:1096

(4) The owl chased the little boy all the way.1097

The little boy climbed onto the rock. [Reference1098

narrative]1099

Event1:chased (The owl; the little boy; ; all the1100

way) E−→ Event2 :climbed (The little boy; the rock;1101

; )1102

Explanation:1103

If the owl had not chased the little boy, the boy1104

would not have climbed the rock.1105

Synchronous When Event1 and Event2 de-1106

scribe sentences that indicate a certain level of1107

temporal overlap between the events, expressed by1108

terms like “at the same time” or “meanwhile”, their1109

relation is annotated as a synchronous relation.1110

Example:1111

(5) While the little dog barked at the bees in the1112

beehive, the little boy shouted at the hole in the1113

ground. [Reference narrative]1114

Event1 : barked (The dog; the bees; ; )
Syn−−→1115

Event2 : shouted (The little boy; ; ; the hole)1116

Explanation:1117

The two events are connected by the temporal1118

indicator “while. . . ,” indicating that the events hap-1119

pen at the same time.1120

A.4 Internal Reaction and Counterfactual1121

Inference1122

Internal Reaction The “internal reaction” refers1123

to the internal state or psychological states of a1124

character, such as when “discovering the frog is1125

missing” triggers the event of “the boy searching 1126

for the frog.” This involves the character’s internal 1127

psychological states of “wanting to find the missing 1128

frog.” 1129

Counterfactual Inference The counterfactual 1130

inference method refers to a reasoning approach 1131

where if Event1 and Event2 pass the test of “if 1132

Event1 does not occur, Event2 will not occur,” 1133

then it is concluded that a causal relation exists 1134

between Event1 and Event2. 1135

A.5 Scoring Rubric for Microstructure and 1136

Psychological States 1137

Microstructure: 1138

• Is the vocabulary rich and diverse? (Evaluate 1139

based on total word count and lexical variety.) 1140

• Is the sentence structure complex? (Consider 1141

average sentence length and syntactical com- 1142

plexity.) 1143

• Are rhetorical devices effectively used? 1144

Narrative Psychological Expression: 1145

• Are the characters’ emotional expressions con- 1146

sistent with the development of the plot? 1147

• Is there any portrayal of the characters’ psy- 1148

chological states? (For children, basic emo- 1149

tional reactions are sufficient.) 1150

A.6 The Annotation Tool 1151

The annotation tool is custom-developed and iter- 1152

atively implemented using the standard graphical 1153

user interface (GUI) library Tkinter, which is built 1154

into the Python environment. As a module natively 1155
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Figure 5: Corpus annotation tool interface.

supported by Python, the Tkinter library offers a1156

high degree of compatibility and stability.1157

The user interface of the annotation tool is shown1158

in Figure 5. When using the tool, annotators can1159

mark the event triggers and arguments using short-1160

cut keys. Additionally, the tool supports annotating1161

the relations between events by selecting options1162

from a dropdown menu. To avoid the special marks1163

affecting the annotators’ reading efficiency, the font1164

size of these marks is reduced, and the background1165

color of the arguments is differentiated for clarity.1166

Annotators can also toggle the visibility of these1167

marks by checking or unchecking the “show tags”1168

checkbox.1169

The format for the event annotation information1170

is as follows:1171

{1172
"sentence_id_in_doc ": 17,1173
"sentence_text ": "And they found the frog.",1174
"event_mention ": [1175

{1176
"trigger ": {" mention ": " found ", "role1177

": "trigger", "start": 3, "end":1178
3},1179

"arguments ": [1180
{" mention ": " they ", "role": "1181

subject ", "start": 2, "end":1182
2},1183

{" mention ": " the frog ", "role": "1184
object ", start": 4, "end": 5}1185

]1186
}1187

]1188
}1189

The format for the relation annotation informa- 1190

tion is as follows: 1191

{ 1192
"relation_type ": "Motivation", 1193
"first_event ": { 1194

"sentence_id_in_doc ": 4, 1195
"sentence_text ": "The frog was missing.", 1196
"event_mention ": [ 1197

{ 1198
"trigger ": {" mention ": " was missing 1199

", "role": "trigger", "start": 1200
3, "end": 4}, 1201

"arguments ": ["..."] 1202
} 1203

] 1204
}, 1205
"second_event ": { 1206

"sentence_id_in_doc ": 5, 1207
"sentence_text ": "They were looking for the 1208

frog.", 1209
"event_mention ": [ 1210

{ 1211
"trigger ": {" mention ": " were 1212

looking for ", "role": "trigeer 1213
", "start": 2, "end": 4}, 1214

"arguments ": ["..."] 1215
} 1216

] 1217
} 1218

} 1219

A.7 Scores Analysis 1220

Figure 6 shows the score distributions for 1221

macrostructure, microstructure, narrative psycho- 1222

logical state, and overall scores. The histograms 1223

suggest that while the majority of children’s scores 1224

cluster around the middle-to-high range (roughly 1225

6 to 8), there is also a noticeable spread on both 1226

the lower and higher ends. This indicates that, al- 1227

though many children demonstrate reasonably de- 1228

veloped abilities in macrostructure, microstructure, 1229

and expression of psychological states, a signifi- 1230
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Figure 6: The statistical distribution of the scores.

Model Overall Macro Micro Psych Avg
NarGINA-ST emb 0.787 0.767 0.717 0.636 0.727
NarGINA-LLM emb 0.730 0.720 0.719 0.578 0.687

Table 8: The QWK performance of the NarGINA frame-
work using the LLM (Vicuna_7B) to encode the original
event and relation text. ST: Sentence Transformers.

cant number exhibit either very strong or relatively1231

weak skills in specific areas. For example, a subset1232

of children score above 8, showing advanced narra-1233

tive organization and use of language, while others1234

fall below 6, suggesting areas in need of targeted1235

interventions or additional practice.1236

A.8 Corpus Partition Statistics1237

The detailed dataset split and key statistics are pre-1238

sented in Table 9.1239

B Additional Details of Experiment Setup1240

B.1 Prompt Template1241

Table 10 presents the prompt templates used for1242

instruction-tuning of LLMs.1243

B.2 Implementation Details1244

Narrative Ability Scoring Model We adopt1245

Vicuna_v1.5_7B as our base model and fine-1246

tune it using the transformers.Trainer.1247

The evaluation strategy is set to epoch-based,1248

with per_device_train_batch_size of 8,1249

per_device_eval_batch_size of 4, and a total1250

of 20 training epochs.1251

We utilize LoRA, a parameter-efficient fine-1252

tuning method that significantly reduces both GPU1253

memory usage and trainable parameters. In our ex-1254

periments, we set the LoRA rank to 8, LoRA alpha1255

to 16, dropout to 0.05, and use bfloat16 precision.1256

The learning rate is fixed at 3e-4, the weight decay1257

at 0.01, and the warmup ratio at 0.05.1258

For text generation, we configure both1259

Vicuna_v1.5_7B and Llama2_7B with the1260

following settings: max_new_tokens=1024,1261

temperature=0.2, top_p=1.0, num_beams=1, 1262

use_cache=True, do_sample=True. 1263

All fine-tuning and inference are conducted on 1264

four NVIDIA A40 GPUs, each equipped with 1265

46 GB of memory. 1266

Narrative Graph Construction Model For 1267

node construction, we adopt DeBERTa_v2 as 1268

our encoding model, which is fine-tuned us- 1269

ing the lightning.pytorch.Trainer. The 1270

evaluation strategy is set to epoch-based, with 1271

per_device_batch_size of 16, and a total of 10 1272

training epochs. 1273

For edge construction, we adopt Llama2_13B 1274

as our encoding model, while R-GCN is 1275

the edge classification model, fine-tuned using 1276

the lightning.pytorch.Trainer. The evalu- 1277

ation strategy is also set to epoch-based, with 1278

per_device_batch_size of 16, and a total of 3 1279

training epochs. 1280

All fine-tuning and inference are conducted on 1281

four NVIDIA A40 GPUs, each equipped with 1282

46 GB of memory. 1283

C Addition Analysis 1284

For Sentence Transformers, the embedding model 1285

is distiluse-base-multilingual-cased-v1. We di- 1286

rectly apply it to convert the natural language to 1287

embeddings without fine-tuning it, avoiding the 1288

additional computational cost. We have consid- 1289

ered using embeddings derived from the LLMs 1290

(Table 8). It is evident that the LLM-based en- 1291

coded NarGINA has shown a decline across most 1292

traits, with only a slight improvement observed 1293

in the microstructure trait. This is due to the fact 1294

that LLMs possess a stronger ability to analyze 1295

the fine-grained and statistical features of language 1296

compared to Sentence Transformers. 1297
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#Documents #Sentences #Events #Arguments #Event Relations
Train 380 12673 14232 23710 11542
Validation 55 1894 2113 3469 1565
Test 108 3248 3571 5819 3017
Total 543 17815 19916 32998 16124

Table 9: Corpus Partition Statistics.

Prompt
Description Your task is to assess a child’s narrative ability on the book Frog, Where Are You?.
Scoring Criteria Consider the following three traits, scoring each on a scale of 0-10 (integers):

1. Macrostructure
- Does the story have a clear beginning, development, climax, and conclusion?
- Is the overall structure coherent, with no abrupt jumps or unreasonable plot points?
- Are the character actions logically connected by cause-and-effect relations?
2. Microstructure
- Is the vocabulary used rich and diverse? (Refer to total word count and diversity of
vocabulary)
- Is the sentence structure complex? (Consider average sentence length and syntactical
complexity)
- Are rhetorical devices used?
3. Narrative Psychological States Expression
- Are the character’s emotional expressions consistent with the development of the plot?
- Is there any psychological portrayal of the character? (For children, basic emotional
reactions are sufficient)
4. Total Score
- Finally, please weigh each trait’s score and provide an overall score in the range of 0-10.

Task Data 1. This is a story told by a child:
<essay text>
2. Narrative Graph
- A narrative graph has been extracted from the essay, showing key events in the story
and their causal relations,which can help you assess the organization and coherence
of the macrostructure.
- Each node represents an event, formatted as: verb (subject; object; adverbial of time;
adverbial of place).
- Edges represent relations between events, including synchronous, motivation,
physical causality,psychological causality, and enablement.
- Event token sequence: <Graph>

Output Format Please provide your assessment in the following format:
Macrostructure Score: <macroscore>, Microstructure Score:<microscore>, Psychological
state Score: <psych score>, Total Score: <total score>

Question Please assess the child’s story in terms of the macrostructure,microstructure, and
narrative psychological states.

Table 10: Prompt template.
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